Post-mortem iris recognition with deep-learning-based image segmentation

This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predic...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 94; p. 103866
Main Authors Trokielewicz, Mateusz, Czajka, Adam, Maciejewicz, Piotr
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
1872-8138
DOI10.1016/j.imavis.2019.103866

Cover

Abstract This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predicted by neural networks in conventional, Gabor-based iris recognition method, which employs circular approximations of the pupillary and limbic iris boundaries. As a whole, this method allows for a significant improvement in post-mortem iris recognition accuracy over the methods designed only for ante-mortem irises, including the academic OSIRIS and commercial IriCore implementations. The proposed method reaches the EER less than 1% for samples collected up to 10 hours after death, when compared to 16.89% and 5.37% of EER observed for OSIRIS and IriCore, respectively. For samples collected up to 369 h post-mortem, the proposed method achieves the EER 21.45%, while 33.59% and 25.38% are observed for OSIRIS and IriCore, respectively. Additionally, the method is tested on a database of iris images collected from ophthalmology clinic patients, for which it also offers an advantage over the two other algorithms. This work is the first step towards post-mortem-specific iris recognition, which increases the chances of identification of deceased subjects in forensic investigations. The new database of post-mortem iris images acquired from 42 subjects, as well as the deep learning-based segmentation models are made available along with the paper, to ensure all the results presented in this manuscript are reproducible. •Post-mortem-specific iris image segmentation tool•Drop-in segmentation stage replacement for typical iris recognition pipelines•New dataset of cadaver iris images (42 subjects)•Experiments showing substantial matching accuracy improvements
AbstractList This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predicted by neural networks in conventional, Gabor-based iris recognition method, which employs circular approximations of the pupillary and limbic iris boundaries. As a whole, this method allows for a significant improvement in post-mortem iris recognition accuracy over the methods designed only for ante-mortem irises, including the academic OSIRIS and commercial IriCore implementations. The proposed method reaches the EER less than 1% for samples collected up to 10 hours after death, when compared to 16.89% and 5.37% of EER observed for OSIRIS and IriCore, respectively. For samples collected up to 369 h post-mortem, the proposed method achieves the EER 21.45%, while 33.59% and 25.38% are observed for OSIRIS and IriCore, respectively. Additionally, the method is tested on a database of iris images collected from ophthalmology clinic patients, for which it also offers an advantage over the two other algorithms. This work is the first step towards post-mortem-specific iris recognition, which increases the chances of identification of deceased subjects in forensic investigations. The new database of post-mortem iris images acquired from 42 subjects, as well as the deep learning-based segmentation models are made available along with the paper, to ensure all the results presented in this manuscript are reproducible. •Post-mortem-specific iris image segmentation tool•Drop-in segmentation stage replacement for typical iris recognition pipelines•New dataset of cadaver iris images (42 subjects)•Experiments showing substantial matching accuracy improvements
ArticleNumber 103866
Author Maciejewicz, Piotr
Trokielewicz, Mateusz
Czajka, Adam
Author_xml – sequence: 1
  givenname: Mateusz
  surname: Trokielewicz
  fullname: Trokielewicz, Mateusz
  email: mateusz.trokielewicz@nask.pl
  organization: Biometrics and Machine Intelligence Laboratory, Research and Academic Computer Network, Kolska 12, Warsaw 01-045, Poland
– sequence: 2
  givenname: Adam
  surname: Czajka
  fullname: Czajka, Adam
  organization: Department of Computer Science, University of Notre Dame, 46556 IN, USA
– sequence: 3
  givenname: Piotr
  surname: Maciejewicz
  fullname: Maciejewicz, Piotr
  organization: Department of Ophthalmology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
BookMark eNqNkMFOwzAMhiM0JLbBG3DoC3QkaZOmHJDQBAxpEhzgHKWpUzK16ZSETXt7WpUTB-Bky_Jn__oWaOZ6BwhdE7wimPCb3cp26mDDimJSDqNMcH6G5kQUNBUkEzM0x5QPvWD8Ai1C2GGMC1yUc7R57UNMu95H6BLrbUg86L5xNtreJUcbP5IaYJ-2oLyzrkkrFaBOhn8NJAGaDlxU4-4lOjeqDXD1XZfo_fHhbb1Jty9Pz-v7baozRmNaV6wqKDeFAG1ExQquBS0LyFTOGKc54AwDI4IKoIaZOqe0FKqsjVHacGWyJWLT3U-3V6ejalu590Mcf5IEy1GH3MlJhxx1yEnHwN1OnPZ9CB6M1HZKHr2y7V9w_gP-58-7CYNByMGCl0FbcBpqO1iOsu7t7we-AHvkkw0
CitedBy_id crossref_primary_10_1109_TIFS_2021_3132582
crossref_primary_10_1016_j_imavis_2023_104759
crossref_primary_10_1007_s42044_023_00141_0
crossref_primary_10_1080_10942912_2021_1986523
crossref_primary_10_35940_ijies_L1096_12020225
crossref_primary_10_1007_s00500_024_10316_x
crossref_primary_10_2139_ssrn_4014908
crossref_primary_10_1109_TIFS_2023_3274477
crossref_primary_10_1145_3651306
crossref_primary_10_1111_1556_4029_14488
crossref_primary_10_3390_inventions6040065
crossref_primary_10_30748_soi_2022_171_09
crossref_primary_10_3390_jsan13060080
crossref_primary_10_1109_ACCESS_2020_3025195
crossref_primary_10_1371_journal_pone_0299265
crossref_primary_10_1016_j_imavis_2020_104024
crossref_primary_10_1109_ACCESS_2021_3076756
crossref_primary_10_1109_ACCESS_2020_3011364
crossref_primary_10_1016_j_jestch_2023_101552
crossref_primary_10_1109_ACCESS_2020_3041519
crossref_primary_10_1109_TBIOM_2022_3177669
crossref_primary_10_1109_ACCESS_2020_3013540
crossref_primary_10_1080_01969722_2022_2122012
crossref_primary_10_1007_s11334_021_00392_9
crossref_primary_10_32628_IJSRSET24113129
crossref_primary_10_1007_s11760_022_02154_x
crossref_primary_10_2478_jsiot_2024_0007
crossref_primary_10_1016_j_patrec_2020_08_018
crossref_primary_10_1007_s00521_025_11109_5
Cites_doi 10.1111/1556-4029.13484
10.1109/TIFS.2018.2881671
10.1016/j.patrec.2018.12.021
10.1109/TSMCB.2007.903540
10.1109/TPAMI.2016.2644615
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.imavis.2019.103866
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10.1016/j.imavis.2019.103866
10_1016_j_imavis_2019_103866
S0262885619304597
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c352t-db5b726f78ecf8b576c8297e3a455624e030e51828e2f5fd42298a9dffacf6af3
IEDL.DBID .~1
ISSN 0262-8856
1872-8138
IngestDate Sun Oct 26 04:01:43 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Thu Oct 09 00:34:23 EDT 2025
Fri Feb 23 02:48:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biometrics
Image segmentation
Post-mortem
Iris recognition
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-db5b726f78ecf8b576c8297e3a455624e030e51828e2f5fd42298a9dffacf6af3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0262885619304597
ParticipantIDs unpaywall_primary_10_1016_j_imavis_2019_103866
crossref_citationtrail_10_1016_j_imavis_2019_103866
crossref_primary_10_1016_j_imavis_2019_103866
elsevier_sciencedirect_doi_10_1016_j_imavis_2019_103866
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kerrigan, Trokielewicz, Czajka, Bowyer (bb0105) 2019
Warsaw University of Technology (bb0080) 2018
Sauerwein, Saul, Steadman, Boehnen (bb0030) 2017; 62
Trokielewicz, Czajka, Maciejewicz (bb0090) 2015
G. Sutra, B. Dorizzi, S. Garcia-Salitcetti, N. Othman. A biometric reference system for iris. OSIRIS, Fourth official version 4.1, 25/04/2013.
BBC News (bb0060) August 9 2001
Daugman (bb0095) 2007; 37
MIT Technology Review (bb0045)
IriTech Inc., IriCore Software Developer's Manual, version 3.6, 2013.
Trokielewicz, Czajka, Maciejewicz (bb0015) 2016
Trokielewicz, Czajka, Maciejewicz (bb0020) 2016
Bolme, Tokola, Boehnen (bb0025) 2016
Trokielewicz, Czajka, Maciejewicz (bb0040) 2018
Trokielewicz, Czajka, Maciejewicz (bb0035) 2018; 4
IrisGuard (bb0065) 2016
IriTech (bb0070) August 20 2015
Sansola (bb0005) 2015
Saripalle, McLaughlin, Krishna, Ross, Derakhshani (bb0010) 2015
Warsaw University of Technology (bb0085) 2015
Trokielewicz, Czajka (bb0050) 2018
Warsaw University of Technology (bb0075) 2016
Badrinarayanan, Kendall, Cipolla (bb0100) 2017; 39
Hofbauer, Jalilian, Uhl (bb0110) 2019; 120
10.1016/j.imavis.2019.103866_bb0115
BBC News (10.1016/j.imavis.2019.103866_bb0060)
Trokielewicz (10.1016/j.imavis.2019.103866_bb0035) 2018; 4
Daugman (10.1016/j.imavis.2019.103866_bb0095) 2007; 37
Trokielewicz (10.1016/j.imavis.2019.103866_bb0050) 2018
Trokielewicz (10.1016/j.imavis.2019.103866_bb0040) 2018
Hofbauer (10.1016/j.imavis.2019.103866_bb0110) 2019; 120
Sauerwein (10.1016/j.imavis.2019.103866_bb0030) 2017; 62
Badrinarayanan (10.1016/j.imavis.2019.103866_bb0100) 2017; 39
MIT Technology Review (10.1016/j.imavis.2019.103866_bb0045)
Trokielewicz (10.1016/j.imavis.2019.103866_bb0015) 2016
Sansola (10.1016/j.imavis.2019.103866_bb0005) 2015
Warsaw University of Technology (10.1016/j.imavis.2019.103866_bb0075)
Saripalle (10.1016/j.imavis.2019.103866_bb0010) 2015
Trokielewicz (10.1016/j.imavis.2019.103866_bb0020) 2016
Warsaw University of Technology (10.1016/j.imavis.2019.103866_bb0085)
Trokielewicz (10.1016/j.imavis.2019.103866_bb0090) 2015
Kerrigan (10.1016/j.imavis.2019.103866_bb0105) 2019
IriTech (10.1016/j.imavis.2019.103866_bb0070)
IrisGuard (10.1016/j.imavis.2019.103866_bb0065)
Warsaw University of Technology (10.1016/j.imavis.2019.103866_bb0080)
10.1016/j.imavis.2019.103866_bb0055
Bolme (10.1016/j.imavis.2019.103866_bb0025) 2016
References_xml – volume: 62
  start-page: 1599
  year: 2017
  end-page: 1602
  ident: bb0030
  article-title: The effect of decomposition on the efficacy of biometrics for positive identification
  publication-title: J. Forensic Sci.
– year: August 9 2001
  ident: bb0060
  article-title: The eyes have it
– reference: G. Sutra, B. Dorizzi, S. Garcia-Salitcetti, N. Othman. A biometric reference system for iris. OSIRIS, Fourth official version 4.1, 25/04/2013.
– reference: IriTech Inc., IriCore Software Developer's Manual, version 3.6, 2013.
– year: 2015
  ident: bb0085
  article-title: Warsaw-BioBase-Disease-Iris-v1.0:
– year: 2015
  ident: bb0005
  article-title: Postmortem iris recognition and its application in human identification
– year: 2018
  ident: bb0080
  article-title: Warsaw-BioBase-PostMortem-Iris-v2.0:
– year: 2018
  ident: bb0040
  article-title: Presentation attack detection for cadaver iris
  publication-title: 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018)
– ident: bb0045
  article-title: Iris scanner can distinguish dead eyeballs from living ones
– start-page: 1
  year: 2018
  end-page: 7
  ident: bb0050
  article-title: Data-driven segmentation of post-mortem iris images
  publication-title: 2018 International Workshop on Biometrics and Forensics (IWBF)
– volume: 39
  year: 2017
  ident: bb0100
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 4
  start-page: 1501
  year: 2018
  end-page: 1514
  ident: bb0035
  article-title: Iris recognition after death
  publication-title: IEEE Trans. Inf. Forensics Secur.
– year: 2016
  ident: bb0020
  article-title: Human iris recognition in post-mortem subjects: study and database
  publication-title: 8th IEEE International Conference on Biometrics: Theory, Applications and Systems
– year: 2016
  ident: bb0015
  article-title: Post-mortem human iris recognition
  publication-title: 9th IAPR International Conference on Biometrics (ICB 2016)
– year: 2016
  ident: bb0025
  article-title: Impact of environmental factors on biometric matching during human decomposition
  publication-title: 8th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2016)
– volume: 37
  start-page: 1167
  year: 2007
  end-page: 1175
  ident: bb0095
  article-title: New methods in iris recognition
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– year: 2019
  ident: bb0105
  article-title: Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks
  publication-title: 12th IAPR International Conference on Biometrics (ICB 2019)
– year: 2015
  ident: bb0010
  article-title: Post-mortem iris biometric analysis in Sus scrofa domesticus
  publication-title: IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)
– year: 2015
  ident: bb0090
  article-title: Database of iris images acquired in the presence of ocular pathologies and assessment of iris recognition reliability for disease-affected eyes
  publication-title: 2nd IEEE International Conference on Cybernetics (CYBCONF 2015), Special Session on Reliable Biometrics (BIORELIABILITY 2015)
– year: August 20 2015
  ident: bb0070
  article-title: Biometric Access Control - Can Iris Biometric Enhance Better Security?
– year: 2016
  ident: bb0065
  article-title: EyeBank Solution
– volume: 120
  start-page: 17
  year: 2019
  end-page: 23
  ident: bb0110
  article-title: Exploiting superior CNN-based iris segmentation for better recognition accuracy
  publication-title: Pattern Recogn. Lett.
– year: 2016
  ident: bb0075
  article-title: Warsaw-BioBase-PostMortem-Iris-v1.0:
– year: 2016
  ident: 10.1016/j.imavis.2019.103866_bb0015
  article-title: Post-mortem human iris recognition
– year: 2018
  ident: 10.1016/j.imavis.2019.103866_bb0040
  article-title: Presentation attack detection for cadaver iris
– year: 2016
  ident: 10.1016/j.imavis.2019.103866_bb0020
  article-title: Human iris recognition in post-mortem subjects: study and database
– volume: 62
  start-page: 1599
  issue: 6
  year: 2017
  ident: 10.1016/j.imavis.2019.103866_bb0030
  article-title: The effect of decomposition on the efficacy of biometrics for positive identification
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.13484
– year: 2016
  ident: 10.1016/j.imavis.2019.103866_bb0025
  article-title: Impact of environmental factors on biometric matching during human decomposition
– ident: 10.1016/j.imavis.2019.103866_bb0045
– volume: 4
  start-page: 1501
  issue: 6
  year: 2018
  ident: 10.1016/j.imavis.2019.103866_bb0035
  article-title: Iris recognition after death
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2881671
– year: 2015
  ident: 10.1016/j.imavis.2019.103866_bb0005
– ident: 10.1016/j.imavis.2019.103866_bb0070
– ident: 10.1016/j.imavis.2019.103866_bb0080
– ident: 10.1016/j.imavis.2019.103866_bb0065
– year: 2015
  ident: 10.1016/j.imavis.2019.103866_bb0010
  article-title: Post-mortem iris biometric analysis in Sus scrofa domesticus
– volume: 120
  start-page: 17
  year: 2019
  ident: 10.1016/j.imavis.2019.103866_bb0110
  article-title: Exploiting superior CNN-based iris segmentation for better recognition accuracy
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.12.021
– volume: 37
  start-page: 1167
  issue: 5
  year: 2007
  ident: 10.1016/j.imavis.2019.103866_bb0095
  article-title: New methods in iris recognition
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2007.903540
– ident: 10.1016/j.imavis.2019.103866_bb0055
– ident: 10.1016/j.imavis.2019.103866_bb0085
– ident: 10.1016/j.imavis.2019.103866_bb0115
– ident: 10.1016/j.imavis.2019.103866_bb0075
– volume: 39
  year: 2017
  ident: 10.1016/j.imavis.2019.103866_bb0100
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.imavis.2019.103866_bb0060
– start-page: 1
  year: 2018
  ident: 10.1016/j.imavis.2019.103866_bb0050
  article-title: Data-driven segmentation of post-mortem iris images
– year: 2015
  ident: 10.1016/j.imavis.2019.103866_bb0090
  article-title: Database of iris images acquired in the presence of ocular pathologies and assessment of iris recognition reliability for disease-affected eyes
– year: 2019
  ident: 10.1016/j.imavis.2019.103866_bb0105
  article-title: Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks
SSID ssj0007079
Score 2.5673099
Snippet This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103866
SubjectTerms Biometrics
Image segmentation
Iris recognition
Post-mortem
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BOBgPoqgRo6YHj5ZI123dkRgJMZF4kARPSz8JCoMIxOhfb8s6giYEvO2wt3Xvo-_3uvcBcGNNhoSSUKwMV5gSzrGIgyYmgji4ywMp3YH-Uzfq9OhjP-yX4Laohfn1_36ZhzUcu3J7l4SVLLt5R9EeVKLQIu8yVHrd59ZrfoxiDZsth7U2WWyvmwErKuU2PGaTJ9pfZFP-9clHozVP067CU7HGPMHkvbGYi4b8_tO-cdePOIJDDzlRK9eRYyjprAZVDz-RN-5ZDQ7WehOeQMeN8cXjZS4uGtqtAK1yjSYZcse3SGk9xX7sxAA7f6iQXcJAo5kejH1RU3YKvfbDy30H-7ELWFo0NsdKhCImkYmZloYJG5BIV3-rA05Di5aotvuCDm1cwjQxoVGUkITxRBnDpYm4Cc6gnE0yfQ4osPGUFE1hqLijiqlExyxyLf6oYAmTvA5BIYJU-p7kbjTGKC2Sz97SnHWpY12as64OeEU1zXtybLk_LqSbelyR44XUCmoLZWOlDDu96uK_BJdQnn8s9JVFNnNx7RX6BwD69d8
  priority: 102
  providerName: Unpaywall
Title Post-mortem iris recognition with deep-learning-based image segmentation
URI https://dx.doi.org/10.1016/j.imavis.2019.103866
https://doi.org/10.1016/j.imavis.2019.103866
UnpaywallVersion publishedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yD-rBb3F-jBy8ZnNpuqbHIUpVHIIO5qnkc0y2rriJePFvN69Np4Iw8VQoDQkveV_p7_0eQmdOZWioKCPaCk0YFYLIKGgTKimEuyJQCi7073qdpM9uBuFgBV1UtTAAq_S2v7TphbX2b1pemq18NGo9uOyBcu78fwx_-2KoKGcsgi4GzY8vmAcwwJX3LE7z3ddV-VyB8RpNoJQfAF5xwRRecCX-6p7WXrNcvL-J8fib-7naRps-bsTdcmk7aMVku2jLx5DYa-hsF218IxjcQwn04iWTAlCLR06f8QIwNM0w3MFibUxOfO-IIQGnprFb8NDgmRlOfGVSto_6V5ePFwnxvROIciHVnGgZyoh2bMSNsly6rEJBEa0JBAtdyMOMU24TuuSCG2pDqxmlMRextlYo2xE2OEC1bJqZQ4QDlxQp2ZaWyXOmuY5NxDvA08ckj7kSdRRUIkuVJxaH_hbjtEKQPaeloFMQdFoKuo7IYlReEmss-T6qdiP9cUBSZ_uXjGwuNu9PUx39e6pjtE4hHy9Q3SeoNn95NacuaJnLRnEqG2i1e32b9Nyz37vvPn0CvSvubQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHtCDD9SIzx68VrTbZbtHQySowEVNuG36JBhYiECMF3-77W4XMTHReN20aTPtvLrffANwYVWGhJJQrAxXmBLOsYiCa0wEceEuD6R0D_rdXqP9TO_7Yb8EzaIWxsEqve3PbXpmrf2XupdmfToc1h9t9kAYs_4_dn_74mgN1mlIIpeBXX584TwcBVz-0GJV3w4v6ucykNdw7Gr5HcIrzqjCM7LEH_1TZZFO-fsbH41W_E9rB7Z84Ihu8r3tQkmnVdj2QSTyKjqrwuYKw-AetF0zXjzOELVoaBUaLRFDkxS5R1iktJ5i3zxigJ1XU8hueKDRTA_GvjQp3Yfn1u1Ts4198wQsbUw1x0qEIiINEzEtDRM2rZCuilYHnIY25qHaarcObXbBNDGhUZSQmPFYGcOlaXATHEA5naT6EFBgsyIproWh4ooqpmIdsYYj6qOCxUzyGgSFyBLpmcVdg4tRUkDIXpJc0IkTdJILugZ4OWuaM2v8Mj4qTiP5dkMSa_x_mXm5PLw_LXX076XOodJ-6naSzl3v4Rg2iEvOM4j3CZTnrwt9aiOYuTjLbugn1i_uUg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BOBgPoqgRo6YHj5ZI123dkRgJMZF4kARPSz8JCoMIxOhfb8s6giYEvO2wt3Xvo-_3uvcBcGNNhoSSUKwMV5gSzrGIgyYmgji4ywMp3YH-Uzfq9OhjP-yX4Laohfn1_36ZhzUcu3J7l4SVLLt5R9EeVKLQIu8yVHrd59ZrfoxiDZsth7U2WWyvmwErKuU2PGaTJ9pfZFP-9clHozVP067CU7HGPMHkvbGYi4b8_tO-cdePOIJDDzlRK9eRYyjprAZVDz-RN-5ZDQ7WehOeQMeN8cXjZS4uGtqtAK1yjSYZcse3SGk9xX7sxAA7f6iQXcJAo5kejH1RU3YKvfbDy30H-7ELWFo0NsdKhCImkYmZloYJG5BIV3-rA05Di5aotvuCDm1cwjQxoVGUkITxRBnDpYm4Cc6gnE0yfQ4osPGUFE1hqLijiqlExyxyLf6oYAmTvA5BIYJU-p7kbjTGKC2Sz97SnHWpY12as64OeEU1zXtybLk_LqSbelyR44XUCmoLZWOlDDu96uK_BJdQnn8s9JVFNnNx7RX6BwD69d8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-mortem+iris+recognition+with+deep-learning-based+image+segmentation&rft.jtitle=Image+and+vision+computing&rft.au=Trokielewicz%2C+Mateusz&rft.au=Czajka%2C+Adam&rft.au=Maciejewicz%2C+Piotr&rft.date=2020-02-01&rft.issn=0262-8856&rft.volume=94&rft.spage=103866&rft_id=info:doi/10.1016%2Fj.imavis.2019.103866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2019_103866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon