Post-mortem iris recognition with deep-learning-based image segmentation
This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predic...
Saved in:
| Published in | Image and vision computing Vol. 94; p. 103866 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0262-8856 1872-8138 1872-8138 |
| DOI | 10.1016/j.imavis.2019.103866 |
Cover
| Abstract | This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predicted by neural networks in conventional, Gabor-based iris recognition method, which employs circular approximations of the pupillary and limbic iris boundaries. As a whole, this method allows for a significant improvement in post-mortem iris recognition accuracy over the methods designed only for ante-mortem irises, including the academic OSIRIS and commercial IriCore implementations. The proposed method reaches the EER less than 1% for samples collected up to 10 hours after death, when compared to 16.89% and 5.37% of EER observed for OSIRIS and IriCore, respectively. For samples collected up to 369 h post-mortem, the proposed method achieves the EER 21.45%, while 33.59% and 25.38% are observed for OSIRIS and IriCore, respectively. Additionally, the method is tested on a database of iris images collected from ophthalmology clinic patients, for which it also offers an advantage over the two other algorithms. This work is the first step towards post-mortem-specific iris recognition, which increases the chances of identification of deceased subjects in forensic investigations. The new database of post-mortem iris images acquired from 42 subjects, as well as the deep learning-based segmentation models are made available along with the paper, to ensure all the results presented in this manuscript are reproducible.
•Post-mortem-specific iris image segmentation tool•Drop-in segmentation stage replacement for typical iris recognition pipelines•New dataset of cadaver iris images (42 subjects)•Experiments showing substantial matching accuracy improvements |
|---|---|
| AbstractList | This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predicted by neural networks in conventional, Gabor-based iris recognition method, which employs circular approximations of the pupillary and limbic iris boundaries. As a whole, this method allows for a significant improvement in post-mortem iris recognition accuracy over the methods designed only for ante-mortem irises, including the academic OSIRIS and commercial IriCore implementations. The proposed method reaches the EER less than 1% for samples collected up to 10 hours after death, when compared to 16.89% and 5.37% of EER observed for OSIRIS and IriCore, respectively. For samples collected up to 369 h post-mortem, the proposed method achieves the EER 21.45%, while 33.59% and 25.38% are observed for OSIRIS and IriCore, respectively. Additionally, the method is tested on a database of iris images collected from ophthalmology clinic patients, for which it also offers an advantage over the two other algorithms. This work is the first step towards post-mortem-specific iris recognition, which increases the chances of identification of deceased subjects in forensic investigations. The new database of post-mortem iris images acquired from 42 subjects, as well as the deep learning-based segmentation models are made available along with the paper, to ensure all the results presented in this manuscript are reproducible.
•Post-mortem-specific iris image segmentation tool•Drop-in segmentation stage replacement for typical iris recognition pipelines•New dataset of cadaver iris images (42 subjects)•Experiments showing substantial matching accuracy improvements |
| ArticleNumber | 103866 |
| Author | Maciejewicz, Piotr Trokielewicz, Mateusz Czajka, Adam |
| Author_xml | – sequence: 1 givenname: Mateusz surname: Trokielewicz fullname: Trokielewicz, Mateusz email: mateusz.trokielewicz@nask.pl organization: Biometrics and Machine Intelligence Laboratory, Research and Academic Computer Network, Kolska 12, Warsaw 01-045, Poland – sequence: 2 givenname: Adam surname: Czajka fullname: Czajka, Adam organization: Department of Computer Science, University of Notre Dame, 46556 IN, USA – sequence: 3 givenname: Piotr surname: Maciejewicz fullname: Maciejewicz, Piotr organization: Department of Ophthalmology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland |
| BookMark | eNqNkMFOwzAMhiM0JLbBG3DoC3QkaZOmHJDQBAxpEhzgHKWpUzK16ZSETXt7WpUTB-Bky_Jn__oWaOZ6BwhdE7wimPCb3cp26mDDimJSDqNMcH6G5kQUNBUkEzM0x5QPvWD8Ai1C2GGMC1yUc7R57UNMu95H6BLrbUg86L5xNtreJUcbP5IaYJ-2oLyzrkkrFaBOhn8NJAGaDlxU4-4lOjeqDXD1XZfo_fHhbb1Jty9Pz-v7baozRmNaV6wqKDeFAG1ExQquBS0LyFTOGKc54AwDI4IKoIaZOqe0FKqsjVHacGWyJWLT3U-3V6ejalu590Mcf5IEy1GH3MlJhxx1yEnHwN1OnPZ9CB6M1HZKHr2y7V9w_gP-58-7CYNByMGCl0FbcBpqO1iOsu7t7we-AHvkkw0 |
| CitedBy_id | crossref_primary_10_1109_TIFS_2021_3132582 crossref_primary_10_1016_j_imavis_2023_104759 crossref_primary_10_1007_s42044_023_00141_0 crossref_primary_10_1080_10942912_2021_1986523 crossref_primary_10_35940_ijies_L1096_12020225 crossref_primary_10_1007_s00500_024_10316_x crossref_primary_10_2139_ssrn_4014908 crossref_primary_10_1109_TIFS_2023_3274477 crossref_primary_10_1145_3651306 crossref_primary_10_1111_1556_4029_14488 crossref_primary_10_3390_inventions6040065 crossref_primary_10_30748_soi_2022_171_09 crossref_primary_10_3390_jsan13060080 crossref_primary_10_1109_ACCESS_2020_3025195 crossref_primary_10_1371_journal_pone_0299265 crossref_primary_10_1016_j_imavis_2020_104024 crossref_primary_10_1109_ACCESS_2021_3076756 crossref_primary_10_1109_ACCESS_2020_3011364 crossref_primary_10_1016_j_jestch_2023_101552 crossref_primary_10_1109_ACCESS_2020_3041519 crossref_primary_10_1109_TBIOM_2022_3177669 crossref_primary_10_1109_ACCESS_2020_3013540 crossref_primary_10_1080_01969722_2022_2122012 crossref_primary_10_1007_s11334_021_00392_9 crossref_primary_10_32628_IJSRSET24113129 crossref_primary_10_1007_s11760_022_02154_x crossref_primary_10_2478_jsiot_2024_0007 crossref_primary_10_1016_j_patrec_2020_08_018 crossref_primary_10_1007_s00521_025_11109_5 |
| Cites_doi | 10.1111/1556-4029.13484 10.1109/TIFS.2018.2881671 10.1016/j.patrec.2018.12.021 10.1109/TSMCB.2007.903540 10.1109/TPAMI.2016.2644615 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors |
| Copyright_xml | – notice: 2019 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.imavis.2019.103866 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-8138 |
| ExternalDocumentID | 10.1016/j.imavis.2019.103866 10_1016_j_imavis_2019_103866 S0262885619304597 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c352t-db5b726f78ecf8b576c8297e3a455624e030e51828e2f5fd42298a9dffacf6af3 |
| IEDL.DBID | .~1 |
| ISSN | 0262-8856 1872-8138 |
| IngestDate | Sun Oct 26 04:01:43 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Thu Oct 09 00:34:23 EDT 2025 Fri Feb 23 02:48:18 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biometrics Image segmentation Post-mortem Iris recognition |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-db5b726f78ecf8b576c8297e3a455624e030e51828e2f5fd42298a9dffacf6af3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0262885619304597 |
| ParticipantIDs | unpaywall_primary_10_1016_j_imavis_2019_103866 crossref_citationtrail_10_1016_j_imavis_2019_103866 crossref_primary_10_1016_j_imavis_2019_103866 elsevier_sciencedirect_doi_10_1016_j_imavis_2019_103866 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Image and vision computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kerrigan, Trokielewicz, Czajka, Bowyer (bb0105) 2019 Warsaw University of Technology (bb0080) 2018 Sauerwein, Saul, Steadman, Boehnen (bb0030) 2017; 62 Trokielewicz, Czajka, Maciejewicz (bb0090) 2015 G. Sutra, B. Dorizzi, S. Garcia-Salitcetti, N. Othman. A biometric reference system for iris. OSIRIS, Fourth official version 4.1, 25/04/2013. BBC News (bb0060) August 9 2001 Daugman (bb0095) 2007; 37 MIT Technology Review (bb0045) IriTech Inc., IriCore Software Developer's Manual, version 3.6, 2013. Trokielewicz, Czajka, Maciejewicz (bb0015) 2016 Trokielewicz, Czajka, Maciejewicz (bb0020) 2016 Bolme, Tokola, Boehnen (bb0025) 2016 Trokielewicz, Czajka, Maciejewicz (bb0040) 2018 Trokielewicz, Czajka, Maciejewicz (bb0035) 2018; 4 IrisGuard (bb0065) 2016 IriTech (bb0070) August 20 2015 Sansola (bb0005) 2015 Saripalle, McLaughlin, Krishna, Ross, Derakhshani (bb0010) 2015 Warsaw University of Technology (bb0085) 2015 Trokielewicz, Czajka (bb0050) 2018 Warsaw University of Technology (bb0075) 2016 Badrinarayanan, Kendall, Cipolla (bb0100) 2017; 39 Hofbauer, Jalilian, Uhl (bb0110) 2019; 120 10.1016/j.imavis.2019.103866_bb0115 BBC News (10.1016/j.imavis.2019.103866_bb0060) Trokielewicz (10.1016/j.imavis.2019.103866_bb0035) 2018; 4 Daugman (10.1016/j.imavis.2019.103866_bb0095) 2007; 37 Trokielewicz (10.1016/j.imavis.2019.103866_bb0050) 2018 Trokielewicz (10.1016/j.imavis.2019.103866_bb0040) 2018 Hofbauer (10.1016/j.imavis.2019.103866_bb0110) 2019; 120 Sauerwein (10.1016/j.imavis.2019.103866_bb0030) 2017; 62 Badrinarayanan (10.1016/j.imavis.2019.103866_bb0100) 2017; 39 MIT Technology Review (10.1016/j.imavis.2019.103866_bb0045) Trokielewicz (10.1016/j.imavis.2019.103866_bb0015) 2016 Sansola (10.1016/j.imavis.2019.103866_bb0005) 2015 Warsaw University of Technology (10.1016/j.imavis.2019.103866_bb0075) Saripalle (10.1016/j.imavis.2019.103866_bb0010) 2015 Trokielewicz (10.1016/j.imavis.2019.103866_bb0020) 2016 Warsaw University of Technology (10.1016/j.imavis.2019.103866_bb0085) Trokielewicz (10.1016/j.imavis.2019.103866_bb0090) 2015 Kerrigan (10.1016/j.imavis.2019.103866_bb0105) 2019 IriTech (10.1016/j.imavis.2019.103866_bb0070) IrisGuard (10.1016/j.imavis.2019.103866_bb0065) Warsaw University of Technology (10.1016/j.imavis.2019.103866_bb0080) 10.1016/j.imavis.2019.103866_bb0055 Bolme (10.1016/j.imavis.2019.103866_bb0025) 2016 |
| References_xml | – volume: 62 start-page: 1599 year: 2017 end-page: 1602 ident: bb0030 article-title: The effect of decomposition on the efficacy of biometrics for positive identification publication-title: J. Forensic Sci. – year: August 9 2001 ident: bb0060 article-title: The eyes have it – reference: G. Sutra, B. Dorizzi, S. Garcia-Salitcetti, N. Othman. A biometric reference system for iris. OSIRIS, Fourth official version 4.1, 25/04/2013. – reference: IriTech Inc., IriCore Software Developer's Manual, version 3.6, 2013. – year: 2015 ident: bb0085 article-title: Warsaw-BioBase-Disease-Iris-v1.0: – year: 2015 ident: bb0005 article-title: Postmortem iris recognition and its application in human identification – year: 2018 ident: bb0080 article-title: Warsaw-BioBase-PostMortem-Iris-v2.0: – year: 2018 ident: bb0040 article-title: Presentation attack detection for cadaver iris publication-title: 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018) – ident: bb0045 article-title: Iris scanner can distinguish dead eyeballs from living ones – start-page: 1 year: 2018 end-page: 7 ident: bb0050 article-title: Data-driven segmentation of post-mortem iris images publication-title: 2018 International Workshop on Biometrics and Forensics (IWBF) – volume: 39 year: 2017 ident: bb0100 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 4 start-page: 1501 year: 2018 end-page: 1514 ident: bb0035 article-title: Iris recognition after death publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2016 ident: bb0020 article-title: Human iris recognition in post-mortem subjects: study and database publication-title: 8th IEEE International Conference on Biometrics: Theory, Applications and Systems – year: 2016 ident: bb0015 article-title: Post-mortem human iris recognition publication-title: 9th IAPR International Conference on Biometrics (ICB 2016) – year: 2016 ident: bb0025 article-title: Impact of environmental factors on biometric matching during human decomposition publication-title: 8th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2016) – volume: 37 start-page: 1167 year: 2007 end-page: 1175 ident: bb0095 article-title: New methods in iris recognition publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – year: 2019 ident: bb0105 article-title: Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks publication-title: 12th IAPR International Conference on Biometrics (ICB 2019) – year: 2015 ident: bb0010 article-title: Post-mortem iris biometric analysis in Sus scrofa domesticus publication-title: IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS) – year: 2015 ident: bb0090 article-title: Database of iris images acquired in the presence of ocular pathologies and assessment of iris recognition reliability for disease-affected eyes publication-title: 2nd IEEE International Conference on Cybernetics (CYBCONF 2015), Special Session on Reliable Biometrics (BIORELIABILITY 2015) – year: August 20 2015 ident: bb0070 article-title: Biometric Access Control - Can Iris Biometric Enhance Better Security? – year: 2016 ident: bb0065 article-title: EyeBank Solution – volume: 120 start-page: 17 year: 2019 end-page: 23 ident: bb0110 article-title: Exploiting superior CNN-based iris segmentation for better recognition accuracy publication-title: Pattern Recogn. Lett. – year: 2016 ident: bb0075 article-title: Warsaw-BioBase-PostMortem-Iris-v1.0: – year: 2016 ident: 10.1016/j.imavis.2019.103866_bb0015 article-title: Post-mortem human iris recognition – year: 2018 ident: 10.1016/j.imavis.2019.103866_bb0040 article-title: Presentation attack detection for cadaver iris – year: 2016 ident: 10.1016/j.imavis.2019.103866_bb0020 article-title: Human iris recognition in post-mortem subjects: study and database – volume: 62 start-page: 1599 issue: 6 year: 2017 ident: 10.1016/j.imavis.2019.103866_bb0030 article-title: The effect of decomposition on the efficacy of biometrics for positive identification publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.13484 – year: 2016 ident: 10.1016/j.imavis.2019.103866_bb0025 article-title: Impact of environmental factors on biometric matching during human decomposition – ident: 10.1016/j.imavis.2019.103866_bb0045 – volume: 4 start-page: 1501 issue: 6 year: 2018 ident: 10.1016/j.imavis.2019.103866_bb0035 article-title: Iris recognition after death publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2881671 – year: 2015 ident: 10.1016/j.imavis.2019.103866_bb0005 – ident: 10.1016/j.imavis.2019.103866_bb0070 – ident: 10.1016/j.imavis.2019.103866_bb0080 – ident: 10.1016/j.imavis.2019.103866_bb0065 – year: 2015 ident: 10.1016/j.imavis.2019.103866_bb0010 article-title: Post-mortem iris biometric analysis in Sus scrofa domesticus – volume: 120 start-page: 17 year: 2019 ident: 10.1016/j.imavis.2019.103866_bb0110 article-title: Exploiting superior CNN-based iris segmentation for better recognition accuracy publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.12.021 – volume: 37 start-page: 1167 issue: 5 year: 2007 ident: 10.1016/j.imavis.2019.103866_bb0095 article-title: New methods in iris recognition publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2007.903540 – ident: 10.1016/j.imavis.2019.103866_bb0055 – ident: 10.1016/j.imavis.2019.103866_bb0085 – ident: 10.1016/j.imavis.2019.103866_bb0115 – ident: 10.1016/j.imavis.2019.103866_bb0075 – volume: 39 year: 2017 ident: 10.1016/j.imavis.2019.103866_bb0100 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.imavis.2019.103866_bb0060 – start-page: 1 year: 2018 ident: 10.1016/j.imavis.2019.103866_bb0050 article-title: Data-driven segmentation of post-mortem iris images – year: 2015 ident: 10.1016/j.imavis.2019.103866_bb0090 article-title: Database of iris images acquired in the presence of ocular pathologies and assessment of iris recognition reliability for disease-affected eyes – year: 2019 ident: 10.1016/j.imavis.2019.103866_bb0105 article-title: Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks |
| SSID | ssj0007079 |
| Score | 2.5673099 |
| Snippet | This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 103866 |
| SubjectTerms | Biometrics Image segmentation Iris recognition Post-mortem |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BOBgPoqgRo6YHj5ZI123dkRgJMZF4kARPSz8JCoMIxOhfb8s6giYEvO2wt3Xvo-_3uvcBcGNNhoSSUKwMV5gSzrGIgyYmgji4ywMp3YH-Uzfq9OhjP-yX4Laohfn1_36ZhzUcu3J7l4SVLLt5R9EeVKLQIu8yVHrd59ZrfoxiDZsth7U2WWyvmwErKuU2PGaTJ9pfZFP-9clHozVP067CU7HGPMHkvbGYi4b8_tO-cdePOIJDDzlRK9eRYyjprAZVDz-RN-5ZDQ7WehOeQMeN8cXjZS4uGtqtAK1yjSYZcse3SGk9xX7sxAA7f6iQXcJAo5kejH1RU3YKvfbDy30H-7ELWFo0NsdKhCImkYmZloYJG5BIV3-rA05Di5aotvuCDm1cwjQxoVGUkITxRBnDpYm4Cc6gnE0yfQ4osPGUFE1hqLijiqlExyxyLf6oYAmTvA5BIYJU-p7kbjTGKC2Sz97SnHWpY12as64OeEU1zXtybLk_LqSbelyR44XUCmoLZWOlDDu96uK_BJdQnn8s9JVFNnNx7RX6BwD69d8 priority: 102 providerName: Unpaywall |
| Title | Post-mortem iris recognition with deep-learning-based image segmentation |
| URI | https://dx.doi.org/10.1016/j.imavis.2019.103866 https://doi.org/10.1016/j.imavis.2019.103866 |
| UnpaywallVersion | publishedVersion |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yD-rBb3F-jBy8ZnNpuqbHIUpVHIIO5qnkc0y2rriJePFvN69Np4Iw8VQoDQkveV_p7_0eQmdOZWioKCPaCk0YFYLIKGgTKimEuyJQCi7073qdpM9uBuFgBV1UtTAAq_S2v7TphbX2b1pemq18NGo9uOyBcu78fwx_-2KoKGcsgi4GzY8vmAcwwJX3LE7z3ddV-VyB8RpNoJQfAF5xwRRecCX-6p7WXrNcvL-J8fib-7naRps-bsTdcmk7aMVku2jLx5DYa-hsF218IxjcQwn04iWTAlCLR06f8QIwNM0w3MFibUxOfO-IIQGnprFb8NDgmRlOfGVSto_6V5ePFwnxvROIciHVnGgZyoh2bMSNsly6rEJBEa0JBAtdyMOMU24TuuSCG2pDqxmlMRextlYo2xE2OEC1bJqZQ4QDlxQp2ZaWyXOmuY5NxDvA08ckj7kSdRRUIkuVJxaH_hbjtEKQPaeloFMQdFoKuo7IYlReEmss-T6qdiP9cUBSZ_uXjGwuNu9PUx39e6pjtE4hHy9Q3SeoNn95NacuaJnLRnEqG2i1e32b9Nyz37vvPn0CvSvubQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHtCDD9SIzx68VrTbZbtHQySowEVNuG36JBhYiECMF3-77W4XMTHReN20aTPtvLrffANwYVWGhJJQrAxXmBLOsYiCa0wEceEuD6R0D_rdXqP9TO_7Yb8EzaIWxsEqve3PbXpmrf2XupdmfToc1h9t9kAYs_4_dn_74mgN1mlIIpeBXX584TwcBVz-0GJV3w4v6ucykNdw7Gr5HcIrzqjCM7LEH_1TZZFO-fsbH41W_E9rB7Z84Ihu8r3tQkmnVdj2QSTyKjqrwuYKw-AetF0zXjzOELVoaBUaLRFDkxS5R1iktJ5i3zxigJ1XU8hueKDRTA_GvjQp3Yfn1u1Ts4198wQsbUw1x0qEIiINEzEtDRM2rZCuilYHnIY25qHaarcObXbBNDGhUZSQmPFYGcOlaXATHEA5naT6EFBgsyIproWh4ooqpmIdsYYj6qOCxUzyGgSFyBLpmcVdg4tRUkDIXpJc0IkTdJILugZ4OWuaM2v8Mj4qTiP5dkMSa_x_mXm5PLw_LXX076XOodJ-6naSzl3v4Rg2iEvOM4j3CZTnrwt9aiOYuTjLbugn1i_uUg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BOBgPoqgRo6YHj5ZI123dkRgJMZF4kARPSz8JCoMIxOhfb8s6giYEvO2wt3Xvo-_3uvcBcGNNhoSSUKwMV5gSzrGIgyYmgji4ywMp3YH-Uzfq9OhjP-yX4Laohfn1_36ZhzUcu3J7l4SVLLt5R9EeVKLQIu8yVHrd59ZrfoxiDZsth7U2WWyvmwErKuU2PGaTJ9pfZFP-9clHozVP067CU7HGPMHkvbGYi4b8_tO-cdePOIJDDzlRK9eRYyjprAZVDz-RN-5ZDQ7WehOeQMeN8cXjZS4uGtqtAK1yjSYZcse3SGk9xX7sxAA7f6iQXcJAo5kejH1RU3YKvfbDy30H-7ELWFo0NsdKhCImkYmZloYJG5BIV3-rA05Di5aotvuCDm1cwjQxoVGUkITxRBnDpYm4Cc6gnE0yfQ4osPGUFE1hqLijiqlExyxyLf6oYAmTvA5BIYJU-p7kbjTGKC2Sz97SnHWpY12as64OeEU1zXtybLk_LqSbelyR44XUCmoLZWOlDDu96uK_BJdQnn8s9JVFNnNx7RX6BwD69d8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-mortem+iris+recognition+with+deep-learning-based+image+segmentation&rft.jtitle=Image+and+vision+computing&rft.au=Trokielewicz%2C+Mateusz&rft.au=Czajka%2C+Adam&rft.au=Maciejewicz%2C+Piotr&rft.date=2020-02-01&rft.issn=0262-8856&rft.volume=94&rft.spage=103866&rft_id=info:doi/10.1016%2Fj.imavis.2019.103866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2019_103866 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |