Robust semi-supervised clustering with polyhedral and circular uncertainty
We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 265; pp. 4 - 27 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
22.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 1872-8286 |
| DOI | 10.1016/j.neucom.2017.04.073 |
Cover
| Abstract | We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance level constraints. The objective function considered minimizes the total of the sum of the violation costs of the unsatisfied instance level constraints and a weighted sum of squared maximum Euclidean distances between the locations of the data objects and the centroids of the clusters they are assigned to. Given a cluster, we first consider the problem of computing its centroid, namely the centroid computation problem under uncertainty (CCPU). We show that the CCPU can be modeled as a second order cone programing problem and hence can be efficiently solved to optimality. As the CCPU is one of the key ingredients of the several algorithms considered in this paper, a subgradient algorithm is also adopted for its faster solution. We then propose a mixed-integer second order cone programing formulation for the considered clustering problem which is only able to solve small-size instances to optimality. For larger instances, approaches from the semi-supervised clustering literature are modified and compared in terms of computational time and quality. |
|---|---|
| AbstractList | We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance level constraints. The objective function considered minimizes the total of the sum of the violation costs of the unsatisfied instance level constraints and a weighted sum of squared maximum Euclidean distances between the locations of the data objects and the centroids of the clusters they are assigned to. Given a cluster, we first consider the problem of computing its centroid, namely the centroid computation problem under uncertainty (CCPU). We show that the CCPU can be modeled as a second order cone programing problem and hence can be efficiently solved to optimality. As the CCPU is one of the key ingredients of the several algorithms considered in this paper, a subgradient algorithm is also adopted for its faster solution. We then propose a mixed-integer second order cone programing formulation for the considered clustering problem which is only able to solve small-size instances to optimality. For larger instances, approaches from the semi-supervised clustering literature are modified and compared in terms of computational time and quality. |
| Author | Tural, Mustafa Kemal Dinler, Derya |
| Author_xml | – sequence: 1 givenname: Derya surname: Dinler fullname: Dinler, Derya email: dinler@metu.edu.tr – sequence: 2 givenname: Mustafa Kemal surname: Tural fullname: Tural, Mustafa Kemal email: tural@metu.edu.tr |
| BookMark | eNqNkMtKxDAUhoOM4Dj6Bi76Aq25NL24EGTwyoAgug5pesbJkElLks7QtzdDXblQVwfOf77_wHeOZrazgNAVwRnBpLjeZhYG1e0yikmZ4TzDJTtBc1KVNK1oVczQHNeUp5QReobOvd_ieEhoPUcvb10z-JB42OnUDz24vfbQJsrELThtP5ODDpuk78y4gdZJk0gbY-3UYKRLBqvABaltGC_Q6VoaD5ffc4E-Hu7fl0_p6vXxeXm3ShXjNKSKStYALjkvciCKt4Thcs1U3ZCmVjKGvChzWfMGyoqQltaEQoXrllVSyYaxBeJT72B7OR6kMaJ3eifdKAgWRyFiKyYh4ihE4FxEIZG7mTjlOu8drIXSQQbd2eCkNn_B-Q_4nz9vJwyikL0GJ7zSEJ212oEKou307wVfZkSUcw |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2020_107411 crossref_primary_10_1080_03610918_2019_1620274 |
| Cites_doi | 10.1016/j.cor.2014.09.001 10.1016/j.eswa.2013.08.046 10.1111/j.1469-1809.1936.tb02137.x 10.1109/TPAMI.2004.1262179 10.1111/j.1467-9787.1974.tb00428.x 10.1007/s10589-010-9392-9 10.1016/j.asoc.2012.08.005 10.1111/j.1467-9787.1974.tb00435.x 10.1007/s10107-002-0339-5 10.1016/0377-0427(87)90125-7 10.1016/S0305-0548(00)00106-4 10.1002/sam.10064 10.1007/s00500-015-1783-5 10.1007/978-3-642-00668-5_16 10.1023/A:1020901719463 10.1007/s10489-015-0656-z 10.1007/s00180-006-0261-z 10.1051/ro/1995290100351 10.1057/jors.1982.209 10.1137/0213014 10.1007/BF01908075 10.1007/s00180-006-0260-0 10.1016/j.patrec.2008.04.008 10.1007/s00186-006-0084-2 10.1111/j.1467-9787.1972.tb00345.x 10.1016/j.eswa.2012.07.021 10.1016/S0024-3795(98)10032-0 10.1016/0041-5553(69)90061-5 10.1016/S0031-3203(02)00060-2 10.1016/j.knosys.2010.06.003 10.1016/j.patrec.2003.10.016 10.1016/0304-3975(85)90224-5 10.3390/s20700258 10.1007/978-3-642-31537-4_19 10.1186/2193-1801-3-465 10.1007/s10618-006-0040-z 10.1016/S0031-3203(99)00216-2 10.1109/TKDE.2011.221 10.1016/j.eswa.2016.01.005 10.1093/comjnl/26.4.354 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.neucom.2017.04.073 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 27 |
| ExternalDocumentID | oai:open.metu.edu.tr:11511/41584 10_1016_j_neucom_2017_04_073 S0925231217310111 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c352t-c2a3be075564e1c5d1307f3c9b1b9caa3b5674a95be7811d2912e809d38acab33 |
| IEDL.DBID | UNPAY |
| ISSN | 0925-2312 1872-8286 |
| IngestDate | Sun Oct 26 04:17:14 EDT 2025 Wed Oct 01 02:27:34 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Fri Feb 23 02:30:25 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty Clustering Semi-supervised learning Second order cone programing Heuristics |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-c2a3be075564e1c5d1307f3c9b1b9caa3b5674a95be7811d2912e809d38acab33 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/11511/41584 |
| PageCount | 24 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neucom_2017_04_073 crossref_citationtrail_10_1016_j_neucom_2017_04_073 crossref_primary_10_1016_j_neucom_2017_04_073 elsevier_sciencedirect_doi_10_1016_j_neucom_2017_04_073 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-22 |
| PublicationDateYYYYMMDD | 2017-11-22 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lobo, Vandenberghe, Boyd, Lebret (bib0052) 1998; 284 Saha, Ekbal, Alok, Spandana (bib0066) 2014; 3 L. Vandenberghe, Subgradient Method, Lecture notes of EE236c, University of California, Los Angeles (Spring Quarter, 2016). L. Kaufman, P.J. Rousseeuw, Partitioning Around Medoids (Program PAM), John Wiley and Sons, Inc., pp. 68–125. L. Billard, E. Diday, Principal Component Analysis, John Wiley & Sons Inc., Hoboken, NJ, p. 166. Hansen, Mladenovic (bib0040) 2001; 34 Brimberg, Wesolowsky (bib0014) 2002; 29 M. Lichman, UCI machine learning repository, 2013. University of California, Irvine, School of Information and Computer Sciences. Carvalho, Brito, Bock (bib0018) 2006; 21 Saha, Kaushik, Alok, Acharya (bib0067) 2016; 20 Polyak (bib0061) 1969; 9 C. C. Aggarwal, A Survey of Uncertain Data Clustering Algorithms, Chapman and Hall/CRC. doi Irpino, Verde (bib0044) 2008; 29 Basu, Banerjee, Mooney (bib0007) 2002 Aly, Marucheck (bib0004) 1982; 13 Drezner, Wesolowsky (bib0031) 2000; 38 Gonzalez (bib0037) 1985; 38 Dinler, Tural, Iyigun (bib0030) 2015; 62 Jiang, Yuan (bib0047) 2012; 51 Lee, Kao, Cheng (bib0049) 2007 Portela, Cavalcanti, Ren (bib0062) 2014; 41 Xu, Wunsch (bib0075) 2008 Ghiasi, Srivastava, Yang, Sarrafzadeh (bib0036) 2002; 2 MacQueen (bib0054) 1967; 1 Jiang, Xu (bib0046) 2006; 64 Boyd, Vandenberghe (bib0013) 2004 Figueiredo (bib0034) March 8--10, 2006 Basu, Banerjee, Mooney (bib0008) 2004; 4 de Souza, de A.T. de Carvalho (bib0027) 2004; 25 . Wagstaff, Cardie, Rogers, Schroedl (bib0073) 2001; 1 Davidson, Ravi (bib0025) 2005 Manning, Raghavan, Schtze (bib0055) 2008 Megiddo, Supowit (bib0056) 1984; 13 H. Calik, M. Labbé, H. Yaman, Location Science, Springer International Publishing, Cham, pp. 79–92. Huang, Mitchell (bib0042) 2006 S. Boyd, A. Mutapcic, Subgradient Methods, Lecture notes of EE364b, Stanford University (Winter Quarter, 2006, 2007). Chavent, Carvalho, Lechevallier, Verde (bib0022) 2006; 21 Yu, Shi (bib0076) 2004; 26 Alok, Saha, Ekbal (bib0003) 2015; 43 Celebi, Kingravi, Vela (bib0019) 2013; 40 Saha, Alok, Ekbal (bib0064) 2016; 52 Howard (bib0041) 1966 Cooper (bib0023) 1974; 14 J. Ebrahimi, M. Saniee Abadeh, Semi Supervised Clustering: A Pareto Approach, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 237–251. Zhu, Wang, Li (bib0077) 2010; 23 Demiriz, Bennett, Embrechts (bib0028) 1999 Basu, Bilenko, Mooney (bib0009) 2003 Davidson, Ravi (bib0026) 2005 Bennet, Mirakhor (bib0010) 1974; 14 Duda, Hart (bib0032) 1973; 3 A. Schönhuth, I.G. Costa, A. Schliep, Cooperation in classification and data analysis, in: Proceedings of the Two German–Japanese Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 151–159. Banerjee, Ghosh (bib0005) 2006; 13 Fisher (bib0035) 1936; 7 Strehl, Ghosh, Mooney (bib0070) 2000 Carrizosa, Conde, Munoz-Marquez, Puerto (bib0017) 1995; 29 Ngai, Kao, Chui, Cheng, Chau, Yip (bib0059) 2006 Dinler, Tural, Iyigun (bib0029) 2014 Shor (bib0069) 1962; 1 Love (bib0053) 1972; 12 Wagstaff, Cardie (bib0072) 2000 Rousseeuw (bib0063) 1987; 20 Pensa, Boulicaut, Cordero, Atzori (bib0060) 2010; 3 Chau, Cheng, Kao, Ng (bib0020) April 9-12, 2006 Miyamoto, Terami (bib0057) 2011 M. Chavent, Y. Lechevallier, Classification, Clustering, and Data Analysis: Recent Advances and Applications, Springer, Berlin, Heidelberg, pp. 53–60. Hubert, Arabie (bib0043) 1985; 2 Wang, Youlian (bib0074) 2014; 7 Gullo, Ponti, Tagarelli (bib0038) October 1--3, 2008 Michael Grant and Stephen Boyd CVX: Matlab software for disciplined convex programming, version 2.1, 2014. Brimberg, Wesolowsky (bib0015) 2002; 11 Basu (bib0006) 2005 Saha, Bandyopadhyay (bib0065) 2013; 13 Gurobi Optimization, Inc., Gurobi optimizer reference manual, 2016. Likas, Vlassis, Verbeek (bib0051) 2003; 36 Alizadeh, Goldfarb (bib0002) 2003; 95 Jiang, Pei, Tao, Lin (bib0045) 2013; 25 Murtagh (bib0058) 1983; 26 Irpino (10.1016/j.neucom.2017.04.073_bib0044) 2008; 29 Davidson (10.1016/j.neucom.2017.04.073_bib0026) 2005 Ghiasi (10.1016/j.neucom.2017.04.073_bib0036) 2002; 2 Huang (10.1016/j.neucom.2017.04.073_bib0042) 2006 Basu (10.1016/j.neucom.2017.04.073_bib0008) 2004; 4 Chau (10.1016/j.neucom.2017.04.073_bib0020) 2006 Jiang (10.1016/j.neucom.2017.04.073_bib0045) 2013; 25 Basu (10.1016/j.neucom.2017.04.073_bib0009) 2003 Jiang (10.1016/j.neucom.2017.04.073_bib0047) 2012; 51 Saha (10.1016/j.neucom.2017.04.073_bib0067) 2016; 20 10.1016/j.neucom.2017.04.073_bib0071 Alok (10.1016/j.neucom.2017.04.073_bib0003) 2015; 43 Figueiredo (10.1016/j.neucom.2017.04.073_sbref0027) 2006 Gullo (10.1016/j.neucom.2017.04.073_bib0038) 2008 Yu (10.1016/j.neucom.2017.04.073_bib0076) 2004; 26 Shor (10.1016/j.neucom.2017.04.073_bib0069) 1962; 1 10.1016/j.neucom.2017.04.073_bib0033 10.1016/j.neucom.2017.04.073_bib0039 Murtagh (10.1016/j.neucom.2017.04.073_bib0058) 1983; 26 Love (10.1016/j.neucom.2017.04.073_bib0053) 1972; 12 Wang (10.1016/j.neucom.2017.04.073_bib0074) 2014; 7 Rousseeuw (10.1016/j.neucom.2017.04.073_bib0063) 1987; 20 Polyak (10.1016/j.neucom.2017.04.073_bib0061) 1969; 9 Carrizosa (10.1016/j.neucom.2017.04.073_bib0017) 1995; 29 Aly (10.1016/j.neucom.2017.04.073_bib0004) 1982; 13 Wagstaff (10.1016/j.neucom.2017.04.073_bib0073) 2001; 1 Basu (10.1016/j.neucom.2017.04.073_sbref0005) 2005 de Souza (10.1016/j.neucom.2017.04.073_bib0027) 2004; 25 Dinler (10.1016/j.neucom.2017.04.073_bib0029) 2014 Banerjee (10.1016/j.neucom.2017.04.073_bib0005) 2006; 13 Wagstaff (10.1016/j.neucom.2017.04.073_bib0072) 2000 Manning (10.1016/j.neucom.2017.04.073_bib0055) 2008 Boyd (10.1016/j.neucom.2017.04.073_bib0013) 2004 Hansen (10.1016/j.neucom.2017.04.073_bib0040) 2001; 34 Drezner (10.1016/j.neucom.2017.04.073_bib0031) 2000; 38 10.1016/j.neucom.2017.04.073_bib0001 Miyamoto (10.1016/j.neucom.2017.04.073_bib0057) 2011 MacQueen (10.1016/j.neucom.2017.04.073_bib0054) 1967; 1 Celebi (10.1016/j.neucom.2017.04.073_bib0019) 2013; 40 10.1016/j.neucom.2017.04.073_bib0048 Saha (10.1016/j.neucom.2017.04.073_bib0065) 2013; 13 Bennet (10.1016/j.neucom.2017.04.073_bib0010) 1974; 14 Cooper (10.1016/j.neucom.2017.04.073_bib0023) 1974; 14 Duda (10.1016/j.neucom.2017.04.073_bib0032) 1973; 3 Portela (10.1016/j.neucom.2017.04.073_bib0062) 2014; 41 Jiang (10.1016/j.neucom.2017.04.073_bib0046) 2006; 64 Pensa (10.1016/j.neucom.2017.04.073_bib0060) 2010; 3 Ngai (10.1016/j.neucom.2017.04.073_bib0059) 2006 Basu (10.1016/j.neucom.2017.04.073_bib0007) 2002 Demiriz (10.1016/j.neucom.2017.04.073_bib0028) 1999 Zhu (10.1016/j.neucom.2017.04.073_bib0077) 2010; 23 Strehl (10.1016/j.neucom.2017.04.073_bib0070) 2000 Chavent (10.1016/j.neucom.2017.04.073_bib0022) 2006; 21 Likas (10.1016/j.neucom.2017.04.073_bib0051) 2003; 36 Saha (10.1016/j.neucom.2017.04.073_bib0064) 2016; 52 Dinler (10.1016/j.neucom.2017.04.073_bib0030) 2015; 62 10.1016/j.neucom.2017.04.073_bib0050 Fisher (10.1016/j.neucom.2017.04.073_bib0035) 1936; 7 10.1016/j.neucom.2017.04.073_bib0011 Howard (10.1016/j.neucom.2017.04.073_bib0041) 1966 Alizadeh (10.1016/j.neucom.2017.04.073_bib0002) 2003; 95 10.1016/j.neucom.2017.04.073_bib0012 Hubert (10.1016/j.neucom.2017.04.073_bib0043) 1985; 2 Davidson (10.1016/j.neucom.2017.04.073_bib0025) 2005 Brimberg (10.1016/j.neucom.2017.04.073_bib0014) 2002; 29 10.1016/j.neucom.2017.04.073_bib0016 Brimberg (10.1016/j.neucom.2017.04.073_bib0015) 2002; 11 Saha (10.1016/j.neucom.2017.04.073_bib0066) 2014; 3 Lee (10.1016/j.neucom.2017.04.073_bib0049) 2007 Gonzalez (10.1016/j.neucom.2017.04.073_bib0037) 1985; 38 Carvalho (10.1016/j.neucom.2017.04.073_bib0018) 2006; 21 Lobo (10.1016/j.neucom.2017.04.073_bib0052) 1998; 284 Xu (10.1016/j.neucom.2017.04.073_bib0075) 2008 Megiddo (10.1016/j.neucom.2017.04.073_bib0056) 1984; 13 10.1016/j.neucom.2017.04.073_bib0021 10.1016/j.neucom.2017.04.073_bib0024 10.1016/j.neucom.2017.04.073_bib0068 |
| References_xml | – start-page: 413 year: 2006 end-page: 420 ident: bib0042 article-title: Text clustering with extended user feedback publication-title: Proceedings of the Twenty-ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval – volume: 38 start-page: 359 year: 2000 end-page: 372 ident: bib0031 article-title: Location models with groups of demand points publication-title: INFOR – start-page: 229 year: October 1--3, 2008 end-page: 242 ident: bib0038 article-title: Clustering uncertain data via K-medoids publication-title: Proceedings, Scalable Uncertainty Management: Second International Conference, SUM 2008, Naples, Italy – year: 2014 ident: bib0029 article-title: Location problems with demand regions publication-title: Global Logistic Management – start-page: 1103 year: 2000 end-page: 1110 ident: bib0072 article-title: Clustering with instance-level constraints publication-title: Proceedings of the Seventeenth International Conference on Machine Learning – volume: 29 start-page: 35 year: 1995 end-page: 57 ident: bib0017 article-title: The generalized Weber problem with expected distances publication-title: RAIRO Oper. Res. – start-page: 436 year: 2006 end-page: 445 ident: bib0059 article-title: Efficient clustering of uncertain data publication-title: Proceedings of the Sixth International Conference on Data Mining, ICDM ’06 – year: 2004 ident: bib0013 article-title: Convex Optimization – volume: 62 start-page: 237 year: 2015 end-page: 256 ident: bib0030 article-title: Heuristics for a continuous multi-facility location problem with demand regions publication-title: Comput. Oper. Res. – start-page: 483 year: 2007 end-page: 488 ident: bib0049 article-title: Reducing UK-means to publication-title: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW ’07 – volume: 11 start-page: 151 year: 2002 end-page: 165 ident: bib0015 article-title: Minisum location with closest Euclidean distances publication-title: Ann. Oper. Res. – volume: 40 start-page: 200 year: 2013 end-page: 210 ident: bib0019 article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm publication-title: Expert Syst. Appl. – volume: 64 start-page: 285 year: 2006 end-page: 308 ident: bib0046 article-title: Minisum location problem with farthest Euclidean distances publication-title: Math. Methods Oper. Res. – start-page: 19 year: 2002 end-page: 26 ident: bib0007 article-title: Semi-supervised clustering by seeding publication-title: Proceedings of the Nineteenth International Conference on Machine Learning – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0063 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – volume: 52 start-page: 50 year: 2016 end-page: 63 ident: bib0064 article-title: Brain image segmentation using semi-supervised clustering publication-title: Expert Syst. Appl. – reference: C. C. Aggarwal, A Survey of Uncertain Data Clustering Algorithms, Chapman and Hall/CRC. doi: – volume: 95 start-page: 3 year: 2003 end-page: 51 ident: bib0002 article-title: Second-order cone programming publication-title: Math. Program. – start-page: 39 year: March 8--10, 2006 end-page: 50 ident: bib0034 article-title: Advances in data analysis publication-title: Proceedings of the Thirtieth Annual Conference of the Gesellschaft für Klassifikation e.V. – reference: Gurobi Optimization, Inc., Gurobi optimizer reference manual, 2016. – volume: 41 start-page: 1492 year: 2014 end-page: 1497 ident: bib0062 article-title: Semi-supervised clustering for MR brain image segmentation publication-title: Expert Syst. Appl. – volume: 38 start-page: 293 year: 1985 end-page: 306 ident: bib0037 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor. Comput. Sci. – volume: 43 start-page: 633 year: 2015 end-page: 661 ident: bib0003 article-title: A new semi-supervised clustering technique using multi-objective optimization publication-title: Appl. Intell. – volume: 3 start-page: 465 year: 2014 ident: bib0066 article-title: Feature selection and semi-supervised clustering using multiobjective optimization publication-title: SpringerPlus – volume: 13 start-page: 182 year: 1984 end-page: 196 ident: bib0056 article-title: On the complexity of some common geometric location problems publication-title: SIAM J. Comput. – year: 2008 ident: bib0055 article-title: Introduction to Information Retrieval – volume: 14 start-page: 131 year: 1974 end-page: 136 ident: bib0010 article-title: Optimal facility location with respect to several regions publication-title: J. Reg. Sci. – year: 1966 ident: bib0041 article-title: Classifying a population into homogeneous groups publication-title: Operational Research in the Social Sciences – volume: 36 start-page: 451 year: 2003 end-page: 461 ident: bib0051 article-title: The global k-means clustering algorithm publication-title: Pattern Recognit. – year: 2008 ident: bib0075 article-title: Clustering – volume: 29 start-page: 625 year: 2002 end-page: 636 ident: bib0014 article-title: Locating facilites by minimax relative to closest points of demand areas publication-title: Comput. Oper. Res. – year: 2005 ident: bib0006 publication-title: Semi-supervised Clustering: Probabilistic Models, Algorithms and Experiments – start-page: 199 year: April 9-12, 2006 end-page: 204 ident: bib0020 article-title: Uncertain data mining: an example in clustering location data publication-title: Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD – reference: L. Billard, E. Diday, Principal Component Analysis, John Wiley & Sons Inc., Hoboken, NJ, p. 166. – volume: 9 start-page: 14 year: 1969 end-page: 29 ident: bib0061 article-title: Minimization of unsmooth functionals publication-title: USSR Comput. Math. Math. Phys. – start-page: 59 year: 2005 end-page: 70 ident: bib0025 article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results publication-title: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2005) – start-page: 138 year: 2005 end-page: 149 ident: bib0026 article-title: Clustering with constraints: feasibility issues and the publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining – reference: A. Schönhuth, I.G. Costa, A. Schliep, Cooperation in classification and data analysis, in: Proceedings of the Two German–Japanese Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 151–159. – start-page: 809 year: 1999 end-page: 814 ident: bib0028 article-title: Semi-supervised clustering using genetic algorithms publication-title: Proceedings of the Artificial Neural Networks in Engineering (ANNIE-99 – volume: 21 start-page: 211 year: 2006 end-page: 229 ident: bib0022 article-title: New clustering methods for interval data publication-title: Comput. Stat. – volume: 13 start-page: 365 year: 2006 end-page: 395 ident: bib0005 article-title: Scalable clustering algorithms with balancing constraints publication-title: Data Min. Knowl. Disc. – volume: 20 start-page: 3381 year: 2016 end-page: 3392 ident: bib0067 article-title: Multi-objective semi-supervised clustering of tissue samples for cancer diagnosis publication-title: Soft Comput. – volume: 1 start-page: 281 year: 1967 end-page: 297 ident: bib0054 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability – reference: M. Chavent, Y. Lechevallier, Classification, Clustering, and Data Analysis: Recent Advances and Applications, Springer, Berlin, Heidelberg, pp. 53–60. – volume: 25 start-page: 353 year: 2004 end-page: 365 ident: bib0027 article-title: Clustering of interval data based on cityblock distances publication-title: Pattern Recognit. Lett. – start-page: 42 year: 2003 end-page: 49 ident: bib0009 article-title: Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering publication-title: Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems – volume: 51 start-page: 1275 year: 2012 end-page: 1295 ident: bib0047 article-title: A Barzilai–Borwein-based heuristic algorithm for locating multiple facilities with regional demand publication-title: Comput. Optim. Appl. – reference: H. Calik, M. Labbé, H. Yaman, Location Science, Springer International Publishing, Cham, pp. 79–92. – reference: J. Ebrahimi, M. Saniee Abadeh, Semi Supervised Clustering: A Pareto Approach, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 237–251. – volume: 21 start-page: 231 year: 2006 end-page: 250 ident: bib0018 article-title: Dynamic clustering for interval data based on publication-title: Comput. Stat. – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib0035 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – volume: 284 start-page: 193 year: 1998 end-page: 228 ident: bib0052 article-title: Applications of second-order cone programming publication-title: Linear Algebra Appl. – volume: 3 year: 1973 ident: bib0032 article-title: Pattern Classification and Scene Analysis – volume: 26 start-page: 354 year: 1983 end-page: 359 ident: bib0058 article-title: A survey of recent advances in hierarchical clustering algorithms publication-title: Comput. J. – volume: 1 start-page: 577 year: 2001 end-page: 584 ident: bib0073 article-title: Constrained publication-title: Proceedings of the Eighteenth International Conference on Machine Learning – volume: 23 start-page: 883 year: 2010 end-page: 889 ident: bib0077 article-title: Data clustering with size constraints publication-title: Knowl. Based Syst. – volume: 14 start-page: 47 year: 1974 end-page: 54 ident: bib0023 article-title: A random locational equilibrium problem publication-title: J. Reg. Sci. – volume: 34 start-page: 405 year: 2001 end-page: 413 ident: bib0040 article-title: J-means: a new local search heuristic for minimum sum of squares clustering publication-title: Pattern Recognit. – volume: 2 start-page: 258 year: 2002 end-page: 269 ident: bib0036 article-title: Optimal energy aware clustering in sensor networks publication-title: Sensors – volume: 12 start-page: 233 year: 1972 end-page: 242 ident: bib0053 article-title: A computational procedure for optimally locating a facility with respect to several rectangular regions publication-title: J. Reg. Sci. – reference: S. Boyd, A. Mutapcic, Subgradient Methods, Lecture notes of EE364b, Stanford University (Winter Quarter, 2006, 2007). – reference: L. Kaufman, P.J. Rousseeuw, Partitioning Around Medoids (Program PAM), John Wiley and Sons, Inc., pp. 68–125. – volume: 26 start-page: 173 year: 2004 end-page: 183 ident: bib0076 article-title: Segmentation given partial grouping constraints publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 4 start-page: 333 year: 2004 end-page: 344 ident: bib0008 article-title: Active semi-supervision for pairwise constrained clustering. publication-title: Proceedings of the SIAM International Conference on Data Mining – volume: 13 start-page: 983 year: 1982 end-page: 989 ident: bib0004 article-title: Generalized Weber problem with rectangular regions publication-title: J. Oper. Res. Soc. – reference: L. Vandenberghe, Subgradient Method, Lecture notes of EE236c, University of California, Los Angeles (Spring Quarter, 2016). – reference: . – start-page: 422 year: 2011 end-page: 427 ident: bib0057 article-title: Constrained agglomerative hierarchical clustering algorithms with penalties publication-title: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems – start-page: 58 year: 2000 end-page: 64 ident: bib0070 article-title: Impact of similarity measures on web-page clustering publication-title: Proceedings of the Workshop on Artificial Intelligence for Web Search (AAAI 2000) – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: bib0043 article-title: Comparing partitions publication-title: J. Classif. – volume: 29 start-page: 1648 year: 2008 end-page: 1658 ident: bib0044 article-title: Dynamic clustering of interval data using a Wasserstein-based distance publication-title: Pattern Recognit. Lett. – volume: 1 start-page: 9 year: 1962 end-page: 17 ident: bib0069 article-title: Application of the gradient method for the solution of network transportation problems publication-title: Scientific Seminar on Theory and Application of Cybernetics and Operations Research – reference: Michael Grant and Stephen Boyd CVX: Matlab software for disciplined convex programming, version 2.1, 2014. – volume: 25 start-page: 751 year: 2013 end-page: 763 ident: bib0045 article-title: Clustering uncertain data based on probability distribution similarity publication-title: IEEE Trans. Knowl. Data Eng. – reference: M. Lichman, UCI machine learning repository, 2013. University of California, Irvine, School of Information and Computer Sciences. – volume: 3 start-page: 38 year: 2010 end-page: 55 ident: bib0060 article-title: Co-clustering numerical data under user-defined constraints publication-title: Stat. Anal. Data Min. – volume: 13 start-page: 89 year: 2013 end-page: 108 ident: bib0065 article-title: A generalized automatic clustering algorithm in a multiobjective framework publication-title: Appl. Soft Comput. – volume: 7 start-page: 1 year: 2014 end-page: 13 ident: bib0074 article-title: Semi-supervised consensus clustering for gene expression data analysis publication-title: BioData Min. – volume: 62 start-page: 237 year: 2015 ident: 10.1016/j.neucom.2017.04.073_bib0030 article-title: Heuristics for a continuous multi-facility location problem with demand regions publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.09.001 – volume: 41 start-page: 1492 issue: 4, Part 1 year: 2014 ident: 10.1016/j.neucom.2017.04.073_bib0062 article-title: Semi-supervised clustering for MR brain image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.046 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.neucom.2017.04.073_bib0035 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 26 start-page: 173 issue: 2 year: 2004 ident: 10.1016/j.neucom.2017.04.073_bib0076 article-title: Segmentation given partial grouping constraints publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1262179 – volume: 14 start-page: 47 year: 1974 ident: 10.1016/j.neucom.2017.04.073_bib0023 article-title: A random locational equilibrium problem publication-title: J. Reg. Sci. doi: 10.1111/j.1467-9787.1974.tb00428.x – volume: 51 start-page: 1275 year: 2012 ident: 10.1016/j.neucom.2017.04.073_bib0047 article-title: A Barzilai–Borwein-based heuristic algorithm for locating multiple facilities with regional demand publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-010-9392-9 – volume: 13 start-page: 89 issue: 1 year: 2013 ident: 10.1016/j.neucom.2017.04.073_bib0065 article-title: A generalized automatic clustering algorithm in a multiobjective framework publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.08.005 – volume: 1 start-page: 9 year: 1962 ident: 10.1016/j.neucom.2017.04.073_bib0069 article-title: Application of the gradient method for the solution of network transportation problems – year: 2008 ident: 10.1016/j.neucom.2017.04.073_bib0075 – volume: 14 start-page: 131 year: 1974 ident: 10.1016/j.neucom.2017.04.073_bib0010 article-title: Optimal facility location with respect to several regions publication-title: J. Reg. Sci. doi: 10.1111/j.1467-9787.1974.tb00435.x – volume: 95 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.neucom.2017.04.073_bib0002 article-title: Second-order cone programming publication-title: Math. Program. doi: 10.1007/s10107-002-0339-5 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.neucom.2017.04.073_bib0063 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – start-page: 413 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0042 article-title: Text clustering with extended user feedback – start-page: 1103 year: 2000 ident: 10.1016/j.neucom.2017.04.073_bib0072 article-title: Clustering with instance-level constraints – year: 2008 ident: 10.1016/j.neucom.2017.04.073_bib0055 – volume: 29 start-page: 625 year: 2002 ident: 10.1016/j.neucom.2017.04.073_bib0014 article-title: Locating facilites by minimax relative to closest points of demand areas publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(00)00106-4 – start-page: 199 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0020 article-title: Uncertain data mining: an example in clustering location data – volume: 4 start-page: 333 year: 2004 ident: 10.1016/j.neucom.2017.04.073_bib0008 article-title: Active semi-supervision for pairwise constrained clustering. – volume: 3 start-page: 38 issue: 1 year: 2010 ident: 10.1016/j.neucom.2017.04.073_bib0060 article-title: Co-clustering numerical data under user-defined constraints publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.10064 – start-page: 436 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0059 article-title: Efficient clustering of uncertain data – volume: 20 start-page: 3381 issue: 9 year: 2016 ident: 10.1016/j.neucom.2017.04.073_bib0067 article-title: Multi-objective semi-supervised clustering of tissue samples for cancer diagnosis publication-title: Soft Comput. doi: 10.1007/s00500-015-1783-5 – ident: 10.1016/j.neucom.2017.04.073_bib0068 doi: 10.1007/978-3-642-00668-5_16 – volume: 11 start-page: 151 year: 2002 ident: 10.1016/j.neucom.2017.04.073_bib0015 article-title: Minisum location with closest Euclidean distances publication-title: Ann. Oper. Res. doi: 10.1023/A:1020901719463 – volume: 43 start-page: 633 issue: 3 year: 2015 ident: 10.1016/j.neucom.2017.04.073_bib0003 article-title: A new semi-supervised clustering technique using multi-objective optimization publication-title: Appl. Intell. doi: 10.1007/s10489-015-0656-z – volume: 21 start-page: 231 issue: 2 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0018 article-title: Dynamic clustering for interval data based on L2 distance publication-title: Comput. Stat. doi: 10.1007/s00180-006-0261-z – volume: 29 start-page: 35 issue: 1 year: 1995 ident: 10.1016/j.neucom.2017.04.073_bib0017 article-title: The generalized Weber problem with expected distances publication-title: RAIRO Oper. Res. doi: 10.1051/ro/1995290100351 – ident: 10.1016/j.neucom.2017.04.073_bib0039 – volume: 13 start-page: 983 year: 1982 ident: 10.1016/j.neucom.2017.04.073_bib0004 article-title: Generalized Weber problem with rectangular regions publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1982.209 – volume: 13 start-page: 182 issue: 1 year: 1984 ident: 10.1016/j.neucom.2017.04.073_bib0056 article-title: On the complexity of some common geometric location problems publication-title: SIAM J. Comput. doi: 10.1137/0213014 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 10.1016/j.neucom.2017.04.073_bib0043 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – start-page: 138 year: 2005 ident: 10.1016/j.neucom.2017.04.073_bib0026 article-title: Clustering with constraints: feasibility issues and the k-means algorithm. – volume: 7 start-page: 1 issue: 7 year: 2014 ident: 10.1016/j.neucom.2017.04.073_bib0074 article-title: Semi-supervised consensus clustering for gene expression data analysis publication-title: BioData Min. – volume: 21 start-page: 211 issue: 2 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0022 article-title: New clustering methods for interval data publication-title: Comput. Stat. doi: 10.1007/s00180-006-0260-0 – ident: 10.1016/j.neucom.2017.04.073_bib0021 – volume: 29 start-page: 1648 issue: 11 year: 2008 ident: 10.1016/j.neucom.2017.04.073_bib0044 article-title: Dynamic clustering of interval data using a Wasserstein-based distance publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.04.008 – start-page: 422 year: 2011 ident: 10.1016/j.neucom.2017.04.073_bib0057 article-title: Constrained agglomerative hierarchical clustering algorithms with penalties – year: 1966 ident: 10.1016/j.neucom.2017.04.073_bib0041 article-title: Classifying a population into homogeneous groups – start-page: 42 year: 2003 ident: 10.1016/j.neucom.2017.04.073_bib0009 article-title: Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering – volume: 3 year: 1973 ident: 10.1016/j.neucom.2017.04.073_bib0032 – volume: 64 start-page: 285 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0046 article-title: Minisum location problem with farthest Euclidean distances publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-006-0084-2 – ident: 10.1016/j.neucom.2017.04.073_bib0001 – volume: 38 start-page: 359 year: 2000 ident: 10.1016/j.neucom.2017.04.073_bib0031 article-title: Location models with groups of demand points publication-title: INFOR – ident: 10.1016/j.neucom.2017.04.073_bib0024 – start-page: 229 year: 2008 ident: 10.1016/j.neucom.2017.04.073_bib0038 article-title: Clustering uncertain data via K-medoids – volume: 12 start-page: 233 year: 1972 ident: 10.1016/j.neucom.2017.04.073_bib0053 article-title: A computational procedure for optimally locating a facility with respect to several rectangular regions publication-title: J. Reg. Sci. doi: 10.1111/j.1467-9787.1972.tb00345.x – volume: 40 start-page: 200 issue: 1 year: 2013 ident: 10.1016/j.neucom.2017.04.073_bib0019 article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.021 – year: 2014 ident: 10.1016/j.neucom.2017.04.073_bib0029 article-title: Location problems with demand regions – volume: 284 start-page: 193 year: 1998 ident: 10.1016/j.neucom.2017.04.073_bib0052 article-title: Applications of second-order cone programming publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(98)10032-0 – volume: 9 start-page: 14 issue: 3 year: 1969 ident: 10.1016/j.neucom.2017.04.073_bib0061 article-title: Minimization of unsmooth functionals publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(69)90061-5 – volume: 36 start-page: 451 issue: 2 year: 2003 ident: 10.1016/j.neucom.2017.04.073_bib0051 article-title: The global k-means clustering algorithm publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00060-2 – ident: 10.1016/j.neucom.2017.04.073_bib0011 – volume: 23 start-page: 883 issue: 8 year: 2010 ident: 10.1016/j.neucom.2017.04.073_bib0077 article-title: Data clustering with size constraints publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2010.06.003 – volume: 25 start-page: 353 issue: 3 year: 2004 ident: 10.1016/j.neucom.2017.04.073_bib0027 article-title: Clustering of interval data based on cityblock distances publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2003.10.016 – year: 2005 ident: 10.1016/j.neucom.2017.04.073_sbref0005 – volume: 38 start-page: 293 year: 1985 ident: 10.1016/j.neucom.2017.04.073_bib0037 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(85)90224-5 – start-page: 58 year: 2000 ident: 10.1016/j.neucom.2017.04.073_bib0070 article-title: Impact of similarity measures on web-page clustering – volume: 2 start-page: 258 issue: 7 year: 2002 ident: 10.1016/j.neucom.2017.04.073_bib0036 article-title: Optimal energy aware clustering in sensor networks publication-title: Sensors doi: 10.3390/s20700258 – ident: 10.1016/j.neucom.2017.04.073_bib0033 doi: 10.1007/978-3-642-31537-4_19 – start-page: 809 year: 1999 ident: 10.1016/j.neucom.2017.04.073_bib0028 article-title: Semi-supervised clustering using genetic algorithms – volume: 1 start-page: 281 year: 1967 ident: 10.1016/j.neucom.2017.04.073_bib0054 article-title: Some methods for classification and analysis of multivariate observations – volume: 3 start-page: 465 issue: 1 year: 2014 ident: 10.1016/j.neucom.2017.04.073_bib0066 article-title: Feature selection and semi-supervised clustering using multiobjective optimization publication-title: SpringerPlus doi: 10.1186/2193-1801-3-465 – volume: 13 start-page: 365 issue: 3 year: 2006 ident: 10.1016/j.neucom.2017.04.073_bib0005 article-title: Scalable clustering algorithms with balancing constraints publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-006-0040-z – volume: 34 start-page: 405 issue: 2 year: 2001 ident: 10.1016/j.neucom.2017.04.073_bib0040 article-title: J-means: a new local search heuristic for minimum sum of squares clustering publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00216-2 – ident: 10.1016/j.neucom.2017.04.073_bib0048 – start-page: 19 year: 2002 ident: 10.1016/j.neucom.2017.04.073_bib0007 article-title: Semi-supervised clustering by seeding – ident: 10.1016/j.neucom.2017.04.073_bib0050 – ident: 10.1016/j.neucom.2017.04.073_bib0071 – volume: 25 start-page: 751 issue: 4 year: 2013 ident: 10.1016/j.neucom.2017.04.073_bib0045 article-title: Clustering uncertain data based on probability distribution similarity publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.221 – volume: 52 start-page: 50 year: 2016 ident: 10.1016/j.neucom.2017.04.073_bib0064 article-title: Brain image segmentation using semi-supervised clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.005 – volume: 1 start-page: 577 year: 2001 ident: 10.1016/j.neucom.2017.04.073_bib0073 article-title: Constrained k-means clustering with background knowledge – ident: 10.1016/j.neucom.2017.04.073_bib0012 – ident: 10.1016/j.neucom.2017.04.073_bib0016 – start-page: 59 year: 2005 ident: 10.1016/j.neucom.2017.04.073_bib0025 article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results – start-page: 39 year: 2006 ident: 10.1016/j.neucom.2017.04.073_sbref0027 article-title: Advances in data analysis – volume: 26 start-page: 354 issue: 4 year: 1983 ident: 10.1016/j.neucom.2017.04.073_bib0058 article-title: A survey of recent advances in hierarchical clustering algorithms publication-title: Comput. J. doi: 10.1093/comjnl/26.4.354 – year: 2004 ident: 10.1016/j.neucom.2017.04.073_bib0013 – start-page: 483 year: 2007 ident: 10.1016/j.neucom.2017.04.073_bib0049 article-title: Reducing UK-means to k-means |
| SSID | ssj0017129 |
| Score | 2.2133067 |
| Snippet | We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 4 |
| SubjectTerms | Clustering Heuristics Second order cone programing Semi-supervised learning Uncertainty |
| SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqFlh4I8pLGVjdJnYSxyOqqKpKMACVukW2Y4uikEZNItSF3845jwoGVMSY-BWdnfu-RN_dIXRrmJFCRgkmXBIMeCsxpyrBQnMptCsCUefSe3gMJzN_Og_mPTTqYmGsrLL1_Y1Pr711e2fYWnOYLxbDZ5cT-IrygFMDRfHq-F7fZ7aKweBzI_PwmEeafHskwLZ3Fz5Xa7wyXVnNCIAgqxOeMvobPO1WWS7WHyJNv8HP-BDtt7zRuWse7Qj1dHaMDrqaDE77ip6g6dNSVkXpFPp9gYsqt66g0Imj0sqmRACgcuyvVydfputXnaxgTpFB82JVC1IdgLlGJFCuT9FsfP8ymuC2XgJWQKNKrIigUgMHCEJfeypIAJ-YoYpLT3IloDEImS94ILWNL00I94iOXJ7QSCghKT1DO9ky0-fISWAKZkxoYAd9SnkU6kBKVwjDgbMx00e0M1Os2mTitqZFGneqsbe4MW5sjRu7fgzG7SO8GZU3yTS29GfdDsQ_DkUM_n7LyMFmw_601MW_l7pEe_bKxicScoV2ylWlr4GolPKmPolfIgzozg priority: 102 providerName: Elsevier |
| Title | Robust semi-supervised clustering with polyhedral and circular uncertainty |
| URI | https://dx.doi.org/10.1016/j.neucom.2017.04.073 https://hdl.handle.net/11511/41584 |
| UnpaywallVersion | submittedVersion |
| Volume | 265 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL20yUP7su6jZe22IEpflcaSZVmPISxkHQujNNA9GUmW6YfnhMRmpA_77bvyRxmFrdujsa8kfGWfg33uuQBnmcyMNnFKmTKMIt4aqrhNqXbKaDfSQtdeel_m0WwRXlyL6x047WphnvgLIF8JgnMEmTjchX4kkG_3oL-Yfx1_q030mKBIUOpfmrFkdU10Vx9Xi7gKV3lRCKKcrB1NJf8T_uxVxUpvf-g8_w1fpgcw6VbWyEruh1VphvbhiWnj35f-El609JKMm_3wCnZc8RoOutYNpH2S38DF5dJUm5Js3PdbuqlW_o2xcSmxeeWdExDPiP9CS1bLfHvj0jWOiXMSe7uudasE0bDREpTbQ1hMP15NZrRtq0Atsq2SWqa5cUgVRBS6wIoUYUxm3CoTGGU1nhSRDLUSxvky1JSpgLl4pFIea6sN50fQK5aFewskxSFklkUZJjrkXMWRE8aMtM4UUjuZHQPvbnZiW89x3_oiTzpx2V3SpCjxKUpGYYIpOgb6GLVqPDeeuV52eUxa3tDwgQRh4ZnI4WPa_2mqk_8NeAf7_shXLzL2HnrlunIfkMaUZgC7w5_BAPrjT59n80G7q38Baqjznw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwRrzJwOo2seO4HhEClVcHKFI3y3YcURTSqE2EuvDbOedRwYBArPErunPu-xx9d0boPOGJVroXYyI0wYC3GgtqYqys0Mr6iqmqlt7DIOo_h7cjNlpCl20ujJNVNrG_julVtG6edBtrdvPxuPvkCwKnqAA4NVCUwOX3roSMcHcC63wsdB4BD0hdcI8w7Lq3-XOVyCuzpRONAAryquIppz_h02qZ5Wr-rtL0C_5cb6L1hjh6F_W7baElm22jjfZSBq_5RnfQ7eNEl7PCm9m3MZ6VuYsFMxt7Ji1dTQRAKs_9e_XySTp_sfEU5lQZNI-nlSLVA5yrVQLFfBc9X18NL_u4uTABG-BRBTZEUW2BBLAotIFhMQAUT6gROtDCKGhkEQ-VYNq6BNOYiIDYni9i2lNGaUr30HI2yew-8mKYgidJlIALQ0pFL7JMa1-pRABp48kBoq2ZpGmqibtLLVLZysZeZW1c6Ywr_VCCcQ8QXozK62oav_TnrQfkt10hIeD_MrKzcNifljr891JnaLU_fLiX9zeDuyO05lpcsiIhx2i5mJb2BFhLoU-rXfkJ5uvr8Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL1kycP2snZdx_o1ROmr0liyLOuxlJZSWBijge7JSLJM07lOSGxK-ut75Y9QCmu6R2NfSfjKPgf73HMBTjKZGW3ilDJlGEW8NVRxm1LtlNFupIWuvfR-jqOrSXh9K257cNzVwrzyF0C-EgSnCDJx-AEGkUC-3YfBZPzr7E9toscERYJS_9KMJatrorv6uFrEVbjKi0IQ5WTtaCr5v_DnY1XM9epR5_kLfLncgvNuZY2s5O-wKs3QPr0ybXx76dvwuaWX5KzZD1-g54od2OpaN5D2Sf4K179nplqWZOkepnRZzf0bY-lSYvPKOycgnhH_hZbMZ_nqzqULHBPnJHa6qHWrBNGw0RKUq12YXF7cnF_Rtq0Ctci2SmqZ5sYhVRBR6AIrUoQxmXGrTGCU1XhSRDLUShjny1BTpgLm4pFKeaytNpx_g34xK9x3ICkOIbMsyjDRIecqjpwwZqR1ppDayWwPeHezE9t6jvvWF3nSicvukyZFiU9RMgoTTNEe0HXUvPHc2HC97PKYtLyh4QMJwsKGyOE67e-aav9_Aw7gkz_y1YuMHUK_XFTuCGlMaX60-_gZLn7xEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+semi-supervised+clustering+with+polyhedral+and+circular+uncertainty&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Dinler%2C+Derya&rft.au=Tural%2C+Mustafa+Kemal&rft.date=2017-11-22&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=265&rft.spage=4&rft.epage=27&rft_id=info:doi/10.1016%2Fj.neucom.2017.04.073&rft.externalDocID=S0925231217310111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |