Thin-walled Integral Constructions in Aircraft Industry

Aviation structures are subjected to a wide spectrum of loads during operation. Each task carried out in flight consists of a number of maneuvers that generate different types of aircraft loading. Strict requirement for modern aviation constructions is high durability and reliability. This requireme...

Full description

Saved in:
Bibliographic Details
Published inProcedia manufacturing Vol. 47; pp. 498 - 504
Main Authors Bałon, Paweł, Rejman, Edward, Świątoniowski, Andrzej, Kiełbasa, Bartłomiej, Smusz, Robert, Szostak, Janusz, Cieślik, Jacek, Kowalski, Łukasz
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2020
Subjects
Online AccessGet full text
ISSN2351-9789
2351-9789
DOI10.1016/j.promfg.2020.04.153

Cover

Abstract Aviation structures are subjected to a wide spectrum of loads during operation. Each task carried out in flight consists of a number of maneuvers that generate different types of aircraft loading. Strict requirement for modern aviation constructions is high durability and reliability. This requirement means that many, sometimes contradictory restrictions, must be taken into account during the airplane design process. The most important element here is the mass of the structure having a decisive impact on both flight and technical properties as well as economic efficiency. This makes aircraft one of the most complex products of contemporary technology. Modern aviation constructions, or more precisely, their supporting structures are made almost exclusively as thin-walled structures that perfectly fulfill the postulate to minimize the weight of the construction. The structures are commonly used in which the cover is reinforced with longitudinal and transverse elements, providing the structure as a whole with the required rigidity and strength. While in the conditions of service load, local loss of coverage stability is permissible, exceeding the critical load levels of structural body components (frames, stringers) practically results in a structural damage. This specificity forces continuous improvement of both the design methods and the improvement of structural solutions for aircraft structures, as well as manufacturing processes, which is the subject of the project. The development of the science of materials, processing and machining processes as well as continuous improvement of technological processes has an impact on the effectiveness of these ideas. These disciplines allow the construction of geometrically complex integral structures that create opportunities not only for a more rational use of material characteristics, but also through appropriate shaping, significantly increase the mechanical properties of the support structure. An important advantage of the integral systems use is economic savings, gained as a result of elimination or reduction of assembly operations.This paper attempts to analyze the above-mentioned problem more closely, using the example of a densely ribbed rectangular plate.
AbstractList Aviation structures are subjected to a wide spectrum of loads during operation. Each task carried out in flight consists of a number of maneuvers that generate different types of aircraft loading. Strict requirement for modern aviation constructions is high durability and reliability. This requirement means that many, sometimes contradictory restrictions, must be taken into account during the airplane design process. The most important element here is the mass of the structure having a decisive impact on both flight and technical properties as well as economic efficiency. This makes aircraft one of the most complex products of contemporary technology. Modern aviation constructions, or more precisely, their supporting structures are made almost exclusively as thin-walled structures that perfectly fulfill the postulate to minimize the weight of the construction. The structures are commonly used in which the cover is reinforced with longitudinal and transverse elements, providing the structure as a whole with the required rigidity and strength. While in the conditions of service load, local loss of coverage stability is permissible, exceeding the critical load levels of structural body components (frames, stringers) practically results in a structural damage. This specificity forces continuous improvement of both the design methods and the improvement of structural solutions for aircraft structures, as well as manufacturing processes, which is the subject of the project. The development of the science of materials, processing and machining processes as well as continuous improvement of technological processes has an impact on the effectiveness of these ideas. These disciplines allow the construction of geometrically complex integral structures that create opportunities not only for a more rational use of material characteristics, but also through appropriate shaping, significantly increase the mechanical properties of the support structure. An important advantage of the integral systems use is economic savings, gained as a result of elimination or reduction of assembly operations.This paper attempts to analyze the above-mentioned problem more closely, using the example of a densely ribbed rectangular plate.
Author Szostak, Janusz
Kowalski, Łukasz
Bałon, Paweł
Smusz, Robert
Rejman, Edward
Świątoniowski, Andrzej
Kiełbasa, Bartłomiej
Cieślik, Jacek
Author_xml – sequence: 1
  givenname: Paweł
  surname: Bałon
  fullname: Bałon, Paweł
  email: balonpawel@gmail.com
  organization: SZEL-TECH Szeliga Grzegorz, Sołtyka 16, 39-300 Mielec, Poland
– sequence: 2
  givenname: Edward
  surname: Rejman
  fullname: Rejman, Edward
  organization: Rzeszow University of Technology, Powstancow Warszawy St. 3, 35-959 Rzeszow, Poland
– sequence: 3
  givenname: Andrzej
  surname: Świątoniowski
  fullname: Świątoniowski, Andrzej
  organization: AGH University of Science and Technology, Department of Manufacturing Systems, Mickiewicza Avenue 30-B2, 30-059 Krakow, Poland
– sequence: 4
  givenname: Bartłomiej
  surname: Kiełbasa
  fullname: Kiełbasa, Bartłomiej
  organization: SZEL-TECH Szeliga Grzegorz, Sołtyka 16, 39-300 Mielec, Poland
– sequence: 5
  givenname: Robert
  surname: Smusz
  fullname: Smusz, Robert
  organization: Rzeszow University of Technology, Powstancow Warszawy St. 3, 35-959 Rzeszow, Poland
– sequence: 6
  givenname: Janusz
  surname: Szostak
  fullname: Szostak, Janusz
  organization: AGH University of Science and Technology, Department of Manufacturing Systems, Mickiewicza Avenue 30-B2, 30-059 Krakow, Poland
– sequence: 7
  givenname: Jacek
  surname: Cieślik
  fullname: Cieślik, Jacek
  organization: AGH University of Science and Technology, Department of Manufacturing Systems, Mickiewicza Avenue 30-B2, 30-059 Krakow, Poland
– sequence: 8
  givenname: Łukasz
  surname: Kowalski
  fullname: Kowalski, Łukasz
  organization: AGH University of Science and Technology, Department of Manufacturing Systems, Mickiewicza Avenue 30-B2, 30-059 Krakow, Poland
BookMark eNqFkMtKAzEUhoNUsNa-gYt5gRlznZm4EErxUii4qeuQyaWmTDMlSZW-vRnqQlzo6vxwznc457sGEz94A8AtghWCqL7bVYcw7O22whDDCtIKMXIBppgwVPKm5ZMf-QrMY9xBmDlc1w2fgmbz7nz5Kfve6GLlk9kG2RfLwccUjiq5HArni4ULKkib8og-5tbpBlxa2Ucz_64z8Pb0uFm-lOvX59VysS4VYTiVSlrKOMKtsZ0myBBquGK1lR2vGe9ojWhLoWa8pQyRHFnHGsSUQp3VmmMyA_fnvSoMMQZjhXJJjnelIF0vEBSjBbETZwtitCAgFdlChukv-BDcXobTf9jDGTP5sQ9ngojKGa-MdsGoJPTg_l7wBa4Qets
CitedBy_id crossref_primary_10_3390_ma16237272
crossref_primary_10_3390_ma17092084
crossref_primary_10_3390_ma14164771
crossref_primary_10_3390_ma14247591
crossref_primary_10_1186_s10033_023_00865_x
crossref_primary_10_1007_s00170_021_07731_x
crossref_primary_10_1007_s00170_024_14917_6
crossref_primary_10_3390_ma17020295
crossref_primary_10_3390_polym13234116
crossref_primary_10_3390_ma15249049
crossref_primary_10_3390_s23249905
crossref_primary_10_3390_ma16134825
crossref_primary_10_12677_ms_2024_144046
crossref_primary_10_3390_ma13214723
Cites_doi 10.1016/S0890-6955(03)00018-X
10.35784/acs-2018-15
10.1002/nme.1620360905
10.1063/1.5034899
10.1051/matecconf/201930401026
10.1016/B978-0-444-63711-6.00015-6
10.1115/1.1863254
10.1016/j.proeng.2017.03.117
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.promfg.2020.04.153
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2351-9789
EndPage 504
ExternalDocumentID 10_1016_j_promfg_2020_04_153
S2351978920312099
GroupedDBID 0R~
0SF
457
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
KQ8
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c352t-caf459128efbd31e34e9c56fab9659b4614840d59845138405b5715cc1bfdd923
ISSN 2351-9789
IngestDate Thu Apr 24 22:54:04 EDT 2025
Tue Jul 01 00:35:44 EDT 2025
Wed May 17 01:12:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords thin structures
HSM milling
Integral structures
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-caf459128efbd31e34e9c56fab9659b4614840d59845138405b5715cc1bfdd923
OpenAccessLink https://dx.doi.org/10.1016/j.promfg.2020.04.153
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_promfg_2020_04_153
crossref_primary_10_1016_j_promfg_2020_04_153
elsevier_sciencedirect_doi_10_1016_j_promfg_2020_04_153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia manufacturing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shih, Yang (bib0003) 1993; 36
Shet, Deng (bib0002) 2003; 43
Mativenga, Hon (bib0005) 2005; 127
Bałon, Świątoniowski, Kiełbasa, Rejman, Szostak, Smusz, Kowalski (bib00010) 2019; 304
Lundblad (bib0001) 2002; 7
Kuczmaszewski, Pieśko, Zawada-Michałowska (bib0006) 2017; 182
Bałon, Rejman, Smusz, Szostak, Kiełbasa (bib0008) 2018; 14
Bałon P, Szostak J, Kiełbasa B, Rejman E, Smusz R. Application of High Speed Machining Technology in Aviation. 21
International ESAFORM Conference on Material Forming 2018.
Adamski (bib0004) 2012; 34
Grzesik W. Advanced Machining Processes of Metallic Materials. Elsevier; 2016.
Adamski (10.1016/j.promfg.2020.04.153_bib0004) 2012; 34
Shet (10.1016/j.promfg.2020.04.153_bib0002) 2003; 43
Lundblad (10.1016/j.promfg.2020.04.153_bib0001) 2002; 7
Kuczmaszewski (10.1016/j.promfg.2020.04.153_bib0006) 2017; 182
Shih (10.1016/j.promfg.2020.04.153_bib0003) 1993; 36
10.1016/j.promfg.2020.04.153_bib0009
Bałon (10.1016/j.promfg.2020.04.153_bib00010) 2019; 304
Bałon (10.1016/j.promfg.2020.04.153_bib0008) 2018; 14
Mativenga (10.1016/j.promfg.2020.04.153_bib0005) 2005; 127
10.1016/j.promfg.2020.04.153_bib0007
References_xml – volume: 14
  start-page: 82
  year: 2018
  end-page: 95
  ident: bib0008
  article-title: High Speed Milling in thin-walled aircraft structures
  publication-title: Applied Computer Science
– reference: Bałon P, Szostak J, Kiełbasa B, Rejman E, Smusz R. Application of High Speed Machining Technology in Aviation. 21
– volume: 304
  start-page: 01026
  year: 2019
  ident: bib00010
  article-title: The application of thin-walled integral constructions in aviation as exemplified by the SAT-AM project
  publication-title: MATEC Web of Conferences
– reference: Grzesik W. Advanced Machining Processes of Metallic Materials. Elsevier; 2016.
– volume: 7
  year: 2002
  ident: bib0001
  article-title: Influence of Cutting Tool Geometry on Residual Stress in the Workpiece
  publication-title: Proc. Third Wave Advant Edge User’s Conferece
– volume: 34
  start-page: 73
  year: 2012
  end-page: 84
  ident: bib0004
  article-title: Manufacturing development strategies in aviation industry
  publication-title: Advances in Manufacturing Science and Technology
– volume: 43
  start-page: 573
  year: 2003
  end-page: 587
  ident: bib0002
  article-title: Residual Stresses and Strains in Orthogonal Metal Cutting
  publication-title: Int J Machine Tools Manuf
– volume: 127
  start-page: 251
  year: 2005
  end-page: 261
  ident: bib0005
  article-title: An experimental study of cutting force in high speed end milling and implications for dynamic force modelling
  publication-title: Journal of Manufacturing Science and Engineering
– volume: 182
  start-page: 186
  year: 2017
  end-page: 381
  ident: bib0006
  article-title: Influence of Milling Strategies of Thin-walled Elements on Effectiveness of their Manufacturing
  publication-title: Procedia Engineering
– volume: 36
  start-page: 1487
  year: 1993
  end-page: 1507
  ident: bib0003
  article-title: Experimental and Finite Element Predictions of Residual Stresses Due to Orthogonal Metal Cutting
  publication-title: Int J Num Meth Eng
– reference: International ESAFORM Conference on Material Forming 2018.
– volume: 43
  start-page: 573
  issue: 6
  year: 2003
  ident: 10.1016/j.promfg.2020.04.153_bib0002
  article-title: Residual Stresses and Strains in Orthogonal Metal Cutting
  publication-title: Int J Machine Tools Manuf
  doi: 10.1016/S0890-6955(03)00018-X
– volume: 14
  start-page: 82
  issue: 2
  year: 2018
  ident: 10.1016/j.promfg.2020.04.153_bib0008
  article-title: High Speed Milling in thin-walled aircraft structures
  publication-title: Applied Computer Science
  doi: 10.35784/acs-2018-15
– volume: 7
  year: 2002
  ident: 10.1016/j.promfg.2020.04.153_bib0001
  article-title: Influence of Cutting Tool Geometry on Residual Stress in the Workpiece
  publication-title: Proc. Third Wave Advant Edge User’s Conferece
– volume: 36
  start-page: 1487
  year: 1993
  ident: 10.1016/j.promfg.2020.04.153_bib0003
  article-title: Experimental and Finite Element Predictions of Residual Stresses Due to Orthogonal Metal Cutting
  publication-title: Int J Num Meth Eng
  doi: 10.1002/nme.1620360905
– ident: 10.1016/j.promfg.2020.04.153_bib0007
  doi: 10.1063/1.5034899
– volume: 304
  start-page: 01026
  year: 2019
  ident: 10.1016/j.promfg.2020.04.153_bib00010
  article-title: The application of thin-walled integral constructions in aviation as exemplified by the SAT-AM project
  publication-title: MATEC Web of Conferences
  doi: 10.1051/matecconf/201930401026
– volume: 34
  start-page: 73
  issue: 3
  year: 2012
  ident: 10.1016/j.promfg.2020.04.153_bib0004
  article-title: Manufacturing development strategies in aviation industry
  publication-title: Advances in Manufacturing Science and Technology
– ident: 10.1016/j.promfg.2020.04.153_bib0009
  doi: 10.1016/B978-0-444-63711-6.00015-6
– volume: 127
  start-page: 251
  issue: 2
  year: 2005
  ident: 10.1016/j.promfg.2020.04.153_bib0005
  article-title: An experimental study of cutting force in high speed end milling and implications for dynamic force modelling
  publication-title: Journal of Manufacturing Science and Engineering
  doi: 10.1115/1.1863254
– volume: 182
  start-page: 186
  year: 2017
  ident: 10.1016/j.promfg.2020.04.153_bib0006
  article-title: Influence of Milling Strategies of Thin-walled Elements on Effectiveness of their Manufacturing
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2017.03.117
SSID ssj0001626679
Score 2.2738404
Snippet Aviation structures are subjected to a wide spectrum of loads during operation. Each task carried out in flight consists of a number of maneuvers that generate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 498
SubjectTerms HSM milling
Integral structures
thin structures
Title Thin-walled Integral Constructions in Aircraft Industry
URI https://dx.doi.org/10.1016/j.promfg.2020.04.153
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2351-9789
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001626679
  issn: 2351-9789
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2351-9789
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001626679
  issn: 2351-9789
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2351-9789
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001626679
  issn: 2351-9789
  databaseCode: AKRWK
  dateStart: 20150101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ8tKX0bGOtmuHH9an4uKLFNuPIXSUlo4xEtY3o2txaN0RXAL5Af3dPceS7WQJvezFyEKWbJ1j6dO5EvKdZ5hoIw59YeB3o4opP-X44_EInmCGJhrlkNc_hxdTennDbnq9pxWrpcdKnMnlVr-S_6Eq1AFd0Uv2HZRtO4UKKAN94QoUhusbaVyU_gKzoahatHc7r0UBXVDY2th1VMzlnJvq1KXpWFPk1o4CwCNoxvqIXg6122In3zwZs5M0sqr5X3yh7X2rptEzJ0G1yZ-bemyVjRZFDVUZwMviYeESZKMF5VLPOt2_6xK2U-4UIJUb9L5w7ZxUIgq6ZSuKWejD2dQuhHpLnVt3baRNt3BSm4va7cHMpiTeWN6tpGGGm8u9uT3DgTFQbWjjDa9H0_5nl2ttDxuztllue8mxlzygOfTygQyiBBBLnwxGV7__XHXSOjj3DevAje2nNH6YtbHg5gttxzkr2GWySz66Q4c3shz0ifR0-ZkkK9zjNdzjrXGPV5Rewz1ewz17ZPrjfDK-8F0aDV8Cuq58yQ1lGeAQbYSKQx1TnUk2NFxgMElBMRQsDRTLUsrCGIpMsCRkUobCKAUHgC-kXz6Uep94WcA4jyTqqhUg7zhNjUgUh4IIZCTYAYmbj86lizGPqU7u8pdm_YD47VN_bYyVV9onzXzmDida_JcDn7z45OE7R_pKdvDOityOSB_mXx8DCK3EN8chz6jHhKg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin-walled+Integral+Constructions+in+Aircraft+Industry&rft.jtitle=Procedia+manufacturing&rft.au=Ba%C5%82on%2C+Pawe%C5%82&rft.au=Rejman%2C+Edward&rft.au=%C5%9Awi%C4%85toniowski%2C+Andrzej&rft.au=Kie%C5%82basa%2C+Bart%C5%82omiej&rft.date=2020&rft.issn=2351-9789&rft.eissn=2351-9789&rft.volume=47&rft.spage=498&rft.epage=504&rft_id=info:doi/10.1016%2Fj.promfg.2020.04.153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_promfg_2020_04_153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2351-9789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2351-9789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2351-9789&client=summon