Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting
Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gai...
Saved in:
| Published in | Water resources management Vol. 35; no. 12; pp. 4167 - 4187 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.09.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-021-02937-w |
Cover
| Abstract | Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation (
R
), Nash-Sutcliff coefficient of efficiency (
E
), Nash-Sutcliff for High flow (
E
H
), Nash-Sutcliff for Low flow (
E
L
), normalized root mean square error (
NRMSE
), relative error in estimating maximum flow (
REmax
), threshold statistics (
TS
), and average absolute relative error (
AARE
) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of
NRMSE
and the highest values of
E
H
,
E
L
, and
R
under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications. |
|---|---|
| AbstractList | Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation (R), Nash-Sutcliff coefficient of efficiency (E), Nash-Sutcliff for High flow (EH), Nash-Sutcliff for Low flow (EL), normalized root mean square error (NRMSE), relative error in estimating maximum flow (REmax), threshold statistics (TS), and average absolute relative error (AARE) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of NRMSE and the highest values ofEH,EL, and R under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications. Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation ([Formula: see text]), Nash-Sutcliff coefficient of efficiency ([Formula: see text]), Nash-Sutcliff for High flow ([Formula: see text]), Nash-Sutcliff for Low flow ([Formula: see text]), normalized root mean square error ([Formula: see text]), relative error in estimating maximum flow ([Formula: see text]), threshold statistics ([Formula: see text]), and average absolute relative error ([Formula: see text]) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of [Formula: see text] and the highest values of[Formula: see text],[Formula: see text], and [Formula: see text] under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications. Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages. There are a considerable number of forecasting models and techniques that have been employed in streamflow forecasting and gained importance in hydrological studies in recent decades. In this study, the main objective was to compare the accuracy of four data-driven techniques of Linear Regression (LR), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) network in daily streamflow forecasting. For this purpose, three scenarios were defined based on historical precipitation and streamflow series for 26 years of the Kentucky River basin located in eastern Kentucky, US. Statistical criteria including the coefficient of correlation ( R ), Nash-Sutcliff coefficient of efficiency ( E ), Nash-Sutcliff for High flow ( E H ), Nash-Sutcliff for Low flow ( E L ), normalized root mean square error ( NRMSE ), relative error in estimating maximum flow ( REmax ), threshold statistics ( TS ), and average absolute relative error ( AARE ) were employed to compare the performances of these methods. The results show that the LSTM network outperforms the other models in forecasting daily streamflow with the lowest values of NRMSE and the highest values of E H , E L , and R under all scenarios. These findings indicated that the LSTM is a robust data-driven technique to characterize the time series behaviors in hydrological modeling applications. |
| Author | Moghaddam Nia, Alireza Soltani, Jaber Rahimzad, Maryam Zolfonoon, Hosam Kwon, Hyun-Han Danandeh Mehr, Ali |
| Author_xml | – sequence: 1 givenname: Maryam surname: Rahimzad fullname: Rahimzad, Maryam organization: Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan – sequence: 2 givenname: Alireza orcidid: 0000-0002-9058-442X surname: Moghaddam Nia fullname: Moghaddam Nia, Alireza email: a.moghaddamnia@ut.ac.ir organization: Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran – sequence: 3 givenname: Hosam surname: Zolfonoon fullname: Zolfonoon, Hosam organization: DEEC, INESC Coimbra, University of Coimbra – sequence: 4 givenname: Jaber surname: Soltani fullname: Soltani, Jaber organization: Department of Water Engineering, Aburaihan Campus, University of Tehran – sequence: 5 givenname: Ali surname: Danandeh Mehr fullname: Danandeh Mehr, Ali organization: Department of Civil Engineering, Antalya Bilim University – sequence: 6 givenname: Hyun-Han surname: Kwon fullname: Kwon, Hyun-Han organization: Department of Civil and Environmental Engineering, Sejong University |
| BookMark | eNp9kctOAyEUhonRxHp5AVckbtyMcikzsDT1mrTRRF0TZA4VMwMVpm18AZ9btCYmLlwQWHwfcP5_D22HGAChI0pOKSHNWaaU1aoijJaleFOtt9CIioZXtBZkG42IYqQaN2O6i_ZyfiWkaIqM0Mc9JBdTb4IFPIn9wiSfY8DRYRPw9OFxVj2bDC2-AFjgKZgUfJjjWWyhwytIeZmLFlYQBh-D6fDM2Bcf4Bc97-Yx-eGlz7g8hB-GBKZ3XVzjq5jAmjwU6gDtONNlOPzZ99HT1eXj5Kaa3l3fTs6nleWCDZWtFWO8TChdLUkrhZAtl845wZRoJZeiFY4pEOK5EQKIU4Za5cZSinLiwPfRyebeRYpvS8iD7n220HUmQFxmzWpejxtRwizo8R_0NS5TGbFQQjLWNCXaQskNZVPMOYHT1g_mK4shGd9pSvRXQXpTkC4F6e-C9Lqo7I-6SL436f1_iW-kXOAwh_T7q3-sTwJ_pm0 |
| CitedBy_id | crossref_primary_10_1016_j_pce_2024_103653 crossref_primary_10_1016_j_scitotenv_2023_166806 crossref_primary_10_1016_j_wroa_2024_100297 crossref_primary_10_5194_hess_28_1191_2024 crossref_primary_10_2166_nh_2024_004 crossref_primary_10_3390_w15061179 crossref_primary_10_1007_s00521_022_07841_x crossref_primary_10_1007_s11356_024_35482_1 crossref_primary_10_1016_j_jhydrol_2024_131704 crossref_primary_10_1007_s11356_022_21634_8 crossref_primary_10_1016_j_jhydrol_2022_128099 crossref_primary_10_1016_j_eswa_2024_124139 crossref_primary_10_1016_j_rineng_2024_102215 crossref_primary_10_1007_s40808_024_02088_y crossref_primary_10_32604_cmes_2023_027954 crossref_primary_10_1080_02626667_2022_2149334 crossref_primary_10_1038_s41598_024_63989_7 crossref_primary_10_1007_s11269_023_03492_2 crossref_primary_10_1007_s11269_022_03264_4 crossref_primary_10_1016_j_eswa_2023_121719 crossref_primary_10_3390_w16142006 crossref_primary_10_1016_j_scitotenv_2022_160680 crossref_primary_10_1021_acsami_3c18889 crossref_primary_10_1007_s11269_024_03902_z crossref_primary_10_1016_j_envsoft_2022_105474 crossref_primary_10_1007_s00477_022_02373_1 crossref_primary_10_3390_w14091462 crossref_primary_10_5194_hess_27_1047_2023 crossref_primary_10_1080_23311916_2022_2143051 crossref_primary_10_1007_s00477_023_02567_1 crossref_primary_10_2166_ws_2024_225 crossref_primary_10_1007_s11269_022_03148_7 crossref_primary_10_1029_2021EA002168 crossref_primary_10_2166_hydro_2024_066 crossref_primary_10_1016_j_ejrh_2023_101471 crossref_primary_10_1016_j_jhydrol_2024_132569 crossref_primary_10_1007_s11600_023_01023_6 crossref_primary_10_1016_j_jhydrol_2024_131996 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_2166_wcc_2023_419 crossref_primary_10_2166_wcc_2024_150 crossref_primary_10_3390_hydrology10020029 crossref_primary_10_1016_j_jhydrol_2024_132561 crossref_primary_10_1038_s41598_023_36439_z crossref_primary_10_1016_j_jhydrol_2025_132883 crossref_primary_10_1007_s12145_023_01041_4 crossref_primary_10_1016_j_jhydrol_2023_130141 crossref_primary_10_1016_j_asoc_2022_108941 crossref_primary_10_1016_j_jhydrol_2023_130380 crossref_primary_10_2166_wcc_2023_374 crossref_primary_10_1007_s00477_024_02788_y crossref_primary_10_1007_s11600_024_01362_y crossref_primary_10_1007_s12665_024_11919_1 crossref_primary_10_1016_j_jenvman_2024_122114 crossref_primary_10_1016_j_epsr_2024_110275 crossref_primary_10_3390_w16243699 crossref_primary_10_2166_hydro_2024_115 crossref_primary_10_1016_j_ecoinf_2023_102119 crossref_primary_10_1007_s40808_024_02211_z crossref_primary_10_1016_j_pce_2024_103737 crossref_primary_10_1080_19475705_2024_2361807 crossref_primary_10_1016_j_jhydrol_2024_132175 crossref_primary_10_1016_j_heliyon_2024_e39567 crossref_primary_10_1016_j_jhydrol_2023_129307 crossref_primary_10_1016_j_sciaf_2023_e02053 crossref_primary_10_1016_j_catena_2022_106379 crossref_primary_10_3389_fenvs_2023_1261239 crossref_primary_10_3390_w15020262 crossref_primary_10_1088_1748_9326_ad6fb7 crossref_primary_10_1007_s12145_024_01390_8 crossref_primary_10_3390_w15223947 crossref_primary_10_3390_su151310543 crossref_primary_10_2166_hydro_2022_114 crossref_primary_10_3390_rs16183526 crossref_primary_10_3390_machines12060357 crossref_primary_10_1029_2023GL103979 crossref_primary_10_1016_j_jhydrol_2025_132701 crossref_primary_10_1007_s12145_023_01082_9 crossref_primary_10_3390_w15061019 crossref_primary_10_1155_2022_1860460 crossref_primary_10_1155_2021_5172658 crossref_primary_10_3390_w16152199 crossref_primary_10_1016_j_mlwa_2024_100551 crossref_primary_10_1016_j_watres_2023_120895 crossref_primary_10_2166_wpt_2024_147 crossref_primary_10_1109_JSTARS_2025_3528475 crossref_primary_10_1007_s40808_025_02296_0 crossref_primary_10_1007_s11269_023_03645_3 crossref_primary_10_3390_w14192972 crossref_primary_10_3390_rs15082076 crossref_primary_10_1016_j_ecoinf_2024_102904 crossref_primary_10_1080_02626667_2022_2063724 crossref_primary_10_56038_ejrnd_v4i1_422 crossref_primary_10_1007_s11269_023_03713_8 crossref_primary_10_1016_j_seppur_2023_125487 crossref_primary_10_3390_w14182898 crossref_primary_10_1039_D3NR04819E crossref_primary_10_1016_j_firesaf_2023_103887 crossref_primary_10_1007_s00477_023_02607_w crossref_primary_10_1080_02626667_2023_2173012 crossref_primary_10_1007_s11269_025_04113_w crossref_primary_10_1016_j_ecoinf_2025_102994 crossref_primary_10_1016_j_ecolind_2023_110092 crossref_primary_10_1016_j_jhydrol_2023_129199 crossref_primary_10_1016_j_jhydrol_2023_129990 crossref_primary_10_1016_j_compbiomed_2023_107706 crossref_primary_10_3390_app131810152 crossref_primary_10_1007_s00477_022_02366_0 crossref_primary_10_1007_s13201_024_02260_w crossref_primary_10_1016_j_rineng_2025_104079 crossref_primary_10_1038_s41598_023_39606_4 crossref_primary_10_3390_jpm14080812 crossref_primary_10_3390_w14223672 crossref_primary_10_1007_s11356_024_31963_5 crossref_primary_10_1007_s11269_024_03780_5 crossref_primary_10_1088_1755_1315_1409_1_012001 crossref_primary_10_1016_j_jaridenv_2024_105160 crossref_primary_10_2166_wpt_2023_144 crossref_primary_10_4491_KSEE_2024_46_10_537 crossref_primary_10_1002_sd_3074 crossref_primary_10_1016_j_ejrh_2024_101684 crossref_primary_10_1016_j_ejrh_2024_101720 crossref_primary_10_1007_s12517_023_11392_3 crossref_primary_10_1016_j_asoc_2024_112352 crossref_primary_10_1109_ACCESS_2024_3427829 crossref_primary_10_1016_j_wsee_2024_09_004 crossref_primary_10_1111_1752_1688_13229 crossref_primary_10_1007_s11269_024_04037_x crossref_primary_10_1038_s41598_025_93465_9 crossref_primary_10_3390_hydrology12030060 crossref_primary_10_1007_s11269_022_03339_2 crossref_primary_10_1080_02626667_2024_2426720 |
| Cites_doi | 10.1007/s11269-020-02659-5 10.3390/w10111543 10.3390/w10020192 10.1016/0022-1694(70)90255-6 10.1016/j.jhydrol.2020.124776 10.1007/BF00994018 10.3390/w11071387 10.1109/ACCESS.2020.2993874 10.1007/s11269-019-02408-3 10.18178/ijesd.2019.10.10.1190 10.1109/ICIT.2008.4608590 10.3390/w13040437 10.1016/j.jhydrol.2018.04.065 10.1016/j.jhydrol.2020.125376 10.1016/j.jhydrol.2020.124897 10.1029/2019WR025326 10.1016/j.jhydrol.2019.124296 10.3390/app10020571 10.1007/s11269-016-1408-5 10.3390/w10111536 10.1109/ACCESS.2021.3092074 10.1007/s11269-015-1123-7 10.3390/w12020440 10.3390/w12051500 10.1201/9781315272443 10.1007/s10489-012-0344-1 10.1016/j.mcm.2004.10.012 10.1007/s11269-011-9926-7 10.1007/978-3-030-14718-1_4 10.1109/ICITACEE.2018.8576900 10.1109/TGRS.2012.2196282 10.1080/19475705.2021.1887372 10.1016/j.jhydrol.2020.125188 10.1109/AICAI.2019.8701258 10.3390/rs13132501 10.1007/s11269-016-1289-7 10.1007/s00521-016-2293-9 10.1109/GSIS.2007.4443304 10.1016/j.jhydrol.2018.11.015 10.3389/frwa.2021.652100 10.1007/s11269-018-1998-1 10.5194/hess-22-6005-2018 10.2166/nh.2020.026 10.1162/neco.1997.9.8.1735 10.1007/s40808-020-00830-w 10.1002/hyp.7014 10.3133/tm4B5 10.1007/s12517-018-4079-0 10.1080/15715124.2019.1628035 10.1109/ACCESS.2019.2920916 10.1121/1.3553226 10.1016/j.scitotenv.2019.134413 10.1016/j.jhydrol.2020.125359 10.1038/s41598-020-67228-7 10.1007/s11269-017-1711-9 10.3390/w12113032 10.1177/875647939000600106 10.1038/s41598-021-87415-4 10.5194/hess-23-787-2019 10.1007/s11269-018-1951-3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-021-02937-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 4187 |
| ExternalDocumentID | 10_1007_s11269_021_02937_w |
| GeographicLocations | Kentucky River Kentucky |
| GeographicLocations_xml | – name: Kentucky – name: Kentucky River |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-c692230298f680d8558d38fff5295d8385d5f29e55b755e0f9a1c9f48859a13e3 |
| IEDL.DBID | BENPR |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 11:28:25 EDT 2025 Fri Jul 25 19:10:18 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Wed Oct 01 01:45:00 EDT 2025 Fri Feb 21 02:47:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Data-driven modeling Deep learning Machine learning algorithms Streamflow forecasting LSTM |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-c692230298f680d8558d38fff5295d8385d5f29e55b755e0f9a1c9f48859a13e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9058-442X |
| PQID | 2582277165 |
| PQPubID | 54174 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_2636475126 proquest_journals_2582277165 crossref_citationtrail_10_1007_s11269_021_02937_w crossref_primary_10_1007_s11269_021_02937_w springer_journals_10_1007_s11269_021_02937_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210900 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | YaseenZMMohtarWHMWAmeenAMSEbtehajIRazaliSFMBonakdariHSalihSQAl-AnsariNShahidSImplementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical regionIEEE Access20197744717448110.1109/ACCESS.2019.2920916 JayawardenaAEnvironmental and hydrological systems modelling2013CRC Press10.1201/9781315272443 LiuMHuangYLiZTongBLiuZSunMJiangFZhangHThe Applicability of LSTM-KNN Model for Real-Time Flood Forecasting in Different Climate Zones in ChinaWater20201244010.3390/w12020440 Tan Q, Wang X, Cai S, Lei X (2015) Daily runoff time-series prediction based on the adaptive neural fuzzy inference system. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) 506–512 ShafaeiMKisiÖPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Appl201728152810.1007/s00521-016-2293-9 PraveenBTalukdarSMahatoSMondalJSharmaPIslamARMTRahmanAAnalyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approachesSci Rep20201012110.1038/s41598-020-67228-7 Wang S, Cao J, Yu P (2020) Deep learning for spatio-temporal data mining: A survey. IEEE Trans Knowl Data Eng Damavandi HG, Shah R, Stampoulis D, Wei Y, Boscovic D, Sabo J (2019) Accurate Prediction of Streamflow Using Long Short-Term Memory Network: A Case Study in the Brazos River Basin in Texas. Int J Environ 10:294–300 AlDahoulNEssamYKumarPAhmedANSherifMSefelnasrAElshafieASuspended sediment load prediction using long short-term memory neural networkSci Rep20211112210.1038/s41598-021-87415-4 Widiasari IR, Nugoho LE, Efendi R (2018) Context-based hydrology time series data for a flood prediction model using LSTM. In Proceedings of the 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 385–390 AzadAFarzinSKashiHSanikhaniHKaramiHKisiOPrediction of river flow using hybrid neuro-fuzzy modelsArab J Geosci20181111410.1007/s12517-018-4079-0 Moghaddas-Tafreshi S, Farhadi M (2008) A linear regression-based study for temperature sensitivity analysis of Iran electrical load. In Proceedings of the 2008 IEEE International Conference on Industrial Technology 1–7 Te Chow V (2010) Applied hydrology. Tata McGraw-Hill Education RahimzadMHomayouniSAlizadeh NaeiniANadiSAn Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)Remote Sens202113250110.3390/rs13132501 Daniell T (1991) Neural networks. Applications in hydrology and water resources engineering. In Proceedings of the National Conference Publication- Institute of Engineers. Australia HuCWuQLiHJianSLiNLouZDeep learning with a long short-term memory networks approach for rainfall-runoff simulationWater201810154310.3390/w10111543 LiuDJiangWMuLWangSStreamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze RiverIEEE Access20208900699008610.1109/ACCESS.2020.2993874 England Jr JF, Cohn TA, Faber BA, Stedinger JR, Thomas Jr WO, Veilleux AG, Kiang JE, Mason Jr RR (2019) Guidelines for determining flood flow frequency-Bulletin 17C. In: US Geological Survey BalogunA-LAdebisiNSea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracyGeomatics Nat Hazards Risk20211265367410.1080/19475705.2021.1887372 Aoulmi Y, Marouf N, Amireche M, Kisi O, Shubair R, Keshtegar B (2021) Highly Accurate Prediction Model for Daily Runoff in Semi-Arid Basin Exploiting Metaheuristic Learning Algorithms. IEEE Access Karmiani D, Kazi R, Nambisan A, Shah A, Kamble V (2019) Comparison of predictive algorithms: backpropagation, SVM, LSTM and Kalman Filter for stock market. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), 228–234 Ni L, Wang D, Singh VP, Wu J, Wang Y, Tao Y, Zhang J (2020) Streamflow and rainfall forecasting by two long short-term memory-based models. J Hydrol 583:124296 RoyBSinghMPSinghAA novel approach for rainfall-runoff modelling using a biogeography-based optimization techniqueInt J River Basin Manag202119678010.1080/15715124.2019.1628035 Ren K, Fang W, Qu J, Zhang X, Shi X (2020) Comparison of eight filter-based feature selection methods for monthly streamflow forecasting–three case studies on CAMELS data sets. J Hydrol 586:124897 GençODağAA machine learning-based approach to predict the velocity profiles in small streamsWater Resour Manag201630436110.1007/s11269-015-1123-7 StählerSCSens-SchönfelderCNiederleithingerEMonitoring stress changes in a concrete bridge with coda wave interferometryJ Acoust Soc20111291945195210.1121/1.3553226 GaoHBirkelCHrachowitzMTetzlaffDSoulsbyCSavenijeHHA simple topography-driven and calibration-free runoff generation moduleHydrol Earth Syst Sci20192378780910.5194/hess-23-787-2019 Cheng M, Fang F, Kinouchi T, Navon I, Pain C (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376 Chen X, Huang J, Han Z, Gao H, Liu M, Li Z, Liu X, Li Q, Qi H, Huang Y (2020) The importance of short lag-time in the runoff forecasting model based on long short-term memory. J Hydrol 589:125359 KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall–runoff modelling using long short-term memory (LSTM) networksHydrol Earth Syst Sci2018226005602210.5194/hess-22-6005-2018 XuWJiangYZhangXLiYZhangRFuGUsing long short-term memory networks for river flow predictionNord Hydrol2020511358137610.2166/nh.2020.026 Wang W, Van Gelder P, Vrijling J (2005) Trend and stationarity analysis for streamflow processes of rivers in western Europe in the 20th century. In Proceedings of the IWA International Conference on water economics, statistics, and finance, Rethymno, Greece 8–10 Zuo G, Luo J, Wang N, Lian Y, He X (2020) Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting. J Hydrol 124776 LeX-HHoHVLeeGJungSApplication of long short-term memory (LSTM) neural network for flood forecastingWater201911138710.3390/w11071387 Gao S, Huang Y, Zhang S, Han J, Wang G, Zhang M, Lin Q (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589:125188 HadiSJTombulMForecasting daily streamflow for basins with different physical characteristics through data-driven methodsWater Resour Manag2018323405342210.1007/s11269-018-1998-1 RiadSManiaJBouchaouLNajjarYRainfall-runoff model usingan artificial neural network approachMath Comput Model20044083984610.1016/j.mcm.2004.10.012 Srushti G, Bhandary VS, Mendonca AE (2020) Comparison of Support Vector Machine and Long Short-Term Memory for Stock Market Analysis. Int Res J Eng Technol TaylorRInterpretation of the correlation coefficient: a basic reviewJ Diagn Med Sonogr19906353910.1177/875647939000600106 ApaydinHFeiziHSattariMTColakMSShamshirbandSChauK-WComparative analysis of recurrent neural network architectures for reservoir inflow forecastingWater202012150010.3390/w12051500 EswaranCLogeswaranRAn enhanced hybrid method for time series prediction using linear and neural network modelsAppl Intell20123751151910.1007/s10489-012-0344-1 Halff A H, Halff H M, Azmoodeh M (1993) Predicting runoff from rainfall using neural networks. In Proceedings of the Engineering hydrology 760–765 Adnan R M, Yuan X, Kisi O, Yuan Y (2017) Streamflow forecasting using artificial neural network and support vector machine models. Am Sci Res J Eng Technol Sci (ASRJETS) 29:286–294 KisiÖzgurMoghaddam NiaAlirezaGhafari GoshehMohsenJamalizadeh TajabadiMohammad RezaAhmadiAzadehIntermittent Streamflow Forecasting by Using Several Data Driven TechniquesWater Resources Management201226245747410.1007/s11269-011-9926-7 YaseenZMKisiODemirVEnhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligenceWater Resour Manag2016304125415110.1007/s11269-016-1408-5 Hrnjica B, Danandeh Mehr A (2020) Energy demand forecasting using deep learning. Smart Cities Performability, Cognition, & Security (pp. 71–104): Springer Boulmaiz T, Guermoui M, Boutaghane H (2020) Impact of training data size on the LSTM performances for rainfall–runoff modeling SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water2021352 CortesCVapnikVSupport-vector networksMach Learn199520273297 Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag2017313843386510.1007/s11269-017-1711-9 MosaviAOzturkPChauK-wFlood prediction using machine learning models: Literature reviewWater201810153610.3390/w10111536 Jimeno-SáezPSenent-AparicioJPérez-SánchezJPulido-VelazquezDA comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular SpainWater20181019210.3390/w10020192 ParisoujPMohebzadehHLeeTEmploying machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United StatesWater Resour Manag2020344113413110.1007/s11269-020-02659-5 ZhangJZhuYZhangXYeMYangJDeveloping a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areasJ Hydrol201856191892910.1016/j.jhydrol.2018.04.065 Hu Y, Yan L, Hang T, Feng J (2020) Stream-Flow Forecasting of Small Rivers Based on LSTM. arXiv Li J (2021) Exploration of Deep Learning Models on Streamflow Simulations. In: University of Californa, Irvine KişiÖStream flow forecasting using neuro-wavelet techniqueHydrol Process2008224142415210.1002/hyp.7014 LafdaniEKMoghaddam NiaAPahlavanraviAAhmadiAJajarmizadehMResearch article daily rainfall-runoff prediction and simulation using ANN, ANFIS and conceptual hydrological MIKE11/NAM models S Hochreiter (2937_CR26) 1997; 9 QB Pham (2937_CR49) 2019; 33 C Cortes (2937_CR13) 1995; 20 L Dong (2937_CR16) 2020; 12 H Gao (2937_CR19) 2019; 23 2937_CR44 ZM Yaseen (2937_CR70) 2019; 7 O Genç (2937_CR22) 2016; 30 2937_CR47 A Jayawardena (2937_CR30) 2013 C Hu (2937_CR28) 2018; 10 P Parisouj (2937_CR48) 2020; 34 M Rezaie-Balf (2937_CR53) 2017; 31 B Praveen (2937_CR50) 2020; 10 S Riad (2937_CR54) 2004; 40 N AlDahoul (2937_CR2) 2021; 11 X-H Le (2937_CR38) 2019; 11 2937_CR3 2937_CR8 M Liu (2937_CR41) 2020; 12 2937_CR61 2937_CR9 2937_CR11 2937_CR10 2937_CR52 2937_CR15 2937_CR59 2937_CR14 2937_CR1 2937_CR12 F Kratzert (2937_CR35) 2018; 22 H Han (2937_CR25) 2021; 13 B Roy (2937_CR55) 2021; 19 2937_CR17 A Danandeh Mehr (2937_CR42) 2018; 32 H Apaydin (2937_CR4) 2020; 12 E Meng (2937_CR43) 2019; 568 Özgur Kisi (2937_CR34) 2012; 26 AS Gebregiorgis (2937_CR21) 2012; 51 2937_CR72 D Liu (2937_CR40) 2020; 8 2937_CR66 2937_CR65 2937_CR20 JE Nash (2937_CR46) 1970; 10 2937_CR64 2937_CR63 Ö Kişi (2937_CR33) 2008; 22 2937_CR24 2937_CR67 2937_CR29 A Mosavi (2937_CR45) 2018; 10 2937_CR27 SJ Hadi (2937_CR23) 2018; 32 A Sahraei (2937_CR56) 2021; 3 C Eswaran (2937_CR18) 2012; 37 P Jimeno-Sáez (2937_CR31) 2018; 10 NF Attar (2937_CR5) 2020; 10 M Rahimzad (2937_CR51) 2021; 13 R Taylor (2937_CR62) 1990; 6 A-L Balogun (2937_CR7) 2021; 12 M Shafaei (2937_CR57) 2017; 28 EK Lafdani (2937_CR37) 2013; 1 J Zhang (2937_CR71) 2018; 561 2937_CR32 W Xu (2937_CR68) 2020; 51 2937_CR36 SK Singh (2937_CR58) 2016; 30 SC Stähler (2937_CR60) 2011; 129 ZM Yaseen (2937_CR69) 2016; 30 2937_CR39 A Azad (2937_CR6) 2018; 11 |
| References_xml | – reference: SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water2021352 – reference: Gao S, Huang Y, Zhang S, Han J, Wang G, Zhang M, Lin Q (2020) Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J Hydrol 589:125188 – reference: Damavandi HG, Shah R, Stampoulis D, Wei Y, Boscovic D, Sabo J (2019) Accurate Prediction of Streamflow Using Long Short-Term Memory Network: A Case Study in the Brazos River Basin in Texas. Int J Environ 10:294–300 – reference: LeX-HHoHVLeeGJungSApplication of long short-term memory (LSTM) neural network for flood forecastingWater201911138710.3390/w11071387 – reference: Zuo G, Luo J, Wang N, Lian Y, He X (2020) Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting. J Hydrol 124776 – reference: RoyBSinghMPSinghAA novel approach for rainfall-runoff modelling using a biogeography-based optimization techniqueInt J River Basin Manag202119678010.1080/15715124.2019.1628035 – reference: Tan Q, Wang X, Cai S, Lei X (2015) Daily runoff time-series prediction based on the adaptive neural fuzzy inference system. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) 506–512 – reference: DongLFangDWangXWeiWDamaševičiusRSchererRWoźniakMPrediction of Streamflow Based on Dynamic Sliding Window LSTMWater202012303210.3390/w12113032 – reference: GaoHBirkelCHrachowitzMTetzlaffDSoulsbyCSavenijeHHA simple topography-driven and calibration-free runoff generation moduleHydrol Earth Syst Sci20192378780910.5194/hess-23-787-2019 – reference: Ni L, Wang D, Singh VP, Wu J, Wang Y, Tao Y, Zhang J (2020) Streamflow and rainfall forecasting by two long short-term memory-based models. J Hydrol 583:124296 – reference: Daniell T (1991) Neural networks. Applications in hydrology and water resources engineering. In Proceedings of the National Conference Publication- Institute of Engineers. Australia – reference: England Jr JF, Cohn TA, Faber BA, Stedinger JR, Thomas Jr WO, Veilleux AG, Kiang JE, Mason Jr RR (2019) Guidelines for determining flood flow frequency-Bulletin 17C. In: US Geological Survey – reference: LiuDJiangWMuLWangSStreamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze RiverIEEE Access20208900699008610.1109/ACCESS.2020.2993874 – reference: ShafaeiMKisiÖPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Appl201728152810.1007/s00521-016-2293-9 – reference: RiadSManiaJBouchaouLNajjarYRainfall-runoff model usingan artificial neural network approachMath Comput Model20044083984610.1016/j.mcm.2004.10.012 – reference: Srushti G, Bhandary VS, Mendonca AE (2020) Comparison of Support Vector Machine and Long Short-Term Memory for Stock Market Analysis. Int Res J Eng Technol – reference: Bing-jun L, Chun-hua H (2007) The combined forecasting method of GM (1, 1) with linear regression and its application. In Proceedings of the 2007 IEEE International Conference on Grey Systems and Intelligent Services 394–398 – reference: PhamQBAbbaSIUsmanAGLinhNTTGuptaVMalikACostacheRVoNDTriDQPotential of hybrid data-intelligence algorithms for multi-station modelling of rainfallWater Resour Manag2019335067508710.1007/s11269-019-02408-3 – reference: Cheng M, Fang F, Kinouchi T, Navon I, Pain C (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376 – reference: AttarNFPhamQBNowbandeganiSFRezaie-BalfMFaiCMAhmedANPipelzadehSDungTDNhiPTTKhoiDNEnhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake basin based upon the autoregressive conditionally heteroskedastic time-series modelAppl Sci20201057110.3390/app10020571 – reference: PraveenBTalukdarSMahatoSMondalJSharmaPIslamARMTRahmanAAnalyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approachesSci Rep20201012110.1038/s41598-020-67228-7 – reference: HuCWuQLiHJianSLiNLouZDeep learning with a long short-term memory networks approach for rainfall-runoff simulationWater201810154310.3390/w10111543 – reference: SinghSKLong-term streamflow forecasting based on ensemble streamflow prediction technique: a case study in New ZealandWater Resour Manag2016302295230910.1007/s11269-016-1289-7 – reference: Lafdani EK, Moghaddam Nia A, Ahmadi A, Jajarmizadeh M, Gosheh MG (2013a) Stream Flow Simulation using SVM, ANFIS and NAM Models (A Case Study).Caspian Journal of Applied Sciences Reaserch 2(4): 86-93 (In Persian) – reference: Li J (2021) Exploration of Deep Learning Models on Streamflow Simulations. In: University of Californa, Irvine – reference: GençODağAA machine learning-based approach to predict the velocity profiles in small streamsWater Resour Manag201630436110.1007/s11269-015-1123-7 – reference: Danandeh MehrANouraniVSeason algorithm-multigene genetic programming: a new approach for rainfall-runoff modellingWater Resour Manag2018322665267910.1007/s11269-018-1951-3 – reference: KisiÖzgurMoghaddam NiaAlirezaGhafari GoshehMohsenJamalizadeh TajabadiMohammad RezaAhmadiAzadehIntermittent Streamflow Forecasting by Using Several Data Driven TechniquesWater Resources Management201226245747410.1007/s11269-011-9926-7 – reference: Xiang Z, Yan J, Demir I (2020) A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water Resour Res 56:e2019WR025326 – reference: ZhangJZhuYZhangXYeMYangJDeveloping a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areasJ Hydrol201856191892910.1016/j.jhydrol.2018.04.065 – reference: Halff A H, Halff H M, Azmoodeh M (1993) Predicting runoff from rainfall using neural networks. In Proceedings of the Engineering hydrology 760–765 – reference: ParisoujPMohebzadehHLeeTEmploying machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United StatesWater Resour Manag2020344113413110.1007/s11269-020-02659-5 – reference: YaseenZMMohtarWHMWAmeenAMSEbtehajIRazaliSFMBonakdariHSalihSQAl-AnsariNShahidSImplementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical regionIEEE Access20197744717448110.1109/ACCESS.2019.2920916 – reference: StählerSCSens-SchönfelderCNiederleithingerEMonitoring stress changes in a concrete bridge with coda wave interferometryJ Acoust Soc20111291945195210.1121/1.3553226 – reference: Widiasari IR, Nugoho LE, Efendi R (2018) Context-based hydrology time series data for a flood prediction model using LSTM. In Proceedings of the 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 385–390 – reference: Moghaddas-Tafreshi S, Farhadi M (2008) A linear regression-based study for temperature sensitivity analysis of Iran electrical load. In Proceedings of the 2008 IEEE International Conference on Industrial Technology 1–7 – reference: YaseenZMKisiODemirVEnhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligenceWater Resour Manag2016304125415110.1007/s11269-016-1408-5 – reference: Karmiani D, Kazi R, Nambisan A, Shah A, Kamble V (2019) Comparison of predictive algorithms: backpropagation, SVM, LSTM and Kalman Filter for stock market. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), 228–234 – reference: LiuMHuangYLiZTongBLiuZSunMJiangFZhangHThe Applicability of LSTM-KNN Model for Real-Time Flood Forecasting in Different Climate Zones in ChinaWater20201244010.3390/w12020440 – reference: Te Chow V (2010) Applied hydrology. Tata McGraw-Hill Education – reference: RahimzadMHomayouniSAlizadeh NaeiniANadiSAn Efficient Multi-Sensor Remote Sensing Image Clustering in Urban Areas via Boosted Convolutional Autoencoder (BCAE)Remote Sens202113250110.3390/rs13132501 – reference: TaylorRInterpretation of the correlation coefficient: a basic reviewJ Diagn Med Sonogr19906353910.1177/875647939000600106 – reference: Aoulmi Y, Marouf N, Amireche M, Kisi O, Shubair R, Keshtegar B (2021) Highly Accurate Prediction Model for Daily Runoff in Semi-Arid Basin Exploiting Metaheuristic Learning Algorithms. IEEE Access – reference: LafdaniEKMoghaddam NiaAPahlavanraviAAhmadiAJajarmizadehMResearch article daily rainfall-runoff prediction and simulation using ANN, ANFIS and conceptual hydrological MIKE11/NAM modelsInt J Eng Technol201313250 – reference: GebregiorgisASHossainFUnderstanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulationIEEE Trans Geosci Remote Sens20125170471810.1109/TGRS.2012.2196282 – reference: AlDahoulNEssamYKumarPAhmedANSherifMSefelnasrAElshafieASuspended sediment load prediction using long short-term memory neural networkSci Rep20211112210.1038/s41598-021-87415-4 – reference: HadiSJTombulMForecasting daily streamflow for basins with different physical characteristics through data-driven methodsWater Resour Manag2018323405342210.1007/s11269-018-1998-1 – reference: KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall–runoff modelling using long short-term memory (LSTM) networksHydrol Earth Syst Sci2018226005602210.5194/hess-22-6005-2018 – reference: MengEHuangSHuangQFangWWuLWangLA robust method for non-stationary streamflow prediction based on improved EMD-SVM modelJ Hydrol201956846247810.1016/j.jhydrol.2018.11.015 – reference: Wang W, Van Gelder P, Vrijling J (2005) Trend and stationarity analysis for streamflow processes of rivers in western Europe in the 20th century. In Proceedings of the IWA International Conference on water economics, statistics, and finance, Rethymno, Greece 8–10 – reference: CortesCVapnikVSupport-vector networksMach Learn199520273297 – reference: NashJESutcliffeJVRiver flow forecasting through conceptual models part I—A discussion of principlesJ Hydrol19701028229010.1016/0022-1694(70)90255-6 – reference: JayawardenaAEnvironmental and hydrological systems modelling2013CRC Press10.1201/9781315272443 – reference: Hrnjica B, Danandeh Mehr A (2020) Energy demand forecasting using deep learning. Smart Cities Performability, Cognition, & Security (pp. 71–104): Springer – reference: XuWJiangYZhangXLiYZhangRFuGUsing long short-term memory networks for river flow predictionNord Hydrol2020511358137610.2166/nh.2020.026 – reference: AzadAFarzinSKashiHSanikhaniHKaramiHKisiOPrediction of river flow using hybrid neuro-fuzzy modelsArab J Geosci20181111410.1007/s12517-018-4079-0 – reference: KişiÖStream flow forecasting using neuro-wavelet techniqueHydrol Process2008224142415210.1002/hyp.7014 – reference: Jimeno-SáezPSenent-AparicioJPérez-SánchezJPulido-VelazquezDA comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular SpainWater20181019210.3390/w10020192 – reference: Boulmaiz T, Guermoui M, Boutaghane H (2020) Impact of training data size on the LSTM performances for rainfall–runoff modeling – reference: HanHChoiCJungJKimHSDeep Learning with Long Short Term Memory Based Sequence-to-Sequence Model for Rainfall-Runoff SimulationWater20211343710.3390/w13040437 – reference: Hu Y, Yan L, Hang T, Feng J (2020) Stream-Flow Forecasting of Small Rivers Based on LSTM. arXiv – reference: Bui DT, Hoang ND, Martínez-Álvarez F, Ngo PTT, Hoa PV, Pham TD, Samui P, Costache R (2020) A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci Total Environ 701:134413 – reference: MosaviAOzturkPChauK-wFlood prediction using machine learning models: Literature reviewWater201810153610.3390/w10111536 – reference: Rezaie-BalfMZahmatkeshZKimSSoft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methodsWater Resour Manag2017313843386510.1007/s11269-017-1711-9 – reference: Adnan R M, Yuan X, Kisi O, Yuan Y (2017) Streamflow forecasting using artificial neural network and support vector machine models. Am Sci Res J Eng Technol Sci (ASRJETS) 29:286–294 – reference: ApaydinHFeiziHSattariMTColakMSShamshirbandSChauK-WComparative analysis of recurrent neural network architectures for reservoir inflow forecastingWater202012150010.3390/w12051500 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput199791735178010.1162/neco.1997.9.8.1735 – reference: Ren K, Fang W, Qu J, Zhang X, Shi X (2020) Comparison of eight filter-based feature selection methods for monthly streamflow forecasting–three case studies on CAMELS data sets. J Hydrol 586:124897 – reference: Wang S, Cao J, Yu P (2020) Deep learning for spatio-temporal data mining: A survey. IEEE Trans Knowl Data Eng – reference: EswaranCLogeswaranRAn enhanced hybrid method for time series prediction using linear and neural network modelsAppl Intell20123751151910.1007/s10489-012-0344-1 – reference: BalogunA-LAdebisiNSea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracyGeomatics Nat Hazards Risk20211265367410.1080/19475705.2021.1887372 – reference: Chen X, Huang J, Han Z, Gao H, Liu M, Li Z, Liu X, Li Q, Qi H, Huang Y (2020) The importance of short lag-time in the runoff forecasting model based on long short-term memory. J Hydrol 589:125359 – volume: 34 start-page: 4113 year: 2020 ident: 2937_CR48 publication-title: Water Resour Manag doi: 10.1007/s11269-020-02659-5 – volume: 10 start-page: 1543 year: 2018 ident: 2937_CR28 publication-title: Water doi: 10.3390/w10111543 – volume: 10 start-page: 192 year: 2018 ident: 2937_CR31 publication-title: Water doi: 10.3390/w10020192 – volume: 10 start-page: 282 year: 1970 ident: 2937_CR46 publication-title: J Hydrol doi: 10.1016/0022-1694(70)90255-6 – ident: 2937_CR72 doi: 10.1016/j.jhydrol.2020.124776 – volume: 20 start-page: 273 year: 1995 ident: 2937_CR13 publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 11 start-page: 1387 year: 2019 ident: 2937_CR38 publication-title: Water doi: 10.3390/w11071387 – volume: 8 start-page: 90069 year: 2020 ident: 2937_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993874 – volume: 33 start-page: 5067 year: 2019 ident: 2937_CR49 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02408-3 – ident: 2937_CR14 doi: 10.18178/ijesd.2019.10.10.1190 – ident: 2937_CR44 doi: 10.1109/ICIT.2008.4608590 – volume: 13 start-page: 437 year: 2021 ident: 2937_CR25 publication-title: Water doi: 10.3390/w13040437 – volume: 561 start-page: 918 year: 2018 ident: 2937_CR71 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.04.065 – ident: 2937_CR12 doi: 10.1016/j.jhydrol.2020.125376 – ident: 2937_CR52 doi: 10.1016/j.jhydrol.2020.124897 – ident: 2937_CR67 doi: 10.1029/2019WR025326 – ident: 2937_CR47 doi: 10.1016/j.jhydrol.2019.124296 – volume: 1 start-page: 32 year: 2013 ident: 2937_CR37 publication-title: Int J Eng Technol – volume: 10 start-page: 571 year: 2020 ident: 2937_CR5 publication-title: Appl Sci doi: 10.3390/app10020571 – volume: 30 start-page: 4125 year: 2016 ident: 2937_CR69 publication-title: Water Resour Manag doi: 10.1007/s11269-016-1408-5 – ident: 2937_CR24 – volume: 10 start-page: 1536 year: 2018 ident: 2937_CR45 publication-title: Water doi: 10.3390/w10111536 – ident: 2937_CR3 doi: 10.1109/ACCESS.2021.3092074 – volume: 30 start-page: 43 year: 2016 ident: 2937_CR22 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1123-7 – volume: 12 start-page: 440 year: 2020 ident: 2937_CR41 publication-title: Water doi: 10.3390/w12020440 – volume: 12 start-page: 1500 year: 2020 ident: 2937_CR4 publication-title: Water doi: 10.3390/w12051500 – ident: 2937_CR1 – volume-title: Environmental and hydrological systems modelling year: 2013 ident: 2937_CR30 doi: 10.1201/9781315272443 – volume: 37 start-page: 511 year: 2012 ident: 2937_CR18 publication-title: Appl Intell doi: 10.1007/s10489-012-0344-1 – volume: 40 start-page: 839 year: 2004 ident: 2937_CR54 publication-title: Math Comput Model doi: 10.1016/j.mcm.2004.10.012 – ident: 2937_CR61 – volume: 26 start-page: 457 issue: 2 year: 2012 ident: 2937_CR34 publication-title: Water Resources Management doi: 10.1007/s11269-011-9926-7 – ident: 2937_CR27 doi: 10.1007/978-3-030-14718-1_4 – ident: 2937_CR66 doi: 10.1109/ICITACEE.2018.8576900 – volume: 51 start-page: 704 year: 2012 ident: 2937_CR21 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2012.2196282 – volume: 12 start-page: 653 year: 2021 ident: 2937_CR7 publication-title: Geomatics Nat Hazards Risk doi: 10.1080/19475705.2021.1887372 – ident: 2937_CR20 doi: 10.1016/j.jhydrol.2020.125188 – ident: 2937_CR32 doi: 10.1109/AICAI.2019.8701258 – ident: 2937_CR65 – volume: 13 start-page: 2501 year: 2021 ident: 2937_CR51 publication-title: Remote Sens doi: 10.3390/rs13132501 – volume: 30 start-page: 2295 year: 2016 ident: 2937_CR58 publication-title: Water Resour Manag doi: 10.1007/s11269-016-1289-7 – volume: 28 start-page: 15 year: 2017 ident: 2937_CR57 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2293-9 – ident: 2937_CR8 doi: 10.1109/GSIS.2007.4443304 – ident: 2937_CR39 – volume: 568 start-page: 462 year: 2019 ident: 2937_CR43 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.015 – volume: 3 start-page: 52 year: 2021 ident: 2937_CR56 publication-title: Front Water doi: 10.3389/frwa.2021.652100 – ident: 2937_CR36 – ident: 2937_CR59 – volume: 32 start-page: 3405 year: 2018 ident: 2937_CR23 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1998-1 – volume: 22 start-page: 6005 year: 2018 ident: 2937_CR35 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-22-6005-2018 – volume: 51 start-page: 1358 year: 2020 ident: 2937_CR68 publication-title: Nord Hydrol doi: 10.2166/nh.2020.026 – volume: 9 start-page: 1735 year: 1997 ident: 2937_CR26 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 2937_CR9 doi: 10.1007/s40808-020-00830-w – volume: 22 start-page: 4142 year: 2008 ident: 2937_CR33 publication-title: Hydrol Process doi: 10.1002/hyp.7014 – ident: 2937_CR17 doi: 10.3133/tm4B5 – ident: 2937_CR64 – volume: 11 start-page: 1 year: 2018 ident: 2937_CR6 publication-title: Arab J Geosci doi: 10.1007/s12517-018-4079-0 – volume: 19 start-page: 67 year: 2021 ident: 2937_CR55 publication-title: Int J River Basin Manag doi: 10.1080/15715124.2019.1628035 – volume: 7 start-page: 74471 year: 2019 ident: 2937_CR70 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920916 – volume: 129 start-page: 1945 year: 2011 ident: 2937_CR60 publication-title: J Acoust Soc doi: 10.1121/1.3553226 – ident: 2937_CR15 – ident: 2937_CR10 doi: 10.1016/j.scitotenv.2019.134413 – ident: 2937_CR11 doi: 10.1016/j.jhydrol.2020.125359 – volume: 10 start-page: 1 year: 2020 ident: 2937_CR50 publication-title: Sci Rep doi: 10.1038/s41598-020-67228-7 – volume: 31 start-page: 3843 year: 2017 ident: 2937_CR53 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1711-9 – ident: 2937_CR63 – volume: 12 start-page: 3032 year: 2020 ident: 2937_CR16 publication-title: Water doi: 10.3390/w12113032 – volume: 6 start-page: 35 year: 1990 ident: 2937_CR62 publication-title: J Diagn Med Sonogr doi: 10.1177/875647939000600106 – volume: 11 start-page: 1 year: 2021 ident: 2937_CR2 publication-title: Sci Rep doi: 10.1038/s41598-021-87415-4 – ident: 2937_CR29 – volume: 23 start-page: 787 year: 2019 ident: 2937_CR19 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-23-787-2019 – volume: 32 start-page: 2665 year: 2018 ident: 2937_CR42 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1951-3 |
| SSID | ssj0010090 |
| Score | 2.6478171 |
| Snippet | Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4167 |
| SubjectTerms | Algorithms Atmospheric Sciences Civil Engineering Deep learning Earth and Environmental Science Earth Sciences Environment Errors Flood forecasting Flood management Forecasting Geotechnical Engineering & Applied Earth Sciences High flow Hydrogeology Hydrology Hydrology/Water Resources Kentucky Kentucky River Learning algorithms Long short-term memory Low flow Machine learning Mathematical models Maximum flow Mitigation Multilayer perceptrons neural networks regression analysis Resource allocation River basins Statistical analysis Statistical methods Stream discharge Stream flow Streamflow forecasting Support vector machines time series analysis water Water resources watersheds |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46X_RBvGJ1SgTfNNBb0uZxTMcQJ4Ib7K2kaaLC1o51Y__A3-1J14uKCr4Vmgv0nOR86fnyHYSueMJ9IWxFeCAZ8WFvJHHM4KiiGTiUayeqKMkyeGT9kX8_puPyUlhesd2rlGSxUzeX3RyXcWIoBTbEqICsNtEWNXJe4MUjt1PnDgA1FH9WOByMfAiY5VWZn8f4Go4ajPktLVpEm94e2i1hIu6s7bqPNlR6gHY-iQceovenhvOPu3U5QZxpLFL88DwcEBOiEnyr1AyXOqov2BQ_m2BDxljm0K3hnONBwatUTdPO5CWbvy1epzmGibBJYIupnmQrbAp6SpEbyvQRGvXuht0-KasqEAlga0Ek4wAJjPK6ZqGdhJSGiRdqrU3KLwm9kCZUu1xRGgeUKltz4UiuYaFTePKUd4xaaZaqE4Qd15bcMyJfrvBVKGIvjKXvSwXx0E4c20JO9XEjWUqOm8oXk6gRSzYGicAgUWGQaGWh67rPbC248WfrdmWzqFx8eeRSQD0BHASphS7r17BsTC5EpCpbQhtmhPMB7TAL3VS2bob4fcbT_zU_Q9tu4W6GldZGrcV8qc4Bxizii8JrPwC09-jy priority: 102 providerName: Springer Nature |
| Title | Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting |
| URI | https://link.springer.com/article/10.1007/s11269-021-02937-w https://www.proquest.com/docview/2582277165 https://www.proquest.com/docview/2636475126 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7Qs8IMaHKIzKSLyBReLEafwwTWVrNwGtJlil8RQ5_tgeuqSsrfof8HfvLk0aQGJvUWLHku_sO_vufj-A98qqWOvAcTUwCY9xb-R5nuBRxSeoUCKwrqJkmUyT81n85Upe7cG0qYWhtMpmT6w2alsauiP_JCSasgF69_J48YsTaxRFVxsKDV1TK9ijCmJsH7qCkLE60P08ml5838UV0KOobl0UHppiNKZ1Gc22mC4UieKUshCgDRzwzd-mqvU__wmZVpZo_BSe1C4kG25lfgB7rngGj_8AFnwOvy_aegB2sqMaZKVnumDfflxOOJkvy06dW7AaY_WaETHanFGixnqJ3dp8dDapci5d23Q4v8bZWd3cLhkOxCi4rW_9vNwwIvs0eknp1C9gNh5dnpzzmnGBG3TEVtwkCt0FQmX3SRrYVMrURqn3nsKBNo1SaaUXykmZD6R0gVc6NMrjJiDxKXLRS-gUZeFeAQtFYFREAGBCxy7VeZTmJo6NQ8EENgx6EDaTm5kajpxYMeZZC6RMAslQIFklkGzTgw-7PostGMeDrQ8bmWX1wlxmrRr14N3uMy4pipPowpVrbJMQqD56QkkPPjaybn_x_xFfPzziG3gkKvWiDLVD6Kzu1u4tujSrvA_76fisD93h2c-vo36ttfh2Job34jH1bQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEE-RUmCR4AQr7LXX8R4qVPpQSpOoglTqzaz3UQ6pneJEEX-An8VvY8axY0Cit94seR_SzuzO7M7M9wG8VlbFWgeOq75JeIxnI8_zBK8qPkGFEoF1NSXLaJwMzuJP5_J8A361tTCUVtmeifVBbUtDb-TvhURT1kfvXn6YXXFijaLoakuhoRtqBbtbQ4w1hR0n7scSr3DV7vEByvuNEEeHk_0Bb1gGuEHnY85NotBEEhK5T9LAplKmNkq99xQCs2mUSiu9UE7KvC-lC7zSoVEeFV_iV-QiHPcWbMVRrPDyt_XxcHz6eR3HQA-mfuVReEmL0Xg3ZTur4r1QJIpTigROHvX58m_T2Pm7_4Roa8t3dB_uNS4r21vp2APYcMVDuPsHkOEj-Hna1R-w_TW1ISs90wUbfpmMOJlLyw6cm7EG0_WCERHblFFiyKLCbl3-OxvVOZ6ua7o3vUBpzL9dVgwnYhRM15d-Wi4ZkYsaXVH69mM4u5G1fwKbRVm4p8BCERgVEeCY0LFLdR6luYlj49A2BzYMehC2i5uZBv6cWDimWQfcTALJUCBZLZBs2YO36z6zFfjHta13WpllzUFQZZ3a9uDV-jduYYrL6MKVC2yTEIg_el5JD961su6G-P-M29fP-BJuDyajYTY8Hp88gzuiVjXKjtuBzfn3hXuO7tQ8f9HoLIOvN71NfgNxMS1p |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4oPKnLpRiJDiB1cSJk_hQoarL0tJuVYlW6i04_imHbbKQXa14AR6Kp-tMNtkAEr31Fim2R_KMZ8aemW8A3iirYq0Dx1VqEh6jbuRFkeBVxScoUCKwrmnJMj5JDs7jzxfyYg1-d7UwlFbZ6cRGUdvK0Bv5jpBoylL07uWOb9MiToejD9PvnDpIUaS1a6exFJEj93OB17d693CIvH4rxOjj2f4BbzsMcIOOx4ybRKF5JBRyn2SBzaTMbJR57yn8ZbMok1Z6oZyURSqlC7zSoVEehV7iV-QiXPcO3E0JxZ2q1EefVhEM9F2a9x2F17MYzXZbsLMs2wtFojglRyDpKOWLv41i7-n-E5xtbN5oAx62zirbW0rXI1hz5WN48AeE4RP4ddpXHrD9VVNDVnmmS3b85WzMyVBaNnRuylo010tGLdgmjFJC5jVO6zPf2bjJ7nT90L3JJe797NtVzZAQozC6vvKTasGorajRNSVuP4XzW9n5Z7BeVqXbBBaKwKiIoMaEjl2miygrTBwbh1Y5sGEwgLDb3Ny0wOfUf2OS95DNxJAcGZI3DMkXA3i3mjNdwn7cOHqr41neqoA67wV2AK9Xv_HwUkRGl66a45iE4PvR50oG8L7jdb_E_yk-v5niK7iHhyM_Pjw5egH3RSNplBa3BeuzH3P3Ev2oWbHdCCyDr7d9Qq4BIWorAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+of+an+LSTM-based+Deep+Learning+Model+versus+Conventional+Machine+Learning+Algorithms+for+Streamflow+Forecasting&rft.jtitle=Water+resources+management&rft.au=Rahimzad+Maryam&rft.au=Moghaddam%2C+Nia+Alireza&rft.au=Zolfonoon+Hosam&rft.au=Soltani+Jaber&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=12&rft.spage=4167&rft.epage=4187&rft_id=info:doi/10.1007%2Fs11269-021-02937-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |