Uncertainty Quantification of Water Level Predictions from Radar‐based Areal Rainfall Using an Adaptive MCMC Algorithm
This study proposes an approach for the uncertainty quantification at each stage of a single hydrological process of water level predictions based on different sources of mean areal precipitation (MAP) forecasts by using an adaptive Bayesian Markov chain Monte Carlo (MCMC) approach. The MAP forecast...
Saved in:
| Published in | Water resources management Vol. 35; no. 7; pp. 2197 - 2213 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.05.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-021-02835-1 |
Cover
| Abstract | This study proposes an approach for the uncertainty quantification at each stage of a single hydrological process of water level predictions based on different sources of mean areal precipitation (MAP) forecasts by using an adaptive Bayesian Markov chain Monte Carlo (MCMC) approach. The MAP forecasts are derived from the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) system and a long short-term memory (LSTM) network. The predicted water levels at two stations in the Gangnam catchment, Seoul, South Korea, are processed with a coupled 1D/2D urban hydrological model (1D/2D-UHM) forced by MAPLE MAP forecasts and LSTM-corrected MAP forecasts of five heavy rainfall events. The proposed Bayesian approach using the delayed rejection and adaptive Metropolis (DRAM) algorithm was compared with the Metropolis-Hastings (MH) algorithm in the uncertainty estimation of Weibull distribution parameters. The uncertainty contributions of the stages and sources in the related process were analyzed, including quantitative precipitation estimation (QPE) inputs, MAP inputs and 1D/2D-UHM. The results indicate that the uncertainty contribution of the MAPLE MAP forecasting is the highest in the 3-hour forecasting time. The uncertainty contribution of the QPE input for MAPLE MAP forecasting is the smallest and that of two sources, including the LSTM-corrected MAP source, and MAP and the coupled model is more significant than that of the QPE input. This research showed that the adaptive Bayesian MCMC method using the DRAM algorithm might be a robust option in quantitative uncertainty analyses of a single hydrological process, especially for urban flood management. |
|---|---|
| AbstractList | This study proposes an approach for the uncertainty quantification at each stage of a single hydrological process of water level predictions based on different sources of mean areal precipitation (MAP) forecasts by using an adaptive Bayesian Markov chain Monte Carlo (MCMC) approach. The MAP forecasts are derived from the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) system and a long short-term memory (LSTM) network. The predicted water levels at two stations in the Gangnam catchment, Seoul, South Korea, are processed with a coupled 1D/2D urban hydrological model (1D/2D-UHM) forced by MAPLE MAP forecasts and LSTM-corrected MAP forecasts of five heavy rainfall events. The proposed Bayesian approach using the delayed rejection and adaptive Metropolis (DRAM) algorithm was compared with the Metropolis-Hastings (MH) algorithm in the uncertainty estimation of Weibull distribution parameters. The uncertainty contributions of the stages and sources in the related process were analyzed, including quantitative precipitation estimation (QPE) inputs, MAP inputs and 1D/2D-UHM. The results indicate that the uncertainty contribution of the MAPLE MAP forecasting is the highest in the 3-hour forecasting time. The uncertainty contribution of the QPE input for MAPLE MAP forecasting is the smallest and that of two sources, including the LSTM-corrected MAP source, and MAP and the coupled model is more significant than that of the QPE input. This research showed that the adaptive Bayesian MCMC method using the DRAM algorithm might be a robust option in quantitative uncertainty analyses of a single hydrological process, especially for urban flood management. |
| Author | Nguyen, Duc Hai Kim, Seon-Ho Bae, Deg-Hyo Kwon, Hyun-Han |
| Author_xml | – sequence: 1 givenname: Duc Hai surname: Nguyen fullname: Nguyen, Duc Hai organization: Department of Civil & Environmental Engineering, Sejong University, Faculty of Water Resources Engineering, Thuyloi University – sequence: 2 givenname: Seon-Ho surname: Kim fullname: Kim, Seon-Ho organization: Department of Civil & Environmental Engineering, Sejong University – sequence: 3 givenname: Hyun-Han surname: Kwon fullname: Kwon, Hyun-Han organization: Department of Civil & Environmental Engineering, Sejong University – sequence: 4 givenname: Deg-Hyo orcidid: 0000-0002-0429-1154 surname: Bae fullname: Bae, Deg-Hyo email: dhbae@sejong.ac.kr organization: Department of Civil & Environmental Engineering, Sejong University |
| BookMark | eNp9kcuKHCEUhiVMID2TvEBWQjbZVKKWluWyaXKDHnIhTZZy2jp2HKq1o_aQ2eUR8ox5kjjTgcAsZiGCft_h5_zn5CymiIQ85-wVZ0y_LpyLwXRM8HbGXnX8EVlwpfuOD4qdkQUzgnVSS_6EnJdyxVjTDFuQn5voMFcIsd7Qz0eINfjgoIYUafL0G1TMdI3XONNPGafgbn8K9Tnt6ReYIP_59XsLBSe6zAhzewvRwzzTTQlxRyHS5QSHGq6RXq4uV3Q571IO9fv-KXncuILP_t0XZPP2zdfV-2798d2H1XLduV6J2qEUGjRse-m5Ua53Eoyepi0zg5DGM9ST27YcHJyXfuQSRz55CU7iMAxC9xfk5WnuIacfRyzV7kNxOM8QMR2LFWZUaugb2dAX99CrdMyxpbNCCaOMVr1s1HiiXE6lZPTWhXq3sJohzJYze1uJPVViWyX2rhLLmyruqYcc9pBvHpb6k1QaHHeY_6d6wPoLoE6iLA |
| CitedBy_id | crossref_primary_10_1016_j_ejrh_2024_102095 crossref_primary_10_1007_s00477_024_02714_2 crossref_primary_10_1016_j_jhydrol_2022_127445 crossref_primary_10_3390_agronomy12112793 crossref_primary_10_1029_2023WR034947 crossref_primary_10_1016_j_asoc_2024_112352 |
| Cites_doi | 10.1016/j.petrol.2017.11.031 10.1007/s11269-015-0928-8 10.1007/s11222-006-9438-0 10.2307/3318737 10.1016/j.hydroa.2019.100024 10.1007/s11269-017-1873-5 10.1007/s13143-010-1008-x 10.1029/2011WR011533 10.1007/s11269-020-02582-9 10.1016/j.atmosres.2017.05.003 10.1175/2011JCLI4085.1 10.1029/2004WR003445 10.1016/j.petrol.2018.11.011 10.5194/hess-21-3859-2017 10.1093/biomet/57.1.97 10.1007/s13143-010-1009-9 10.1016/j.scitotenv.2016.04.001 10.1016/j.jhydrol.2009.12.028 10.1093/biomet/88.4.1035 10.1016/j.jher.2018.05.001 10.5194/hess-21-1359-2017 10.1016/j.envres.2019.108929 10.1016/j.jhydrol.2015.05.035 10.1002/hyp.7313 10.1016/j.jhydrol.2017.03.073 10.1016/j.jhydrol.2020.124710 10.1002/hyp.6778 10.1002/joc.4957 10.1029/2002WR001642 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-021-02835-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Database Suite (ProQuest) Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Collection (ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Collection (ProQuest) Science Database (ProQuest) Biological Science Database (ProQuest) Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 2213 |
| ExternalDocumentID | 10_1007_s11269_021_02835_1 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GrantInformation_xml | – fundername: KOREA HYDRO & NUCLEAR POWER CO., LTD grantid: No. 2018-Tech-20 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-e427a7ab34f195c3c4a97ddb096249f0e7dcbada1acf4f814e81df4ac4e666273 |
| IEDL.DBID | BENPR |
| ISSN | 0920-4741 |
| IngestDate | Thu Oct 02 05:48:04 EDT 2025 Fri Aug 29 16:32:31 EDT 2025 Wed Oct 01 01:45:00 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Fri Feb 21 02:48:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Uncertainty quantification Radar‐based forecasts Delayed rejection and adaptive Metropolis algorithm Bayesian approach Urban flood management |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-e427a7ab34f195c3c4a97ddb096249f0e7dcbada1acf4f814e81df4ac4e666273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0429-1154 |
| PQID | 2529597534 |
| PQPubID | 54174 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2985563273 proquest_journals_2529597534 crossref_citationtrail_10_1007_s11269_021_02835_1 crossref_primary_10_1007_s11269_021_02835_1 springer_journals_10_1007_s11269_021_02835_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210500 2021-05-00 20210501 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Wang, Wang, Wang (CR27) 2017; 549 Zhang, Lambert, Gong (CR31) 2020; 34 Thorndahl, Einfalt, Willems (CR24) 2017; 21 Ochoa-Rodriguez, Wang, Gires (CR19) 2015; 531 Hastings (CR8) 1970; 57 Liang, Jia, Xu (CR14) 2016; 560–561 Cristiano, ten Veldhius, van de Giesen (CR4) 2017; 21 Green, Mira (CR5) 2001; 88 Lee, Lee, Ha (CR12) 2010; 46 Lee, Kim (CR11) 2008; 22 CR17 Xu, Jiang, Yan (CR28) 2018; 32 Kim, Ohn, Lee, Kim (CR10) 2019; 3 Wang, Lin, Qian (CR26) 2009; 23 Bellon, Zawadzki, Kilambi (CR2) 2010; 46 Bae, Trinh, Nguyen (CR1) 2018; 20 Lu, Shen, Chen (CR16) 2019; 174 Zhang, Li (CR30) 2015; 29 Bosshard, Carambia, Goergen (CR3) 2013; 49 Ohn, Seo, Kim (CR20) 2020; 27 Liu, Shao, Xiang (CR15) 2020; 182 Sokol, Mejsnar, Pop, Bližňák (CR23) 2017; 194 Jin, Xu, Zhang, Singh (CR9) 2010; 383 CR25 Reis, Stedinger, Martins (CR21) 2005; 41 Haario, Saksman, Tamminen (CR6) 2001; 7 Shen, Wu, Chen (CR22) 2018; 161 Nguyen, Bae (CR18) 2020; 584 Lee, Kim, Kim (CR13) 2017; 37 Haario, Laine, Mira, Saksman (CR7) 2006; 16 Yip, Ferro, Stephenson, Hawkins (CR29) 2011; 24 A Bellon (2835_CR2) 2010; 46 Q Shen (2835_CR22) 2018; 161 2835_CR17 WK Hastings (2835_CR8) 1970; 57 HC Lee (2835_CR12) 2010; 46 W Zhang (2835_CR30) 2015; 29 DH Bae (2835_CR1) 2018; 20 H Lu (2835_CR16) 2019; 174 S Thorndahl (2835_CR24) 2017; 21 H Wang (2835_CR27) 2017; 549 H Haario (2835_CR6) 2001; 7 T Bosshard (2835_CR3) 2013; 49 H Wang (2835_CR26) 2009; 23 E Cristiano (2835_CR4) 2017; 21 X Jin (2835_CR9) 2010; 383 KS Lee (2835_CR11) 2008; 22 DS Reis (2835_CR21) 2005; 41 2835_CR25 H Haario (2835_CR7) 2006; 16 Z Sokol (2835_CR23) 2017; 194 W Xu (2835_CR28) 2018; 32 S Ochoa-Rodriguez (2835_CR19) 2015; 531 DH Nguyen (2835_CR18) 2020; 584 I Ohn (2835_CR20) 2020; 27 Y Kim (2835_CR10) 2019; 3 J Liu (2835_CR15) 2020; 182 S Liang (2835_CR14) 2016; 560–561 S Yip (2835_CR29) 2011; 24 PJ Green (2835_CR5) 2001; 88 C Zhang (2835_CR31) 2020; 34 JK Lee (2835_CR13) 2017; 37 |
| References_xml | – volume: 161 start-page: 9 year: 2018 end-page: 16 ident: CR22 article-title: Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2017.11.031 – volume: 29 start-page: 2059 year: 2015 end-page: 2072 ident: CR30 article-title: The influence of objective function and acceptability threshold on uncertainty assessment of an urban drainage hydraulic model with generalized likelihood uncertainty estimation methodology publication-title: Water Resour Manag doi: 10.1007/s11269-015-0928-8 – volume: 16 start-page: 339 year: 2006 end-page: 354 ident: CR7 article-title: DRAM: Efficient adaptive MCMC publication-title: Stat Comput doi: 10.1007/s11222-006-9438-0 – volume: 7 start-page: 223 year: 2001 end-page: 242 ident: CR6 article-title: An adaptive Metropolis algorithm publication-title: Bernoulli doi: 10.2307/3318737 – volume: 3 start-page: 100024 year: 2019 ident: CR10 article-title: Generalizing uncertainty decomposition theory in climate change impact assessments publication-title: J Hydrol X doi: 10.1016/j.hydroa.2019.100024 – volume: 32 start-page: 1343 year: 2018 end-page: 1366 ident: CR28 article-title: An adaptive metropolis-hastings optimization algorithm of Bayesian Estimation in Non-stationary flood frequency analysis publication-title: Water Resour Manag doi: 10.1007/s11269-017-1873-5 – volume: 46 start-page: 369 year: 2010 end-page: 381 ident: CR2 article-title: McGill algorithm for precipitation nowcasting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network. Part I: Sensitivity studies of the Variational Echo Tracking (VET) technique publication-title: Asia-Pacific J Atmos Sci doi: 10.1007/s13143-010-1008-x – volume: 49 start-page: 1523 year: 2013 end-page: 1536 ident: CR3 article-title: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections publication-title: Water Resour Res doi: 10.1029/2011WR011533 – volume: 34 start-page: 2807 year: 2020 end-page: 2820 ident: CR31 article-title: Bayesian inverse transient analysis for pipeline condition assessment: parameter estimation and uncertainty quantification publication-title: Water Resour Manag doi: 10.1007/s11269-020-02582-9 – volume: 194 start-page: 245 year: 2017 end-page: 257 ident: CR23 article-title: Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach publication-title: Atmos Res doi: 10.1016/j.atmosres.2017.05.003 – ident: CR25 – volume: 24 start-page: 4634 year: 2011 end-page: 4643 ident: CR29 article-title: A simple, coherent framework for partitioning uncertainty in climate predictions publication-title: J Clim doi: 10.1175/2011JCLI4085.1 – volume: 41 start-page: 1 year: 2005 end-page: 14 ident: CR21 article-title: Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation publication-title: Water Resour Res doi: 10.1029/2004WR003445 – volume: 174 start-page: 189 year: 2019 end-page: 200 ident: CR16 article-title: Parallel multiple-chain DRAM MCMC for large-scale geosteering inversion and uncertainty quantification publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2018.11.011 – volume: 21 start-page: 3859 year: 2017 end-page: 3878 ident: CR4 article-title: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-21-3859-2017 – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: CR8 article-title: Monte Carlo sampling methods using Markov Chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 46 start-page: 383 year: 2010 end-page: 391 ident: CR12 article-title: McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) Applied to the South Korean Radar Network. Part II: Real-Time Verification for the Summer Season publication-title: Asia-Pacific J Atmos Sci doi: 10.1007/s13143-010-1009-9 – volume: 560–561 start-page: 44 year: 2016 end-page: 54 ident: CR14 article-title: A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.04.001 – volume: 383 start-page: 147 year: 2010 end-page: 155 ident: CR9 article-title: Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.12.028 – volume: 88 start-page: 1035 year: 2001 end-page: 1053 ident: CR5 article-title: Delayed rejection in reversible jump Metropolis-Hastings publication-title: Biometrika doi: 10.1093/biomet/88.4.1035 – ident: CR17 – volume: 20 start-page: 52 year: 2018 end-page: 62 ident: CR1 article-title: Uncertainty estimation of the SURR model parameters and input data for the Imjin River basin using the GLUE method publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2018.05.001 – volume: 21 start-page: 1359 year: 2017 end-page: 1380 ident: CR24 article-title: Weather radar rainfall data in urban hydrology publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-21-1359-2017 – volume: 182 start-page: 108929 year: 2020 ident: CR15 article-title: Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces publication-title: Environ Res doi: 10.1016/j.envres.2019.108929 – volume: 531 start-page: 389 year: 2015 end-page: 407 ident: CR19 article-title: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.05.035 – volume: 23 start-page: 1834 year: 2009 end-page: 1843 ident: CR26 article-title: Crytic period analysis model of hydrological process and its application publication-title: Hydrol Process doi: 10.1002/hyp.7313 – volume: 27 start-page: 109 year: 2020 end-page: 128 ident: CR20 article-title: Uncertainty decomposition in climate-change impact assessments: a Bayesian perspective publication-title: Commun Stat Appl Methods – volume: 549 start-page: 476 year: 2017 end-page: 483 ident: CR27 article-title: Bayesian forecasting and uncertainty quantifying of stream flows using Metropolis–Hastings Markov Chain Monte Carlo algorithm publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.03.073 – volume: 584 start-page: 124710 year: 2020 ident: CR18 article-title: Correcting mean areal precipitation forecasts to improve urban flooding predictions by using long short-term memory network publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124710 – volume: 22 start-page: 1949 year: 2008 end-page: 1964 ident: CR11 article-title: Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method publication-title: Hydrol Process doi: 10.1002/hyp.6778 – volume: 37 start-page: 3837 year: 2017 end-page: 3846 ident: CR13 article-title: A new uncertainty analysis in the climate change impact assessment publication-title: Int J Climatol doi: 10.1002/joc.4957 – volume: 37 start-page: 3837 year: 2017 ident: 2835_CR13 publication-title: Int J Climatol doi: 10.1002/joc.4957 – ident: 2835_CR25 doi: 10.1029/2002WR001642 – volume: 34 start-page: 2807 year: 2020 ident: 2835_CR31 publication-title: Water Resour Manag doi: 10.1007/s11269-020-02582-9 – volume: 383 start-page: 147 year: 2010 ident: 2835_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.12.028 – volume: 22 start-page: 1949 year: 2008 ident: 2835_CR11 publication-title: Hydrol Process doi: 10.1002/hyp.6778 – volume: 182 start-page: 108929 year: 2020 ident: 2835_CR15 publication-title: Environ Res doi: 10.1016/j.envres.2019.108929 – volume: 584 start-page: 124710 year: 2020 ident: 2835_CR18 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124710 – volume: 531 start-page: 389 year: 2015 ident: 2835_CR19 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.05.035 – volume: 41 start-page: 1 year: 2005 ident: 2835_CR21 publication-title: Water Resour Res doi: 10.1029/2004WR003445 – volume: 29 start-page: 2059 year: 2015 ident: 2835_CR30 publication-title: Water Resour Manag doi: 10.1007/s11269-015-0928-8 – volume: 16 start-page: 339 year: 2006 ident: 2835_CR7 publication-title: Stat Comput doi: 10.1007/s11222-006-9438-0 – volume: 23 start-page: 1834 year: 2009 ident: 2835_CR26 publication-title: Hydrol Process doi: 10.1002/hyp.7313 – volume: 21 start-page: 1359 year: 2017 ident: 2835_CR24 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-21-1359-2017 – volume: 21 start-page: 3859 year: 2017 ident: 2835_CR4 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-21-3859-2017 – volume: 46 start-page: 369 year: 2010 ident: 2835_CR2 publication-title: Asia-Pacific J Atmos Sci doi: 10.1007/s13143-010-1008-x – volume: 174 start-page: 189 year: 2019 ident: 2835_CR16 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2018.11.011 – volume: 20 start-page: 52 year: 2018 ident: 2835_CR1 publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2018.05.001 – volume: 88 start-page: 1035 year: 2001 ident: 2835_CR5 publication-title: Biometrika doi: 10.1093/biomet/88.4.1035 – volume: 549 start-page: 476 year: 2017 ident: 2835_CR27 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.03.073 – volume: 27 start-page: 109 year: 2020 ident: 2835_CR20 publication-title: Commun Stat Appl Methods – volume: 49 start-page: 1523 year: 2013 ident: 2835_CR3 publication-title: Water Resour Res doi: 10.1029/2011WR011533 – volume: 57 start-page: 97 year: 1970 ident: 2835_CR8 publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 161 start-page: 9 year: 2018 ident: 2835_CR22 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2017.11.031 – volume: 3 start-page: 100024 year: 2019 ident: 2835_CR10 publication-title: J Hydrol X doi: 10.1016/j.hydroa.2019.100024 – volume: 24 start-page: 4634 year: 2011 ident: 2835_CR29 publication-title: J Clim doi: 10.1175/2011JCLI4085.1 – volume: 560–561 start-page: 44 year: 2016 ident: 2835_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.04.001 – volume: 7 start-page: 223 year: 2001 ident: 2835_CR6 publication-title: Bernoulli doi: 10.2307/3318737 – volume: 46 start-page: 383 year: 2010 ident: 2835_CR12 publication-title: Asia-Pacific J Atmos Sci doi: 10.1007/s13143-010-1009-9 – ident: 2835_CR17 – volume: 194 start-page: 245 year: 2017 ident: 2835_CR23 publication-title: Atmos Res doi: 10.1016/j.atmosres.2017.05.003 – volume: 32 start-page: 1343 year: 2018 ident: 2835_CR28 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1873-5 |
| SSID | ssj0010090 |
| Score | 2.348277 |
| Snippet | This study proposes an approach for the uncertainty quantification at each stage of a single hydrological process of water level predictions based on different... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2197 |
| SubjectTerms | Adaptive algorithms administrative management Algorithms Areal precipitation Atmospheric precipitations Atmospheric Sciences Bayesian analysis Bayesian theory Civil Engineering Earth and Environmental Science Earth Sciences Environment Flood control Flood management Forecasting Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrologic models Hydrology Hydrology/Water Resources Long short-term memory Markov chain Markov chains Mathematical models neural networks Nowcasting Parameter estimation Parameter uncertainty Precipitation Probability theory Radar Rain Rainfall South Korea Statistical methods Two dimensional models Uncertainty Uncertainty analysis water Water levels Watersheds Weather forecasting Weibull distribution Weibull statistics |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NShxBEG5EL-YgahQ3GulAbnHA6an56eOyRETcoOISb0P_amAzK-Ms6C2PkGf0SazqndnVoAHPU9PNdFV3fTVfVTVjX4XKi1RkGOQY6SPQUkUyKXTktDcgTQKgqRp5-CM7HsHJVXrVFoXdddnuHSUZTupFsVssMhlRSgH5xDTCmGclpXZeaMUj0Z9zB4gawp8ViYERoMNsS2VeH-OlO1pgzH9o0eBtjtbZWgsTeX-m1w225KpN9uFZ88CP7H6E-gp8fvPAz6dqlvUTFppPPP-JILLmp5QTxM9qomOChXGqJ-EXyqr68c9f8mEWZ0G0yInp8Wo85iGLgKuK9626pdOQDwfDAe-Pryf1r-bm9xYbHX2_HBxH7T0KkUF41UQORK5ypRPwsUxNYkDJ3FqN0QsGX_7Q5dZonDdWxoMvYnAIYj0oAy6j_vDJNluuJpXbYRyk9Zl1kAsr8YgttFFWFpAemtyKzIkei7vlLE3bZJzuuhiXi_bIpIISVVAGFZRxj32bv3M7a7HxX-m9Tktlu93uSkF0JZUIQ499mT_GjULsh6rcZIoysqBmaPg5PXbQaXcxxNszfnqf-C5bFcHAKClyjy039dR9RuDS6P1gp08V1-VJ priority: 102 providerName: Springer Nature |
| Title | Uncertainty Quantification of Water Level Predictions from Radar‐based Areal Rainfall Using an Adaptive MCMC Algorithm |
| URI | https://link.springer.com/article/10.1007/s11269-021-02835-1 https://www.proquest.com/docview/2529597534 https://www.proquest.com/docview/2985563273 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthc4IJ6isFRG4gYWG8d5-IBQqNpdAa2WFRXLKXL8WA4lLSWV4MZP4DfyS5hxkxaQ2Gteo_gbz8PzAngidJYnIkUnxyjPZaU0V3FecVd5I5WJpayoGnk6S0_n8vVFcnEAs64WhtIqO5kYBLVdGjojfy4oIkVVoPLl6gunqVEUXe1GaOh2tIJ9EVqMHUJfUGesHvRfjWdn57u4AloU4dRFodMkUZm2ZTTbYrpIpIpTygLp3IRHf6uqvf35T8g0aKLJTbjRmpCs2GJ-Cw5cfRuu_9FY8A58myOWIdbffGfvNnqbERRAYEvPPqCBuWZvKV-Ina0pVBO4j1GtCTvXVq9__fhJ-s0iFbQkGUWBvF4sWMgwYLpmhdUrkpRsOpqOWLG4xLVqPn2-C_PJ-P3olLczFrhB06vhTopMZ7qKpY9UYmIjtcqsrdCzQcfMH7vMmgrpRtp46fNIOjRwvdRGupR6x8f3oFcva3cfmFTWp9bJTFiF4jevjLYql8mxyaxInRhA1C1nadoG5DQHY1HuWycTBCVCUAYIymgAT3fvrLbtN658-qhDqWy34tdyzzgDeLy7jZuIIiO6dssNPqNyapSGvzOAZx26-0_8n-KDqyk-hGsiMBQlSB5Br1lv3CM0YppqCIf55GQI_eLk45vxsOVTvDoXxW9v_fJi |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewAOiKdIacFIcIIVXe_sw4eqCqFVSpOoVI3obev1Aw7pJqQb0d76E_hF_Bh-CTPObgJI9Nbzem3ZM575xvNi7JVQaRaLBI0cLV0AhVSBjLIisIXTIHUEUFA2cn-QdIfw8SQ-WWE_m1wYCqtsZKIX1Gas6Y38nSCPFGWBws7kW0Bdo8i72rTQUHVrBbPtS4zViR0H9vI7mnDn2_sfkN6vhdjbPe50g7rLQKARfFSBBZGqVBURuFDGOtKgZGpMgdgeTRO3ZVOjC2VUqLQDl4VgEeI5UBpsQtXTI5z3FluDCCQaf2vvdweHRws_BiIY_8oj0UgDVN512s48eS8UiQwoRIJ0fByEf6vGJd79x0XrNd_efXavhqy8PeexB2zFlg_Z3T8KGT5iF0PkHR9bUF3yTzM1j0DyROdjxz8joJ3yHsUn8cMpuYY8t3PKbeFHuOvpr6sfpE8NroLIlZPXyanRiPuIBq5K3jZqQpKZ9zv9Dm-PviBtqq9nj9nwRk77CVstx6V9yjhI4xJjIRVGorjPCq2MzCDe0qkRiRUtFjbHmeu64Dn13Rjly1LNRIIcSZB7EuRhi71Z_DOZl_u4dvRGQ6W8vvrn-ZJRW-zl4jNeWvLEqNKOZzhGZlSYDbfTYm8b6i6n-P-K69ev-ILd7h73e3lvf3DwjN0RnrkoOHODrVbTmd1EAFUVz2su5ez0pi_GbyVpLao |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIiE4IJ4iUMBIcIJVu17vwweEopTQ0qYqiIjeFj_pId2EdCPojZ_A7-Hn8EuY8e4mgERvPa_Xlj2vbzwPAzzlKi9SnqGTY6SPhJYqkkmhI6e9EdIkQmiqRh4dZDtj8fYoPVqDn10tDKVVdjoxKGo7NXRHvskpIkVVoGLTt2kRh9vDV7MvEb0gRZHW7jmNhkX23NlXdN9OX-5uI62fcT58_WGwE7UvDEQGgUcdOcFzlSudCB_L1CRGKJlbqxHXo1vit1xujVZWxcp44YtYOIR3XigjXEad0xOc9xJczqmLO1WpD98sIxiIXcL9jkT3TKDZbgt2mrK9mGcyouQIsu5pFP9tFFdI95_gbLB5wxtwvQWrrN9w101Yc9UtuPZHC8Pb8G2MXBOyCuoz9m6hmtyjQG429ewjQtk526fMJHY4p6BQ4HNGVS3sPe55_uv7D7KkFldBzMoo3uTVZMJCLgNTFetbNSOdzEaD0YD1J5-REvXxyR0YX8hZ34X1alq5e8CEtD6zTuTcSlT0hTbKykKkWya3PHO8B3F3nKVpW53TixuTctWkmUhQIgnKQIIy7sHz5T-zptHHuaM3OiqVrdCflisW7cGT5WcUV4rBqMpNFzhGFtSSDbfTgxcddVdT_H_F--ev-BiuoDiU-7sHew_gKg-8RVmZG7BezxfuISKnWj8KLMrg00XLxG_lVCtE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+Quantification+of+Water+Level+Predictions+from+Radar%E2%80%90based+Areal+Rainfall+Using+an+Adaptive+MCMC+Algorithm&rft.jtitle=Water+resources+management&rft.au=Nguyen%2C+Duc+Hai&rft.au=Seon-Ho%2C+Kim&rft.au=Hyun-Han%2C+Kwon&rft.au=Bae+Deg-Hyo&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=7&rft.spage=2197&rft.epage=2213&rft_id=info:doi/10.1007%2Fs11269-021-02835-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |