Robust semi-supervised clustering with polyhedral and circular uncertainty

We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 265; pp. 4 - 27
Main Authors Dinler, Derya, Tural, Mustafa Kemal
Format Journal Article
LanguageEnglish
Published Elsevier B.V 22.11.2017
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
1872-8286
DOI10.1016/j.neucom.2017.04.073

Cover

Abstract We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance level constraints. The objective function considered minimizes the total of the sum of the violation costs of the unsatisfied instance level constraints and a weighted sum of squared maximum Euclidean distances between the locations of the data objects and the centroids of the clusters they are assigned to. Given a cluster, we first consider the problem of computing its centroid, namely the centroid computation problem under uncertainty (CCPU). We show that the CCPU can be modeled as a second order cone programing problem and hence can be efficiently solved to optimality. As the CCPU is one of the key ingredients of the several algorithms considered in this paper, a subgradient algorithm is also adopted for its faster solution. We then propose a mixed-integer second order cone programing formulation for the considered clustering problem which is only able to solve small-size instances to optimality. For larger instances, approaches from the semi-supervised clustering literature are modified and compared in terms of computational time and quality.
AbstractList We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance level constraints. The objective function considered minimizes the total of the sum of the violation costs of the unsatisfied instance level constraints and a weighted sum of squared maximum Euclidean distances between the locations of the data objects and the centroids of the clusters they are assigned to. Given a cluster, we first consider the problem of computing its centroid, namely the centroid computation problem under uncertainty (CCPU). We show that the CCPU can be modeled as a second order cone programing problem and hence can be efficiently solved to optimality. As the CCPU is one of the key ingredients of the several algorithms considered in this paper, a subgradient algorithm is also adopted for its faster solution. We then propose a mixed-integer second order cone programing formulation for the considered clustering problem which is only able to solve small-size instances to optimality. For larger instances, approaches from the semi-supervised clustering literature are modified and compared in terms of computational time and quality.
Author Tural, Mustafa Kemal
Dinler, Derya
Author_xml – sequence: 1
  givenname: Derya
  surname: Dinler
  fullname: Dinler, Derya
  email: dinler@metu.edu.tr
– sequence: 2
  givenname: Mustafa Kemal
  surname: Tural
  fullname: Tural, Mustafa Kemal
  email: tural@metu.edu.tr
BookMark eNqNkMtKxDAUhoOM4Dj6Bi76Aq25NL24EGTwyoAgug5pesbJkElLks7QtzdDXblQVwfOf77_wHeOZrazgNAVwRnBpLjeZhYG1e0yikmZ4TzDJTtBc1KVNK1oVczQHNeUp5QReobOvd_ieEhoPUcvb10z-JB42OnUDz24vfbQJsrELThtP5ODDpuk78y4gdZJk0gbY-3UYKRLBqvABaltGC_Q6VoaD5ffc4E-Hu7fl0_p6vXxeXm3ShXjNKSKStYALjkvciCKt4Thcs1U3ZCmVjKGvChzWfMGyoqQltaEQoXrllVSyYaxBeJT72B7OR6kMaJ3eifdKAgWRyFiKyYh4ihE4FxEIZG7mTjlOu8drIXSQQbd2eCkNn_B-Q_4nz9vJwyikL0GJ7zSEJ212oEKou307wVfZkSUcw
CitedBy_id crossref_primary_10_1016_j_patcog_2020_107411
crossref_primary_10_1080_03610918_2019_1620274
Cites_doi 10.1016/j.cor.2014.09.001
10.1016/j.eswa.2013.08.046
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TPAMI.2004.1262179
10.1111/j.1467-9787.1974.tb00428.x
10.1007/s10589-010-9392-9
10.1016/j.asoc.2012.08.005
10.1111/j.1467-9787.1974.tb00435.x
10.1007/s10107-002-0339-5
10.1016/0377-0427(87)90125-7
10.1016/S0305-0548(00)00106-4
10.1002/sam.10064
10.1007/s00500-015-1783-5
10.1007/978-3-642-00668-5_16
10.1023/A:1020901719463
10.1007/s10489-015-0656-z
10.1007/s00180-006-0261-z
10.1051/ro/1995290100351
10.1057/jors.1982.209
10.1137/0213014
10.1007/BF01908075
10.1007/s00180-006-0260-0
10.1016/j.patrec.2008.04.008
10.1007/s00186-006-0084-2
10.1111/j.1467-9787.1972.tb00345.x
10.1016/j.eswa.2012.07.021
10.1016/S0024-3795(98)10032-0
10.1016/0041-5553(69)90061-5
10.1016/S0031-3203(02)00060-2
10.1016/j.knosys.2010.06.003
10.1016/j.patrec.2003.10.016
10.1016/0304-3975(85)90224-5
10.3390/s20700258
10.1007/978-3-642-31537-4_19
10.1186/2193-1801-3-465
10.1007/s10618-006-0040-z
10.1016/S0031-3203(99)00216-2
10.1109/TKDE.2011.221
10.1016/j.eswa.2016.01.005
10.1093/comjnl/26.4.354
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.neucom.2017.04.073
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 27
ExternalDocumentID oai:open.metu.edu.tr:11511/41584
10_1016_j_neucom_2017_04_073
S0925231217310111
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c352t-c2a3be075564e1c5d1307f3c9b1b9caa3b5674a95be7811d2912e809d38acab33
IEDL.DBID UNPAY
ISSN 0925-2312
1872-8286
IngestDate Sun Oct 26 04:17:14 EDT 2025
Wed Oct 01 02:27:34 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Fri Feb 23 02:30:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Clustering
Semi-supervised learning
Second order cone programing
Heuristics
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-c2a3be075564e1c5d1307f3c9b1b9caa3b5674a95be7811d2912e809d38acab33
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/11511/41584
PageCount 24
ParticipantIDs unpaywall_primary_10_1016_j_neucom_2017_04_073
crossref_citationtrail_10_1016_j_neucom_2017_04_073
crossref_primary_10_1016_j_neucom_2017_04_073
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_04_073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-22
PublicationDateYYYYMMDD 2017-11-22
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-22
  day: 22
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lobo, Vandenberghe, Boyd, Lebret (bib0052) 1998; 284
Saha, Ekbal, Alok, Spandana (bib0066) 2014; 3
L. Vandenberghe, Subgradient Method, Lecture notes of EE236c, University of California, Los Angeles (Spring Quarter, 2016).
L. Kaufman, P.J. Rousseeuw, Partitioning Around Medoids (Program PAM), John Wiley and Sons, Inc., pp. 68–125.
L. Billard, E. Diday, Principal Component Analysis, John Wiley & Sons Inc., Hoboken, NJ, p. 166.
Hansen, Mladenovic (bib0040) 2001; 34
Brimberg, Wesolowsky (bib0014) 2002; 29
M. Lichman, UCI machine learning repository, 2013. University of California, Irvine, School of Information and Computer Sciences.
Carvalho, Brito, Bock (bib0018) 2006; 21
Saha, Kaushik, Alok, Acharya (bib0067) 2016; 20
Polyak (bib0061) 1969; 9
C. C. Aggarwal, A Survey of Uncertain Data Clustering Algorithms, Chapman and Hall/CRC. doi
Irpino, Verde (bib0044) 2008; 29
Basu, Banerjee, Mooney (bib0007) 2002
Aly, Marucheck (bib0004) 1982; 13
Drezner, Wesolowsky (bib0031) 2000; 38
Gonzalez (bib0037) 1985; 38
Dinler, Tural, Iyigun (bib0030) 2015; 62
Jiang, Yuan (bib0047) 2012; 51
Lee, Kao, Cheng (bib0049) 2007
Portela, Cavalcanti, Ren (bib0062) 2014; 41
Xu, Wunsch (bib0075) 2008
Ghiasi, Srivastava, Yang, Sarrafzadeh (bib0036) 2002; 2
MacQueen (bib0054) 1967; 1
Jiang, Xu (bib0046) 2006; 64
Boyd, Vandenberghe (bib0013) 2004
Figueiredo (bib0034) March 8--10, 2006
Basu, Banerjee, Mooney (bib0008) 2004; 4
de Souza, de A.T. de Carvalho (bib0027) 2004; 25
.
Wagstaff, Cardie, Rogers, Schroedl (bib0073) 2001; 1
Davidson, Ravi (bib0025) 2005
Manning, Raghavan, Schtze (bib0055) 2008
Megiddo, Supowit (bib0056) 1984; 13
H. Calik, M. Labbé, H. Yaman, Location Science, Springer International Publishing, Cham, pp. 79–92.
Huang, Mitchell (bib0042) 2006
S. Boyd, A. Mutapcic, Subgradient Methods, Lecture notes of EE364b, Stanford University (Winter Quarter, 2006, 2007).
Chavent, Carvalho, Lechevallier, Verde (bib0022) 2006; 21
Yu, Shi (bib0076) 2004; 26
Alok, Saha, Ekbal (bib0003) 2015; 43
Celebi, Kingravi, Vela (bib0019) 2013; 40
Saha, Alok, Ekbal (bib0064) 2016; 52
Howard (bib0041) 1966
Cooper (bib0023) 1974; 14
J. Ebrahimi, M. Saniee Abadeh, Semi Supervised Clustering: A Pareto Approach, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 237–251.
Zhu, Wang, Li (bib0077) 2010; 23
Demiriz, Bennett, Embrechts (bib0028) 1999
Basu, Bilenko, Mooney (bib0009) 2003
Davidson, Ravi (bib0026) 2005
Bennet, Mirakhor (bib0010) 1974; 14
Duda, Hart (bib0032) 1973; 3
A. Schönhuth, I.G. Costa, A. Schliep, Cooperation in classification and data analysis, in: Proceedings of the Two German–Japanese Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 151–159.
Banerjee, Ghosh (bib0005) 2006; 13
Fisher (bib0035) 1936; 7
Strehl, Ghosh, Mooney (bib0070) 2000
Carrizosa, Conde, Munoz-Marquez, Puerto (bib0017) 1995; 29
Ngai, Kao, Chui, Cheng, Chau, Yip (bib0059) 2006
Dinler, Tural, Iyigun (bib0029) 2014
Shor (bib0069) 1962; 1
Love (bib0053) 1972; 12
Wagstaff, Cardie (bib0072) 2000
Rousseeuw (bib0063) 1987; 20
Pensa, Boulicaut, Cordero, Atzori (bib0060) 2010; 3
Chau, Cheng, Kao, Ng (bib0020) April 9-12, 2006
Miyamoto, Terami (bib0057) 2011
M. Chavent, Y. Lechevallier, Classification, Clustering, and Data Analysis: Recent Advances and Applications, Springer, Berlin, Heidelberg, pp. 53–60.
Hubert, Arabie (bib0043) 1985; 2
Wang, Youlian (bib0074) 2014; 7
Gullo, Ponti, Tagarelli (bib0038) October 1--3, 2008
Michael Grant and Stephen Boyd CVX: Matlab software for disciplined convex programming, version 2.1, 2014.
Brimberg, Wesolowsky (bib0015) 2002; 11
Basu (bib0006) 2005
Saha, Bandyopadhyay (bib0065) 2013; 13
Gurobi Optimization, Inc., Gurobi optimizer reference manual, 2016.
Likas, Vlassis, Verbeek (bib0051) 2003; 36
Alizadeh, Goldfarb (bib0002) 2003; 95
Jiang, Pei, Tao, Lin (bib0045) 2013; 25
Murtagh (bib0058) 1983; 26
Irpino (10.1016/j.neucom.2017.04.073_bib0044) 2008; 29
Davidson (10.1016/j.neucom.2017.04.073_bib0026) 2005
Ghiasi (10.1016/j.neucom.2017.04.073_bib0036) 2002; 2
Huang (10.1016/j.neucom.2017.04.073_bib0042) 2006
Basu (10.1016/j.neucom.2017.04.073_bib0008) 2004; 4
Chau (10.1016/j.neucom.2017.04.073_bib0020) 2006
Jiang (10.1016/j.neucom.2017.04.073_bib0045) 2013; 25
Basu (10.1016/j.neucom.2017.04.073_bib0009) 2003
Jiang (10.1016/j.neucom.2017.04.073_bib0047) 2012; 51
Saha (10.1016/j.neucom.2017.04.073_bib0067) 2016; 20
10.1016/j.neucom.2017.04.073_bib0071
Alok (10.1016/j.neucom.2017.04.073_bib0003) 2015; 43
Figueiredo (10.1016/j.neucom.2017.04.073_sbref0027) 2006
Gullo (10.1016/j.neucom.2017.04.073_bib0038) 2008
Yu (10.1016/j.neucom.2017.04.073_bib0076) 2004; 26
Shor (10.1016/j.neucom.2017.04.073_bib0069) 1962; 1
10.1016/j.neucom.2017.04.073_bib0033
10.1016/j.neucom.2017.04.073_bib0039
Murtagh (10.1016/j.neucom.2017.04.073_bib0058) 1983; 26
Love (10.1016/j.neucom.2017.04.073_bib0053) 1972; 12
Wang (10.1016/j.neucom.2017.04.073_bib0074) 2014; 7
Rousseeuw (10.1016/j.neucom.2017.04.073_bib0063) 1987; 20
Polyak (10.1016/j.neucom.2017.04.073_bib0061) 1969; 9
Carrizosa (10.1016/j.neucom.2017.04.073_bib0017) 1995; 29
Aly (10.1016/j.neucom.2017.04.073_bib0004) 1982; 13
Wagstaff (10.1016/j.neucom.2017.04.073_bib0073) 2001; 1
Basu (10.1016/j.neucom.2017.04.073_sbref0005) 2005
de Souza (10.1016/j.neucom.2017.04.073_bib0027) 2004; 25
Dinler (10.1016/j.neucom.2017.04.073_bib0029) 2014
Banerjee (10.1016/j.neucom.2017.04.073_bib0005) 2006; 13
Wagstaff (10.1016/j.neucom.2017.04.073_bib0072) 2000
Manning (10.1016/j.neucom.2017.04.073_bib0055) 2008
Boyd (10.1016/j.neucom.2017.04.073_bib0013) 2004
Hansen (10.1016/j.neucom.2017.04.073_bib0040) 2001; 34
Drezner (10.1016/j.neucom.2017.04.073_bib0031) 2000; 38
10.1016/j.neucom.2017.04.073_bib0001
Miyamoto (10.1016/j.neucom.2017.04.073_bib0057) 2011
MacQueen (10.1016/j.neucom.2017.04.073_bib0054) 1967; 1
Celebi (10.1016/j.neucom.2017.04.073_bib0019) 2013; 40
10.1016/j.neucom.2017.04.073_bib0048
Saha (10.1016/j.neucom.2017.04.073_bib0065) 2013; 13
Bennet (10.1016/j.neucom.2017.04.073_bib0010) 1974; 14
Cooper (10.1016/j.neucom.2017.04.073_bib0023) 1974; 14
Duda (10.1016/j.neucom.2017.04.073_bib0032) 1973; 3
Portela (10.1016/j.neucom.2017.04.073_bib0062) 2014; 41
Jiang (10.1016/j.neucom.2017.04.073_bib0046) 2006; 64
Pensa (10.1016/j.neucom.2017.04.073_bib0060) 2010; 3
Ngai (10.1016/j.neucom.2017.04.073_bib0059) 2006
Basu (10.1016/j.neucom.2017.04.073_bib0007) 2002
Demiriz (10.1016/j.neucom.2017.04.073_bib0028) 1999
Zhu (10.1016/j.neucom.2017.04.073_bib0077) 2010; 23
Strehl (10.1016/j.neucom.2017.04.073_bib0070) 2000
Chavent (10.1016/j.neucom.2017.04.073_bib0022) 2006; 21
Likas (10.1016/j.neucom.2017.04.073_bib0051) 2003; 36
Saha (10.1016/j.neucom.2017.04.073_bib0064) 2016; 52
Dinler (10.1016/j.neucom.2017.04.073_bib0030) 2015; 62
10.1016/j.neucom.2017.04.073_bib0050
Fisher (10.1016/j.neucom.2017.04.073_bib0035) 1936; 7
10.1016/j.neucom.2017.04.073_bib0011
Howard (10.1016/j.neucom.2017.04.073_bib0041) 1966
Alizadeh (10.1016/j.neucom.2017.04.073_bib0002) 2003; 95
10.1016/j.neucom.2017.04.073_bib0012
Hubert (10.1016/j.neucom.2017.04.073_bib0043) 1985; 2
Davidson (10.1016/j.neucom.2017.04.073_bib0025) 2005
Brimberg (10.1016/j.neucom.2017.04.073_bib0014) 2002; 29
10.1016/j.neucom.2017.04.073_bib0016
Brimberg (10.1016/j.neucom.2017.04.073_bib0015) 2002; 11
Saha (10.1016/j.neucom.2017.04.073_bib0066) 2014; 3
Lee (10.1016/j.neucom.2017.04.073_bib0049) 2007
Gonzalez (10.1016/j.neucom.2017.04.073_bib0037) 1985; 38
Carvalho (10.1016/j.neucom.2017.04.073_bib0018) 2006; 21
Lobo (10.1016/j.neucom.2017.04.073_bib0052) 1998; 284
Xu (10.1016/j.neucom.2017.04.073_bib0075) 2008
Megiddo (10.1016/j.neucom.2017.04.073_bib0056) 1984; 13
10.1016/j.neucom.2017.04.073_bib0021
10.1016/j.neucom.2017.04.073_bib0024
10.1016/j.neucom.2017.04.073_bib0068
References_xml – start-page: 413
  year: 2006
  end-page: 420
  ident: bib0042
  article-title: Text clustering with extended user feedback
  publication-title: Proceedings of the Twenty-ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 38
  start-page: 359
  year: 2000
  end-page: 372
  ident: bib0031
  article-title: Location models with groups of demand points
  publication-title: INFOR
– start-page: 229
  year: October 1--3, 2008
  end-page: 242
  ident: bib0038
  article-title: Clustering uncertain data via K-medoids
  publication-title: Proceedings, Scalable Uncertainty Management: Second International Conference, SUM 2008, Naples, Italy
– year: 2014
  ident: bib0029
  article-title: Location problems with demand regions
  publication-title: Global Logistic Management
– start-page: 1103
  year: 2000
  end-page: 1110
  ident: bib0072
  article-title: Clustering with instance-level constraints
  publication-title: Proceedings of the Seventeenth International Conference on Machine Learning
– volume: 29
  start-page: 35
  year: 1995
  end-page: 57
  ident: bib0017
  article-title: The generalized Weber problem with expected distances
  publication-title: RAIRO Oper. Res.
– start-page: 436
  year: 2006
  end-page: 445
  ident: bib0059
  article-title: Efficient clustering of uncertain data
  publication-title: Proceedings of the Sixth International Conference on Data Mining, ICDM ’06
– year: 2004
  ident: bib0013
  article-title: Convex Optimization
– volume: 62
  start-page: 237
  year: 2015
  end-page: 256
  ident: bib0030
  article-title: Heuristics for a continuous multi-facility location problem with demand regions
  publication-title: Comput. Oper. Res.
– start-page: 483
  year: 2007
  end-page: 488
  ident: bib0049
  article-title: Reducing UK-means to
  publication-title: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW ’07
– volume: 11
  start-page: 151
  year: 2002
  end-page: 165
  ident: bib0015
  article-title: Minisum location with closest Euclidean distances
  publication-title: Ann. Oper. Res.
– volume: 40
  start-page: 200
  year: 2013
  end-page: 210
  ident: bib0019
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
– volume: 64
  start-page: 285
  year: 2006
  end-page: 308
  ident: bib0046
  article-title: Minisum location problem with farthest Euclidean distances
  publication-title: Math. Methods Oper. Res.
– start-page: 19
  year: 2002
  end-page: 26
  ident: bib0007
  article-title: Semi-supervised clustering by seeding
  publication-title: Proceedings of the Nineteenth International Conference on Machine Learning
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0063
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 52
  start-page: 50
  year: 2016
  end-page: 63
  ident: bib0064
  article-title: Brain image segmentation using semi-supervised clustering
  publication-title: Expert Syst. Appl.
– reference: C. C. Aggarwal, A Survey of Uncertain Data Clustering Algorithms, Chapman and Hall/CRC. doi:
– volume: 95
  start-page: 3
  year: 2003
  end-page: 51
  ident: bib0002
  article-title: Second-order cone programming
  publication-title: Math. Program.
– start-page: 39
  year: March 8--10, 2006
  end-page: 50
  ident: bib0034
  article-title: Advances in data analysis
  publication-title: Proceedings of the Thirtieth Annual Conference of the Gesellschaft für Klassifikation e.V.
– reference: Gurobi Optimization, Inc., Gurobi optimizer reference manual, 2016.
– volume: 41
  start-page: 1492
  year: 2014
  end-page: 1497
  ident: bib0062
  article-title: Semi-supervised clustering for MR brain image segmentation
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: bib0037
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– volume: 43
  start-page: 633
  year: 2015
  end-page: 661
  ident: bib0003
  article-title: A new semi-supervised clustering technique using multi-objective optimization
  publication-title: Appl. Intell.
– volume: 3
  start-page: 465
  year: 2014
  ident: bib0066
  article-title: Feature selection and semi-supervised clustering using multiobjective optimization
  publication-title: SpringerPlus
– volume: 13
  start-page: 182
  year: 1984
  end-page: 196
  ident: bib0056
  article-title: On the complexity of some common geometric location problems
  publication-title: SIAM J. Comput.
– year: 2008
  ident: bib0055
  article-title: Introduction to Information Retrieval
– volume: 14
  start-page: 131
  year: 1974
  end-page: 136
  ident: bib0010
  article-title: Optimal facility location with respect to several regions
  publication-title: J. Reg. Sci.
– year: 1966
  ident: bib0041
  article-title: Classifying a population into homogeneous groups
  publication-title: Operational Research in the Social Sciences
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bib0051
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
– year: 2008
  ident: bib0075
  article-title: Clustering
– volume: 29
  start-page: 625
  year: 2002
  end-page: 636
  ident: bib0014
  article-title: Locating facilites by minimax relative to closest points of demand areas
  publication-title: Comput. Oper. Res.
– year: 2005
  ident: bib0006
  publication-title: Semi-supervised Clustering: Probabilistic Models, Algorithms and Experiments
– start-page: 199
  year: April 9-12, 2006
  end-page: 204
  ident: bib0020
  article-title: Uncertain data mining: an example in clustering location data
  publication-title: Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD
– reference: L. Billard, E. Diday, Principal Component Analysis, John Wiley & Sons Inc., Hoboken, NJ, p. 166.
– volume: 9
  start-page: 14
  year: 1969
  end-page: 29
  ident: bib0061
  article-title: Minimization of unsmooth functionals
  publication-title: USSR Comput. Math. Math. Phys.
– start-page: 59
  year: 2005
  end-page: 70
  ident: bib0025
  article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results
  publication-title: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2005)
– start-page: 138
  year: 2005
  end-page: 149
  ident: bib0026
  article-title: Clustering with constraints: feasibility issues and the
  publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining
– reference: A. Schönhuth, I.G. Costa, A. Schliep, Cooperation in classification and data analysis, in: Proceedings of the Two German–Japanese Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 151–159.
– start-page: 809
  year: 1999
  end-page: 814
  ident: bib0028
  article-title: Semi-supervised clustering using genetic algorithms
  publication-title: Proceedings of the Artificial Neural Networks in Engineering (ANNIE-99
– volume: 21
  start-page: 211
  year: 2006
  end-page: 229
  ident: bib0022
  article-title: New clustering methods for interval data
  publication-title: Comput. Stat.
– volume: 13
  start-page: 365
  year: 2006
  end-page: 395
  ident: bib0005
  article-title: Scalable clustering algorithms with balancing constraints
  publication-title: Data Min. Knowl. Disc.
– volume: 20
  start-page: 3381
  year: 2016
  end-page: 3392
  ident: bib0067
  article-title: Multi-objective semi-supervised clustering of tissue samples for cancer diagnosis
  publication-title: Soft Comput.
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: bib0054
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– reference: M. Chavent, Y. Lechevallier, Classification, Clustering, and Data Analysis: Recent Advances and Applications, Springer, Berlin, Heidelberg, pp. 53–60.
– volume: 25
  start-page: 353
  year: 2004
  end-page: 365
  ident: bib0027
  article-title: Clustering of interval data based on cityblock distances
  publication-title: Pattern Recognit. Lett.
– start-page: 42
  year: 2003
  end-page: 49
  ident: bib0009
  article-title: Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering
  publication-title: Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems
– volume: 51
  start-page: 1275
  year: 2012
  end-page: 1295
  ident: bib0047
  article-title: A Barzilai–Borwein-based heuristic algorithm for locating multiple facilities with regional demand
  publication-title: Comput. Optim. Appl.
– reference: H. Calik, M. Labbé, H. Yaman, Location Science, Springer International Publishing, Cham, pp. 79–92.
– reference: J. Ebrahimi, M. Saniee Abadeh, Semi Supervised Clustering: A Pareto Approach, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 237–251.
– volume: 21
  start-page: 231
  year: 2006
  end-page: 250
  ident: bib0018
  article-title: Dynamic clustering for interval data based on
  publication-title: Comput. Stat.
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib0035
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– volume: 284
  start-page: 193
  year: 1998
  end-page: 228
  ident: bib0052
  article-title: Applications of second-order cone programming
  publication-title: Linear Algebra Appl.
– volume: 3
  year: 1973
  ident: bib0032
  article-title: Pattern Classification and Scene Analysis
– volume: 26
  start-page: 354
  year: 1983
  end-page: 359
  ident: bib0058
  article-title: A survey of recent advances in hierarchical clustering algorithms
  publication-title: Comput. J.
– volume: 1
  start-page: 577
  year: 2001
  end-page: 584
  ident: bib0073
  article-title: Constrained
  publication-title: Proceedings of the Eighteenth International Conference on Machine Learning
– volume: 23
  start-page: 883
  year: 2010
  end-page: 889
  ident: bib0077
  article-title: Data clustering with size constraints
  publication-title: Knowl. Based Syst.
– volume: 14
  start-page: 47
  year: 1974
  end-page: 54
  ident: bib0023
  article-title: A random locational equilibrium problem
  publication-title: J. Reg. Sci.
– volume: 34
  start-page: 405
  year: 2001
  end-page: 413
  ident: bib0040
  article-title: J-means: a new local search heuristic for minimum sum of squares clustering
  publication-title: Pattern Recognit.
– volume: 2
  start-page: 258
  year: 2002
  end-page: 269
  ident: bib0036
  article-title: Optimal energy aware clustering in sensor networks
  publication-title: Sensors
– volume: 12
  start-page: 233
  year: 1972
  end-page: 242
  ident: bib0053
  article-title: A computational procedure for optimally locating a facility with respect to several rectangular regions
  publication-title: J. Reg. Sci.
– reference: S. Boyd, A. Mutapcic, Subgradient Methods, Lecture notes of EE364b, Stanford University (Winter Quarter, 2006, 2007).
– reference: L. Kaufman, P.J. Rousseeuw, Partitioning Around Medoids (Program PAM), John Wiley and Sons, Inc., pp. 68–125.
– volume: 26
  start-page: 173
  year: 2004
  end-page: 183
  ident: bib0076
  article-title: Segmentation given partial grouping constraints
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 4
  start-page: 333
  year: 2004
  end-page: 344
  ident: bib0008
  article-title: Active semi-supervision for pairwise constrained clustering.
  publication-title: Proceedings of the SIAM International Conference on Data Mining
– volume: 13
  start-page: 983
  year: 1982
  end-page: 989
  ident: bib0004
  article-title: Generalized Weber problem with rectangular regions
  publication-title: J. Oper. Res. Soc.
– reference: L. Vandenberghe, Subgradient Method, Lecture notes of EE236c, University of California, Los Angeles (Spring Quarter, 2016).
– reference: .
– start-page: 422
  year: 2011
  end-page: 427
  ident: bib0057
  article-title: Constrained agglomerative hierarchical clustering algorithms with penalties
  publication-title: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems
– start-page: 58
  year: 2000
  end-page: 64
  ident: bib0070
  article-title: Impact of similarity measures on web-page clustering
  publication-title: Proceedings of the Workshop on Artificial Intelligence for Web Search (AAAI 2000)
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: bib0043
  article-title: Comparing partitions
  publication-title: J. Classif.
– volume: 29
  start-page: 1648
  year: 2008
  end-page: 1658
  ident: bib0044
  article-title: Dynamic clustering of interval data using a Wasserstein-based distance
  publication-title: Pattern Recognit. Lett.
– volume: 1
  start-page: 9
  year: 1962
  end-page: 17
  ident: bib0069
  article-title: Application of the gradient method for the solution of network transportation problems
  publication-title: Scientific Seminar on Theory and Application of Cybernetics and Operations Research
– reference: Michael Grant and Stephen Boyd CVX: Matlab software for disciplined convex programming, version 2.1, 2014.
– volume: 25
  start-page: 751
  year: 2013
  end-page: 763
  ident: bib0045
  article-title: Clustering uncertain data based on probability distribution similarity
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: M. Lichman, UCI machine learning repository, 2013. University of California, Irvine, School of Information and Computer Sciences.
– volume: 3
  start-page: 38
  year: 2010
  end-page: 55
  ident: bib0060
  article-title: Co-clustering numerical data under user-defined constraints
  publication-title: Stat. Anal. Data Min.
– volume: 13
  start-page: 89
  year: 2013
  end-page: 108
  ident: bib0065
  article-title: A generalized automatic clustering algorithm in a multiobjective framework
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0074
  article-title: Semi-supervised consensus clustering for gene expression data analysis
  publication-title: BioData Min.
– volume: 62
  start-page: 237
  year: 2015
  ident: 10.1016/j.neucom.2017.04.073_bib0030
  article-title: Heuristics for a continuous multi-facility location problem with demand regions
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.09.001
– volume: 41
  start-page: 1492
  issue: 4, Part 1
  year: 2014
  ident: 10.1016/j.neucom.2017.04.073_bib0062
  article-title: Semi-supervised clustering for MR brain image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.046
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.neucom.2017.04.073_bib0035
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 26
  start-page: 173
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2017.04.073_bib0076
  article-title: Segmentation given partial grouping constraints
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1262179
– volume: 14
  start-page: 47
  year: 1974
  ident: 10.1016/j.neucom.2017.04.073_bib0023
  article-title: A random locational equilibrium problem
  publication-title: J. Reg. Sci.
  doi: 10.1111/j.1467-9787.1974.tb00428.x
– volume: 51
  start-page: 1275
  year: 2012
  ident: 10.1016/j.neucom.2017.04.073_bib0047
  article-title: A Barzilai–Borwein-based heuristic algorithm for locating multiple facilities with regional demand
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-010-9392-9
– volume: 13
  start-page: 89
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.04.073_bib0065
  article-title: A generalized automatic clustering algorithm in a multiobjective framework
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.08.005
– volume: 1
  start-page: 9
  year: 1962
  ident: 10.1016/j.neucom.2017.04.073_bib0069
  article-title: Application of the gradient method for the solution of network transportation problems
– year: 2008
  ident: 10.1016/j.neucom.2017.04.073_bib0075
– volume: 14
  start-page: 131
  year: 1974
  ident: 10.1016/j.neucom.2017.04.073_bib0010
  article-title: Optimal facility location with respect to several regions
  publication-title: J. Reg. Sci.
  doi: 10.1111/j.1467-9787.1974.tb00435.x
– volume: 95
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2017.04.073_bib0002
  article-title: Second-order cone programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0339-5
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.neucom.2017.04.073_bib0063
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– start-page: 413
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0042
  article-title: Text clustering with extended user feedback
– start-page: 1103
  year: 2000
  ident: 10.1016/j.neucom.2017.04.073_bib0072
  article-title: Clustering with instance-level constraints
– year: 2008
  ident: 10.1016/j.neucom.2017.04.073_bib0055
– volume: 29
  start-page: 625
  year: 2002
  ident: 10.1016/j.neucom.2017.04.073_bib0014
  article-title: Locating facilites by minimax relative to closest points of demand areas
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(00)00106-4
– start-page: 199
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0020
  article-title: Uncertain data mining: an example in clustering location data
– volume: 4
  start-page: 333
  year: 2004
  ident: 10.1016/j.neucom.2017.04.073_bib0008
  article-title: Active semi-supervision for pairwise constrained clustering.
– volume: 3
  start-page: 38
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2017.04.073_bib0060
  article-title: Co-clustering numerical data under user-defined constraints
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10064
– start-page: 436
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0059
  article-title: Efficient clustering of uncertain data
– volume: 20
  start-page: 3381
  issue: 9
  year: 2016
  ident: 10.1016/j.neucom.2017.04.073_bib0067
  article-title: Multi-objective semi-supervised clustering of tissue samples for cancer diagnosis
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1783-5
– ident: 10.1016/j.neucom.2017.04.073_bib0068
  doi: 10.1007/978-3-642-00668-5_16
– volume: 11
  start-page: 151
  year: 2002
  ident: 10.1016/j.neucom.2017.04.073_bib0015
  article-title: Minisum location with closest Euclidean distances
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1020901719463
– volume: 43
  start-page: 633
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2017.04.073_bib0003
  article-title: A new semi-supervised clustering technique using multi-objective optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0656-z
– volume: 21
  start-page: 231
  issue: 2
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0018
  article-title: Dynamic clustering for interval data based on L2 distance
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-006-0261-z
– volume: 29
  start-page: 35
  issue: 1
  year: 1995
  ident: 10.1016/j.neucom.2017.04.073_bib0017
  article-title: The generalized Weber problem with expected distances
  publication-title: RAIRO Oper. Res.
  doi: 10.1051/ro/1995290100351
– ident: 10.1016/j.neucom.2017.04.073_bib0039
– volume: 13
  start-page: 983
  year: 1982
  ident: 10.1016/j.neucom.2017.04.073_bib0004
  article-title: Generalized Weber problem with rectangular regions
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1982.209
– volume: 13
  start-page: 182
  issue: 1
  year: 1984
  ident: 10.1016/j.neucom.2017.04.073_bib0056
  article-title: On the complexity of some common geometric location problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213014
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 10.1016/j.neucom.2017.04.073_bib0043
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– start-page: 138
  year: 2005
  ident: 10.1016/j.neucom.2017.04.073_bib0026
  article-title: Clustering with constraints: feasibility issues and the k-means algorithm.
– volume: 7
  start-page: 1
  issue: 7
  year: 2014
  ident: 10.1016/j.neucom.2017.04.073_bib0074
  article-title: Semi-supervised consensus clustering for gene expression data analysis
  publication-title: BioData Min.
– volume: 21
  start-page: 211
  issue: 2
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0022
  article-title: New clustering methods for interval data
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-006-0260-0
– ident: 10.1016/j.neucom.2017.04.073_bib0021
– volume: 29
  start-page: 1648
  issue: 11
  year: 2008
  ident: 10.1016/j.neucom.2017.04.073_bib0044
  article-title: Dynamic clustering of interval data using a Wasserstein-based distance
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.04.008
– start-page: 422
  year: 2011
  ident: 10.1016/j.neucom.2017.04.073_bib0057
  article-title: Constrained agglomerative hierarchical clustering algorithms with penalties
– year: 1966
  ident: 10.1016/j.neucom.2017.04.073_bib0041
  article-title: Classifying a population into homogeneous groups
– start-page: 42
  year: 2003
  ident: 10.1016/j.neucom.2017.04.073_bib0009
  article-title: Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering
– volume: 3
  year: 1973
  ident: 10.1016/j.neucom.2017.04.073_bib0032
– volume: 64
  start-page: 285
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0046
  article-title: Minisum location problem with farthest Euclidean distances
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-006-0084-2
– ident: 10.1016/j.neucom.2017.04.073_bib0001
– volume: 38
  start-page: 359
  year: 2000
  ident: 10.1016/j.neucom.2017.04.073_bib0031
  article-title: Location models with groups of demand points
  publication-title: INFOR
– ident: 10.1016/j.neucom.2017.04.073_bib0024
– start-page: 229
  year: 2008
  ident: 10.1016/j.neucom.2017.04.073_bib0038
  article-title: Clustering uncertain data via K-medoids
– volume: 12
  start-page: 233
  year: 1972
  ident: 10.1016/j.neucom.2017.04.073_bib0053
  article-title: A computational procedure for optimally locating a facility with respect to several rectangular regions
  publication-title: J. Reg. Sci.
  doi: 10.1111/j.1467-9787.1972.tb00345.x
– volume: 40
  start-page: 200
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.04.073_bib0019
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.021
– year: 2014
  ident: 10.1016/j.neucom.2017.04.073_bib0029
  article-title: Location problems with demand regions
– volume: 284
  start-page: 193
  year: 1998
  ident: 10.1016/j.neucom.2017.04.073_bib0052
  article-title: Applications of second-order cone programming
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(98)10032-0
– volume: 9
  start-page: 14
  issue: 3
  year: 1969
  ident: 10.1016/j.neucom.2017.04.073_bib0061
  article-title: Minimization of unsmooth functionals
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(69)90061-5
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  ident: 10.1016/j.neucom.2017.04.073_bib0051
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– ident: 10.1016/j.neucom.2017.04.073_bib0011
– volume: 23
  start-page: 883
  issue: 8
  year: 2010
  ident: 10.1016/j.neucom.2017.04.073_bib0077
  article-title: Data clustering with size constraints
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2010.06.003
– volume: 25
  start-page: 353
  issue: 3
  year: 2004
  ident: 10.1016/j.neucom.2017.04.073_bib0027
  article-title: Clustering of interval data based on cityblock distances
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2003.10.016
– year: 2005
  ident: 10.1016/j.neucom.2017.04.073_sbref0005
– volume: 38
  start-page: 293
  year: 1985
  ident: 10.1016/j.neucom.2017.04.073_bib0037
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– start-page: 58
  year: 2000
  ident: 10.1016/j.neucom.2017.04.073_bib0070
  article-title: Impact of similarity measures on web-page clustering
– volume: 2
  start-page: 258
  issue: 7
  year: 2002
  ident: 10.1016/j.neucom.2017.04.073_bib0036
  article-title: Optimal energy aware clustering in sensor networks
  publication-title: Sensors
  doi: 10.3390/s20700258
– ident: 10.1016/j.neucom.2017.04.073_bib0033
  doi: 10.1007/978-3-642-31537-4_19
– start-page: 809
  year: 1999
  ident: 10.1016/j.neucom.2017.04.073_bib0028
  article-title: Semi-supervised clustering using genetic algorithms
– volume: 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.neucom.2017.04.073_bib0054
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 3
  start-page: 465
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2017.04.073_bib0066
  article-title: Feature selection and semi-supervised clustering using multiobjective optimization
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-3-465
– volume: 13
  start-page: 365
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_bib0005
  article-title: Scalable clustering algorithms with balancing constraints
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-006-0040-z
– volume: 34
  start-page: 405
  issue: 2
  year: 2001
  ident: 10.1016/j.neucom.2017.04.073_bib0040
  article-title: J-means: a new local search heuristic for minimum sum of squares clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00216-2
– ident: 10.1016/j.neucom.2017.04.073_bib0048
– start-page: 19
  year: 2002
  ident: 10.1016/j.neucom.2017.04.073_bib0007
  article-title: Semi-supervised clustering by seeding
– ident: 10.1016/j.neucom.2017.04.073_bib0050
– ident: 10.1016/j.neucom.2017.04.073_bib0071
– volume: 25
  start-page: 751
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2017.04.073_bib0045
  article-title: Clustering uncertain data based on probability distribution similarity
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.221
– volume: 52
  start-page: 50
  year: 2016
  ident: 10.1016/j.neucom.2017.04.073_bib0064
  article-title: Brain image segmentation using semi-supervised clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.005
– volume: 1
  start-page: 577
  year: 2001
  ident: 10.1016/j.neucom.2017.04.073_bib0073
  article-title: Constrained k-means clustering with background knowledge
– ident: 10.1016/j.neucom.2017.04.073_bib0012
– ident: 10.1016/j.neucom.2017.04.073_bib0016
– start-page: 59
  year: 2005
  ident: 10.1016/j.neucom.2017.04.073_bib0025
  article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results
– start-page: 39
  year: 2006
  ident: 10.1016/j.neucom.2017.04.073_sbref0027
  article-title: Advances in data analysis
– volume: 26
  start-page: 354
  issue: 4
  year: 1983
  ident: 10.1016/j.neucom.2017.04.073_bib0058
  article-title: A survey of recent advances in hierarchical clustering algorithms
  publication-title: Comput. J.
  doi: 10.1093/comjnl/26.4.354
– year: 2004
  ident: 10.1016/j.neucom.2017.04.073_bib0013
– start-page: 483
  year: 2007
  ident: 10.1016/j.neucom.2017.04.073_bib0049
  article-title: Reducing UK-means to k-means
SSID ssj0017129
Score 2.2133067
Snippet We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 4
SubjectTerms Clustering
Heuristics
Second order cone programing
Semi-supervised learning
Uncertainty
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqFlh4I8pLGVjdJnYSxyOqqKpKMACVukW2Y4uikEZNItSF3845jwoGVMSY-BWdnfu-RN_dIXRrmJFCRgkmXBIMeCsxpyrBQnMptCsCUefSe3gMJzN_Og_mPTTqYmGsrLL1_Y1Pr711e2fYWnOYLxbDZ5cT-IrygFMDRfHq-F7fZ7aKweBzI_PwmEeafHskwLZ3Fz5Xa7wyXVnNCIAgqxOeMvobPO1WWS7WHyJNv8HP-BDtt7zRuWse7Qj1dHaMDrqaDE77ip6g6dNSVkXpFPp9gYsqt66g0Imj0sqmRACgcuyvVydfputXnaxgTpFB82JVC1IdgLlGJFCuT9FsfP8ymuC2XgJWQKNKrIigUgMHCEJfeypIAJ-YoYpLT3IloDEImS94ILWNL00I94iOXJ7QSCghKT1DO9ky0-fISWAKZkxoYAd9SnkU6kBKVwjDgbMx00e0M1Os2mTitqZFGneqsbe4MW5sjRu7fgzG7SO8GZU3yTS29GfdDsQ_DkUM_n7LyMFmw_601MW_l7pEe_bKxicScoV2ylWlr4GolPKmPolfIgzozg
  priority: 102
  providerName: Elsevier
Title Robust semi-supervised clustering with polyhedral and circular uncertainty
URI https://dx.doi.org/10.1016/j.neucom.2017.04.073
https://hdl.handle.net/11511/41584
UnpaywallVersion submittedVersion
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL20yUP7su6jZe22IEpflcaSZVmPISxkHQujNNA9GUmW6YfnhMRmpA_77bvyRxmFrdujsa8kfGWfg33uuQBnmcyMNnFKmTKMIt4aqrhNqXbKaDfSQtdeel_m0WwRXlyL6x047WphnvgLIF8JgnMEmTjchX4kkG_3oL-Yfx1_q030mKBIUOpfmrFkdU10Vx9Xi7gKV3lRCKKcrB1NJf8T_uxVxUpvf-g8_w1fpgcw6VbWyEruh1VphvbhiWnj35f-El609JKMm_3wCnZc8RoOutYNpH2S38DF5dJUm5Js3PdbuqlW_o2xcSmxeeWdExDPiP9CS1bLfHvj0jWOiXMSe7uudasE0bDREpTbQ1hMP15NZrRtq0Atsq2SWqa5cUgVRBS6wIoUYUxm3CoTGGU1nhSRDLUSxvky1JSpgLl4pFIea6sN50fQK5aFewskxSFklkUZJjrkXMWRE8aMtM4UUjuZHQPvbnZiW89x3_oiTzpx2V3SpCjxKUpGYYIpOgb6GLVqPDeeuV52eUxa3tDwgQRh4ZnI4WPa_2mqk_8NeAf7_shXLzL2HnrlunIfkMaUZgC7w5_BAPrjT59n80G7q38Baqjznw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwRrzJwOo2seO4HhEClVcHKFI3y3YcURTSqE2EuvDbOedRwYBArPErunPu-xx9d0boPOGJVroXYyI0wYC3GgtqYqys0Mr6iqmqlt7DIOo_h7cjNlpCl20ujJNVNrG_julVtG6edBtrdvPxuPvkCwKnqAA4NVCUwOX3roSMcHcC63wsdB4BD0hdcI8w7Lq3-XOVyCuzpRONAAryquIppz_h02qZ5Wr-rtL0C_5cb6L1hjh6F_W7baElm22jjfZSBq_5RnfQ7eNEl7PCm9m3MZ6VuYsFMxt7Ji1dTQRAKs_9e_XySTp_sfEU5lQZNI-nlSLVA5yrVQLFfBc9X18NL_u4uTABG-BRBTZEUW2BBLAotIFhMQAUT6gROtDCKGhkEQ-VYNq6BNOYiIDYni9i2lNGaUr30HI2yew-8mKYgidJlIALQ0pFL7JMa1-pRABp48kBoq2ZpGmqibtLLVLZysZeZW1c6Ywr_VCCcQ8QXozK62oav_TnrQfkt10hIeD_MrKzcNifljr891JnaLU_fLiX9zeDuyO05lpcsiIhx2i5mJb2BFhLoU-rXfkJ5uvr8Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL1kycP2snZdx_o1ROmr0liyLOuxlJZSWBijge7JSLJM07lOSGxK-ut75Y9QCmu6R2NfSfjKPgf73HMBTjKZGW3ilDJlGEW8NVRxm1LtlNFupIWuvfR-jqOrSXh9K257cNzVwrzyF0C-EgSnCDJx-AEGkUC-3YfBZPzr7E9toscERYJS_9KMJatrorv6uFrEVbjKi0IQ5WTtaCr5v_DnY1XM9epR5_kLfLncgvNuZY2s5O-wKs3QPr0ybXx76dvwuaWX5KzZD1-g54od2OpaN5D2Sf4K179nplqWZOkepnRZzf0bY-lSYvPKOycgnhH_hZbMZ_nqzqULHBPnJHa6qHWrBNGw0RKUq12YXF7cnF_Rtq0Ctci2SmqZ5sYhVRBR6AIrUoQxmXGrTGCU1XhSRDLUShjny1BTpgLm4pFKeaytNpx_g34xK9x3ICkOIbMsyjDRIecqjpwwZqR1ppDayWwPeHezE9t6jvvWF3nSicvukyZFiU9RMgoTTNEe0HXUvPHc2HC97PKYtLyh4QMJwsKGyOE67e-aav9_Aw7gkz_y1YuMHUK_XFTuCGlMaX60-_gZLn7xEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+semi-supervised+clustering+with+polyhedral+and+circular+uncertainty&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Dinler%2C+Derya&rft.au=Tural%2C+Mustafa+Kemal&rft.date=2017-11-22&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=265&rft.spage=4&rft.epage=27&rft_id=info:doi/10.1016%2Fj.neucom.2017.04.073&rft.externalDocID=S0925231217310111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon