Variational Distillation for Multi-View Learning

Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 7; pp. 4551 - 4566
Main Authors Tian, Xudong, Zhang, Zhizhong, Wang, Cong, Zhang, Wensheng, Qu, Yanyun, Ma, Lizhuang, Wu, Zongze, Xie, Yuan, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2023.3343717

Cover

Abstract Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-explored due to the technical intractability of modeling and organizing innumerable mutual information (MI) terms. Recent studies show that sufficiency and consistency play such key roles in multi-view representation learning, and could be preserved via a variational distillation framework. But when it generalizes to arbitrary viewpoints, such strategy fails as the mutual information terms of consistency become complicated. This paper presents Multi-View Variational Distillation (MV<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="zhang-ieq1-3343717.gif"/> </inline-formula>D), tackling the above limitations for generalized multi-view learning. Uniquely, MV<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="zhang-ieq2-3343717.gif"/> </inline-formula>D can recognize useful consistent information and prioritize diverse components by their generalization ability. This guides an analytical and scalable solution to achieving both sufficiency and consistency. Additionally, by rigorously reformulating the IB objective, MV<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="zhang-ieq3-3343717.gif"/> </inline-formula>D tackles the difficulties in MI optimization and fully realizes the theoretical advantages of the information bottleneck principle. We extensively evaluate our model on diverse tasks to verify its effectiveness, where the considerable gains provide key insights into achieving generalized multi-view representations under a rigorous information-theoretic principle.
AbstractList Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-explored due to the technical intractability of modeling and organizing innumerable mutual information (MI) terms. Recent studies show that sufficiency and consistency play such key roles in multi-view representation learning, and could be preserved via a variational distillation framework. But when it generalizes to arbitrary viewpoints, such strategy fails as the mutual information terms of consistency become complicated. This paper presents Multi-View Variational Distillation (MV D), tackling the above limitations for generalized multi-view learning. Uniquely, MV D can recognize useful consistent information and prioritize diverse components by their generalization ability. This guides an analytical and scalable solution to achieving both sufficiency and consistency. Additionally, by rigorously reformulating the IB objective, MV D tackles the difficulties in MI optimization and fully realizes the theoretical advantages of the information bottleneck principle. We extensively evaluate our model on diverse tasks to verify its effectiveness, where the considerable gains provide key insights into achieving generalized multi-view representations under a rigorous information-theoretic principle.
Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-explored due to the technical intractability of modeling and organizing innumerable mutual information (MI) terms. Recent studies show that sufficiency and consistency play such key roles in multi-view representation learning, and could be preserved via a variational distillation framework. But when it generalizes to arbitrary viewpoints, such strategy fails as the mutual information terms of consistency become complicated. This paper presents Multi-View Variational Distillation (MV 2D), tackling the above limitations for generalized multi-view learning. Uniquely, MV 2D can recognize useful consistent information and prioritize diverse components by their generalization ability. This guides an analytical and scalable solution to achieving both sufficiency and consistency. Additionally, by rigorously reformulating the IB objective, MV 2D tackles the difficulties in MI optimization and fully realizes the theoretical advantages of the information bottleneck principle. We extensively evaluate our model on diverse tasks to verify its effectiveness, where the considerable gains provide key insights into achieving generalized multi-view representations under a rigorous information-theoretic principle.Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-explored due to the technical intractability of modeling and organizing innumerable mutual information (MI) terms. Recent studies show that sufficiency and consistency play such key roles in multi-view representation learning, and could be preserved via a variational distillation framework. But when it generalizes to arbitrary viewpoints, such strategy fails as the mutual information terms of consistency become complicated. This paper presents Multi-View Variational Distillation (MV 2D), tackling the above limitations for generalized multi-view learning. Uniquely, MV 2D can recognize useful consistent information and prioritize diverse components by their generalization ability. This guides an analytical and scalable solution to achieving both sufficiency and consistency. Additionally, by rigorously reformulating the IB objective, MV 2D tackles the difficulties in MI optimization and fully realizes the theoretical advantages of the information bottleneck principle. We extensively evaluate our model on diverse tasks to verify its effectiveness, where the considerable gains provide key insights into achieving generalized multi-view representations under a rigorous information-theoretic principle.
Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-explored due to the technical intractability of modeling and organizing innumerable mutual information (MI) terms. Recent studies show that sufficiency and consistency play such key roles in multi-view representation learning, and could be preserved via a variational distillation framework. But when it generalizes to arbitrary viewpoints, such strategy fails as the mutual information terms of consistency become complicated. This paper presents Multi-View Variational Distillation (MV[Formula Omitted]D), tackling the above limitations for generalized multi-view learning. Uniquely, MV[Formula Omitted]D can recognize useful consistent information and prioritize diverse components by their generalization ability. This guides an analytical and scalable solution to achieving both sufficiency and consistency. Additionally, by rigorously reformulating the IB objective, MV[Formula Omitted]D tackles the difficulties in MI optimization and fully realizes the theoretical advantages of the information bottleneck principle. We extensively evaluate our model on diverse tasks to verify its effectiveness, where the considerable gains provide key insights into achieving generalized multi-view representations under a rigorous information-theoretic principle.
Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each viewpoint. This highlights the necessity to capture their distinct roles to achieve view-invariance and predictive representations but remains under-explored due to the technical intractability of modeling and organizing innumerable mutual information (MI) terms. Recent studies show that sufficiency and consistency play such key roles in multi-view representation learning, and could be preserved via a variational distillation framework. But when it generalizes to arbitrary viewpoints, such strategy fails as the mutual information terms of consistency become complicated. This paper presents Multi-View Variational Distillation (MV<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="zhang-ieq1-3343717.gif"/> </inline-formula>D), tackling the above limitations for generalized multi-view learning. Uniquely, MV<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="zhang-ieq2-3343717.gif"/> </inline-formula>D can recognize useful consistent information and prioritize diverse components by their generalization ability. This guides an analytical and scalable solution to achieving both sufficiency and consistency. Additionally, by rigorously reformulating the IB objective, MV<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="zhang-ieq3-3343717.gif"/> </inline-formula>D tackles the difficulties in MI optimization and fully realizes the theoretical advantages of the information bottleneck principle. We extensively evaluate our model on diverse tasks to verify its effectiveness, where the considerable gains provide key insights into achieving generalized multi-view representations under a rigorous information-theoretic principle.
Author Zhang, Zhizhong
Wu, Zongze
Wang, Cong
Ma, Lizhuang
Tao, Dacheng
Zhang, Wensheng
Xie, Yuan
Qu, Yanyun
Tian, Xudong
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0000-0002-3394-4986
  surname: Tian
  fullname: Tian, Xudong
  email: 51194501066@cs.ecnu.edu.cn
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 2
  givenname: Zhizhong
  orcidid: 0000-0001-6905-4478
  surname: Zhang
  fullname: Zhang, Zhizhong
  email: zzzhang@cs.ecnu.edu.cn
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 3
  givenname: Cong
  orcidid: 0000-0002-4539-2525
  surname: Wang
  fullname: Wang, Cong
  email: wangcong64@huawei.com
  organization: Distributed and Parallel Software Laboratory, 2012 Labs, Huawei Technologies, Hangzhou, China
– sequence: 4
  givenname: Wensheng
  orcidid: 0000-0002-9120-9736
  surname: Zhang
  fullname: Zhang, Wensheng
  email: wensheng.zhang@ia.ac.cn
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Yanyun
  orcidid: 0000-0002-8926-4162
  surname: Qu
  fullname: Qu, Yanyun
  email: yyqu@xmu.edu.cn
  organization: School of Information Science and Technology, Xiamen University, Fujian, China
– sequence: 6
  givenname: Lizhuang
  orcidid: 0000-0003-1653-4341
  surname: Ma
  fullname: Ma, Lizhuang
  email: lzma@cs.ecnu.edu.cn
  organization: School of Computer Science and Techology, East China Normal University, Shanghai, China
– sequence: 7
  givenname: Zongze
  orcidid: 0000-0002-0597-1426
  surname: Wu
  fullname: Wu, Zongze
  email: zzwu@szu.edu.cn
  organization: College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
– sequence: 8
  givenname: Yuan
  orcidid: 0000-0001-6945-7437
  surname: Xie
  fullname: Xie, Yuan
  email: yxie@cs.ecnu.edu.cn
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 9
  givenname: Dacheng
  orcidid: 0000-0001-7225-5449
  surname: Tao
  fullname: Tao, Dacheng
  email: dacheng.tao@gmail.com
  organization: JD Exploer Academy, China and The University of Sydney, Camperdown, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38133979$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LwzAUhoNM3If-AREZeONN50lO27SXY34NNvRi7jakbSIZXTuTFvHfm30osgshcAg8b3LOc_qkU9WVIuSSwohSSO8Wr-P5dMSA4QgxRE75CekxGkOQspR1SA9ozIIkYUmX9J1bAdAwAjwjXUwoYsrTHoGltEY2pq5kObw3rjFlubsOdW2H87ZsTLA06nM4U9JWpno_J6dalk5dHOqAvD0-LCbPwezlaToZz4IcI9YEWREzpXOZ6kLHNIc4yaUOOaaZ5jKJI019MxSLjIYAWYSaowYO3FeIqIxxQG73725s_dEq14i1cbny3VWqbp1gKUQR8wc9enOErurW-oGcQIhD7mdloaeuD1SbrVUhNtaspf0SPy48wPZAbmvnrNK_CAWxFS52wsVWuDgI96HkKJSbZiewsdKU_0ev9lGjlPrzF3Lmt4Tf2z6LSQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patcog_2022_109119
Cites_doi 10.1109/ICCV48922.2021.01183
10.1109/ICCV.2017.575
10.1609/aaai.v34i04.5963
10.1109/CVPR42600.2020.01164
10.1609/aaai.v34i04.6122
10.1109/ICCV48922.2021.00029
10.1109/CVPR46437.2021.00981
10.1109/IROS40897.2019.8967762
10.1007/978-3-030-26980-7_45
10.1109/CVPR46437.2021.01236
10.1109/CVPR46437.2021.00180
10.1109/TPAMI.2021.3054775
10.1109/ita.2018.8503149
10.1109/CVPR46437.2021.00157
10.1109/CVPR46437.2021.00065
10.1109/CVPR.2018.00454
10.1007/978-3-030-58580-8_11
10.1109/TPAMI.2012.64
10.1007/s11263-021-01453-z
10.1109/TPAMI.2013.2296528
10.1609/aaai.v35i4.16419
10.1609/aaai.v35i11.17210
10.1109/TPAMI.2013.50
10.1109/CVPR42600.2020.00962
10.1007/978-3-030-58520-4_14
10.1007/978-3-030-58555-6_3
10.1109/ICCV.2017.324
10.1109/CVPR.2018.00464
10.1109/TKDE.2018.2872063
10.1109/ICCV.2019.00939
10.1109/CVPR.2009.5206594
10.1109/ICCV48922.2021.01609
10.1109/ICCV.2019.00381
10.1109/CVPR42600.2020.01112
10.1186/1471-2105-8-113
10.3390/s17030605
10.1109/CVPR46437.2021.00135
10.1016/j.cviu.2005.09.012
10.1007/978-3-030-58604-1_41
10.1109/ICCV48922.2021.01161
10.1145/1646396.1646452
10.1109/TPAMI.2015.2435740
10.1109/ICCV48922.2021.01597
10.1109/ICCV.2019.00769
10.1609/aaai.v29i1.9598
10.1109/TPAMI.2020.3037734
10.1109/CVPR.2019.00535
10.1609/aaai.v35i13.17358
10.1109/ITW.2015.7133169
10.5555/3524938.3525087
10.1109/CVPR42600.2020.01027
10.1609/aaai.v35i11.17163
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3343717
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 4566
ExternalDocumentID 38133979
10_1109_TPAMI_2023_3343717
10372503
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  grantid: 23ZR1420400
  funderid: 10.13039/100007219
– fundername: National Key Research and Development Program of China
  grantid: 2021ZD0111000
– fundername: CAAI-Huawei MindSpore Open Fund
– fundername: National Natural Science Foundation of China
  grantid: 62222602; U23A20343; 62176092; 62106075
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality; Shanghai Science and Technology Commission
  grantid: 21511100700
  funderid: 10.13039/501100003399
– fundername: Natural Science Foundation of Chongqing
  grantid: CSTB2023NSCQ-JQX0007; CSTB2023NSCQ-MSX0137
  funderid: 10.13039/501100005230
– fundername: CCF-Tencent Rhino-Bird Young Faculty Open Research Fund
  grantid: RAGR20230121
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-bd62efca9fdf61c068caf4739bf7a865f101413db1400b53f73f0707f73051a63
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:21:49 EDT 2025
Mon Jun 30 04:10:42 EDT 2025
Thu Apr 03 07:00:52 EDT 2025
Wed Oct 01 02:24:13 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Aug 27 02:06:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-bd62efca9fdf61c068caf4739bf7a865f101413db1400b53f73f0707f73051a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1653-4341
0000-0001-6905-4478
0000-0002-8926-4162
0000-0002-3394-4986
0000-0001-6945-7437
0000-0002-9120-9736
0000-0002-0597-1426
0000-0001-7225-5449
0000-0002-4539-2525
PMID 38133979
PQID 3064713324
PQPubID 85458
PageCount 16
ParticipantIDs pubmed_primary_38133979
crossref_primary_10_1109_TPAMI_2023_3343717
ieee_primary_10372503
proquest_journals_3064713324
crossref_citationtrail_10_1109_TPAMI_2023_3343717
proquest_miscellaneous_2905525523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref55
Dua (ref38) 2017
Poole (ref6)
ref16
Tishby (ref4)
ref51
ref50
ref46
ref45
Dorfer (ref53)
Schulz (ref19)
ref48
ref47
ref42
Schneidman (ref22)
ref41
ref44
ref43
ref49
ref3
Mahabadi (ref18)
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
Amini (ref57)
Belghazi (ref7)
Khosla (ref64)
Uurtio (ref54)
ref71
ref70
ref73
ref72
Peng (ref17)
ref24
ref68
ref23
ref67
Piran (ref9) 2020
ref26
ref25
ref69
ref20
ref63
ref66
ref21
ref65
Lee (ref40)
Alemi (ref8)
ref28
Xu (ref13) 2013
ref27
ref29
Federici (ref10)
Wang (ref2)
Hwang (ref35)
Andrew (ref1)
ref60
ref62
ref61
Huang (ref5)
References_xml – ident: ref27
  doi: 10.1109/ICCV48922.2021.01183
– ident: ref49
  doi: 10.1109/ICCV.2017.575
– start-page: 5171
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref6
  article-title: On variational bounds of mutual information
– ident: ref30
  doi: 10.1609/aaai.v34i04.5963
– year: 2020
  ident: ref9
  article-title: The dual information bottleneck
– ident: ref68
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref28
  doi: 10.1609/aaai.v34i04.6122
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref18
  article-title: Variational information bottleneck for effective low-resource fine-tuning
– ident: ref46
  doi: 10.1109/ICCV48922.2021.00029
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref10
  article-title: Learning robust representations via multi-view information bottleneck
– start-page: 22479
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: Variational interaction information maximization for cross-domain disentanglement
– ident: ref61
  doi: 10.1109/CVPR46437.2021.00981
– ident: ref58
  doi: 10.1109/IROS40897.2019.8967762
– ident: ref16
  doi: 10.1007/978-3-030-26980-7_45
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref53
  article-title: Deep linear discriminant analysis
– ident: ref62
  doi: 10.1109/CVPR46437.2021.01236
– ident: ref66
  doi: 10.1109/CVPR46437.2021.00180
– ident: ref48
  doi: 10.1109/TPAMI.2021.3054775
– year: 2017
  ident: ref38
  article-title: UCI machine learning repository
– ident: ref34
  doi: 10.1109/ita.2018.8503149
– ident: ref14
  doi: 10.1109/CVPR46437.2021.00157
– ident: ref44
  doi: 10.1109/CVPR46437.2021.00065
– start-page: 28
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref57
  article-title: Learning from multiple partially observed views - An application to multilingual text categorization
– ident: ref31
  doi: 10.1109/CVPR.2018.00454
– start-page: 368
  volume-title: Proc. Allerton Conf. Commun., Control Comput.
  ident: ref4
  article-title: The information bottleneck method
– ident: ref36
  doi: 10.1007/978-3-030-58580-8_11
– ident: ref26
  doi: 10.1109/TPAMI.2012.64
– year: 2013
  ident: ref13
  article-title: A survey on multi-view learning
– ident: ref33
  doi: 10.1007/s11263-021-01453-z
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref19
  article-title: Restricting the flow: Information bottlenecks for attribution
– ident: ref29
  doi: 10.1109/TPAMI.2013.2296528
– ident: ref67
  doi: 10.1609/aaai.v35i4.16419
– ident: ref11
  doi: 10.1609/aaai.v35i11.17210
– ident: ref24
  doi: 10.1109/TPAMI.2013.50
– ident: ref60
  doi: 10.1109/CVPR42600.2020.00962
– start-page: 531
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Mutual information neural estimation
– ident: ref43
  doi: 10.1007/978-3-030-58520-4_14
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref17
  article-title: Variational discriminator bottleneck: Improving imitation learning, inverse RL, and GANs by constraining information flow
– ident: ref70
  doi: 10.1007/978-3-030-58555-6_3
– ident: ref72
  doi: 10.1109/ICCV.2017.324
– ident: ref73
  doi: 10.1109/CVPR.2018.00464
– ident: ref12
  doi: 10.1109/TKDE.2018.2872063
– ident: ref69
  doi: 10.1109/ICCV.2019.00939
– ident: ref39
  doi: 10.1109/CVPR.2009.5206594
– ident: ref45
  doi: 10.1109/ICCV48922.2021.01609
– start-page: 1247
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref1
  article-title: Deep canonical correlation analysis
– ident: ref32
  doi: 10.1109/ICCV.2019.00381
– start-page: 1513
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref40
  article-title: A variational information bottleneck approach to multi-omics data integration
– ident: ref65
  doi: 10.1109/CVPR42600.2020.01112
– ident: ref52
  doi: 10.1186/1471-2105-8-113
– ident: ref50
  doi: 10.3390/s17030605
– ident: ref71
  doi: 10.1109/CVPR46437.2021.00135
– ident: ref37
  doi: 10.1016/j.cviu.2005.09.012
– ident: ref59
  doi: 10.1007/978-3-030-58604-1_41
– ident: ref47
  doi: 10.1109/ICCV48922.2021.01161
– start-page: 6383
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref54
  article-title: Large-scale sparse kernel canonical correlation analysis
– ident: ref56
  doi: 10.1145/1646396.1646452
– ident: ref3
  doi: 10.1109/TPAMI.2015.2435740
– ident: ref63
  doi: 10.1109/ICCV48922.2021.01597
– ident: ref20
  doi: 10.1109/ICCV.2019.00769
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref8
  article-title: Deep variational information bottleneck
– start-page: 25883
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: Multi-view subspace clustering on topological manifold
– ident: ref55
  doi: 10.1609/aaai.v29i1.9598
– start-page: 1083
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref2
  article-title: On deep multi-view representation learning
– ident: ref41
  doi: 10.1109/TPAMI.2020.3037734
– ident: ref51
  doi: 10.1109/CVPR.2019.00535
– start-page: 353
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Analyzing neural codes using the information bottleneck method
– ident: ref23
  doi: 10.1609/aaai.v35i13.17358
– start-page: 18661
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref64
  article-title: Supervised contrastive learning
– ident: ref15
  doi: 10.1109/ITW.2015.7133169
– ident: ref25
  doi: 10.5555/3524938.3525087
– ident: ref42
  doi: 10.1109/CVPR42600.2020.01027
– ident: ref21
  doi: 10.1609/aaai.v35i11.17163
SSID ssj0014503
Score 2.5116527
Snippet Information Bottleneck (IB) provides an information-theoretic principle for multi-view learning by revealing the various components contained in each...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4551
SubjectTerms Consistency
Distillation
information bottleneck
Information theory
knowledge distillation
Learning
Multi-view learning
Mutual information
Optimization
Pattern analysis
Predictive models
Principles
Representation learning
Representations
Task analysis
variational inference
Visualization
Title Variational Distillation for Multi-View Learning
URI https://ieeexplore.ieee.org/document/10372503
https://www.ncbi.nlm.nih.gov/pubmed/38133979
https://www.proquest.com/docview/3064713324
https://www.proquest.com/docview/2905525523
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oDqIHp_OrflHBm7RmTfqR41DHFCYetuGtJG0iomyiK4J_vS9pOlRQPLXQNE3z8vLeL-8L4JQkkmdUkSDLChEwEeE-yLkMtKAF56kSSpoA5-FtMhizm_v43gWr21gYpZR1PlOhubW2_HJWVOao7NzEtKHIpsuwnGZJHay1MBmw2JZBRhUGWRxxRBMhQ_j56K43vA5NofCQUkYRwazCCooqaoxa3wSSrbDyu7JphU6_DbfNcGtfk6ewmsuw-PiRyfHf_7MB60799Hv1etmEJTXtQLsp7eA7Tu_A2pc8hVtAJoio3amhf2l2hefahc5Hlde3MbzB5FG9-y5b68M2jPtXo4tB4EotBAVqYPNAlkmkdCG4LnXSLUiClNMspVzqVGRJrE1J3y4tJeIxImOqU6pNoiC8IleLhO5Aazqbqj3wGQKiUpA0oqboOldZKWNScolir8wy2fWg28x3Xrg85KYcxnNu8QjhuSVXbsiVO3J5cLZ456XOwvFn620z119a1tPswWFD19xx6ltuEJgB6hHz4GTxGHnMGE7EVM2qtzziJI4Re0XYxW69HhadN8to_5ePHsAqjo3VHr6H0Jq_VuoI9Zi5PLbr9xPg-ujY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8xkDZ4oBvrRvnYMmlvU4Ib20n8iICqZW21h4L6ZtmJjaZV7TRaIfHXc3acik3qxFMixXEcn893P98XwFeSaVFQQ-KiKFXMVIr7oBA6toqWQuRGGe0CnEfjrH_Drqd8GoLVfSyMMcY7n5nE3XpbfrUoV-6o7MzFtKHIpq9ghzPGeB2utTYaMO4LIaMSg0yOSKKJkSHibPLjfDRIXKnwhFJGEcPswmsUVtSZtf4SSb7GymZ104udXgvGzYBrb5NfyWqpk_Lxn1yOL_6jt7AfFNDovF4x72DLzA-g1RR3iAKvH8Des0yF74HcIqYO54bRpdsXZrUTXYRKb-SjeOPbn-YhCvla79pw07uaXPTjUGwhLlEHW8a6ylJjSyVsZbNuSTKknWU5Fdrmqsi4dUV9u7TSiMiI5tTm1LpUQXhFvlYZ_QDb88XcHELEEBJViuQpdWXXhSkqzUklNAq-qih0twPdZr5lGTKRu4IYM-kRCRHSk0s6cslArg58W7_zu87D8d_WbTfXz1rW09yBk4auMvDqvXQYzEH1lHXgy_oxcpkznai5WazuZSoI54i-UuziY70e1p03y-how0c_w5v-ZDSUw8H4-zHs4jhZ7e97AtvLPytzilrNUn_ya_kJPuLsJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Distillation+for+Multi-View+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tian%2C+Xudong&rft.au=Zhang%2C+Zhizhong&rft.au=Wang%2C+Cong&rft.au=Zhang%2C+Wensheng&rft.date=2024-07-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=46&rft.issue=7&rft.spage=4551&rft_id=info:doi/10.1109%2FTPAMI.2023.3343717&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon