Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks
Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical reservoir simulation and optimization algorithms. It is often challenging to implement gradient-based optimization algorithms because of the larg...
        Saved in:
      
    
          | Published in | Upstream Oil and Gas Technology Vol. 9; p. 100071 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2666-2604 2666-2604  | 
| DOI | 10.1016/j.upstre.2022.100071 | 
Cover
| Abstract | Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical reservoir simulation and optimization algorithms. It is often challenging to implement gradient-based optimization algorithms because of the large number of variables and the complexities to embed the optimization algorithm in the simulator solving workflow. Approaches based on repeated model evaluation are easier to implement but are often time-consuming and computationally expensive.
This work proposes the use of Artificial Neural Networks (ANN) to replicate the numerical reservoir simulation outputs. The ANN model is used to estimate cumulative oil production, cumulative water injection, and cumulative water production based on sets of well control values, i.e. flowing bottom-hole pressure. Then, the ANN model is combined with the genetic algorithm (GA) optimization (a derivative-free optimization) to find the optimum well controls that maximize the NPV of a synthetic reservoir model. The optimization results of this ANN-GA model were compared against the results of using the traditional approach of applying the genetic algorithm directly on the numerical reservoir model.
The ANN model successfully reproduces the results of the numerical reservoir model with a low average error of 1.89%. The ANN-GA model successfully finds optimal operational conditions that are identical to those found by using GA and the original reservoir model. However, the running time was lowered by 96% (43 h faster) when compared to the optimization scheme using the original reservoir model. The optimal solution increases the NPV by 22.2% when compared to the base case. | 
    
|---|---|
| AbstractList | Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical reservoir simulation and optimization algorithms. It is often challenging to implement gradient-based optimization algorithms because of the large number of variables and the complexities to embed the optimization algorithm in the simulator solving workflow. Approaches based on repeated model evaluation are easier to implement but are often time-consuming and computationally expensive.
This work proposes the use of Artificial Neural Networks (ANN) to replicate the numerical reservoir simulation outputs. The ANN model is used to estimate cumulative oil production, cumulative water injection, and cumulative water production based on sets of well control values, i.e. flowing bottom-hole pressure. Then, the ANN model is combined with the genetic algorithm (GA) optimization (a derivative-free optimization) to find the optimum well controls that maximize the NPV of a synthetic reservoir model. The optimization results of this ANN-GA model were compared against the results of using the traditional approach of applying the genetic algorithm directly on the numerical reservoir model.
The ANN model successfully reproduces the results of the numerical reservoir model with a low average error of 1.89%. The ANN-GA model successfully finds optimal operational conditions that are identical to those found by using GA and the original reservoir model. However, the running time was lowered by 96% (43 h faster) when compared to the optimization scheme using the original reservoir model. The optimal solution increases the NPV by 22.2% when compared to the base case. | 
    
| ArticleNumber | 100071 | 
    
| Author | Alfarizi, Muhammad Gibran Bikmukhametov, Timur Stanko, Milan  | 
    
| Author_xml | – sequence: 1 givenname: Muhammad Gibran orcidid: 0000-0002-6373-279X surname: Alfarizi fullname: Alfarizi, Muhammad Gibran email: muhammad.g.alfarizi@ntnu.no organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Norway – sequence: 2 givenname: Milan orcidid: 0000-0003-2748-9128 surname: Stanko fullname: Stanko, Milan organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Norway – sequence: 3 givenname: Timur surname: Bikmukhametov fullname: Bikmukhametov, Timur organization: Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway  | 
    
| BookMark | eNqNkM1OAyEQgImpiVp9Aw-8QCuwP916MDGNf4nRi8YjoTBbp1LYAGtTn95t14PxoF5mBsI3zHxHZOC8A0JOORtzxsuz5bhtYgowFkyI7oqxCd8jh6Isy5EoWT74Vh-QkxiX3RNRTAWrskOyfAFrqfYuBW-pbxKu8EMl9I6io2uVINTWe4NuQdu4jQtwkFBTZRc-YHpddXTbWDB03Z3oZUhYo0Zl6QO0YZfS2oe3eEz2a2UjnHzlIXm-vnqa3Y7uH2_uZpf3I50VIo10NZ0zroTJeClKBfM874bNKiG04mI64XNtcl5V3U5clAWr6rmpTFEIpbLMgMqGpOj7tq5Rm7WyVjYBVypsJGdy60wuZe9Mbp3J3lnHnfecDj7GALXUmHYqUlBo_4LzH_A__7zoMeiEvCMEGTWC02AwgE7SePy9wScBoZ_Y | 
    
| CitedBy_id | crossref_primary_10_1016_j_jwpe_2023_104087 crossref_primary_10_1002_cjce_25273 crossref_primary_10_1080_23311916_2023_2257955 crossref_primary_10_1007_s13762_022_04623_9 crossref_primary_10_1016_j_fraope_2025_100229 crossref_primary_10_3390_en15207685 crossref_primary_10_2118_219770_PA crossref_primary_10_1016_j_chemosphere_2024_143096 crossref_primary_10_1016_j_mtsust_2024_100924 crossref_primary_10_1016_j_eswa_2023_122707 crossref_primary_10_1016_j_geoen_2024_212927 crossref_primary_10_1016_j_petlm_2024_11_001 crossref_primary_10_3390_mi13081168 crossref_primary_10_4018_IJPCH_309951 crossref_primary_10_1007_s13369_024_08942_6 crossref_primary_10_1016_j_fuel_2023_128826 crossref_primary_10_1016_j_petrol_2022_110813 crossref_primary_10_3390_pr11010214 crossref_primary_10_1007_s10596_024_10300_2  | 
    
| Cites_doi | 10.1016/j.compfluid.2010.09.039 10.1016/j.ins.2015.01.026 10.1016/j.engappai.2018.09.019 10.1037/h0042519 10.1109/4235.585893 10.1162/106365601750190406 10.1145/321062.321069 10.1016/j.cageo.2019.104379 10.1137/S1052623493250780 10.2118/141589-PA 10.2478/s13531-012-0047-8 10.2118/20399-PA 10.1007/s10596-014-9404-4 10.1137/S1052623400378742 10.1016/j.petrol.2013.11.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Author(s) | 
    
| Copyright_xml | – notice: 2022 The Author(s) | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.upstre.2022.100071 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2666-2604 | 
    
| ExternalDocumentID | 10.1016/j.upstre.2022.100071 10_1016_j_upstre_2022_100071 S2666260422000093  | 
    
| GroupedDBID | 6I. AAEDW AAFTH AAHCO AAIAV AAXUO ABQYD ACRLP AEBSH AFKWA AIEXJ AIKHN ALMA_UNASSIGNED_HOLDINGS AMRAJ ATOGT AXJTR BELTK BKOJK EBS EFJIC EFLBG FDB FYGXN M41 ROL SPC SPCBC SSE SSR T5K 0R~ AALRI AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AITUG AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c352t-c89b01a2d31626aeb445923822ca12971bcd4188666126508fbd8d552aa33dea3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 2666-2604 | 
    
| IngestDate | Tue Aug 19 16:00:07 EDT 2025 Wed Oct 01 03:08:07 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Fri Feb 23 02:39:33 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Waterflooding Artificial Neural Networks Control optimization Genetic algorithm  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-c89b01a2d31626aeb445923822ca12971bcd4188666126508fbd8d552aa33dea3 | 
    
| ORCID | 0000-0003-2748-9128 0000-0002-6373-279X  | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2666260422000093 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_upstre_2022_100071 crossref_citationtrail_10_1016_j_upstre_2022_100071 crossref_primary_10_1016_j_upstre_2022_100071 elsevier_sciencedirect_doi_10_1016_j_upstre_2022_100071  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2022 2022-09-00  | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Upstream Oil and Gas Technology | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Deb, Beyer (bib0005) 2001; 9 Taherdangkoo, Paziresh, Yazdi, Bagheri (bib0018) 2013; 3 Dehdari, Oliver (bib0006) 2012; 17 Mattax, Dalton (bib0015) 1990; 42 Kennedy, Eberhart (bib0013) 1995; volume 4 Rosenblatt (bib0017) 1958; 65 Hooke, Jeeves (bib0009) 1961; 8 Takahashi, Kita (bib0019) 2001; volume 1 Ciaurri, Mukerji, Durlofsky (bib0004) 2011 Golberg (bib0007) 1989; 1989 Khan, Islam (bib0014) 2007 Torczon (bib0020) 1997; 7 Mohaghegh, Hafez, Gaskari, Haajizadeh, Kenawy (bib0016) 2006 Audet, Dennis Jr (bib0001) 2002; 13 Jansen (bib0012) 2011; 46 Zhao, Chen, Do, Li, Reynolds (bib0023) 2011 Holland (bib0008) 1975 Hourfar, Bidgoly, Moshiri, Salahshoor, Elkamel (bib0011) 2019; 77 Chuang, Chen, Hwang (bib0003) 2015; 305 Wolpert, Macready (bib0022) 1997; 1 Horowitz, Afonso, de Mendonça (bib0010) 2013; 112 Wen, Thiele, Ciaurri, Aziz, Ye (bib0021) 2014; 18 Baumann, Dale, Bellout (bib0002) 2020; 135 Takahashi (10.1016/j.upstre.2022.100071_bib0019) 2001; volume 1 Hourfar (10.1016/j.upstre.2022.100071_bib0011) 2019; 77 Ciaurri (10.1016/j.upstre.2022.100071_bib0004) 2011 Zhao (10.1016/j.upstre.2022.100071_bib0023) 2011 Chuang (10.1016/j.upstre.2022.100071_bib0003) 2015; 305 Wolpert (10.1016/j.upstre.2022.100071_bib0022) 1997; 1 Golberg (10.1016/j.upstre.2022.100071_bib0007) 1989; 1989 Rosenblatt (10.1016/j.upstre.2022.100071_bib0017) 1958; 65 Wen (10.1016/j.upstre.2022.100071_bib0021) 2014; 18 Audet (10.1016/j.upstre.2022.100071_bib0001) 2002; 13 Torczon (10.1016/j.upstre.2022.100071_bib0020) 1997; 7 Jansen (10.1016/j.upstre.2022.100071_bib0012) 2011; 46 Holland (10.1016/j.upstre.2022.100071_bib0008) 1975 Horowitz (10.1016/j.upstre.2022.100071_bib0010) 2013; 112 Mattax (10.1016/j.upstre.2022.100071_bib0015) 1990; 42 Baumann (10.1016/j.upstre.2022.100071_bib0002) 2020; 135 Khan (10.1016/j.upstre.2022.100071_bib0014) 2007 Hooke (10.1016/j.upstre.2022.100071_bib0009) 1961; 8 Kennedy (10.1016/j.upstre.2022.100071_bib0013) 1995; volume 4 Deb (10.1016/j.upstre.2022.100071_bib0005) 2001; 9 Dehdari (10.1016/j.upstre.2022.100071_bib0006) 2012; 17 Mohaghegh (10.1016/j.upstre.2022.100071_bib0016) 2006 Taherdangkoo (10.1016/j.upstre.2022.100071_bib0018) 2013; 3  | 
    
| References_xml | – volume: 8 start-page: 212 year: 1961 end-page: 229 ident: bib0009 article-title: “Direct search”solution of numerical and statistical problems publication-title: J. ACM (JACM) – volume: 1989 start-page: 36 year: 1989 ident: bib0007 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning publication-title: Addion Wesley – year: 1975 ident: bib0008 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 18 start-page: 483 year: 2014 end-page: 504 ident: bib0021 article-title: Waterflood management using two-stage optimization with streamline simulation publication-title: Comput. Geosci. – volume: 305 start-page: 320 year: 2015 end-page: 348 ident: bib0003 article-title: A real-coded genetic algorithm with a direction-based crossover operator publication-title: Inf. Sci. – year: 2006 ident: bib0016 article-title: Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model publication-title: Abu Dhabi International Petroleum Exhibition and Conference – volume: 9 start-page: 197 year: 2001 end-page: 221 ident: bib0005 article-title: Self-adaptive genetic algorithms with simulated binary crossover publication-title: Evol. Comput. – start-page: 189 year: 2007 end-page: 241 ident: bib0014 article-title: Chapter 6 - reservoir engineering and secondary recovery publication-title: The Petroleum Engineering Handbook: Sustainable Operations – volume: 65 start-page: 386 year: 1958 end-page: 408 ident: bib0017 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. – volume: 112 start-page: 206 year: 2013 end-page: 219 ident: bib0010 article-title: Surrogate based optimal waterflooding management publication-title: J. Pet. Sci. Eng. – volume: 77 start-page: 98 year: 2019 end-page: 116 ident: bib0011 article-title: A reinforcement learning approach for waterflooding optimization in petroleum reservoirs publication-title: Eng. Appl. Artif. Intell. – volume: 17 start-page: 874 year: 2012 end-page: 884 ident: bib0006 article-title: Sequential quadratic programming for solving constrained production optimization–case study from Brugge field publication-title: SPE J. – volume: 7 start-page: 1 year: 1997 end-page: 25 ident: bib0020 article-title: On the convergence of pattern search algorithms publication-title: SIAM J. Optim. – volume: 3 start-page: 36 year: 2013 end-page: 50 ident: bib0018 article-title: An efficient algorithm for function optimization: modified stem cells algorithm publication-title: Open Eng. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0022 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 40 year: 2011 end-page: 51 ident: bib0012 article-title: Adjoint-based optimization of multi-phase flow through porous media–a review publication-title: Comput. Fluids – volume: 135 start-page: 104379 year: 2020 ident: bib0002 article-title: FieldOpt: a powerful and effective programming framework tailored for field development optimization publication-title: Comput. Geosci. – year: 2011 ident: bib0023 article-title: Maximization of a dynamic quadratic interpolation model for production optimization publication-title: Proceedings of the SPE Reservoir Simulation Symposium – start-page: 19 year: 2011 end-page: 55 ident: bib0004 article-title: Derivative-free optimization for oil field operations publication-title: Computational Optimization and Applications in Engineering and Industry – volume: 13 start-page: 889 year: 2002 end-page: 903 ident: bib0001 article-title: Analysis of generalized pattern searches publication-title: SIAM J. Optim. – volume: 42 start-page: 692 year: 1990 end-page: 695 ident: bib0015 article-title: Reservoir simulation (includes associated papers 21606 and 21620) publication-title: J. Pet. Technol. – volume: volume 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0013 article-title: Particle swarm optimization publication-title: Proceedings of the ICNN’95-International Conference on Neural Networks – volume: volume 1 start-page: 643 year: 2001 end-page: 649 vol. 1 ident: bib0019 article-title: A crossover operator using independent component analysis for real-coded genetic algorithms publication-title: Proceedings of the Congress on Evolutionary Computation (IEEE Cat. No.01TH8546) – volume: volume 1 start-page: 643 year: 2001 ident: 10.1016/j.upstre.2022.100071_bib0019 article-title: A crossover operator using independent component analysis for real-coded genetic algorithms – volume: 46 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.upstre.2022.100071_bib0012 article-title: Adjoint-based optimization of multi-phase flow through porous media–a review publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2010.09.039 – volume: 305 start-page: 320 year: 2015 ident: 10.1016/j.upstre.2022.100071_bib0003 article-title: A real-coded genetic algorithm with a direction-based crossover operator publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.01.026 – volume: 77 start-page: 98 year: 2019 ident: 10.1016/j.upstre.2022.100071_bib0011 article-title: A reinforcement learning approach for waterflooding optimization in petroleum reservoirs publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.019 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.upstre.2022.100071_bib0017 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.upstre.2022.100071_bib0022 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – year: 2006 ident: 10.1016/j.upstre.2022.100071_bib0016 article-title: Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model – volume: 9 start-page: 197 issue: 2 year: 2001 ident: 10.1016/j.upstre.2022.100071_bib0005 article-title: Self-adaptive genetic algorithms with simulated binary crossover publication-title: Evol. Comput. doi: 10.1162/106365601750190406 – volume: 8 start-page: 212 issue: 2 year: 1961 ident: 10.1016/j.upstre.2022.100071_bib0009 article-title: “Direct search”solution of numerical and statistical problems publication-title: J. ACM (JACM) doi: 10.1145/321062.321069 – year: 2011 ident: 10.1016/j.upstre.2022.100071_bib0023 article-title: Maximization of a dynamic quadratic interpolation model for production optimization – volume: 135 start-page: 104379 year: 2020 ident: 10.1016/j.upstre.2022.100071_bib0002 article-title: FieldOpt: a powerful and effective programming framework tailored for field development optimization publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104379 – year: 1975 ident: 10.1016/j.upstre.2022.100071_bib0008 – volume: 7 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.upstre.2022.100071_bib0020 article-title: On the convergence of pattern search algorithms publication-title: SIAM J. Optim. doi: 10.1137/S1052623493250780 – volume: 17 start-page: 874 issue: 03 year: 2012 ident: 10.1016/j.upstre.2022.100071_bib0006 article-title: Sequential quadratic programming for solving constrained production optimization–case study from Brugge field publication-title: SPE J. doi: 10.2118/141589-PA – volume: 3 start-page: 36 issue: 1 year: 2013 ident: 10.1016/j.upstre.2022.100071_bib0018 article-title: An efficient algorithm for function optimization: modified stem cells algorithm publication-title: Open Eng. doi: 10.2478/s13531-012-0047-8 – start-page: 189 year: 2007 ident: 10.1016/j.upstre.2022.100071_bib0014 article-title: Chapter 6 - reservoir engineering and secondary recovery – volume: volume 4 start-page: 1942 year: 1995 ident: 10.1016/j.upstre.2022.100071_bib0013 article-title: Particle swarm optimization – volume: 42 start-page: 692 issue: 06 year: 1990 ident: 10.1016/j.upstre.2022.100071_bib0015 article-title: Reservoir simulation (includes associated papers 21606 and 21620) publication-title: J. Pet. Technol. doi: 10.2118/20399-PA – volume: 18 start-page: 483 issue: 3–4 year: 2014 ident: 10.1016/j.upstre.2022.100071_bib0021 article-title: Waterflood management using two-stage optimization with streamline simulation publication-title: Comput. Geosci. doi: 10.1007/s10596-014-9404-4 – volume: 1989 start-page: 36 issue: 102 year: 1989 ident: 10.1016/j.upstre.2022.100071_bib0007 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning publication-title: Addion Wesley – volume: 13 start-page: 889 issue: 3 year: 2002 ident: 10.1016/j.upstre.2022.100071_bib0001 article-title: Analysis of generalized pattern searches publication-title: SIAM J. Optim. doi: 10.1137/S1052623400378742 – start-page: 19 year: 2011 ident: 10.1016/j.upstre.2022.100071_bib0004 article-title: Derivative-free optimization for oil field operations – volume: 112 start-page: 206 year: 2013 ident: 10.1016/j.upstre.2022.100071_bib0010 article-title: Surrogate based optimal waterflooding management publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2013.11.006  | 
    
| SSID | ssj0002592083 | 
    
| Score | 2.3550673 | 
    
| Snippet | Optimum well controls to maximize net present value (NPV) in a waterflooding operation are often obtained from an iterative process of employing numerical... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 100071 | 
    
| SubjectTerms | Artificial Neural Networks Control optimization Genetic algorithm Waterflooding  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lPYgHv0VFJQePpjSbbLt7LGIpgsWDxXpaJpu0VtftorsU_fVO9qNUobSe9pIhYTIkbzZv3hBy5QutZEtxJnwXmFRcMOUrYJiwmLbnQcvNJfPvB-3-UN6N3FGNXFe1ML_e73MeVpbYqgnM5BzHPum3bMF4o-0i8q6TxnDw0H22_eMQhTOE5rKqjlthuur22criBL7mEEVLt0tvl9xX6ypIJW_NLFXN8PuPZOOmC98jOyXMpN0iLvZJzcQHZHtJfPCQvD6ZKKIlVZ3O8Oh4L2sy6TSmc7D9qy2rHQdTy46fUIw1W_JIIZrMPqbpyztaZ0lkNLV_c_PJCj0KaiU_8k_OMf88IsPe7eNNn5WdF1iIgCxloeerFgdHC44JDxglpYtIEMFECAgQOlyFWnLPQ69zx2K8sdKedl0HQAhtQByTejyLzQmhvAP2dcczghvMVX3QYwmCaw6u1tIPT4modiQIS1ly2x0jCir-2WtQeDKwngwKT54StrBKClmONeM71WYHJbQoIEOA-7bGsrmIjY2mOvuvwTmppx-ZuUBwk6rLMqZ_AJ-g-VI priority: 102 providerName: Unpaywall  | 
    
| Title | Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks | 
    
| URI | https://dx.doi.org/10.1016/j.upstre.2022.100071 https://doi.org/10.1016/j.upstre.2022.100071  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 2666-2604 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0002592083 issn: 2666-2604 databaseCode: ACRLP dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 2666-2604 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0002592083 issn: 2666-2604 databaseCode: AIKHN dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2666-2604 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002592083 issn: 2666-2604 databaseCode: AKRWK dateStart: 20191201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLagHGCHCdimsTHkA1fTOHaoc6wqUMdGhYAKOEXPsSlFIY1YK8S_573EqeAwMe1kJfKTo89Pfp-d7z0ztp8qZ3VkpVBpAkJbqYRNLQjcsPhDYyBK6pL5p6PD4VifXCfXK2zQ5sKQrDKs_c2aXq_W4U03oNmtptPuBYYWYuM6jmuio1bZGsYfYzpsrf_z13C0PGpBhh9HdUFOMhFk0ybR1UqvRUV5GbhXjGMSDUQ9-bcgtb4oK3h-gqJ4FYSON9nHwB55v_nALbbiy2324VVNwU_s_soXBQ8KdD7DFeEhpFryacmfgK6lJrE6duYkep9wdCHKZORQTGaP0_ndA1ovqsI7Toe09WBNmQlOlTzqppaO__nMxsdHl4OhCBcqiBx51lzkJrWRhNgpiciBt1ojNAo5Qg4Y93vS5k5LYxAlGRN1u7XOuCSJAZRyHtQX1ilnpf_KuOwB_bQxXkmPW9AU3K0GJZ2ExDmd5jtMtQhmeag2TpdeFFkrK7vPGtwzwj1rcN9hYmlVNdU23unfaycne-M1GQaEdywPlnP5T0N9---hvrMNemqEabusM39c-B_IZOZ2Dz11cP77bC94LLbj0Vn_5gU63fWj | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG58HNSD8Rnf9uC1LqVF4GiMZn3tRY3eyJRW3Q2yRHdj_PfOQNnowWg8kUAnJV_LzNfyzZSxg1RZowMjhUojENpIJUxqQOCCxR0lCQRRXTL_unfUvdMXD9HDFDtpc2FIVul9f-PTa2_t73Q8mp2q3-_cYGghNq7DsCY6aprN6kjF-HXOHp9fdnuTrRZk-GFQF-QkE0E2bRJdrfQaV5SXgWvFMCTRQBDLn4LU3Lis4OMdiuJLEDpbYouePfLj5gWX2ZQrV9jCl5qCq2xw74qCewU6H6JHePGplrxf8negY6lJrI6NOYnenzhOIcpk5FA8DV_7o-cXtB5XhbOcNmnrzpoyE5wqedSXWjr-tsbuzk5vT7rCH6ggcuRZI5EnqQkkhFZJRA6c0RqhUcgRcsC4H0uTWy2TBFGSIVG3R2MTG0UhgFLWgVpnM-WwdBuMyxjop03ilHS4BE3BPmpQ0kqIrNVpvslUi2CW-2rjdOhFkbWyskHW4J4R7lmD-yYTE6uqqbbxS_u4HZzs26zJMCD8Ynk4Gcs_dbX176722Vz39voquzrvXW6zeXrSiNR22Mzodex2kdWMzJ6ftZ9gePU_ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lPYgHv0VFJQePpjSbbLt7LGIpgsWDxXpaJpu0VtftorsU_fVO9qNUobSe9pIhYTIkbzZv3hBy5QutZEtxJnwXmFRcMOUrYJiwmLbnQcvNJfPvB-3-UN6N3FGNXFe1ML_e73MeVpbYqgnM5BzHPum3bMF4o-0i8q6TxnDw0H22_eMQhTOE5rKqjlthuur22criBL7mEEVLt0tvl9xX6ypIJW_NLFXN8PuPZOOmC98jOyXMpN0iLvZJzcQHZHtJfPCQvD6ZKKIlVZ3O8Oh4L2sy6TSmc7D9qy2rHQdTy46fUIw1W_JIIZrMPqbpyztaZ0lkNLV_c_PJCj0KaiU_8k_OMf88IsPe7eNNn5WdF1iIgCxloeerFgdHC44JDxglpYtIEMFECAgQOlyFWnLPQ69zx2K8sdKedl0HQAhtQByTejyLzQmhvAP2dcczghvMVX3QYwmCaw6u1tIPT4modiQIS1ly2x0jCir-2WtQeDKwngwKT54StrBKClmONeM71WYHJbQoIEOA-7bGsrmIjY2mOvuvwTmppx-ZuUBwk6rLMqZ_AJ-g-VI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well+control+optimization+in+waterflooding+using+genetic+algorithm+coupled+with+Artificial+Neural+Networks&rft.jtitle=Upstream+Oil+and+Gas+Technology&rft.au=Alfarizi%2C+Muhammad+Gibran&rft.au=Stanko%2C+Milan&rft.au=Bikmukhametov%2C+Timur&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-2604&rft.eissn=2666-2604&rft.volume=9&rft_id=info:doi/10.1016%2Fj.upstre.2022.100071&rft.externalDocID=S2666260422000093 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-2604&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-2604&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-2604&client=summon |