Effect of Growth Rate and Wafering on Residual Stress of Diamond Wire Sawn Silicon Wafers
The mechanical integrity of photovoltaic (PV) silicon wafers is critical to avoid failure during solar cell manufacturing. Residual stress present in wafers affects mechanical integrity. Residual stresses are generated during solidification of ingots and during the wafering or wire sawing process us...
Saved in:
Published in | Procedia manufacturing Vol. 5; pp. 1382 - 1393 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2351-9789 2351-9789 |
DOI | 10.1016/j.promfg.2016.08.108 |
Cover
Abstract | The mechanical integrity of photovoltaic (PV) silicon wafers is critical to avoid failure during solar cell manufacturing. Residual stress present in wafers affects mechanical integrity. Residual stresses are generated during solidification of ingots and during the wafering or wire sawing process used to produce silicon wafers. In this paper, the residual maximum shear stress in diamond wire sawn photovoltaic multi-crystalline silicon wafers corresponding to different crystal growth rates and their pre-and post-etched conditions are analyzed. The full-field residual stress distributions in the wafers are measured using near infra-red transmission birefringence polariscopy. Results show that wafers corresponding to the high crystal growth rate are characterized by larger residual maximum shear stress. As the growth rate increases to two times the standard growth rate, the average residual stress increases by 43%. The increase in residual stress in the high growth rate wafers is attributed to the interaction of abrasives with more grain boundaries present in these wafers. Etching results in lower residual stress for all growth rates and ingot locations. |
---|---|
AbstractList | The mechanical integrity of photovoltaic (PV) silicon wafers is critical to avoid failure during solar cell manufacturing. Residual stress present in wafers affects mechanical integrity. Residual stresses are generated during solidification of ingots and during the wafering or wire sawing process used to produce silicon wafers. In this paper, the residual maximum shear stress in diamond wire sawn photovoltaic multi-crystalline silicon wafers corresponding to different crystal growth rates and their pre-and post-etched conditions are analyzed. The full-field residual stress distributions in the wafers are measured using near infra-red transmission birefringence polariscopy. Results show that wafers corresponding to the high crystal growth rate are characterized by larger residual maximum shear stress. As the growth rate increases to two times the standard growth rate, the average residual stress increases by 43%. The increase in residual stress in the high growth rate wafers is attributed to the interaction of abrasives with more grain boundaries present in these wafers. Etching results in lower residual stress for all growth rates and ingot locations. |
Author | Prasath, R.G.R. Danyluk, Steven Melkote, Shreyes N. Skenes, Kevin Yang, Chris Kumar, Arkadeep Pogue, Vanessa |
Author_xml | – sequence: 1 givenname: Arkadeep surname: Kumar fullname: Kumar, Arkadeep email: arkadeepkumar@gatech.edu – sequence: 2 givenname: R.G.R. surname: Prasath fullname: Prasath, R.G.R. email: rraveendran3@gatech.edu – sequence: 3 givenname: Vanessa surname: Pogue fullname: Pogue, Vanessa email: vpogue@gatech.edu – sequence: 4 givenname: Kevin surname: Skenes fullname: Skenes, Kevin email: kskenes@gatech.edu – sequence: 5 givenname: Chris surname: Yang fullname: Yang, Chris email: chris.yang@gatech.edu – sequence: 6 givenname: Shreyes N. surname: Melkote fullname: Melkote, Shreyes N. email: shreyes.melkote@me.gatech.edu – sequence: 7 givenname: Steven surname: Danyluk fullname: Danyluk, Steven email: steven.danyluk@gatech.edu |
BookMark | eNqFkM1KAzEUhYNUsNa-gYu8wNRkZjI_LgSptQoFoS2Iq5DJ3NSUaVKSaPHtzVgX4kJX997D-Q7cc44GxhpA6JKSCSW0uNpO9s7u1GaSxmtCqqhWJ2iYZowmdVnVgx_7GRp7vyUkOtOiKOshepkpBTJgq_Dc2UN4xUsRAAvT4mehwGmzwdbgJXjdvokOr4ID73v7nRY729u0A7wSB4NXutMymr9Af4FOleg8jL_nCK3vZ-vpQ7J4mj9ObxeJzFgakqYCAZTStlGyYIJmdSUYa1Xe0rymDZS5kKVMU1ZTyJhiopGQlQUrM1oQqLMRyo-x0lnvHSi-d3on3AenhPcF8S0_FsT7gjipolpF7PoXJnUQQVsTnNDdf_DNEYb417sGx73UYCS0sQsZeGv13wGffAmGWg |
CitedBy_id | crossref_primary_10_1016_j_jmatprotec_2019_116267 crossref_primary_10_1016_j_ceramint_2020_08_291 crossref_primary_10_1007_s00170_022_09518_0 crossref_primary_10_1016_j_wen_2020_03_006 crossref_primary_10_1016_j_mssp_2020_105015 crossref_primary_10_1016_j_solmat_2024_112999 crossref_primary_10_1063_1_5037106 crossref_primary_10_1016_j_jmapro_2024_09_093 crossref_primary_10_3390_mi12040429 crossref_primary_10_1016_j_engfracmech_2021_107717 crossref_primary_10_1016_j_wear_2021_204186 crossref_primary_10_1007_s10958_022_06064_8 crossref_primary_10_1016_j_jeurceramsoc_2020_07_018 crossref_primary_10_1016_j_solmat_2019_110068 crossref_primary_10_1063_5_0034896 crossref_primary_10_1016_j_promfg_2018_02_156 |
Cites_doi | 10.1016/S0007-8506(07)63113-8 10.1007/s00170-009-2347-6 10.1115/1.2899676 10.1002/adem.200400578 10.1063/1.1774259 10.1063/1.3488643 10.1016/S0921-5093(00)01031-5 10.1007/978-3-319-00876-9_10 10.1103/PhysRevB.34.4679 10.1016/j.tsf.2005.01.061 10.1007/s11664-010-1164-x 10.1016/S0007-8506(07)60880-4 10.1016/j.solmat.2004.07.028 10.1109/PVSC.2010.5616046 10.1016/S0007-8506(07)60207-8 10.1007/s11664-013-2630-z 10.1063/1.3468404 10.1016/S0020-7403(00)00019-9 |
ContentType | Journal Article |
Copyright | 2016 The Authors |
Copyright_xml | – notice: 2016 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.promfg.2016.08.108 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2351-9789 |
EndPage | 1393 |
ExternalDocumentID | 10_1016_j_promfg_2016_08_108 S2351978916301202 |
GroupedDBID | 0R~ 0SF 457 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB KQ8 M~E NCXOZ O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c352t-b8eae111dbfc65a1398a55df4d1491be74ac7c22591e35f5abce376573160e93 |
ISSN | 2351-9789 |
IngestDate | Thu Apr 24 23:08:11 EDT 2025 Tue Jul 01 02:10:44 EDT 2025 Tue May 16 22:30:30 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | residual stress diamond wire sawing multi-crystalline silicon |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-b8eae111dbfc65a1398a55df4d1491be74ac7c22591e35f5abce376573160e93 |
OpenAccessLink | https://dx.doi.org/10.1016/j.promfg.2016.08.108 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_promfg_2016_08_108 crossref_citationtrail_10_1016_j_promfg_2016_08_108 elsevier_sciencedirect_doi_10_1016_j_promfg_2016_08_108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | Procedia manufacturing |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Popovich VA, Yunus A, Janssen M, Bennett IJ and Richardson IM. Effect of microstructure and processing parameters on mechanical strength of multicrystalline silicon solar cells. In: Proc. of the 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 2222-2226 Möller, Funke, Rinio, Scholz (bib0090) 2005; 487 Yan J, Yoshino M, Kuriagawa T, Shirakashi T, Syoji K and Komanduri R. On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications. ASTM-E112-13. Standard test methods for determining average grain size. 2004. ASTM-E1382. Standard test methods for determining average grain size using semiautomatic and automatic image analysis. 2015. Hu, Merkle, Menoni, Spain (bib0050) 1986; 34 Bifano, Dow, Scattergood (bib0015) 1991; 113 Li X, Cai M, Rahman M and Liang S. Study of the upper bound of tool edge radius in nanoscale ductile mode cutting of silicon wafer. Yoshino, Aoki, Shirakashi, Komanduri (bib0130) 2001; 43 Komanduri, Lucca, Tani (bib0070) 1997; 46 Prasath, Skenes, Danyluk (bib0100) 2013; 42 Cai E, Tang B, Fahrner WR and Zhou L. Characterization of the surfaces generated by diamond cutting of crystalline silicon. In 2011, pp.1884-1886. 2001; 297(1-2): 230-234. Brito, Alves, Serra, Gamboa, Pinto, Vallera (bib0020) 2005; 87 Skenes K, Prasath RGR and Danyluk S. Polariscopy measurement of residual stress in thin silicon wafers. In: Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics. Springer International Publishing, 2014, pp.79-85. Wurzner, Helbig, Funke, Möller (bib0120) 2010; 108 2010; 48(9-12): 993-999. Ganapati, Schoenfelder, Castellanos, Oener, Koepge, Sampson, Marcus, Lai, Morhenn, Hahn, Bagdahn, Buonassisi (bib0040) 2010; 108 Komanduri (bib0060) 1996; 45 He, Zheng, Danyluk (bib0045) 2004; 96 Zheng, Danyluk (bib0135) 2001; 59 ITRPV. International Technology Roadmap for Photovoltaics http://www.itrpv.net/Reports/Downloads/2014/2014. Schumann M, Haas T, Orellana Pérez T and Riepe S. Grain size distribution of multicrystalline silicon for structure characterization of silicon wafers. In: Proc. of the 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp.1859-1863. Evans, Paul, Dornfeld, Lucca, Byrne, Tricard, Klocke, Dambon, Mullany (bib0030) 2003; 52 Fukuzawa, Yamada, Islam, Chen, Sekiguchi (bib0035) 2010; 39 Möller (bib0085) 2004; 6 2014. Skenes K. Characterization of residual stresses in birefringent materials applied to multicrystalline silicon wafers. Kumar A, Skenes K, Prasath RGR, Yang C, Melkote SN, Danyluk S. Spatial distribution of full-field residual stress and its correlation with fracture strength of thin silicon wafers. In: Proc. of the 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp.1474-1476. Komanduri, Chandrasekaran, Raff (bib0065) 2001; 81 Hu (10.1016/j.promfg.2016.08.108_bib0050) 1986; 34 10.1016/j.promfg.2016.08.108_bib0115 Wurzner (10.1016/j.promfg.2016.08.108_bib0120) 2010; 108 Komanduri (10.1016/j.promfg.2016.08.108_bib0070) 1997; 46 Fukuzawa (10.1016/j.promfg.2016.08.108_bib0035) 2010; 39 Yoshino (10.1016/j.promfg.2016.08.108_bib0130) 2001; 43 Komanduri (10.1016/j.promfg.2016.08.108_bib0065) 2001; 81 Prasath (10.1016/j.promfg.2016.08.108_bib0100) 2013; 42 Bifano (10.1016/j.promfg.2016.08.108_bib0015) 1991; 113 Ganapati (10.1016/j.promfg.2016.08.108_bib0040) 2010; 108 He (10.1016/j.promfg.2016.08.108_bib0045) 2004; 96 10.1016/j.promfg.2016.08.108_bib0055 10.1016/j.promfg.2016.08.108_bib0110 10.1016/j.promfg.2016.08.108_bib0010 10.1016/j.promfg.2016.08.108_bib0075 Möller (10.1016/j.promfg.2016.08.108_bib0090) 2005; 487 10.1016/j.promfg.2016.08.108_bib0095 Möller (10.1016/j.promfg.2016.08.108_bib0085) 2004; 6 Zheng (10.1016/j.promfg.2016.08.108_bib0135) 2001; 59 10.1016/j.promfg.2016.08.108_bib0105 10.1016/j.promfg.2016.08.108_bib0005 10.1016/j.promfg.2016.08.108_bib0125 10.1016/j.promfg.2016.08.108_bib0025 10.1016/j.promfg.2016.08.108_bib0080 Evans (10.1016/j.promfg.2016.08.108_bib0030) 2003; 52 Komanduri (10.1016/j.promfg.2016.08.108_bib0060) 1996; 45 Brito (10.1016/j.promfg.2016.08.108_bib0020) 2005; 87 |
References_xml | – reference: , 2011, pp.1884-1886. – volume: 96 start-page: 3103 year: 2004 end-page: 3109 ident: bib0045 article-title: Analysis and determination of the stress-optic coefficients of thin single crystal silicon samples publication-title: Journal of Applied Physics – reference: Cai E, Tang B, Fahrner WR and Zhou L. Characterization of the surfaces generated by diamond cutting of crystalline silicon. In: – volume: 87 start-page: 311 year: 2005 end-page: 316 ident: bib0020 article-title: Measurement of residual stress in EFG ribbons using a phase-shifting IR photoelastic method publication-title: Solar Energy Materials and Solar Cells – reference: Kumar A, Skenes K, Prasath RGR, Yang C, Melkote SN, Danyluk S. Spatial distribution of full-field residual stress and its correlation with fracture strength of thin silicon wafers. In: Proc. of the 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp.1474-1476. – reference: ASTM-E112-13. Standard test methods for determining average grain size. 2004. – reference: Li X, Cai M, Rahman M and Liang S. Study of the upper bound of tool edge radius in nanoscale ductile mode cutting of silicon wafer. – reference: ITRPV. International Technology Roadmap for Photovoltaics http://www.itrpv.net/Reports/Downloads/2014/2014. – volume: 81 start-page: 1989 year: 2001 end-page: 2019 ident: bib0065 publication-title: Molecular dynamics simulation of the nanometric cutting of silicon. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties – reference: 2001; 297(1-2): 230-234. – volume: 42 start-page: 2478 year: 2013 end-page: 2485 ident: bib0100 article-title: Comparison of phase shifting techniques for measuring in-plane residual stress in thin publication-title: flat silicon wafers, Journal of Electronic Materials – reference: ASTM-E1382. Standard test methods for determining average grain size using semiautomatic and automatic image analysis. 2015. – reference: Schumann M, Haas T, Orellana Pérez T and Riepe S. Grain size distribution of multicrystalline silicon for structure characterization of silicon wafers. In: Proc. of the 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp.1859-1863. – volume: 487 start-page: 179 year: 2005 end-page: 187 ident: bib0090 article-title: Multicrystalline silicon for solar cells publication-title: Thin Solid Films – volume: 108 start-page: 063528 year: 2010 ident: bib0040 article-title: Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon publication-title: Journal of Applied Physics – volume: 34 start-page: 4679 year: 1986 end-page: 4684 ident: bib0050 article-title: Crystal data for high-pressure phases of silicon publication-title: Physical Review B – volume: 113 start-page: 184 year: 1991 end-page: 189 ident: bib0015 article-title: Ductile-regime grinding - a new technology for machining brittle materials publication-title: Journal of Engineering for Industry-Transactions of the ASME – reference: Skenes K, Prasath RGR and Danyluk S. Polariscopy measurement of residual stress in thin silicon wafers. In: Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics. Springer International Publishing, 2014, pp.79-85. – volume: 46 start-page: 545 year: 1997 end-page: 596 ident: bib0070 article-title: Technological advances in fine abrasive processes publication-title: CIRP Annals - Manufacturing Technology – reference: Skenes K. Characterization of residual stresses in birefringent materials applied to multicrystalline silicon wafers. – volume: 108 year: 2010 ident: bib0120 article-title: The relationship between microstructure and dislocation density distribution in multicrystalline silicon publication-title: Journal of Applied Physics – volume: 43 start-page: 335 year: 2001 end-page: 347 ident: bib0130 article-title: Some experiments on the scratching of silicon:: In situ scratching inside an SEM and scratching under high external hydrostatic pressures publication-title: International Journal of Mechanical Sciences – volume: 39 start-page: 700 year: 2010 end-page: 703 ident: bib0035 article-title: Quantitative photoelastic characterization of residual strains in grains of multicrystalline silicon publication-title: Journal of Electronic Materials – volume: 59 start-page: 1227 year: 2001 end-page: 1233 ident: bib0135 article-title: Nondestructive measurement of in plane residual stresses in thin silicon substrates by infrared transmission publication-title: Materials Evaluation – reference: 2014. – volume: 52 start-page: 611 year: 2003 end-page: 633 ident: bib0030 article-title: Material removal mechanisms in lapping and polishing publication-title: CIRP Annals-Manufacturing Technology – reference: Yan J, Yoshino M, Kuriagawa T, Shirakashi T, Syoji K and Komanduri R. On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications. – volume: 6 start-page: 501 year: 2004 end-page: 513 ident: bib0085 article-title: Basic mechanisms and models of multi-wire sawing publication-title: Advanced Engineering Materials – reference: Popovich VA, Yunus A, Janssen M, Bennett IJ and Richardson IM. Effect of microstructure and processing parameters on mechanical strength of multicrystalline silicon solar cells. In: Proc. of the 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 2222-2226 – volume: 45 start-page: 509 year: 1996 end-page: 514 ident: bib0060 article-title: On material removal mechanisms in finishing of advanced ceramics and glasses publication-title: CIRP Annals - Manufacturing Technology – reference: 2010; 48(9-12): 993-999. – volume: 45 start-page: 509 issue: 1 year: 1996 ident: 10.1016/j.promfg.2016.08.108_bib0060 article-title: On material removal mechanisms in finishing of advanced ceramics and glasses publication-title: CIRP Annals - Manufacturing Technology doi: 10.1016/S0007-8506(07)63113-8 – ident: 10.1016/j.promfg.2016.08.108_bib0080 doi: 10.1007/s00170-009-2347-6 – ident: 10.1016/j.promfg.2016.08.108_bib0110 – volume: 113 start-page: 184 issue: 2 year: 1991 ident: 10.1016/j.promfg.2016.08.108_bib0015 article-title: Ductile-regime grinding - a new technology for machining brittle materials publication-title: Journal of Engineering for Industry-Transactions of the ASME doi: 10.1115/1.2899676 – volume: 6 start-page: 501 issue: 7 year: 2004 ident: 10.1016/j.promfg.2016.08.108_bib0085 article-title: Basic mechanisms and models of multi-wire sawing publication-title: Advanced Engineering Materials doi: 10.1002/adem.200400578 – ident: 10.1016/j.promfg.2016.08.108_bib0055 – volume: 96 start-page: 3103 issue: 6 year: 2004 ident: 10.1016/j.promfg.2016.08.108_bib0045 article-title: Analysis and determination of the stress-optic coefficients of thin single crystal silicon samples publication-title: Journal of Applied Physics doi: 10.1063/1.1774259 – volume: 108 issue: 8 year: 2010 ident: 10.1016/j.promfg.2016.08.108_bib0120 article-title: The relationship between microstructure and dislocation density distribution in multicrystalline silicon publication-title: Journal of Applied Physics doi: 10.1063/1.3488643 – ident: 10.1016/j.promfg.2016.08.108_bib0125 doi: 10.1016/S0921-5093(00)01031-5 – ident: 10.1016/j.promfg.2016.08.108_bib0115 doi: 10.1007/978-3-319-00876-9_10 – ident: 10.1016/j.promfg.2016.08.108_bib0025 – volume: 34 start-page: 4679 issue: 7 year: 1986 ident: 10.1016/j.promfg.2016.08.108_bib0050 article-title: Crystal data for high-pressure phases of silicon publication-title: Physical Review B doi: 10.1103/PhysRevB.34.4679 – volume: 487 start-page: 179 issue: 1–2 year: 2005 ident: 10.1016/j.promfg.2016.08.108_bib0090 article-title: Multicrystalline silicon for solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.01.061 – ident: 10.1016/j.promfg.2016.08.108_bib0105 – volume: 39 start-page: 700 issue: 6 year: 2010 ident: 10.1016/j.promfg.2016.08.108_bib0035 article-title: Quantitative photoelastic characterization of residual strains in grains of multicrystalline silicon publication-title: Journal of Electronic Materials doi: 10.1007/s11664-010-1164-x – volume: 81 start-page: 1989 issue: 12 year: 2001 ident: 10.1016/j.promfg.2016.08.108_bib0065 publication-title: Molecular dynamics simulation of the nanometric cutting of silicon. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties – volume: 46 start-page: 545 issue: 2 year: 1997 ident: 10.1016/j.promfg.2016.08.108_bib0070 article-title: Technological advances in fine abrasive processes publication-title: CIRP Annals - Manufacturing Technology doi: 10.1016/S0007-8506(07)60880-4 – volume: 87 start-page: 311 issue: 1–4 year: 2005 ident: 10.1016/j.promfg.2016.08.108_bib0020 article-title: Measurement of residual stress in EFG ribbons using a phase-shifting IR photoelastic method publication-title: Solar Energy Materials and Solar Cells doi: 10.1016/j.solmat.2004.07.028 – ident: 10.1016/j.promfg.2016.08.108_bib0095 doi: 10.1109/PVSC.2010.5616046 – ident: 10.1016/j.promfg.2016.08.108_bib0075 – volume: 59 start-page: 1227 issue: 10 year: 2001 ident: 10.1016/j.promfg.2016.08.108_bib0135 article-title: Nondestructive measurement of in plane residual stresses in thin silicon substrates by infrared transmission publication-title: Materials Evaluation – ident: 10.1016/j.promfg.2016.08.108_bib0010 – volume: 52 start-page: 611 issue: 2 year: 2003 ident: 10.1016/j.promfg.2016.08.108_bib0030 article-title: Material removal mechanisms in lapping and polishing publication-title: CIRP Annals-Manufacturing Technology doi: 10.1016/S0007-8506(07)60207-8 – volume: 42 start-page: 2478 issue: 8 year: 2013 ident: 10.1016/j.promfg.2016.08.108_bib0100 article-title: Comparison of phase shifting techniques for measuring in-plane residual stress in thin publication-title: flat silicon wafers, Journal of Electronic Materials doi: 10.1007/s11664-013-2630-z – volume: 108 start-page: 063528 issue: 6 year: 2010 ident: 10.1016/j.promfg.2016.08.108_bib0040 article-title: Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon publication-title: Journal of Applied Physics doi: 10.1063/1.3468404 – volume: 43 start-page: 335 issue: 2 year: 2001 ident: 10.1016/j.promfg.2016.08.108_bib0130 article-title: Some experiments on the scratching of silicon:: In situ scratching inside an SEM and scratching under high external hydrostatic pressures publication-title: International Journal of Mechanical Sciences doi: 10.1016/S0020-7403(00)00019-9 – ident: 10.1016/j.promfg.2016.08.108_bib0005 |
SSID | ssj0001626679 |
Score | 2.1115522 |
Snippet | The mechanical integrity of photovoltaic (PV) silicon wafers is critical to avoid failure during solar cell manufacturing. Residual stress present in wafers... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1382 |
SubjectTerms | diamond wire sawing multi-crystalline silicon residual stress |
Title | Effect of Growth Rate and Wafering on Residual Stress of Diamond Wire Sawn Silicon Wafers |
URI | https://dx.doi.org/10.1016/j.promfg.2016.08.108 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQ98ILAgFiwJAfeJtSJU1sp4_VGJuo4CEt2niKnPgM-yCd2kxI_PW7s5000io-9hK1bhxXvl_uzuf7nRl7n0JllQYTxbaSUaaUjKa1EpGqhFAJGFAZsZE_f5GnX7NP5-J8G1Vy7JK2Gte_d_JKHiJVbEO5Ekv2PyTbPxQb8DPKF68oYbz-k4xD6WH0905wNd3-OCzQc3TbAWfauhqDtBdQwMYzrhaeF4K3f7igQ4aMy309XOhf-I5fXCMmGt9xM3RZHZUAUUSJrrfEg3DExu0WUEjRnq2vtAG46XXtWm-0D9oU45NxMe5_oGCRS6_VpGZ7s7C4gnBswByNdTMMR3iepI-O3WPIkBKbpCKJcKXq1SLsaAtaWAy0KNVFHFhkdFLTndreBx4uydb8tN8pT09SPdYkzrfWrc85XNCwNCp6oMQYRru9N1FSTkZsbzYvzubb0Bwu8qSr0tj_04506TID7w-326kZOCrLp-xJWGHwmYfLM_YImufsm4cKX1nuocIJKhyhwjuo8FXDO6hwDxW6PUCFE1Q4QYUHqPiOmxds-fF4eXQahVM1ohqd7TaqctCAFs5UtpZC4-TmWghjM4OL5aTCl1PXqkY1P00gFVboqga0QoKOOIthmr5ko2bVwCvGTSzRxUpBoo3MYmv0JAWTGjvNDWVaxfss7WalrEPFeTr45LrsUgsvSz-XJc1lGedUrnafRX2vG19x5S_3q27Cy-A1em-wRJj8sefrB_d8wx7TNx-Ke8tG7foWDtA5bat3AUx3c5CRiA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Growth+Rate+and+Wafering+on+Residual+Stress+of+Diamond+Wire+Sawn+Silicon+Wafers&rft.jtitle=Procedia+manufacturing&rft.au=Kumar%2C+Arkadeep&rft.au=Prasath%2C+R.G.R.&rft.au=Pogue%2C+Vanessa&rft.au=Skenes%2C+Kevin&rft.date=2016&rft.pub=Elsevier+B.V&rft.issn=2351-9789&rft.eissn=2351-9789&rft.volume=5&rft.spage=1382&rft.epage=1393&rft_id=info:doi/10.1016%2Fj.promfg.2016.08.108&rft.externalDocID=S2351978916301202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2351-9789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2351-9789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2351-9789&client=summon |