Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks

Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical reservoir simulation and optimization algorithms. It is often challenging to implement gradient-based optimization algorithms because of the larg...

Full description

Saved in:
Bibliographic Details
Published inUpstream Oil and Gas Technology Vol. 9; p. 100071
Main Authors Alfarizi, Muhammad Gibran, Stanko, Milan, Bikmukhametov, Timur
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN2666-2604
2666-2604
DOI10.1016/j.upstre.2022.100071

Cover

Abstract Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical reservoir simulation and optimization algorithms. It is often challenging to implement gradient-based optimization algorithms because of the large number of variables and the complexities to embed the optimization algorithm in the simulator solving workflow. Approaches based on repeated model evaluation are easier to implement but are often time-consuming and computationally expensive. This work proposes the use of Artificial Neural Networks (ANN) to replicate the numerical reservoir simulation outputs. The ANN model is used to estimate cumulative oil production, cumulative water injection, and cumulative water production based on sets of well control values, i.e. flowing bottom-hole pressure. Then, the ANN model is combined with the genetic algorithm (GA) optimization (a derivative-free optimization) to find the optimum well controls that maximize the NPV of a synthetic reservoir model. The optimization results of this ANN-GA model were compared against the results of using the traditional approach of applying the genetic algorithm directly on the numerical reservoir model. The ANN model successfully reproduces the results of the numerical reservoir model with a low average error of 1.89%. The ANN-GA model successfully finds optimal operational conditions that are identical to those found by using GA and the original reservoir model. However, the running time was lowered by 96% (43 h faster) when compared to the optimization scheme using the original reservoir model. The optimal solution increases the NPV by 22.2% when compared to the base case.
AbstractList Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical reservoir simulation and optimization algorithms. It is often challenging to implement gradient-based optimization algorithms because of the large number of variables and the complexities to embed the optimization algorithm in the simulator solving workflow. Approaches based on repeated model evaluation are easier to implement but are often time-consuming and computationally expensive. This work proposes the use of Artificial Neural Networks (ANN) to replicate the numerical reservoir simulation outputs. The ANN model is used to estimate cumulative oil production, cumulative water injection, and cumulative water production based on sets of well control values, i.e. flowing bottom-hole pressure. Then, the ANN model is combined with the genetic algorithm (GA) optimization (a derivative-free optimization) to find the optimum well controls that maximize the NPV of a synthetic reservoir model. The optimization results of this ANN-GA model were compared against the results of using the traditional approach of applying the genetic algorithm directly on the numerical reservoir model. The ANN model successfully reproduces the results of the numerical reservoir model with a low average error of 1.89%. The ANN-GA model successfully finds optimal operational conditions that are identical to those found by using GA and the original reservoir model. However, the running time was lowered by 96% (43 h faster) when compared to the optimization scheme using the original reservoir model. The optimal solution increases the NPV by 22.2% when compared to the base case.
ArticleNumber 100071
Author Alfarizi, Muhammad Gibran
Bikmukhametov, Timur
Stanko, Milan
Author_xml – sequence: 1
  givenname: Muhammad Gibran
  orcidid: 0000-0002-6373-279X
  surname: Alfarizi
  fullname: Alfarizi, Muhammad Gibran
  email: muhammad.g.alfarizi@ntnu.no
  organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Norway
– sequence: 2
  givenname: Milan
  orcidid: 0000-0003-2748-9128
  surname: Stanko
  fullname: Stanko, Milan
  organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Norway
– sequence: 3
  givenname: Timur
  surname: Bikmukhametov
  fullname: Bikmukhametov, Timur
  organization: Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
BookMark eNqNkM1OAyEQgImpiVp9Aw-8QCuwP916MDGNf4nRi8YjoTBbp1LYAGtTn95t14PxoF5mBsI3zHxHZOC8A0JOORtzxsuz5bhtYgowFkyI7oqxCd8jh6Isy5EoWT74Vh-QkxiX3RNRTAWrskOyfAFrqfYuBW-pbxKu8EMl9I6io2uVINTWe4NuQdu4jQtwkFBTZRc-YHpddXTbWDB03Z3oZUhYo0Zl6QO0YZfS2oe3eEz2a2UjnHzlIXm-vnqa3Y7uH2_uZpf3I50VIo10NZ0zroTJeClKBfM874bNKiG04mI64XNtcl5V3U5clAWr6rmpTFEIpbLMgMqGpOj7tq5Rm7WyVjYBVypsJGdy60wuZe9Mbp3J3lnHnfecDj7GALXUmHYqUlBo_4LzH_A__7zoMeiEvCMEGTWC02AwgE7SePy9wScBoZ_Y
CitedBy_id crossref_primary_10_1016_j_jwpe_2023_104087
crossref_primary_10_1002_cjce_25273
crossref_primary_10_1080_23311916_2023_2257955
crossref_primary_10_1007_s13762_022_04623_9
crossref_primary_10_1016_j_fraope_2025_100229
crossref_primary_10_3390_en15207685
crossref_primary_10_2118_219770_PA
crossref_primary_10_1016_j_chemosphere_2024_143096
crossref_primary_10_1016_j_mtsust_2024_100924
crossref_primary_10_1016_j_eswa_2023_122707
crossref_primary_10_1016_j_geoen_2024_212927
crossref_primary_10_1016_j_petlm_2024_11_001
crossref_primary_10_3390_mi13081168
crossref_primary_10_4018_IJPCH_309951
crossref_primary_10_1007_s13369_024_08942_6
crossref_primary_10_1016_j_fuel_2023_128826
crossref_primary_10_1016_j_petrol_2022_110813
crossref_primary_10_3390_pr11010214
crossref_primary_10_1007_s10596_024_10300_2
Cites_doi 10.1016/j.compfluid.2010.09.039
10.1016/j.ins.2015.01.026
10.1016/j.engappai.2018.09.019
10.1037/h0042519
10.1109/4235.585893
10.1162/106365601750190406
10.1145/321062.321069
10.1016/j.cageo.2019.104379
10.1137/S1052623493250780
10.2118/141589-PA
10.2478/s13531-012-0047-8
10.2118/20399-PA
10.1007/s10596-014-9404-4
10.1137/S1052623400378742
10.1016/j.petrol.2013.11.006
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.upstre.2022.100071
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-2604
ExternalDocumentID 10.1016/j.upstre.2022.100071
10_1016_j_upstre_2022_100071
S2666260422000093
GroupedDBID 6I.
AAEDW
AAFTH
AAHCO
AAIAV
AAXUO
ABQYD
ACRLP
AEBSH
AFKWA
AIEXJ
AIKHN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATOGT
AXJTR
BELTK
BKOJK
EBS
EFJIC
EFLBG
FDB
FYGXN
M41
ROL
SPC
SPCBC
SSE
SSR
T5K
0R~
AALRI
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AITUG
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c352t-c89b01a2d31626aeb445923822ca12971bcd4188666126508fbd8d552aa33dea3
IEDL.DBID AIKHN
ISSN 2666-2604
IngestDate Tue Aug 19 16:00:07 EDT 2025
Wed Oct 01 03:08:07 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Waterflooding
Artificial Neural Networks
Control optimization
Genetic algorithm
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-c89b01a2d31626aeb445923822ca12971bcd4188666126508fbd8d552aa33dea3
ORCID 0000-0003-2748-9128
0000-0002-6373-279X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2666260422000093
ParticipantIDs unpaywall_primary_10_1016_j_upstre_2022_100071
crossref_citationtrail_10_1016_j_upstre_2022_100071
crossref_primary_10_1016_j_upstre_2022_100071
elsevier_sciencedirect_doi_10_1016_j_upstre_2022_100071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Upstream Oil and Gas Technology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deb, Beyer (bib0005) 2001; 9
Taherdangkoo, Paziresh, Yazdi, Bagheri (bib0018) 2013; 3
Dehdari, Oliver (bib0006) 2012; 17
Mattax, Dalton (bib0015) 1990; 42
Kennedy, Eberhart (bib0013) 1995; volume 4
Rosenblatt (bib0017) 1958; 65
Hooke, Jeeves (bib0009) 1961; 8
Takahashi, Kita (bib0019) 2001; volume 1
Ciaurri, Mukerji, Durlofsky (bib0004) 2011
Golberg (bib0007) 1989; 1989
Khan, Islam (bib0014) 2007
Torczon (bib0020) 1997; 7
Mohaghegh, Hafez, Gaskari, Haajizadeh, Kenawy (bib0016) 2006
Audet, Dennis Jr (bib0001) 2002; 13
Jansen (bib0012) 2011; 46
Zhao, Chen, Do, Li, Reynolds (bib0023) 2011
Holland (bib0008) 1975
Hourfar, Bidgoly, Moshiri, Salahshoor, Elkamel (bib0011) 2019; 77
Chuang, Chen, Hwang (bib0003) 2015; 305
Wolpert, Macready (bib0022) 1997; 1
Horowitz, Afonso, de Mendonça (bib0010) 2013; 112
Wen, Thiele, Ciaurri, Aziz, Ye (bib0021) 2014; 18
Baumann, Dale, Bellout (bib0002) 2020; 135
Takahashi (10.1016/j.upstre.2022.100071_bib0019) 2001; volume 1
Hourfar (10.1016/j.upstre.2022.100071_bib0011) 2019; 77
Ciaurri (10.1016/j.upstre.2022.100071_bib0004) 2011
Zhao (10.1016/j.upstre.2022.100071_bib0023) 2011
Chuang (10.1016/j.upstre.2022.100071_bib0003) 2015; 305
Wolpert (10.1016/j.upstre.2022.100071_bib0022) 1997; 1
Golberg (10.1016/j.upstre.2022.100071_bib0007) 1989; 1989
Rosenblatt (10.1016/j.upstre.2022.100071_bib0017) 1958; 65
Wen (10.1016/j.upstre.2022.100071_bib0021) 2014; 18
Audet (10.1016/j.upstre.2022.100071_bib0001) 2002; 13
Torczon (10.1016/j.upstre.2022.100071_bib0020) 1997; 7
Jansen (10.1016/j.upstre.2022.100071_bib0012) 2011; 46
Holland (10.1016/j.upstre.2022.100071_bib0008) 1975
Horowitz (10.1016/j.upstre.2022.100071_bib0010) 2013; 112
Mattax (10.1016/j.upstre.2022.100071_bib0015) 1990; 42
Baumann (10.1016/j.upstre.2022.100071_bib0002) 2020; 135
Khan (10.1016/j.upstre.2022.100071_bib0014) 2007
Hooke (10.1016/j.upstre.2022.100071_bib0009) 1961; 8
Kennedy (10.1016/j.upstre.2022.100071_bib0013) 1995; volume 4
Deb (10.1016/j.upstre.2022.100071_bib0005) 2001; 9
Dehdari (10.1016/j.upstre.2022.100071_bib0006) 2012; 17
Mohaghegh (10.1016/j.upstre.2022.100071_bib0016) 2006
Taherdangkoo (10.1016/j.upstre.2022.100071_bib0018) 2013; 3
References_xml – volume: 8
  start-page: 212
  year: 1961
  end-page: 229
  ident: bib0009
  article-title: “Direct search”solution of numerical and statistical problems
  publication-title: J. ACM (JACM)
– volume: 1989
  start-page: 36
  year: 1989
  ident: bib0007
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
  publication-title: Addion Wesley
– year: 1975
  ident: bib0008
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 18
  start-page: 483
  year: 2014
  end-page: 504
  ident: bib0021
  article-title: Waterflood management using two-stage optimization with streamline simulation
  publication-title: Comput. Geosci.
– volume: 305
  start-page: 320
  year: 2015
  end-page: 348
  ident: bib0003
  article-title: A real-coded genetic algorithm with a direction-based crossover operator
  publication-title: Inf. Sci.
– year: 2006
  ident: bib0016
  article-title: Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model
  publication-title: Abu Dhabi International Petroleum Exhibition and Conference
– volume: 9
  start-page: 197
  year: 2001
  end-page: 221
  ident: bib0005
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evol. Comput.
– start-page: 189
  year: 2007
  end-page: 241
  ident: bib0014
  article-title: Chapter 6 - reservoir engineering and secondary recovery
  publication-title: The Petroleum Engineering Handbook: Sustainable Operations
– volume: 65
  start-page: 386
  year: 1958
  end-page: 408
  ident: bib0017
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– volume: 112
  start-page: 206
  year: 2013
  end-page: 219
  ident: bib0010
  article-title: Surrogate based optimal waterflooding management
  publication-title: J. Pet. Sci. Eng.
– volume: 77
  start-page: 98
  year: 2019
  end-page: 116
  ident: bib0011
  article-title: A reinforcement learning approach for waterflooding optimization in petroleum reservoirs
  publication-title: Eng. Appl. Artif. Intell.
– volume: 17
  start-page: 874
  year: 2012
  end-page: 884
  ident: bib0006
  article-title: Sequential quadratic programming for solving constrained production optimization–case study from Brugge field
  publication-title: SPE J.
– volume: 7
  start-page: 1
  year: 1997
  end-page: 25
  ident: bib0020
  article-title: On the convergence of pattern search algorithms
  publication-title: SIAM J. Optim.
– volume: 3
  start-page: 36
  year: 2013
  end-page: 50
  ident: bib0018
  article-title: An efficient algorithm for function optimization: modified stem cells algorithm
  publication-title: Open Eng.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0022
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 40
  year: 2011
  end-page: 51
  ident: bib0012
  article-title: Adjoint-based optimization of multi-phase flow through porous media–a review
  publication-title: Comput. Fluids
– volume: 135
  start-page: 104379
  year: 2020
  ident: bib0002
  article-title: FieldOpt: a powerful and effective programming framework tailored for field development optimization
  publication-title: Comput. Geosci.
– year: 2011
  ident: bib0023
  article-title: Maximization of a dynamic quadratic interpolation model for production optimization
  publication-title: Proceedings of the SPE Reservoir Simulation Symposium
– start-page: 19
  year: 2011
  end-page: 55
  ident: bib0004
  article-title: Derivative-free optimization for oil field operations
  publication-title: Computational Optimization and Applications in Engineering and Industry
– volume: 13
  start-page: 889
  year: 2002
  end-page: 903
  ident: bib0001
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM J. Optim.
– volume: 42
  start-page: 692
  year: 1990
  end-page: 695
  ident: bib0015
  article-title: Reservoir simulation (includes associated papers 21606 and 21620)
  publication-title: J. Pet. Technol.
– volume: volume 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0013
  article-title: Particle swarm optimization
  publication-title: Proceedings of the ICNN’95-International Conference on Neural Networks
– volume: volume 1
  start-page: 643
  year: 2001
  end-page: 649 vol. 1
  ident: bib0019
  article-title: A crossover operator using independent component analysis for real-coded genetic algorithms
  publication-title: Proceedings of the Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)
– volume: volume 1
  start-page: 643
  year: 2001
  ident: 10.1016/j.upstre.2022.100071_bib0019
  article-title: A crossover operator using independent component analysis for real-coded genetic algorithms
– volume: 46
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.upstre.2022.100071_bib0012
  article-title: Adjoint-based optimization of multi-phase flow through porous media–a review
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.09.039
– volume: 305
  start-page: 320
  year: 2015
  ident: 10.1016/j.upstre.2022.100071_bib0003
  article-title: A real-coded genetic algorithm with a direction-based crossover operator
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.01.026
– volume: 77
  start-page: 98
  year: 2019
  ident: 10.1016/j.upstre.2022.100071_bib0011
  article-title: A reinforcement learning approach for waterflooding optimization in petroleum reservoirs
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.019
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.upstre.2022.100071_bib0017
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.upstre.2022.100071_bib0022
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– year: 2006
  ident: 10.1016/j.upstre.2022.100071_bib0016
  article-title: Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model
– volume: 9
  start-page: 197
  issue: 2
  year: 2001
  ident: 10.1016/j.upstre.2022.100071_bib0005
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190406
– volume: 8
  start-page: 212
  issue: 2
  year: 1961
  ident: 10.1016/j.upstre.2022.100071_bib0009
  article-title: “Direct search”solution of numerical and statistical problems
  publication-title: J. ACM (JACM)
  doi: 10.1145/321062.321069
– year: 2011
  ident: 10.1016/j.upstre.2022.100071_bib0023
  article-title: Maximization of a dynamic quadratic interpolation model for production optimization
– volume: 135
  start-page: 104379
  year: 2020
  ident: 10.1016/j.upstre.2022.100071_bib0002
  article-title: FieldOpt: a powerful and effective programming framework tailored for field development optimization
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104379
– year: 1975
  ident: 10.1016/j.upstre.2022.100071_bib0008
– volume: 7
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.upstre.2022.100071_bib0020
  article-title: On the convergence of pattern search algorithms
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623493250780
– volume: 17
  start-page: 874
  issue: 03
  year: 2012
  ident: 10.1016/j.upstre.2022.100071_bib0006
  article-title: Sequential quadratic programming for solving constrained production optimization–case study from Brugge field
  publication-title: SPE J.
  doi: 10.2118/141589-PA
– volume: 3
  start-page: 36
  issue: 1
  year: 2013
  ident: 10.1016/j.upstre.2022.100071_bib0018
  article-title: An efficient algorithm for function optimization: modified stem cells algorithm
  publication-title: Open Eng.
  doi: 10.2478/s13531-012-0047-8
– start-page: 189
  year: 2007
  ident: 10.1016/j.upstre.2022.100071_bib0014
  article-title: Chapter 6 - reservoir engineering and secondary recovery
– volume: volume 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.upstre.2022.100071_bib0013
  article-title: Particle swarm optimization
– volume: 42
  start-page: 692
  issue: 06
  year: 1990
  ident: 10.1016/j.upstre.2022.100071_bib0015
  article-title: Reservoir simulation (includes associated papers 21606 and 21620)
  publication-title: J. Pet. Technol.
  doi: 10.2118/20399-PA
– volume: 18
  start-page: 483
  issue: 3–4
  year: 2014
  ident: 10.1016/j.upstre.2022.100071_bib0021
  article-title: Waterflood management using two-stage optimization with streamline simulation
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-014-9404-4
– volume: 1989
  start-page: 36
  issue: 102
  year: 1989
  ident: 10.1016/j.upstre.2022.100071_bib0007
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
  publication-title: Addion Wesley
– volume: 13
  start-page: 889
  issue: 3
  year: 2002
  ident: 10.1016/j.upstre.2022.100071_bib0001
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400378742
– start-page: 19
  year: 2011
  ident: 10.1016/j.upstre.2022.100071_bib0004
  article-title: Derivative-free optimization for oil field operations
– volume: 112
  start-page: 206
  year: 2013
  ident: 10.1016/j.upstre.2022.100071_bib0010
  article-title: Surrogate based optimal waterflooding management
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.11.006
SSID ssj0002592083
Score 2.3550673
Snippet Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100071
SubjectTerms Artificial Neural Networks
Control optimization
Genetic algorithm
Waterflooding
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lPYgHv0VFJQePpjSbbLt7LGIpgsWDxXpaJpu0VtftorsU_fVO9qNUobSe9pIhYTIkbzZv3hBy5QutZEtxJnwXmFRcMOUrYJiwmLbnQcvNJfPvB-3-UN6N3FGNXFe1ML_e73MeVpbYqgnM5BzHPum3bMF4o-0i8q6TxnDw0H22_eMQhTOE5rKqjlthuur22criBL7mEEVLt0tvl9xX6ypIJW_NLFXN8PuPZOOmC98jOyXMpN0iLvZJzcQHZHtJfPCQvD6ZKKIlVZ3O8Oh4L2sy6TSmc7D9qy2rHQdTy46fUIw1W_JIIZrMPqbpyztaZ0lkNLV_c_PJCj0KaiU_8k_OMf88IsPe7eNNn5WdF1iIgCxloeerFgdHC44JDxglpYtIEMFECAgQOlyFWnLPQ69zx2K8sdKedl0HQAhtQByTejyLzQmhvAP2dcczghvMVX3QYwmCaw6u1tIPT4modiQIS1ly2x0jCir-2WtQeDKwngwKT54StrBKClmONeM71WYHJbQoIEOA-7bGsrmIjY2mOvuvwTmppx-ZuUBwk6rLMqZ_AJ-g-VI
  priority: 102
  providerName: Unpaywall
Title Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks
URI https://dx.doi.org/10.1016/j.upstre.2022.100071
https://doi.org/10.1016/j.upstre.2022.100071
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2666-2604
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0002592083
  issn: 2666-2604
  databaseCode: ACRLP
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 2666-2604
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0002592083
  issn: 2666-2604
  databaseCode: AIKHN
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-2604
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002592083
  issn: 2666-2604
  databaseCode: AKRWK
  dateStart: 20191201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLagHGCHCdimsTHkA1fTOHaoc6wqUMdGhYAKOEXPsSlFIY1YK8S_573EqeAwMe1kJfKTo89Pfp-d7z0ztp8qZ3VkpVBpAkJbqYRNLQjcsPhDYyBK6pL5p6PD4VifXCfXK2zQ5sKQrDKs_c2aXq_W4U03oNmtptPuBYYWYuM6jmuio1bZGsYfYzpsrf_z13C0PGpBhh9HdUFOMhFk0ybR1UqvRUV5GbhXjGMSDUQ9-bcgtb4oK3h-gqJ4FYSON9nHwB55v_nALbbiy2324VVNwU_s_soXBQ8KdD7DFeEhpFryacmfgK6lJrE6duYkep9wdCHKZORQTGaP0_ndA1ovqsI7Toe09WBNmQlOlTzqppaO__nMxsdHl4OhCBcqiBx51lzkJrWRhNgpiciBt1ojNAo5Qg4Y93vS5k5LYxAlGRN1u7XOuCSJAZRyHtQX1ilnpf_KuOwB_bQxXkmPW9AU3K0GJZ2ExDmd5jtMtQhmeag2TpdeFFkrK7vPGtwzwj1rcN9hYmlVNdU23unfaycne-M1GQaEdywPlnP5T0N9---hvrMNemqEabusM39c-B_IZOZ2Dz11cP77bC94LLbj0Vn_5gU63fWj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG58HNSD8Rnf9uC1LqVF4GiMZn3tRY3eyJRW3Q2yRHdj_PfOQNnowWg8kUAnJV_LzNfyzZSxg1RZowMjhUojENpIJUxqQOCCxR0lCQRRXTL_unfUvdMXD9HDFDtpc2FIVul9f-PTa2_t73Q8mp2q3-_cYGghNq7DsCY6aprN6kjF-HXOHp9fdnuTrRZk-GFQF-QkE0E2bRJdrfQaV5SXgWvFMCTRQBDLn4LU3Lis4OMdiuJLEDpbYouePfLj5gWX2ZQrV9jCl5qCq2xw74qCewU6H6JHePGplrxf8negY6lJrI6NOYnenzhOIcpk5FA8DV_7o-cXtB5XhbOcNmnrzpoyE5wqedSXWjr-tsbuzk5vT7rCH6ggcuRZI5EnqQkkhFZJRA6c0RqhUcgRcsC4H0uTWy2TBFGSIVG3R2MTG0UhgFLWgVpnM-WwdBuMyxjop03ilHS4BE3BPmpQ0kqIrNVpvslUi2CW-2rjdOhFkbWyskHW4J4R7lmD-yYTE6uqqbbxS_u4HZzs26zJMCD8Ynk4Gcs_dbX176722Vz39voquzrvXW6zeXrSiNR22Mzodex2kdWMzJ6ftZ9gePU_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lPYgHv0VFJQePpjSbbLt7LGIpgsWDxXpaJpu0VtftorsU_fVO9qNUobSe9pIhYTIkbzZv3hBy5QutZEtxJnwXmFRcMOUrYJiwmLbnQcvNJfPvB-3-UN6N3FGNXFe1ML_e73MeVpbYqgnM5BzHPum3bMF4o-0i8q6TxnDw0H22_eMQhTOE5rKqjlthuur22criBL7mEEVLt0tvl9xX6ypIJW_NLFXN8PuPZOOmC98jOyXMpN0iLvZJzcQHZHtJfPCQvD6ZKKIlVZ3O8Oh4L2sy6TSmc7D9qy2rHQdTy46fUIw1W_JIIZrMPqbpyztaZ0lkNLV_c_PJCj0KaiU_8k_OMf88IsPe7eNNn5WdF1iIgCxloeerFgdHC44JDxglpYtIEMFECAgQOlyFWnLPQ69zx2K8sdKedl0HQAhtQByTejyLzQmhvAP2dcczghvMVX3QYwmCaw6u1tIPT4modiQIS1ly2x0jCir-2WtQeDKwngwKT54StrBKClmONeM71WYHJbQoIEOA-7bGsrmIjY2mOvuvwTmppx-ZuUBwk6rLMqZ_AJ-g-VI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well+control+optimization+in+waterflooding+using+genetic+algorithm+coupled+with+Artificial+Neural+Networks&rft.jtitle=Upstream+Oil+and+Gas+Technology&rft.au=Alfarizi%2C+Muhammad+Gibran&rft.au=Stanko%2C+Milan&rft.au=Bikmukhametov%2C+Timur&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-2604&rft.eissn=2666-2604&rft.volume=9&rft_id=info:doi/10.1016%2Fj.upstre.2022.100071&rft.externalDocID=S2666260422000093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-2604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-2604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-2604&client=summon