Artificial neural network (ANN) and response surface methodology (RSM) algorithm-based improvement, kinetics and isotherm studies of electrocoagulation of oily wastewater

The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments wer...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Vol. 57; no. 7; pp. 584 - 592
Main Authors Changmai, Murchana, Singh, Monika
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 22.07.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1093-4529
1532-4117
1532-4117
DOI10.1080/10934529.2022.2090192

Cover

Abstract The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments were designed by design of experiments (DOE) of response surface methodology (RSM) and the analysis of variance (ANOVA) studies confirmed the agreement of the experimental results. Artificial neural network (ANN) was also utilized to determine predicted response using neural networks for 4-10-1 arrangement. Both the responses predicted by RSM and ANN were in alignment with the experimental results. Maximum removal of 78% was attained under the working parameters of 80 A m - 2 , 3.6 pH, electrode distance of 0.005 m and reaction time of 20 min.
AbstractList The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments were designed by design of experiments (DOE) of response surface methodology (RSM) and the analysis of variance (ANOVA) studies confirmed the agreement of the experimental results. Artificial neural network (ANN) was also utilized to determine predicted response using neural networks for 4-10-1 arrangement. Both the responses predicted by RSM and ANN were in alignment with the experimental results. Maximum removal of 78% was attained under the working parameters of 80 A m–2, 3.6 pH, electrode distance of 0.005 m and reaction time of 20 min.
The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments were designed by design of experiments (DOE) of response surface methodology (RSM) and the analysis of variance (ANOVA) studies confirmed the agreement of the experimental results. Artificial neural network (ANN) was also utilized to determine predicted response using neural networks for 4-10-1 arrangement. Both the responses predicted by RSM and ANN were in alignment with the experimental results. Maximum removal of 78% was attained under the working parameters of 80 A m-2, 3.6 pH, electrode distance of 0.005 m and reaction time of 20 min.The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments were designed by design of experiments (DOE) of response surface methodology (RSM) and the analysis of variance (ANOVA) studies confirmed the agreement of the experimental results. Artificial neural network (ANN) was also utilized to determine predicted response using neural networks for 4-10-1 arrangement. Both the responses predicted by RSM and ANN were in alignment with the experimental results. Maximum removal of 78% was attained under the working parameters of 80 A m-2, 3.6 pH, electrode distance of 0.005 m and reaction time of 20 min.
The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments were designed by design of experiments (DOE) of response surface methodology (RSM) and the analysis of variance (ANOVA) studies confirmed the agreement of the experimental results. Artificial neural network (ANN) was also utilized to determine predicted response using neural networks for 4-10-1 arrangement. Both the responses predicted by RSM and ANN were in alignment with the experimental results. Maximum removal of 78% was attained under the working parameters of 80 A m– ², 3.6 pH, electrode distance of 0.005 m and reaction time of 20 min.
The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for obtaining the results considering four major operating parameters, viz. current density, pH, electrode distance and reaction time. 31 experiments were designed by design of experiments (DOE) of response surface methodology (RSM) and the analysis of variance (ANOVA) studies confirmed the agreement of the experimental results. Artificial neural network (ANN) was also utilized to determine predicted response using neural networks for 4-10-1 arrangement. Both the responses predicted by RSM and ANN were in alignment with the experimental results. Maximum removal of 78% was attained under the working parameters of 80 A m - 2 , 3.6 pH, electrode distance of 0.005 m and reaction time of 20 min.
Author Changmai, Murchana
Singh, Monika
Author_xml – sequence: 1
  givenname: Murchana
  surname: Changmai
  fullname: Changmai, Murchana
  organization: Department of Chemical Engineering, Birla Institute of Technology and Science Pilani
– sequence: 2
  givenname: Monika
  surname: Singh
  fullname: Singh, Monika
  organization: Department of Forestry and Wood Technology, Linnaeus University
BookMark eNqFkU1v1DAQhiPUSrQLPwHJEpdFIsUfcRLfWFVAkUqR-DhbjjPedevYi-2w2r_Er6y3Wy4c6GVmZD3zSuPnvDrxwUNVvSL4guAevyNYsIZTcUExpaUITAR9Vp0RzmjdENKdlLkw9QF6Xp2ndIsx6RnhZ9WfVczWWG2VQx7m-NDyLsQ7tFzd3LxByo8oQtoGnwClORqlAU2QN2EMLqz3aPnt-5eCuXWINm-melAJRmSnbQy_YQKf36I7WzKtTg9hNoW8gTihlOfRQkLBIHCgcww6qPXsVLbBH16DdXu0UynDTmWIL6pTo1yCl499Uf38-OHH5VV9_fXT58vVda0Zp7nWguEGG04HMmjdiLaltOkN4w2GgTOjDB9aqrqGqE5xMygyNoCx5uU_jKaELarlMbdc8GuGlOVkkwbnlIcwJ0k70lPRctw9jbad6DDumSjo63_Q2zBHXw4plGh60Yria1HxI6VjSCmCkdtoJxX3kmB5kC3_ypYH2fJRdtl7f9yz3oQ4qSLQjTKrvQvRROW1TZL9P-IeuP-0xg
Cites_doi 10.3390/w14030344
10.1007/s13203-014-0077-7
10.1016/S1001-0742(08)62445-6
10.1016/j.jenvman.2007.11.007
10.1016/j.cherd.2021.10.012
10.1016/j.clet.2021.100184
10.1016/j.desal.2011.01.083
10.1080/10934529.2019.1702407
10.1109/ICCSDET.2018.8821131
10.1016/j.jelechem.2009.11.003
10.1016/j.jenvman.2019.109489
10.1080/10934520903140090
10.1016/j.heliyon.2022.e08749
10.1016/j.jece.2021.106147
10.1080/10934529.2020.1868823
10.1088/1742-6596/2129/1/012068
10.2166/wst.2009.519
10.1016/j.jenvman.2009.08.003
10.1016/j.jece.2013.11.024
10.1016/j.sajce.2020.12.003
10.1016/j.seppur.2018.08.007
10.1016/j.jhazmat.2008.01.051
10.1016/j.arabjc.2021.103629
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7ST
7T7
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
SOI
7X8
7S9
L.6
DOI 10.1080/10934529.2022.2090192
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-4117
EndPage 592
ExternalDocumentID 10_1080_10934529_2022_2090192
2090192
Genre Research Article
GroupedDBID .7F
.QJ
0BK
29K
30N
36B
4.4
53G
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CE4
D-I
DGEBU
DKSSO
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7ST
7T7
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c352t-c93040f52b1bcc49662248f3540eb53faf5b62a741a7a5fba1d4e00c5315fc213
ISSN 1093-4529
1532-4117
IngestDate Fri Sep 05 17:22:36 EDT 2025
Fri Sep 05 07:49:45 EDT 2025
Tue Oct 07 05:36:43 EDT 2025
Wed Oct 01 01:52:42 EDT 2025
Mon Oct 20 23:48:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-c93040f52b1bcc49662248f3540eb53faf5b62a741a7a5fba1d4e00c5315fc213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2694896915
PQPubID 53014
PageCount 9
ParticipantIDs proquest_miscellaneous_2718296507
crossref_primary_10_1080_10934529_2022_2090192
proquest_journals_2694896915
informaworld_taylorfrancis_310_1080_10934529_2022_2090192
proquest_miscellaneous_2679700839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-22
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-22
  day: 22
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0011
Ezemagu I. G. (CIT0018) 2021; 35
CIT0014
CIT0013
CIT0016
CIT0015
CIT0017
CIT0019
CIT0021
CIT0001
CIT0023
CIT0022
Hu J. (CIT0020) 2021
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0014
  doi: 10.3390/w14030344
– ident: CIT0003
  doi: 10.1007/s13203-014-0077-7
– ident: CIT0004
  doi: 10.1016/S1001-0742(08)62445-6
– ident: CIT0010
  doi: 10.1016/j.jenvman.2007.11.007
– ident: CIT0021
  doi: 10.1016/j.cherd.2021.10.012
– ident: CIT0015
  doi: 10.1016/j.clet.2021.100184
– ident: CIT0002
  doi: 10.1016/j.desal.2011.01.083
– ident: CIT0024
  doi: 10.1080/10934529.2019.1702407
– ident: CIT0006
  doi: 10.1109/ICCSDET.2018.8821131
– ident: CIT0007
  doi: 10.1016/j.jelechem.2009.11.003
– ident: CIT0001
  doi: 10.1016/j.jenvman.2019.109489
– year: 2021
  ident: CIT0020
  publication-title: Sep. Sci. Technol.
– ident: CIT0025
  doi: 10.1080/10934520903140090
– volume: 35
  start-page: 78
  year: 2021
  ident: CIT0018
  publication-title: S. Afr. J. Chem.
– ident: CIT0016
  doi: 10.1016/j.heliyon.2022.e08749
– ident: CIT0012
  doi: 10.1016/j.jece.2021.106147
– ident: CIT0023
  doi: 10.1080/10934529.2020.1868823
– ident: CIT0011
  doi: 10.1088/1742-6596/2129/1/012068
– ident: CIT0019
  doi: 10.2166/wst.2009.519
– ident: CIT0009
  doi: 10.1016/j.jenvman.2009.08.003
– ident: CIT0008
  doi: 10.1016/j.jece.2013.11.024
– ident: CIT0013
  doi: 10.1016/j.sajce.2020.12.003
– ident: CIT0022
  doi: 10.1016/j.seppur.2018.08.007
– ident: CIT0005
  doi: 10.1016/j.jhazmat.2008.01.051
– ident: CIT0017
  doi: 10.1016/j.arabjc.2021.103629
SSID ssj0018315
Score 2.3187597
Snippet The work reported here focuses on the oil and grease removal from wastewater by the electrocoagulation process and using modeling and optimization for...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 584
SubjectTerms Algorithms
analysis of variance
artificial neural network
Artificial neural networks
Electrocoagulation
Electrodes
Grease
kinetics
Neural networks
oil and grease
oils
Optimization
Parameters
pH effects
Reaction time
Response surface methodology
Variance analysis
Wastewater
Wastewater treatment
Title Artificial neural network (ANN) and response surface methodology (RSM) algorithm-based improvement, kinetics and isotherm studies of electrocoagulation of oily wastewater
URI https://www.tandfonline.com/doi/abs/10.1080/10934529.2022.2090192
https://www.proquest.com/docview/2694896915
https://www.proquest.com/docview/2679700839
https://www.proquest.com/docview/2718296507
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018315
  issn: 1093-4529
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGuMAB8SkGAxmJSUMjXePESXysYNWEtnJYK_UWOU7cVWPNSDNA-5P4F7nwnu20qVrB4JJWrutU_f383vPL-yDkbberAhVFwhOsG8IBRcGWypnv6UzlMY-FzH1MFD4dRMej8NOYj7e2frWilq7rrKNuNuaV_A-qMAa4YpbsPyC7WBQG4D3gC1dAGK63wrhXmUgfdHpjXUrzYqK60W7sDQZ45Dfx4zYQtjiYX1dawk62faNt-SX0IZydmqlfJmU1rc8vPdRtOWZQVuU36z8EJC7AIF0UdZ7OTerWpalPO7WVa11LHVXKiWsKhqMlOlC-yzl66ZpY4HVruJVw16RpulQGm6nZAVu3qg96hl_lj6mCf-1c3gC_MYZ3DuKvRv7ODZVXFyuWJRdbwQyzyaXtxH2K7bDkbKGezmCe8TWhuLuQbbcIMyG0jK1IcuaFvk0M7RQbxpz4t_WxHc3jlizntnfdmo6xQZlYhgsfWnfw5nARaCsvlWoTSDD4nPZHJyfp8Gg83Av6V189bHiGgQF7wUfLyDvkLgOVhH1Hgu5g8Qgsse03Fr-5ST9Luocb771iWK2U3V0zM4ztNHxIHjiYac8y-BHZKmaPyf1WKcwn5OeSy9RymTou031g8jsKVKANj6njMW3xmO4Di2HaKodpi8PvacNgs1jDYOoYTEtN1xmMo8hgumTwUzLqHw0_HHuuj4in4HhRe0oEoKo0Z5mfKRXCAR_s1kSjx7PIeKCl5lnEJNjWMpZcZ9LPwwKEGKgnrhXzg2dke1bOiueEahExzTXnufBDP08SHuowyQLpR0qwuNghnQaE9MqWi0l9V4W3QS1F1FKH2g4RbajS2vjptG2qkwZ_-e5ug2vqpNI8xcz0RETC5zvkzeJj0Bn4IFDOCtiUMCcWMR6-xB_mgNHKBJzf4he3WOclubfchLtku66ui1dgrdfZa8Pq3wos7-k
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD5SkWWjAShyKRZe3ESXysqlYLdHOAVurNsh27rNpu0CYrBD-JX8mMnVRbEHDoKVL8iCOPx5_HM98Q8noysanNc5lIPsnggGJhSdWcJd7YuhCF1DXDQOFZlU-Psw8n4mQtFgbdKvEM7SNRRNDVuLjRGD24xL1DCiS8MITjHcdgKok45Sa5JQDsYxaDdFJd3iSUMYsBNkmwzRDF87duruxPV9hL_9DWYQs62CR2GHz0PDkbrzoztj9-43W83t_dJ_d6hEp3o0g9IDfc4iG5u8Zb-Ij8xMJIPUGREDM8gjs53dmtqjcUPk6X0fvW0Xa19No6GpNVBzM-3fn0eQbVzk-b5bz7cpHgZlrTebBwBIPlW3oG30MO6dDZvA2RYhe0jX6PtPG0z-BjG33a5yDDt838_Dv9pls0CoLMPCbHB_tHe9OkT_qQWMCCXWJlCnrFC26YsTaD0xiAjNKjecoZkXrthcm5BiCkCy280azOHEgc6BLhLWfpE7KxaBbuKaFe5twLL0QtWcbqshSZz0qTapZbyQs3IuNhqtXXyO2hWE-ZOkyCwklQ_SSMiFwXCNUFo4qPGVBU-p-2W4P0qF5NtArDiEuZSyZG5NVlMSxwvLXRC9essE4hC0TK8h91AGFwCWC7eHaNIb4kt6dHs0N1-L76-JzcwSK0YnO-RTa65cptA_zqzIuwvn4B_8cktg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKKyE4QHmJhVKMxKFIZFk7cRIfK2BVaBshoBI3y3bssmq7qTZZIfhJ_Epm7KRqqSiHniLFjzjyePx5PPMNIS8nE5vaPJeJ5JMMDigWllTNWeKNrQtRSF0zDBTer_Kdg-zjNzF4E7a9WyWeoX0kigi6Ghf3ae0Hj7g3yICE94VwuuMYSyURptwgazneimEUx6Q6u0goYxIDbJJgmyGI51_dXNieLpCXXlLWYQea3iVmGHt0PDkaLzsztr_-onW81s-tkzs9PqXbUaDukRU3v09un2MtfEB-Y2EknqBIhxkewZmcbm1X1SsK36aL6HvraLtceG0djamqgxGfbn3-sg_Vjg-bxaz7fpLgVlrTWbBvBHPla3oE30MG6dDZrA1xYie0jV6PtPG0z99jG33YZyDDt83s-Cf9oVs0CYLEPCQH0_df3-4kfcqHxAIS7BIrU9AqXnDDjLUZnMUAYpQejVPOiNRrL0zONcAgXWjhjWZ15kDeQJMIbzlLH5HVeTN3jwn1MudeeCFqyTJWl6XIfFaaVLPcSl64ERkPM61OI7OHYj1h6jAJCidB9ZMwIvK8PKgumFR8zH-i0v-03RiER_VKolUYRFzKXDIxIi_OimF5452NnrtmiXUKWSBOllfUAXzBJUDt4sk1hvic3Pz0bqr2PlS7T8ktLEETNucbZLVbLN0zwF6d2Qyr6w9HvyNa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+%28ANN%29+and+response+surface+methodology+%28RSM%29+algorithm-based+improvement%2C+kinetics+and+isotherm+studies+of+electrocoagulation+of+oily+wastewater&rft.jtitle=Journal+of+environmental+science+and+health.+Part+A%2C+Toxic%2Fhazardous+substances+%26+environmental+engineering&rft.au=Changmai%2C+Murchana&rft.au=Singh%2C+Monika&rft.date=2022-07-22&rft.issn=1532-4117&rft.eissn=1532-4117&rft.volume=57&rft.issue=7&rft.spage=584&rft_id=info:doi/10.1080%2F10934529.2022.2090192&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-4529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-4529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-4529&client=summon