Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting

Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gai...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 35; no. 12; pp. 4167 - 4187
Main Authors Rahimzad, Maryam, Moghaddam Nia, Alireza, Zolfonoon, Hosam, Soltani, Jaber, Danandeh Mehr, Ali, Kwon, Hyun-Han
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-021-02937-w

Cover

Abstract Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation ( R ), Nash-Sutcliff coefficient of efficiency ( E ), Nash-Sutcliff for High flow ( E H ), Nash-Sutcliff for Low flow ( E L ), normalized root mean square error ( NRMSE ), relative error in estimating maximum flow ( REmax ), threshold statistics ( TS ), and average absolute relative error ( AARE ) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of NRMSE and the highest values of E H , E L , and R under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications.
AbstractList Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation (R), Nash-Sutcliff coefficient of efficiency (E), Nash-Sutcliff for High flow (EH), Nash-Sutcliff for Low flow (EL), normalized root mean square error (NRMSE), relative error in estimating maximum flow (REmax), threshold statistics (TS), and average absolute relative error (AARE) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of NRMSE and the highest values ofEH,EL, and R under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications.
Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation ([Formula: see text]), Nash-Sutcliff coefficient of efficiency ([Formula: see text]), Nash-Sutcliff for High flow ([Formula: see text]), Nash-Sutcliff for Low flow ([Formula: see text]), normalized root mean square error ([Formula: see text]), relative error in estimating maximum flow ([Formula: see text]), threshold statistics ([Formula: see text]), and average absolute relative error ([Formula: see text]) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of [Formula: see text] and the highest values of[Formula: see text],[Formula: see text], and [Formula: see text] under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications.
Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation ( R ), Nash-Sutcliff coefficient of efficiency ( E ), Nash-Sutcliff for High flow ( E H ), Nash-Sutcliff for Low flow ( E L ), normalized root mean square error ( NRMSE ), relative error in estimating maximum flow ( REmax ), threshold statistics ( TS ), and average absolute relative error ( AARE ) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of NRMSE and the highest values of E H , E L , and R under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications.
Author Moghaddam Nia, Alireza
Soltani, Jaber
Rahimzad, Maryam
Zolfonoon, Hosam
Kwon, Hyun-Han
Danandeh Mehr, Ali
Author_xml – sequence: 1
  givenname: Maryam
  surname: Rahimzad
  fullname: Rahimzad, Maryam
  organization: Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan
– sequence: 2
  givenname: Alireza
  orcidid: 0000-0002-9058-442X
  surname: Moghaddam Nia
  fullname: Moghaddam Nia, Alireza
  email: a.moghaddamnia@ut.ac.ir
  organization: Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran
– sequence: 3
  givenname: Hosam
  surname: Zolfonoon
  fullname: Zolfonoon, Hosam
  organization: DEEC, INESC Coimbra, University of Coimbra
– sequence: 4
  givenname: Jaber
  surname: Soltani
  fullname: Soltani, Jaber
  organization: Department of Water Engineering, Aburaihan Campus, University of Tehran
– sequence: 5
  givenname: Ali
  surname: Danandeh Mehr
  fullname: Danandeh Mehr, Ali
  organization: Department of Civil Engineering, Antalya Bilim University
– sequence: 6
  givenname: Hyun-Han
  surname: Kwon
  fullname: Kwon, Hyun-Han
  organization: Department of Civil and Environmental Engineering, Sejong University
BookMark eNp9kctOAyEUhonRxHp5AVckbtyMcikzsDT1mrTRRF0TZA4VMwMVpm18AZ9btCYmLlwQWHwfcP5_D22HGAChI0pOKSHNWaaU1aoijJaleFOtt9CIioZXtBZkG42IYqQaN2O6i_ZyfiWkaIqM0Mc9JBdTb4IFPIn9wiSfY8DRYRPw9OFxVj2bDC2-AFjgKZgUfJjjWWyhwytIeZmLFlYQBh-D6fDM2Bcf4Bc97-Yx-eGlz7g8hB-GBKZ3XVzjq5jAmjwU6gDtONNlOPzZ99HT1eXj5Kaa3l3fTs6nleWCDZWtFWO8TChdLUkrhZAtl845wZRoJZeiFY4pEOK5EQKIU4Za5cZSinLiwPfRyebeRYpvS8iD7n220HUmQFxmzWpejxtRwizo8R_0NS5TGbFQQjLWNCXaQskNZVPMOYHT1g_mK4shGd9pSvRXQXpTkC4F6e-C9Lqo7I-6SL436f1_iW-kXOAwh_T7q3-sTwJ_pm0
CitedBy_id crossref_primary_10_1016_j_pce_2024_103653
crossref_primary_10_1016_j_scitotenv_2023_166806
crossref_primary_10_1016_j_wroa_2024_100297
crossref_primary_10_5194_hess_28_1191_2024
crossref_primary_10_2166_nh_2024_004
crossref_primary_10_3390_w15061179
crossref_primary_10_1007_s00521_022_07841_x
crossref_primary_10_1007_s11356_024_35482_1
crossref_primary_10_1016_j_jhydrol_2024_131704
crossref_primary_10_1007_s11356_022_21634_8
crossref_primary_10_1016_j_jhydrol_2022_128099
crossref_primary_10_1016_j_eswa_2024_124139
crossref_primary_10_1016_j_rineng_2024_102215
crossref_primary_10_1007_s40808_024_02088_y
crossref_primary_10_32604_cmes_2023_027954
crossref_primary_10_1080_02626667_2022_2149334
crossref_primary_10_1038_s41598_024_63989_7
crossref_primary_10_1007_s11269_023_03492_2
crossref_primary_10_1007_s11269_022_03264_4
crossref_primary_10_1016_j_eswa_2023_121719
crossref_primary_10_3390_w16142006
crossref_primary_10_1016_j_scitotenv_2022_160680
crossref_primary_10_1021_acsami_3c18889
crossref_primary_10_1007_s11269_024_03902_z
crossref_primary_10_1016_j_envsoft_2022_105474
crossref_primary_10_1007_s00477_022_02373_1
crossref_primary_10_3390_w14091462
crossref_primary_10_5194_hess_27_1047_2023
crossref_primary_10_1080_23311916_2022_2143051
crossref_primary_10_1007_s00477_023_02567_1
crossref_primary_10_2166_ws_2024_225
crossref_primary_10_1007_s11269_022_03148_7
crossref_primary_10_1029_2021EA002168
crossref_primary_10_2166_hydro_2024_066
crossref_primary_10_1016_j_ejrh_2023_101471
crossref_primary_10_1016_j_jhydrol_2024_132569
crossref_primary_10_1007_s11600_023_01023_6
crossref_primary_10_1016_j_jhydrol_2024_131996
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_2166_wcc_2023_419
crossref_primary_10_2166_wcc_2024_150
crossref_primary_10_3390_hydrology10020029
crossref_primary_10_1016_j_jhydrol_2024_132561
crossref_primary_10_1038_s41598_023_36439_z
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_1007_s12145_023_01041_4
crossref_primary_10_1016_j_jhydrol_2023_130141
crossref_primary_10_1016_j_asoc_2022_108941
crossref_primary_10_1016_j_jhydrol_2023_130380
crossref_primary_10_2166_wcc_2023_374
crossref_primary_10_1007_s00477_024_02788_y
crossref_primary_10_1007_s11600_024_01362_y
crossref_primary_10_1007_s12665_024_11919_1
crossref_primary_10_1016_j_jenvman_2024_122114
crossref_primary_10_1016_j_epsr_2024_110275
crossref_primary_10_3390_w16243699
crossref_primary_10_2166_hydro_2024_115
crossref_primary_10_1016_j_ecoinf_2023_102119
crossref_primary_10_1007_s40808_024_02211_z
crossref_primary_10_1016_j_pce_2024_103737
crossref_primary_10_1080_19475705_2024_2361807
crossref_primary_10_1016_j_jhydrol_2024_132175
crossref_primary_10_1016_j_heliyon_2024_e39567
crossref_primary_10_1016_j_jhydrol_2023_129307
crossref_primary_10_1016_j_sciaf_2023_e02053
crossref_primary_10_1016_j_catena_2022_106379
crossref_primary_10_3389_fenvs_2023_1261239
crossref_primary_10_3390_w15020262
crossref_primary_10_1088_1748_9326_ad6fb7
crossref_primary_10_1007_s12145_024_01390_8
crossref_primary_10_3390_w15223947
crossref_primary_10_3390_su151310543
crossref_primary_10_2166_hydro_2022_114
crossref_primary_10_3390_rs16183526
crossref_primary_10_3390_machines12060357
crossref_primary_10_1029_2023GL103979
crossref_primary_10_1016_j_jhydrol_2025_132701
crossref_primary_10_1007_s12145_023_01082_9
crossref_primary_10_3390_w15061019
crossref_primary_10_1155_2022_1860460
crossref_primary_10_1155_2021_5172658
crossref_primary_10_3390_w16152199
crossref_primary_10_1016_j_mlwa_2024_100551
crossref_primary_10_1016_j_watres_2023_120895
crossref_primary_10_2166_wpt_2024_147
crossref_primary_10_1109_JSTARS_2025_3528475
crossref_primary_10_1007_s40808_025_02296_0
crossref_primary_10_1007_s11269_023_03645_3
crossref_primary_10_3390_w14192972
crossref_primary_10_3390_rs15082076
crossref_primary_10_1016_j_ecoinf_2024_102904
crossref_primary_10_1080_02626667_2022_2063724
crossref_primary_10_56038_ejrnd_v4i1_422
crossref_primary_10_1007_s11269_023_03713_8
crossref_primary_10_1016_j_seppur_2023_125487
crossref_primary_10_3390_w14182898
crossref_primary_10_1039_D3NR04819E
crossref_primary_10_1016_j_firesaf_2023_103887
crossref_primary_10_1007_s00477_023_02607_w
crossref_primary_10_1080_02626667_2023_2173012
crossref_primary_10_1007_s11269_025_04113_w
crossref_primary_10_1016_j_ecoinf_2025_102994
crossref_primary_10_1016_j_ecolind_2023_110092
crossref_primary_10_1016_j_jhydrol_2023_129199
crossref_primary_10_1016_j_jhydrol_2023_129990
crossref_primary_10_1016_j_compbiomed_2023_107706
crossref_primary_10_3390_app131810152
crossref_primary_10_1007_s00477_022_02366_0
crossref_primary_10_1007_s13201_024_02260_w
crossref_primary_10_1016_j_rineng_2025_104079
crossref_primary_10_1038_s41598_023_39606_4
crossref_primary_10_3390_jpm14080812
crossref_primary_10_3390_w14223672
crossref_primary_10_1007_s11356_024_31963_5
crossref_primary_10_1007_s11269_024_03780_5
crossref_primary_10_1088_1755_1315_1409_1_012001
crossref_primary_10_1016_j_jaridenv_2024_105160
crossref_primary_10_2166_wpt_2023_144
crossref_primary_10_4491_KSEE_2024_46_10_537
crossref_primary_10_1002_sd_3074
crossref_primary_10_1016_j_ejrh_2024_101684
crossref_primary_10_1016_j_ejrh_2024_101720
crossref_primary_10_1007_s12517_023_11392_3
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_1109_ACCESS_2024_3427829
crossref_primary_10_1016_j_wsee_2024_09_004
crossref_primary_10_1111_1752_1688_13229
crossref_primary_10_1007_s11269_024_04037_x
crossref_primary_10_1038_s41598_025_93465_9
crossref_primary_10_3390_hydrology12030060
crossref_primary_10_1007_s11269_022_03339_2
crossref_primary_10_1080_02626667_2024_2426720
Cites_doi 10.1007/s11269-020-02659-5
10.3390/w10111543
10.3390/w10020192
10.1016/0022-1694(70)90255-6
10.1016/j.jhydrol.2020.124776
10.1007/BF00994018
10.3390/w11071387
10.1109/ACCESS.2020.2993874
10.1007/s11269-019-02408-3
10.18178/ijesd.2019.10.10.1190
10.1109/ICIT.2008.4608590
10.3390/w13040437
10.1016/j.jhydrol.2018.04.065
10.1016/j.jhydrol.2020.125376
10.1016/j.jhydrol.2020.124897
10.1029/2019WR025326
10.1016/j.jhydrol.2019.124296
10.3390/app10020571
10.1007/s11269-016-1408-5
10.3390/w10111536
10.1109/ACCESS.2021.3092074
10.1007/s11269-015-1123-7
10.3390/w12020440
10.3390/w12051500
10.1201/9781315272443
10.1007/s10489-012-0344-1
10.1016/j.mcm.2004.10.012
10.1007/s11269-011-9926-7
10.1007/978-3-030-14718-1_4
10.1109/ICITACEE.2018.8576900
10.1109/TGRS.2012.2196282
10.1080/19475705.2021.1887372
10.1016/j.jhydrol.2020.125188
10.1109/AICAI.2019.8701258
10.3390/rs13132501
10.1007/s11269-016-1289-7
10.1007/s00521-016-2293-9
10.1109/GSIS.2007.4443304
10.1016/j.jhydrol.2018.11.015
10.3389/frwa.2021.652100
10.1007/s11269-018-1998-1
10.5194/hess-22-6005-2018
10.2166/nh.2020.026
10.1162/neco.1997.9.8.1735
10.1007/s40808-020-00830-w
10.1002/hyp.7014
10.3133/tm4B5
10.1007/s12517-018-4079-0
10.1080/15715124.2019.1628035
10.1109/ACCESS.2019.2920916
10.1121/1.3553226
10.1016/j.scitotenv.2019.134413
10.1016/j.jhydrol.2020.125359
10.1038/s41598-020-67228-7
10.1007/s11269-017-1711-9
10.3390/w12113032
10.1177/875647939000600106
10.1038/s41598-021-87415-4
10.5194/hess-23-787-2019
10.1007/s11269-018-1951-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-021-02937-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 4187
ExternalDocumentID 10_1007_s11269_021_02937_w
GeographicLocations Kentucky River
Kentucky
GeographicLocations_xml – name: Kentucky
– name: Kentucky River
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-c692230298f680d8558d38fff5295d8385d5f29e55b755e0f9a1c9f48859a13e3
IEDL.DBID BENPR
ISSN 0920-4741
IngestDate Fri Sep 05 11:28:25 EDT 2025
Fri Jul 25 19:10:18 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Wed Oct 01 01:45:00 EDT 2025
Fri Feb 21 02:47:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Data-driven modeling
Deep learning
Machine learning algorithms
Streamflow forecasting
LSTM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-c692230298f680d8558d38fff5295d8385d5f29e55b755e0f9a1c9f48859a13e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9058-442X
PQID 2582277165
PQPubID 54174
PageCount 21
ParticipantIDs proquest_miscellaneous_2636475126
proquest_journals_2582277165
crossref_citationtrail_10_1007_s11269_021_02937_w
crossref_primary_10_1007_s11269_021_02937_w
springer_journals_10_1007_s11269_021_02937_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References YaseenZMMohtarWHMWAmeenAMSEbtehajIRazaliSFMBonakdariHSalihSQAl-AnsariNShahidSImplementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical regionIEEE Access20197744717448110.1109/ACCESS.2019.2920916
JayawardenaAEnvironmental and hydrological systems modelling2013CRC Press10.1201/9781315272443
LiuMHuangYLiZTongBLiuZSunMJiangFZhangHThe Applicability of LSTM-KNN Model for Real-Time Flood Forecasting in Different Climate Zones in ChinaWater20201244010.3390/w12020440
Tan Q, Wang X, Cai S, Lei X (2015) Daily runoff time-series prediction based on the adaptive neural fuzzy inference system. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) 506–512
ShafaeiMKisiÖPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Appl201728152810.1007/s00521-016-2293-9
PraveenBTalukdarSMahatoSMondalJSharmaPIslamARMTRahmanAAnalyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approachesSci Rep20201012110.1038/s41598-020-67228-7
Wang S, Cao J, Yu P (2020) Deep learning for spatio-temporal data mining: A survey. IEEE Trans Knowl Data Eng
Damavandi HG, Shah R, Stampoulis D, Wei Y, Boscovic D, Sabo J (2019) Accurate Prediction of Streamflow Using Long Short-Term Memory Network: A Case Study in the Brazos River Basin in Texas. Int J Environ 10:294–300
AlDahoulNEssamYKumarPAhmedANSherifMSefelnasrAElshafieASuspended sediment load prediction using long short-term memory neural networkSci Rep20211112210.1038/s41598-021-87415-4
Widiasari IR, Nugoho LE, Efendi R (2018) Context-based hydrology time series data for a flood prediction model using LSTM. In Proceedings of the 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 385–390
AzadAFarzinSKashiHSanikhaniHKaramiHKisiOPrediction of river flow using hybrid neuro-fuzzy modelsArab J Geosci20181111410.1007/s12517-018-4079-0
Moghaddas-Tafreshi S, Farhadi M (2008) A linear regression-based study for temperature sensitivity analysis of Iran electrical load. In Proceedings of the 2008 IEEE International Conference on Industrial Technology 1–7
Te Chow V (2010) Applied hydrology. Tata McGraw-Hill Education
RahimzadMHomayouniSAlizadeh NaeiniANadiSAn Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)Remote Sens202113250110.3390/rs13132501
Daniell T (1991) Neural networks. Applications in hydrology and water resources engineering. In Proceedings of the National Conference Publication- Institute of Engineers. Australia
HuCWuQLiHJianSLiNLouZDeep learning with a long short-term memory networks approach for rainfall-runoff simulationWater201810154310.3390/w10111543
LiuDJiangWMuLWangSStreamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze RiverIEEE Access20208900699008610.1109/ACCESS.2020.2993874
England Jr JF, Cohn TA, Faber BA, Stedinger JR, Thomas Jr WO, Veilleux AG, Kiang JE, Mason Jr RR (2019) Guidelines for determining flood flow frequency-Bulletin 17C. In: US Geological Survey
BalogunA-LAdebisiNSea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracyGeomatics Nat Hazards Risk20211265367410.1080/19475705.2021.1887372
Aoulmi Y, Marouf N, Amireche M, Kisi O, Shubair R, Keshtegar B (2021) Highly Accurate Prediction Model for Daily Runoff in Semi-Arid Basin Exploiting Metaheuristic Learning Algorithms. IEEE Access
Karmiani D, Kazi R, Nambisan A, Shah A, Kamble V (2019) Comparison of predictive algorithms: backpropagation, SVM, LSTM and Kalman Filter for stock market. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), 228–234
Ni L, Wang D, Singh VP, Wu J, Wang Y, Tao Y, Zhang J (2020) Streamflow and rainfall forecasting by two long short-term memory-based models. J Hydrol 583:124296
RoyBSinghMPSinghAA novel approach for rainfall-runoff modelling using a biogeography-based optimization techniqueInt J River Basin Manag202119678010.1080/15715124.2019.1628035
Ren K, Fang W, Qu J, Zhang X, Shi X (2020) Comparison of eight filter-based feature selection methods for monthly streamflow forecasting–three case studies on CAMELS data sets. J Hydrol 586:124897
GençODağAA machine learning-based approach to predict the velocity profiles in small streamsWater Resour Manag201630436110.1007/s11269-015-1123-7
StählerSCSens-SchönfelderCNiederleithingerEMonitoring stress changes in a concrete bridge with coda wave interferometryJ Acoust Soc20111291945195210.1121/1.3553226
GaoHBirkelCHrachowitzMTetzlaffDSoulsbyCSavenijeHHA simple topography-driven and calibration-free runoff generation moduleHydrol Earth Syst Sci20192378780910.5194/hess-23-787-2019
Cheng M, Fang F, Kinouchi T, Navon I, Pain C (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376
Chen X, Huang J, Han Z, Gao H, Liu M, Li Z, Liu X, Li Q, Qi H, Huang Y (2020) The importance of short lag-time in the runoff forecasting model based on long short-term memory. J Hydrol 589:125359
KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall–runoff modelling using long short-term memory (LSTM) networksHydrol Earth Syst Sci2018226005602210.5194/hess-22-6005-2018
XuWJiangYZhangXLiYZhangRFuGUsing long short-term memory networks for river flow predictionNord Hydrol2020511358137610.2166/nh.2020.026
Wang W, Van Gelder P, Vrijling J (2005) Trend and stationarity analysis for streamflow processes of rivers in western Europe in the 20th century. In Proceedings of the IWA International Conference on water economics, statistics, and finance, Rethymno, Greece 8–10
Zuo G, Luo J, Wang N, Lian Y, He X (2020) Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting. J Hydrol 124776
LeX-HHoHVLeeGJungSApplication of long short-term memory (LSTM) neural network for flood forecastingWater201911138710.3390/w11071387
Gao S, Huang Y, Zhang S, Han J, Wang G, Zhang M, Lin Q (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589:125188
HadiSJTombulMForecasting daily streamflow for basins with different physical characteristics through data-driven methodsWater Resour Manag2018323405342210.1007/s11269-018-1998-1
RiadSManiaJBouchaouLNajjarYRainfall-runoff model usingan artificial neural network approachMath Comput Model20044083984610.1016/j.mcm.2004.10.012
Srushti G, Bhandary VS, Mendonca AE (2020) Comparison of Support Vector Machine and Long Short-Term Memory for Stock Market Analysis. Int Res J Eng Technol
TaylorRInterpretation of the correlation coefficient: a basic reviewJ Diagn Med Sonogr19906353910.1177/875647939000600106
ApaydinHFeiziHSattariMTColakMSShamshirbandSChauK-WComparative analysis of recurrent neural network architectures for reservoir inflow forecastingWater202012150010.3390/w12051500
EswaranCLogeswaranRAn enhanced hybrid method for time series prediction using linear and neural network modelsAppl Intell20123751151910.1007/s10489-012-0344-1
Halff A H, Halff H M, Azmoodeh M (1993) Predicting runoff from rainfall using neural networks. In Proceedings of the Engineering hydrology 760–765
Adnan R M, Yuan X, Kisi O, Yuan Y (2017) Streamflow forecasting using artificial neural network and support vector machine models. Am Sci Res J Eng Technol Sci (ASRJETS) 29:286–294
KisiÖzgurMoghaddam NiaAlirezaGhafari GoshehMohsenJamalizadeh TajabadiMohammad RezaAhmadiAzadehIntermittent Streamflow Forecasting by Using Several Data Driven TechniquesWater Resources Management201226245747410.1007/s11269-011-9926-7
YaseenZMKisiODemirVEnhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligenceWater Resour Manag2016304125415110.1007/s11269-016-1408-5
Hrnjica B, Danandeh Mehr A (2020) Energy demand forecasting using deep learning. Smart Cities Performability, Cognition, & Security (pp. 71–104): Springer
Boulmaiz T, Guermoui M, Boutaghane H (2020) Impact of training data size on the LSTM performances for rainfall–runoff modeling
SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water2021352
CortesCVapnikVSupport-vector networksMach Learn199520273297
Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag2017313843386510.1007/s11269-017-1711-9
MosaviAOzturkPChauK-wFlood prediction using machine learning models: Literature reviewWater201810153610.3390/w10111536
Jimeno-SáezPSenent-AparicioJPérez-SánchezJPulido-VelazquezDA comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular SpainWater20181019210.3390/w10020192
ParisoujPMohebzadehHLeeTEmploying machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United StatesWater Resour Manag2020344113413110.1007/s11269-020-02659-5
ZhangJZhuYZhangXYeMYangJDeveloping a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areasJ Hydrol201856191892910.1016/j.jhydrol.2018.04.065
Hu Y, Yan L, Hang T, Feng J (2020) Stream-Flow Forecasting of Small Rivers Based on LSTM. arXiv
Li J (2021) Exploration of Deep Learning Models on Streamflow Simulations. In: University of Californa, Irvine
KişiÖStream flow forecasting using neuro-wavelet techniqueHydrol Process2008224142415210.1002/hyp.7014
LafdaniEKMoghaddam NiaAPahlavanraviAAhmadiAJajarmizadehMResearch article daily rainfall-runoff prediction and simulation using ANN, ANFIS and conceptual hydrological MIKE11/NAM models
S Hochreiter (2937_CR26) 1997; 9
QB Pham (2937_CR49) 2019; 33
C Cortes (2937_CR13) 1995; 20
L Dong (2937_CR16) 2020; 12
H Gao (2937_CR19) 2019; 23
2937_CR44
ZM Yaseen (2937_CR70) 2019; 7
O Genç (2937_CR22) 2016; 30
2937_CR47
A Jayawardena (2937_CR30) 2013
C Hu (2937_CR28) 2018; 10
P Parisouj (2937_CR48) 2020; 34
M Rezaie-Balf (2937_CR53) 2017; 31
B Praveen (2937_CR50) 2020; 10
S Riad (2937_CR54) 2004; 40
N AlDahoul (2937_CR2) 2021; 11
X-H Le (2937_CR38) 2019; 11
2937_CR3
2937_CR8
M Liu (2937_CR41) 2020; 12
2937_CR61
2937_CR9
2937_CR11
2937_CR10
2937_CR52
2937_CR15
2937_CR59
2937_CR14
2937_CR1
2937_CR12
F Kratzert (2937_CR35) 2018; 22
H Han (2937_CR25) 2021; 13
B Roy (2937_CR55) 2021; 19
2937_CR17
A Danandeh Mehr (2937_CR42) 2018; 32
H Apaydin (2937_CR4) 2020; 12
E Meng (2937_CR43) 2019; 568
Özgur Kisi (2937_CR34) 2012; 26
AS Gebregiorgis (2937_CR21) 2012; 51
2937_CR72
D Liu (2937_CR40) 2020; 8
2937_CR66
2937_CR65
2937_CR20
JE Nash (2937_CR46) 1970; 10
2937_CR64
2937_CR63
Ö Kişi (2937_CR33) 2008; 22
2937_CR24
2937_CR67
2937_CR29
A Mosavi (2937_CR45) 2018; 10
2937_CR27
SJ Hadi (2937_CR23) 2018; 32
A Sahraei (2937_CR56) 2021; 3
C Eswaran (2937_CR18) 2012; 37
P Jimeno-Sáez (2937_CR31) 2018; 10
NF Attar (2937_CR5) 2020; 10
M Rahimzad (2937_CR51) 2021; 13
R Taylor (2937_CR62) 1990; 6
A-L Balogun (2937_CR7) 2021; 12
M Shafaei (2937_CR57) 2017; 28
EK Lafdani (2937_CR37) 2013; 1
J Zhang (2937_CR71) 2018; 561
2937_CR32
W Xu (2937_CR68) 2020; 51
2937_CR36
SK Singh (2937_CR58) 2016; 30
SC Stähler (2937_CR60) 2011; 129
ZM Yaseen (2937_CR69) 2016; 30
2937_CR39
A Azad (2937_CR6) 2018; 11
References_xml – reference: SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water2021352
– reference: Gao S, Huang Y, Zhang S, Han J, Wang G, Zhang M, Lin Q (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589:125188
– reference: Damavandi HG, Shah R, Stampoulis D, Wei Y, Boscovic D, Sabo J (2019) Accurate Prediction of Streamflow Using Long Short-Term Memory Network: A Case Study in the Brazos River Basin in Texas. Int J Environ 10:294–300
– reference: LeX-HHoHVLeeGJungSApplication of long short-term memory (LSTM) neural network for flood forecastingWater201911138710.3390/w11071387
– reference: Zuo G, Luo J, Wang N, Lian Y, He X (2020) Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting. J Hydrol 124776
– reference: RoyBSinghMPSinghAA novel approach for rainfall-runoff modelling using a biogeography-based optimization techniqueInt J River Basin Manag202119678010.1080/15715124.2019.1628035
– reference: Tan Q, Wang X, Cai S, Lei X (2015) Daily runoff time-series prediction based on the adaptive neural fuzzy inference system. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) 506–512
– reference: DongLFangDWangXWeiWDamaševičiusRSchererRWoźniakMPrediction of Streamflow Based on Dynamic Sliding Window LSTMWater202012303210.3390/w12113032
– reference: GaoHBirkelCHrachowitzMTetzlaffDSoulsbyCSavenijeHHA simple topography-driven and calibration-free runoff generation moduleHydrol Earth Syst Sci20192378780910.5194/hess-23-787-2019
– reference: Ni L, Wang D, Singh VP, Wu J, Wang Y, Tao Y, Zhang J (2020) Streamflow and rainfall forecasting by two long short-term memory-based models. J Hydrol 583:124296
– reference: Daniell T (1991) Neural networks. Applications in hydrology and water resources engineering. In Proceedings of the National Conference Publication- Institute of Engineers. Australia
– reference: England Jr JF, Cohn TA, Faber BA, Stedinger JR, Thomas Jr WO, Veilleux AG, Kiang JE, Mason Jr RR (2019) Guidelines for determining flood flow frequency-Bulletin 17C. In: US Geological Survey
– reference: LiuDJiangWMuLWangSStreamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze RiverIEEE Access20208900699008610.1109/ACCESS.2020.2993874
– reference: ShafaeiMKisiÖPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Appl201728152810.1007/s00521-016-2293-9
– reference: RiadSManiaJBouchaouLNajjarYRainfall-runoff model usingan artificial neural network approachMath Comput Model20044083984610.1016/j.mcm.2004.10.012
– reference: Srushti G, Bhandary VS, Mendonca AE (2020) Comparison of Support Vector Machine and Long Short-Term Memory for Stock Market Analysis. Int Res J Eng Technol
– reference: Bing-jun L, Chun-hua H (2007) The combined forecasting method of GM (1, 1) with linear regression and its application. In Proceedings of the 2007 IEEE International Conference on Grey Systems and Intelligent Services 394–398
– reference: PhamQBAbbaSIUsmanAGLinhNTTGuptaVMalikACostacheRVoNDTriDQPotential of hybrid data-intelligence algorithms for multi-station modelling of rainfallWater Resour Manag2019335067508710.1007/s11269-019-02408-3
– reference: Cheng M, Fang F, Kinouchi T, Navon I, Pain C (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376
– reference: AttarNFPhamQBNowbandeganiSFRezaie-BalfMFaiCMAhmedANPipelzadehSDungTDNhiPTTKhoiDNEnhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake basin based upon the autoregressive conditionally heteroskedastic time-series modelAppl Sci20201057110.3390/app10020571
– reference: PraveenBTalukdarSMahatoSMondalJSharmaPIslamARMTRahmanAAnalyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approachesSci Rep20201012110.1038/s41598-020-67228-7
– reference: HuCWuQLiHJianSLiNLouZDeep learning with a long short-term memory networks approach for rainfall-runoff simulationWater201810154310.3390/w10111543
– reference: SinghSKLong-term streamflow forecasting based on ensemble streamflow prediction technique: a case study in New ZealandWater Resour Manag2016302295230910.1007/s11269-016-1289-7
– reference: Lafdani EK, Moghaddam Nia A, Ahmadi A, Jajarmizadeh M, Gosheh MG (2013a) Stream Flow Simulation using SVM, ANFIS and NAM Models (A Case Study).Caspian Journal of Applied Sciences Reaserch 2(4): 86-93 (In Persian)
– reference: Li J (2021) Exploration of Deep Learning Models on Streamflow Simulations. In: University of Californa, Irvine
– reference: GençODağAA machine learning-based approach to predict the velocity profiles in small streamsWater Resour Manag201630436110.1007/s11269-015-1123-7
– reference: Danandeh MehrANouraniVSeason algorithm-multigene genetic programming: a new approach for rainfall-runoff modellingWater Resour Manag2018322665267910.1007/s11269-018-1951-3
– reference: KisiÖzgurMoghaddam NiaAlirezaGhafari GoshehMohsenJamalizadeh TajabadiMohammad RezaAhmadiAzadehIntermittent Streamflow Forecasting by Using Several Data Driven TechniquesWater Resources Management201226245747410.1007/s11269-011-9926-7
– reference: Xiang Z, Yan J, Demir I (2020) A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water Resour Res 56:e2019WR025326
– reference: ZhangJZhuYZhangXYeMYangJDeveloping a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areasJ Hydrol201856191892910.1016/j.jhydrol.2018.04.065
– reference: Halff A H, Halff H M, Azmoodeh M (1993) Predicting runoff from rainfall using neural networks. In Proceedings of the Engineering hydrology 760–765
– reference: ParisoujPMohebzadehHLeeTEmploying machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United StatesWater Resour Manag2020344113413110.1007/s11269-020-02659-5
– reference: YaseenZMMohtarWHMWAmeenAMSEbtehajIRazaliSFMBonakdariHSalihSQAl-AnsariNShahidSImplementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical regionIEEE Access20197744717448110.1109/ACCESS.2019.2920916
– reference: StählerSCSens-SchönfelderCNiederleithingerEMonitoring stress changes in a concrete bridge with coda wave interferometryJ Acoust Soc20111291945195210.1121/1.3553226
– reference: Widiasari IR, Nugoho LE, Efendi R (2018) Context-based hydrology time series data for a flood prediction model using LSTM. In Proceedings of the 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 385–390
– reference: Moghaddas-Tafreshi S, Farhadi M (2008) A linear regression-based study for temperature sensitivity analysis of Iran electrical load. In Proceedings of the 2008 IEEE International Conference on Industrial Technology 1–7
– reference: YaseenZMKisiODemirVEnhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligenceWater Resour Manag2016304125415110.1007/s11269-016-1408-5
– reference: Karmiani D, Kazi R, Nambisan A, Shah A, Kamble V (2019) Comparison of predictive algorithms: backpropagation, SVM, LSTM and Kalman Filter for stock market. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), 228–234
– reference: LiuMHuangYLiZTongBLiuZSunMJiangFZhangHThe Applicability of LSTM-KNN Model for Real-Time Flood Forecasting in Different Climate Zones in ChinaWater20201244010.3390/w12020440
– reference: Te Chow V (2010) Applied hydrology. Tata McGraw-Hill Education
– reference: RahimzadMHomayouniSAlizadeh NaeiniANadiSAn Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)Remote Sens202113250110.3390/rs13132501
– reference: TaylorRInterpretation of the correlation coefficient: a basic reviewJ Diagn Med Sonogr19906353910.1177/875647939000600106
– reference: Aoulmi Y, Marouf N, Amireche M, Kisi O, Shubair R, Keshtegar B (2021) Highly Accurate Prediction Model for Daily Runoff in Semi-Arid Basin Exploiting Metaheuristic Learning Algorithms. IEEE Access
– reference: LafdaniEKMoghaddam NiaAPahlavanraviAAhmadiAJajarmizadehMResearch article daily rainfall-runoff prediction and simulation using ANN, ANFIS and conceptual hydrological MIKE11/NAM modelsInt J Eng Technol201313250
– reference: GebregiorgisASHossainFUnderstanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulationIEEE Trans Geosci Remote Sens20125170471810.1109/TGRS.2012.2196282
– reference: AlDahoulNEssamYKumarPAhmedANSherifMSefelnasrAElshafieASuspended sediment load prediction using long short-term memory neural networkSci Rep20211112210.1038/s41598-021-87415-4
– reference: HadiSJTombulMForecasting daily streamflow for basins with different physical characteristics through data-driven methodsWater Resour Manag2018323405342210.1007/s11269-018-1998-1
– reference: KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall–runoff modelling using long short-term memory (LSTM) networksHydrol Earth Syst Sci2018226005602210.5194/hess-22-6005-2018
– reference: MengEHuangSHuangQFangWWuLWangLA robust method for non-stationary streamflow prediction based on improved EMD-SVM modelJ Hydrol201956846247810.1016/j.jhydrol.2018.11.015
– reference: Wang W, Van Gelder P, Vrijling J (2005) Trend and stationarity analysis for streamflow processes of rivers in western Europe in the 20th century. In Proceedings of the IWA International Conference on water economics, statistics, and finance, Rethymno, Greece 8–10
– reference: CortesCVapnikVSupport-vector networksMach Learn199520273297
– reference: NashJESutcliffeJVRiver flow forecasting through conceptual models part I—A discussion of principlesJ Hydrol19701028229010.1016/0022-1694(70)90255-6
– reference: JayawardenaAEnvironmental and hydrological systems modelling2013CRC Press10.1201/9781315272443
– reference: Hrnjica B, Danandeh Mehr A (2020) Energy demand forecasting using deep learning. Smart Cities Performability, Cognition, & Security (pp. 71–104): Springer
– reference: XuWJiangYZhangXLiYZhangRFuGUsing long short-term memory networks for river flow predictionNord Hydrol2020511358137610.2166/nh.2020.026
– reference: AzadAFarzinSKashiHSanikhaniHKaramiHKisiOPrediction of river flow using hybrid neuro-fuzzy modelsArab J Geosci20181111410.1007/s12517-018-4079-0
– reference: KişiÖStream flow forecasting using neuro-wavelet techniqueHydrol Process2008224142415210.1002/hyp.7014
– reference: Jimeno-SáezPSenent-AparicioJPérez-SánchezJPulido-VelazquezDA comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular SpainWater20181019210.3390/w10020192
– reference: Boulmaiz T, Guermoui M, Boutaghane H (2020) Impact of training data size on the LSTM performances for rainfall–runoff modeling
– reference: HanHChoiCJungJKimHSDeep Learning with Long Short Term Memory Based Sequence-to-Sequence Model for Rainfall-Runoff SimulationWater20211343710.3390/w13040437
– reference: Hu Y, Yan L, Hang T, Feng J (2020) Stream-Flow Forecasting of Small Rivers Based on LSTM. arXiv
– reference: Bui DT, Hoang ND, Martínez-Álvarez F, Ngo PTT, Hoa PV, Pham TD, Samui P, Costache R (2020) A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci Total Environ 701:134413
– reference: MosaviAOzturkPChauK-wFlood prediction using machine learning models: Literature reviewWater201810153610.3390/w10111536
– reference: Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag2017313843386510.1007/s11269-017-1711-9
– reference: Adnan R M, Yuan X, Kisi O, Yuan Y (2017) Streamflow forecasting using artificial neural network and support vector machine models. Am Sci Res J Eng Technol Sci (ASRJETS) 29:286–294
– reference: ApaydinHFeiziHSattariMTColakMSShamshirbandSChauK-WComparative analysis of recurrent neural network architectures for reservoir inflow forecastingWater202012150010.3390/w12051500
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput199791735178010.1162/neco.1997.9.8.1735
– reference: Ren K, Fang W, Qu J, Zhang X, Shi X (2020) Comparison of eight filter-based feature selection methods for monthly streamflow forecasting–three case studies on CAMELS data sets. J Hydrol 586:124897
– reference: Wang S, Cao J, Yu P (2020) Deep learning for spatio-temporal data mining: A survey. IEEE Trans Knowl Data Eng
– reference: EswaranCLogeswaranRAn enhanced hybrid method for time series prediction using linear and neural network modelsAppl Intell20123751151910.1007/s10489-012-0344-1
– reference: BalogunA-LAdebisiNSea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracyGeomatics Nat Hazards Risk20211265367410.1080/19475705.2021.1887372
– reference: Chen X, Huang J, Han Z, Gao H, Liu M, Li Z, Liu X, Li Q, Qi H, Huang Y (2020) The importance of short lag-time in the runoff forecasting model based on long short-term memory. J Hydrol 589:125359
– volume: 34
  start-page: 4113
  year: 2020
  ident: 2937_CR48
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-020-02659-5
– volume: 10
  start-page: 1543
  year: 2018
  ident: 2937_CR28
  publication-title: Water
  doi: 10.3390/w10111543
– volume: 10
  start-page: 192
  year: 2018
  ident: 2937_CR31
  publication-title: Water
  doi: 10.3390/w10020192
– volume: 10
  start-page: 282
  year: 1970
  ident: 2937_CR46
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(70)90255-6
– ident: 2937_CR72
  doi: 10.1016/j.jhydrol.2020.124776
– volume: 20
  start-page: 273
  year: 1995
  ident: 2937_CR13
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 11
  start-page: 1387
  year: 2019
  ident: 2937_CR38
  publication-title: Water
  doi: 10.3390/w11071387
– volume: 8
  start-page: 90069
  year: 2020
  ident: 2937_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993874
– volume: 33
  start-page: 5067
  year: 2019
  ident: 2937_CR49
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02408-3
– ident: 2937_CR14
  doi: 10.18178/ijesd.2019.10.10.1190
– ident: 2937_CR44
  doi: 10.1109/ICIT.2008.4608590
– volume: 13
  start-page: 437
  year: 2021
  ident: 2937_CR25
  publication-title: Water
  doi: 10.3390/w13040437
– volume: 561
  start-page: 918
  year: 2018
  ident: 2937_CR71
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.04.065
– ident: 2937_CR12
  doi: 10.1016/j.jhydrol.2020.125376
– ident: 2937_CR52
  doi: 10.1016/j.jhydrol.2020.124897
– ident: 2937_CR67
  doi: 10.1029/2019WR025326
– ident: 2937_CR47
  doi: 10.1016/j.jhydrol.2019.124296
– volume: 1
  start-page: 32
  year: 2013
  ident: 2937_CR37
  publication-title: Int J Eng Technol
– volume: 10
  start-page: 571
  year: 2020
  ident: 2937_CR5
  publication-title: Appl Sci
  doi: 10.3390/app10020571
– volume: 30
  start-page: 4125
  year: 2016
  ident: 2937_CR69
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1408-5
– ident: 2937_CR24
– volume: 10
  start-page: 1536
  year: 2018
  ident: 2937_CR45
  publication-title: Water
  doi: 10.3390/w10111536
– ident: 2937_CR3
  doi: 10.1109/ACCESS.2021.3092074
– volume: 30
  start-page: 43
  year: 2016
  ident: 2937_CR22
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1123-7
– volume: 12
  start-page: 440
  year: 2020
  ident: 2937_CR41
  publication-title: Water
  doi: 10.3390/w12020440
– volume: 12
  start-page: 1500
  year: 2020
  ident: 2937_CR4
  publication-title: Water
  doi: 10.3390/w12051500
– ident: 2937_CR1
– volume-title: Environmental and hydrological systems modelling
  year: 2013
  ident: 2937_CR30
  doi: 10.1201/9781315272443
– volume: 37
  start-page: 511
  year: 2012
  ident: 2937_CR18
  publication-title: Appl Intell
  doi: 10.1007/s10489-012-0344-1
– volume: 40
  start-page: 839
  year: 2004
  ident: 2937_CR54
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2004.10.012
– ident: 2937_CR61
– volume: 26
  start-page: 457
  issue: 2
  year: 2012
  ident: 2937_CR34
  publication-title: Water Resources Management
  doi: 10.1007/s11269-011-9926-7
– ident: 2937_CR27
  doi: 10.1007/978-3-030-14718-1_4
– ident: 2937_CR66
  doi: 10.1109/ICITACEE.2018.8576900
– volume: 51
  start-page: 704
  year: 2012
  ident: 2937_CR21
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2196282
– volume: 12
  start-page: 653
  year: 2021
  ident: 2937_CR7
  publication-title: Geomatics Nat Hazards Risk
  doi: 10.1080/19475705.2021.1887372
– ident: 2937_CR20
  doi: 10.1016/j.jhydrol.2020.125188
– ident: 2937_CR32
  doi: 10.1109/AICAI.2019.8701258
– ident: 2937_CR65
– volume: 13
  start-page: 2501
  year: 2021
  ident: 2937_CR51
  publication-title: Remote Sens
  doi: 10.3390/rs13132501
– volume: 30
  start-page: 2295
  year: 2016
  ident: 2937_CR58
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1289-7
– volume: 28
  start-page: 15
  year: 2017
  ident: 2937_CR57
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2293-9
– ident: 2937_CR8
  doi: 10.1109/GSIS.2007.4443304
– ident: 2937_CR39
– volume: 568
  start-page: 462
  year: 2019
  ident: 2937_CR43
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.015
– volume: 3
  start-page: 52
  year: 2021
  ident: 2937_CR56
  publication-title: Front Water
  doi: 10.3389/frwa.2021.652100
– ident: 2937_CR36
– ident: 2937_CR59
– volume: 32
  start-page: 3405
  year: 2018
  ident: 2937_CR23
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1998-1
– volume: 22
  start-page: 6005
  year: 2018
  ident: 2937_CR35
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-22-6005-2018
– volume: 51
  start-page: 1358
  year: 2020
  ident: 2937_CR68
  publication-title: Nord Hydrol
  doi: 10.2166/nh.2020.026
– volume: 9
  start-page: 1735
  year: 1997
  ident: 2937_CR26
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 2937_CR9
  doi: 10.1007/s40808-020-00830-w
– volume: 22
  start-page: 4142
  year: 2008
  ident: 2937_CR33
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7014
– ident: 2937_CR17
  doi: 10.3133/tm4B5
– ident: 2937_CR64
– volume: 11
  start-page: 1
  year: 2018
  ident: 2937_CR6
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-018-4079-0
– volume: 19
  start-page: 67
  year: 2021
  ident: 2937_CR55
  publication-title: Int J River Basin Manag
  doi: 10.1080/15715124.2019.1628035
– volume: 7
  start-page: 74471
  year: 2019
  ident: 2937_CR70
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920916
– volume: 129
  start-page: 1945
  year: 2011
  ident: 2937_CR60
  publication-title: J Acoust Soc
  doi: 10.1121/1.3553226
– ident: 2937_CR15
– ident: 2937_CR10
  doi: 10.1016/j.scitotenv.2019.134413
– ident: 2937_CR11
  doi: 10.1016/j.jhydrol.2020.125359
– volume: 10
  start-page: 1
  year: 2020
  ident: 2937_CR50
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-67228-7
– volume: 31
  start-page: 3843
  year: 2017
  ident: 2937_CR53
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1711-9
– ident: 2937_CR63
– volume: 12
  start-page: 3032
  year: 2020
  ident: 2937_CR16
  publication-title: Water
  doi: 10.3390/w12113032
– volume: 6
  start-page: 35
  year: 1990
  ident: 2937_CR62
  publication-title: J Diagn Med Sonogr
  doi: 10.1177/875647939000600106
– volume: 11
  start-page: 1
  year: 2021
  ident: 2937_CR2
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-87415-4
– ident: 2937_CR29
– volume: 23
  start-page: 787
  year: 2019
  ident: 2937_CR19
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-23-787-2019
– volume: 32
  start-page: 2665
  year: 2018
  ident: 2937_CR42
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1951-3
SSID ssj0010090
Score 2.6478171
Snippet Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4167
SubjectTerms Algorithms
Atmospheric Sciences
Civil Engineering
Deep learning
Earth and Environmental Science
Earth Sciences
Environment
Errors
Flood forecasting
Flood management
Forecasting
Geotechnical Engineering & Applied Earth Sciences
High flow
Hydrogeology
Hydrology
Hydrology/Water Resources
Kentucky
Kentucky River
Learning algorithms
Long short-term memory
Low flow
Machine learning
Mathematical models
Maximum flow
Mitigation
Multilayer perceptrons
neural networks
regression analysis
Resource allocation
River basins
Statistical analysis
Statistical methods
Stream discharge
Stream flow
Streamflow forecasting
Support vector machines
time series analysis
water
Water resources
watersheds
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46X_RBvGJ1SgTfNNBb0uZxTMcQJ4Ib7K2kaaLC1o51Y__A3-1J14uKCr4Vmgv0nOR86fnyHYSueMJ9IWxFeCAZ8WFvJHHM4KiiGTiUayeqKMkyeGT9kX8_puPyUlhesd2rlGSxUzeX3RyXcWIoBTbEqICsNtEWNXJe4MUjt1PnDgA1FH9WOByMfAiY5VWZn8f4Go4ajPktLVpEm94e2i1hIu6s7bqPNlR6gHY-iQceovenhvOPu3U5QZxpLFL88DwcEBOiEnyr1AyXOqov2BQ_m2BDxljm0K3hnONBwatUTdPO5CWbvy1epzmGibBJYIupnmQrbAp6SpEbyvQRGvXuht0-KasqEAlga0Ek4wAJjPK6ZqGdhJSGiRdqrU3KLwm9kCZUu1xRGgeUKltz4UiuYaFTePKUd4xaaZaqE4Qd15bcMyJfrvBVKGIvjKXvSwXx0E4c20JO9XEjWUqOm8oXk6gRSzYGicAgUWGQaGWh67rPbC248WfrdmWzqFx8eeRSQD0BHASphS7r17BsTC5EpCpbQhtmhPMB7TAL3VS2bob4fcbT_zU_Q9tu4W6GldZGrcV8qc4Bxizii8JrPwC09-jy
  priority: 102
  providerName: Springer Nature
Title Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting
URI https://link.springer.com/article/10.1007/s11269-021-02937-w
https://www.proquest.com/docview/2582277165
https://www.proquest.com/docview/2636475126
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7Qs8IMaHKIzKSLyBReLEafwwTWVrNwGtJlil8RQ5_tgeuqSsrfof8HfvLk0aQGJvUWLHku_sO_vufj-A98qqWOvAcTUwCY9xb-R5nuBRxSeoUCKwrqJkmUyT81n85Upe7cG0qYWhtMpmT6w2alsauiP_JCSasgF69_J48YsTaxRFVxsKDV1TK9ijCmJsH7qCkLE60P08ml5838UV0KOobl0UHppiNKZ1Gc22mC4UieKUshCgDRzwzd-mqvU__wmZVpZo_BSe1C4kG25lfgB7rngGj_8AFnwOvy_aegB2sqMaZKVnumDfflxOOJkvy06dW7AaY_WaETHanFGixnqJ3dp8dDapci5d23Q4v8bZWd3cLhkOxCi4rW_9vNwwIvs0eknp1C9gNh5dnpzzmnGBG3TEVtwkCt0FQmX3SRrYVMrURqn3nsKBNo1SaaUXykmZD6R0gVc6NMrjJiDxKXLRS-gUZeFeAQtFYFREAGBCxy7VeZTmJo6NQ8EENgx6EDaTm5kajpxYMeZZC6RMAslQIFklkGzTgw-7PostGMeDrQ8bmWX1wlxmrRr14N3uMy4pipPowpVrbJMQqD56QkkPPjaybn_x_xFfPzziG3gkKvWiDLVD6Kzu1u4tujSrvA_76fisD93h2c-vo36ttfh2Job34jH1bQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEE-RUmCR4AQr7LXX8R4qVPpQSpOoglTqzaz3UQ6pneJEEX-An8VvY8axY0Cit94seR_SzuzO7M7M9wG8VlbFWgeOq75JeIxnI8_zBK8qPkGFEoF1NSXLaJwMzuJP5_J8A361tTCUVtmeifVBbUtDb-TvhURT1kfvXn6YXXFijaLoakuhoRtqBbtbQ4w1hR0n7scSr3DV7vEByvuNEEeHk_0Bb1gGuEHnY85NotBEEhK5T9LAplKmNkq99xQCs2mUSiu9UE7KvC-lC7zSoVEeFV_iV-QiHPcWbMVRrPDyt_XxcHz6eR3HQA-mfuVReEmL0Xg3ZTur4r1QJIpTigROHvX58m_T2Pm7_4Roa8t3dB_uNS4r21vp2APYcMVDuPsHkOEj-Hna1R-w_TW1ISs90wUbfpmMOJlLyw6cm7EG0_WCERHblFFiyKLCbl3-OxvVOZ6ua7o3vUBpzL9dVgwnYhRM15d-Wi4ZkYsaXVH69mM4u5G1fwKbRVm4p8BCERgVEeCY0LFLdR6luYlj49A2BzYMehC2i5uZBv6cWDimWQfcTALJUCBZLZBs2YO36z6zFfjHta13WpllzUFQZZ3a9uDV-jduYYrL6MKVC2yTEIg_el5JD961su6G-P-M29fP-BJuDyajYTY8Hp88gzuiVjXKjtuBzfn3hXuO7tQ8f9HoLIOvN71NfgNxMS1p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4oPKnLpRiJDiB1cSJk_hQoarL0tJuVYlW6i04_imHbbKQXa14AR6Kp-tMNtkAEr31Fim2R_KMZ8aemW8A3iirYq0Dx1VqEh6jbuRFkeBVxScoUCKwrmnJMj5JDs7jzxfyYg1-d7UwlFbZ6cRGUdvK0Bv5jpBoylL07uWOb9MiToejD9PvnDpIUaS1a6exFJEj93OB17d693CIvH4rxOjj2f4BbzsMcIOOx4ybRKF5JBRyn2SBzaTMbJR57yn8ZbMok1Z6oZyURSqlC7zSoVEehV7iV-QiXPcO3E0JxZ2q1EefVhEM9F2a9x2F17MYzXZbsLMs2wtFojglRyDpKOWLv41i7-n-E5xtbN5oAx62zirbW0rXI1hz5WN48AeE4RP4ddpXHrD9VVNDVnmmS3b85WzMyVBaNnRuylo010tGLdgmjFJC5jVO6zPf2bjJ7nT90L3JJe797NtVzZAQozC6vvKTasGorajRNSVuP4XzW9n5Z7BeVqXbBBaKwKiIoMaEjl2miygrTBwbh1Y5sGEwgLDb3Ny0wOfUf2OS95DNxJAcGZI3DMkXA3i3mjNdwn7cOHqr41neqoA67wV2AK9Xv_HwUkRGl66a45iE4PvR50oG8L7jdb_E_yk-v5niK7iHhyM_Pjw5egH3RSNplBa3BeuzH3P3Ev2oWbHdCCyDr7d9Qq4BIWorAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+of+an+LSTM-based+Deep+Learning+Model+versus+Conventional+Machine+Learning+Algorithms+for+Streamflow+Forecasting&rft.jtitle=Water+resources+management&rft.au=Rahimzad+Maryam&rft.au=Moghaddam%2C+Nia+Alireza&rft.au=Zolfonoon+Hosam&rft.au=Soltani+Jaber&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=12&rft.spage=4167&rft.epage=4187&rft_id=info:doi/10.1007%2Fs11269-021-02937-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon