Genetic-based algorithms for cash-in-transit multi depot vehicle routing problems: economic and environmental optimization
With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities to the business development of Cash-In-Transit (CIT) sectors. However, the branches are often distributed in densely populated areas where tr...
Saved in:
| Published in | Environment, development and sustainability Vol. 25; no. 1; pp. 557 - 586 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.01.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1387-585X 1573-2975 |
| DOI | 10.1007/s10668-021-02066-9 |
Cover
| Abstract | With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities to the business development of Cash-In-Transit (CIT) sectors. However, the branches are often distributed in densely populated areas where traffic jams occur from time to time, which poses a severe challenge to the route planning of CIT vehicles. In addition, risk factors need to be considered during the optimization process because the goods transported belong to valuables. In order to effectively deal with the routing problem of CIT sectors, this paper established a bi-objective model and a goal programming model of Risk-Constrained Multi Depot Vehicle Routing Problems (RCMDVRPs) using real-time traffic data. Based on the traditional genetic algorithm, a Hybrid Genetic Algorithm with Intensification procedures (HGAI) is proposed to solve the goal programming model by using a three-level linked list structure to express chromosomes visually. Then, a new Self-constrained Hybrid Genetic Algorithm (SHGA) is designed for the bi-objective model. Besides, an online path updating strategy is developed to guide remote vehicles against time-dependent traffic flows. Finally, the HGAI is performed on benchmark instances to verify its accuracy. Experimental results of performance test show that the algorithm can achieve a gap of about 3% compared with the Best Known Result (BKR). The results of a case study also show that the two models and the corresponding algorithms are feasible and can be used to solve large-scale problems according to the special preferences and goals of decision-makers. |
|---|---|
| AbstractList | With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities to the business development of Cash-In-Transit (CIT) sectors. However, the branches are often distributed in densely populated areas where traffic jams occur from time to time, which poses a severe challenge to the route planning of CIT vehicles. In addition, risk factors need to be considered during the optimization process because the goods transported belong to valuables. In order to effectively deal with the routing problem of CIT sectors, this paper established a bi-objective model and a goal programming model of Risk-Constrained Multi Depot Vehicle Routing Problems (RCMDVRPs) using real-time traffic data. Based on the traditional genetic algorithm, a Hybrid Genetic Algorithm with Intensification procedures (HGAI) is proposed to solve the goal programming model by using a three-level linked list structure to express chromosomes visually. Then, a new Self-constrained Hybrid Genetic Algorithm (SHGA) is designed for the bi-objective model. Besides, an online path updating strategy is developed to guide remote vehicles against time-dependent traffic flows. Finally, the HGAI is performed on benchmark instances to verify its accuracy. Experimental results of performance test show that the algorithm can achieve a gap of about 3% compared with the Best Known Result (BKR). The results of a case study also show that the two models and the corresponding algorithms are feasible and can be used to solve large-scale problems according to the special preferences and goals of decision-makers. |
| Author | Ge, Xianlong Jin, Yuanzhi Zhang, Long |
| Author_xml | – sequence: 1 givenname: Xianlong surname: Ge fullname: Ge, Xianlong organization: School of Economics and Management, Chongqing Jiaotong University – sequence: 2 givenname: Yuanzhi orcidid: 0000-0001-8781-6990 surname: Jin fullname: Jin, Yuanzhi email: jinyuanzhi@haust.edu.cn, 47393039@qq.com organization: School of Economics and Management, Chongqing Jiaotong University, Department of Computer Technology and Information Engineering, Sanmenxia Polytechnic – sequence: 3 givenname: Long surname: Zhang fullname: Zhang, Long organization: School of Business, Xinyang Normal University |
| BookMark | eNp9kcFrHSEQxqWk0CTtP9CT0EsvNuquq_ZWQpMWArm00JuoO_uewdVXdQPNX1-TVyjkkMMwc_h-Mx_znaGTlBMg9J7RT4xSeVEZnSZFKGe9-kj0K3TKhBwI11Kc9HlQkgglfr1BZ7Xe0a7SfDpFD9eQoAVPnK0wYxt3uYS2XytecsHe1j0JibRiUw0Nr1tsAc9wyA3fwz74CLjkrYW0w4eSXYS1fsbgc8pr8NimGUO6DyWnFVKzEedDC2t4sC3k9Ba9Xmys8O5fP0c_r77-uPxGbm6vv19-uSF-ELwRJ7Wg3EvBrXazpTCCEMwxxZSbBzc6vjCl2TB7YRfNtOJeTXKk8zS6hcphOEcfj3u7w98b1GbWUD3EaBPkrRquRt0XTFx26Ydn0ru8ldTdGS4nNo2Kq0cVP6p8ybUWWMyhhNWWP4ZR8xiHOcZhehzmKQ6jO6SeQT60pz_054b4Mjoc0drvpB2U_65eoP4CrFujJg |
| CitedBy_id | crossref_primary_10_1007_s10668_023_04123_x crossref_primary_10_3390_su15043208 crossref_primary_10_1007_s00500_023_08811_8 crossref_primary_10_17341_gazimmfd_1218090 crossref_primary_10_3233_JIFS_235260 |
| Cites_doi | 10.5772/5638 10.1109/NILES50944.2020.9257879 10.3141/2478-08 10.1016/j.ejor.2013.08.002 10.1016/j.jmse.2021.05.004 10.4018/978-1-7998-8048-6.ch020 10.1016/j.cor.2009.01.003 10.1016/j.ijpe.2005.08.010 10.1016/j.ejor.2005.08.015 10.1016/j.ejor.2020.03.061 10.1016/j.jclepro.2018.09.228 10.1007/s10668-020-00856-1 10.1016/j.ejor.2015.01.019 10.1016/S0377-2217(77)81007-2 10.1016/j.ejor.2005.10.010 10.1016/j.engappai.2007.06.001 10.1007/s10668-021-01236-z 10.1080/01605682.2021.1939172 10.1109/IIHMSP.2007.4457776 10.1016/j.cor.2005.09.012 10.1016/j.cie.2012.04.004 10.5267/j.ijiec.2017.11.005 10.1109/CISE.2009.5362726 10.1007/s13676-012-0004-y 10.1016/j.ejor.2016.07.027 10.1016/j.apm.2016.01.059 10.1017/cri.2020.11 10.1016/j.amc.2009.03.037 10.1109/CEC.2012.6253010 10.1016/j.eswa.2018.01.052 10.1016/j.jlp.2011.05.006 10.1016/j.ins.2013.02.041 10.1016/j.seps.2014.02.003 10.1016/j.asoc.2010.04.001 10.20956/jmsk.v17i2.11107 10.1016/j.sbspro.2014.01.1492 10.1080/19427867.2016.1274468 10.1016/S0952-1976(00)00065-8 10.1016/j.cor.2016.04.003 10.1016/j.ejor.2017.06.012 10.1007/s10489-006-6926-z 10.1016/j.cie.2019.106040 10.1109/TEVC.2009.2033578 10.1002/mcda.1563 10.1016/j.ejor.2020.07.005 10.1016/j.enconman.2013.11.042 10.1109/KES.2000.884102 10.1016/j.tre.2019.04.011 10.1007/978-3-540-85152-3_4 10.1016/j.ejor.2015.01.040 10.1016/j.asoc.2014.11.005 10.1016/j.cor.2005.02.017 10.1016/j.sbspro.2010.04.022 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| DBID | AAYXX CITATION 3V. 7ST 7U6 7WY 7WZ 7XB 87Z 8AO 8BJ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FQK FR3 FRNLG F~G GNUQQ HCIFZ JBE K60 K6~ KR7 L.- L6V M0C M7S PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s10668-021-02066-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Sustainability Science Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central International Bibliography of the Social Sciences Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Sustainability Science Abstracts ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Ecology |
| EISSN | 1573-2975 |
| EndPage | 586 |
| ExternalDocumentID | 10_1007_s10668_021_02066_9 |
| GrantInformation_xml | – fundername: Chongqing graduate Scientific research innovation Project grantid: CYB20178 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 7WY 7XC 8AO 8FE 8FG 8FH 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L6V L8X LAK LLZTM M0C M4Y M7S MA- ML. N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7V Z7Y Z81 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7ST 7U6 7XB 8BJ 8FD 8FK AZQEC C1K FQK FR3 GNUQQ JBE KR7 L.- PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-b79502c752a9bda0e4e551b1818bd3b4b2f18913dc5af91982c86740d64bf0733 |
| IEDL.DBID | U2A |
| ISSN | 1387-585X |
| IngestDate | Wed Oct 01 07:54:30 EDT 2025 Sat Aug 23 14:17:57 EDT 2025 Wed Oct 01 03:33:12 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Fri Feb 21 02:46:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Risk constraints Bi-objective optimization Multi depot vehicle routing problem Cash-in-transit Goal programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-b79502c752a9bda0e4e551b1818bd3b4b2f18913dc5af91982c86740d64bf0733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8781-6990 |
| PQID | 2761648287 |
| PQPubID | 25739 |
| PageCount | 30 |
| ParticipantIDs | proquest_miscellaneous_2849891627 proquest_journals_2761648287 crossref_primary_10_1007_s10668_021_02066_9 crossref_citationtrail_10_1007_s10668_021_02066_9 springer_journals_10_1007_s10668_021_02066_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | A Multidisciplinary Approach to the Theory and Practice of Sustainable Development |
| PublicationTitle | Environment, development and sustainability |
| PublicationTitleAbbrev | Environ Dev Sustain |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | LacommePPrinsCSevauxMA genetic algorithm for a bi-objective capacitated arc routing problemComputers and Operations Research2006331234733493 Khairy, O. M., Shehata, O. M., & Morgan, E. I. (2020). Meta-heuristic algorithms for solving the multi-depot vehicle routing problem. In 2020 2nd Novel intelligent and leading emerging sciences conference (NILES). YoussefHSaitSMAdicheHEvolutionary algorithms, simulated annealing and tabu search: A comparative studyEngineering Applications of Artificial Intelligence2001142167181 Wink, S., Bäck, T., & Emmerich, M. (2012). A meta-genetic algorithm for solving the capacitated vehicle routing problem. In 2012 IEEE congress on evolutionary computation. PradhanangaRTaniguchiEYamadaTAnt colony system based routing and scheduling for hazardous material transportationProcedia—Social and Behavioral Sciences20102360976108 Zhang, Z., Wang, L., Song, X., Huang, H., & Yin, Y. (2021). Improved genetic-simulated annealing algorithm for seru loading problem with downward substitution under stochastic environment. Journal of the Operational Research Society, pp. 1–12. Liu, F., Fang, K., Tang, J., & Yin, Y. (2021). Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms. Journal of Management Science and Engineering. TalaricoLSörensenKSpringaelJThe k-dissimilar vehicle routing problemEuropean Journal of Operational Research20152441129140 PisingerDRopkeSA general heuristic for vehicle routing problemsComputers and Operations Research200734824032435 Ntziachristos, L., & Samaras, Z. (2000). COPERT III, Computer programme to calculate emissions from road transport. Copenhagen, European Energy Agency (EEA). Zhang, Y., Liu, J., Duan, F., & Ren, J. (2007). Genetic algorithm in vehicle routing problem. In Third international conference on intelligent information hiding and multimedia signal processing (IIH-MSP 2007). AzadehAFarrokhi-AslHThe close–open mixed multi depot vehicle routing problem considering internal and external fleet of vehiclesTransportation Letters20191127892 Aksoy, D. (2020). Operational management challenges for cash-in-transit services during an outbreak of a global disease. 5. International EMI Entrepreneurship and Social Sciences Congress PROCEEDINGS E-BOOK. Skok, M., Skrlec, D., & Krajcar, S. (2000). The genetic algorithm method for multiple depot capacitated vehicle routing problem solving. In KES'2000. Fourth international conference on knowledge-based intelligent engineering systems and allied technologies. proceedings (Cat. No.00TH8516). TalaricoLSpringaelJSorensenKTalaricoFA large neighbourhood metaheuristic for the risk-constrained cash-in-transit vehicle routing problemComputers & Operations Research201778547556 ShuibAMuhamadNAMixed integer multi-objective goal programming model for green capacitated vehicle routing problemAdvances in Transportation and Logistics Research20181356368 GhaderiABurdettRLAn integrated location and routing approach for transporting hazardous materials in a bi-modal transportation networkTransportation Research Part E: Logistics and Transportation Review20191274965 CrevierBCordeauJ-FLaporteGThe multi-depot vehicle routing problem with inter-depot routesEuropean Journal of Operational Research20071762756773 CBA. (2021). 2020 Annual Report on the Development of China's Banking Industry. Retrieved 24, March, 2021, from https://www.china-cba.net/. IrawanWManaqibMFitriyatiNImplementation of the model capacited vehicle routing problem with time windows with a goal programming approach in determining the best route for goods distributionJurnal Matematika, Statistika Dan Komputasi2021172231239 BolanosREscobarJEcheverriMA metaheuristic algorithm for the multi-depot vehicle routing problem with heterogeneous fleetInternational Journal of Industrial Engineering Computations201894461478 KarakatičSPodgorelecVA survey of genetic algorithms for solving multi depot vehicle routing problemApplied Soft Computing201527519532 XingLRohlfshagenPChenYYaoXAn evolutionary approach to the multidepot capacitated arc routing problemIEEE Transactions on Evolutionary Computation2010143356374 YanSYWangSSWuMWA model with a solution algorithm for the cash transportation vehicle routing and scheduling problemComputers and Industrial Engineering2012632464473 Ombuki-Berman, B., & Hanshar, F. T. (2009). Using genetic algorithms for multi-depot vehicle routing. In F. B. Pereira and J. Tavares (Eds.), Bio-inspired algorithms for the vehicle routing problem, pp. 77–99. Springer. ChangYHThe cash pick-up and delivery vehicle routing/scheduling under stochastic travel times2011National Central University DemirEBektaşTLaporteGThe bi-objective pollution-routing problemEuropean Journal of Operational Research20142323464478 KumarARoyDVerterVSharmaDIntegrated fleet mix and routing decision for hazmat transportation: A developing country perspectiveEuropean Journal of Operational Research20182641225238 MavrotasGEffective implementation of the ε-constraint method in multi-objective mathematical programming problemsApplied Mathematics and Computation20092132455465 SorianoAVidalTGanstererMDoernerKThe vehicle routing problem with arrival time diversification on a multigraphEuropean Journal of Operational Research20202862564575 MasriHBen AbdelazizFAlayaHA recourse stochastic goal programming approach for the multi-objective stochastic vehicle routing problemJournal of Multi-Criteria Decision Analysis2016231–2314 ArosteguiMAKadipasaogluSNKhumawalaBMAn empirical comparison of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities location problemsInternational Journal of Production Economics20061032742754 PradhanangaRTaniguchiEYamadaTQureshiAGEnvironmental analysis of pareto optimal routes in hazardous material transportationProcedia—Social and Behavioral Sciences2014125506517 Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot Vehicle Routing Problems. Research anthology on multi-industry uses of genetic programming and algorithms, IGI Global: 375–402. PradhanangaRTaniguchiEYamadaTQureshiAGBi-objective decision support system for routing and scheduling of hazardous materialsSocio-Economic Planning Sciences2014482135148 ZakariazadehAJadidSSianoPMulti-objective scheduling of electric vehicles in smart distribution systemEnergy Conversion and Management2014794353 KazantziVKazantzisNGerogiannisVCRisk informed optimization of a hazardous material multi-periodic transportation modelJournal of Loss Prevention in the Process Industries2011246767773 MuazuAANuraAEfficient assignment algorithms for multi depot vehicle routing problem using genetic algorithmIlorin Journal of Computer Science and Information Technology202031110 Tam, V., & Ma, K. (2008). An effective search framework combining meta-heuristics to solve the vehicle routing problems with time windows. Vehicle Routing Problem, 35. Hosken, G. (2018). The fightback against cash heists is on—And technology should be the ultimate weapon. Retrieved 25, March, 2021, from https://www.timeslive.co.za/news/south-africa/2018-07-24-the-fightback-against-cash-heists-is-on--and-technology-should-be-the-ultimate-weapon/. Martí, R., Luis González Velarde, J., & Duarte, A. (2009). Heuristics for the bi-objective path dissimilarity problem. Computers & Operations Research, 36(11): 2905–2912. TalaricoLSörensenKSpringaelJMetaheuristics for the risk-constrained cash-in-transit vehicle routing problemEuropean Journal of Operational Research20152442457470 GhoseiriKGhannadpourSFMulti-objective vehicle routing problem with time windows using goal programming and genetic algorithmApplied Soft Computing201010410961107 EMISIA. (2021). The environmental tools of COPERTE V. Retrieved 3, March, 2021, from https://www.emisia.com/. Li, G. (2009). Research on open vehicle routing problem with time windows based on improved genetic algorithm. In 2009 International conference on computational intelligence and software engineering. HoWHoGTSJiPLauHCWA hybrid genetic algorithm for the multi-depot vehicle routing problemEngineering Applications of Artificial Intelligence2008214548557 AndroutsopoulosKNZografosKGA bi-objective time-dependent vehicle routing and scheduling problem for hazardous materials distributionEURO Journal on Transportation and Logistics201211157183 OmbukiBRossBJHansharFMulti-objective genetic algorithms for vehicle routing problem with time windowsApplied Intelligence20062411730 ParsafardMEsmaeelAMasoudKMohammadrezaNLiXPractical approach for finding optimum routes for fuel delivery trucks in large citiesTransportation Research Record2015247816674 CharnesACooperWWGoal programming and multiple objective optimizations: Part 1European Journal of Operational Research1977113954 Ji, Y., Du, J., Wu, X., Wu, Z., Qu, D., & Yang, D. (2021). Robust optimization approach to two-echelon agricultural cold chain logistics considering carbon emission and stochastic demand. Environment, Development and Sustainability. ZajacSHuberSObjectives and methods in multi-objective routing problems: A survey and classification schemeEuropean Journal of Operational Research20212901125 PoonthalirGNadarajanRA fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP)Expert Systems with Applications2018100131144 Sai, S., Kumar, L. A., & Paneerselvam, S. (2018). Computational intelligence paradigms for optimization problems using MATLAB®/SIMULINK®. BulaGAMurat AfsarHGonzálezFAProdhonCVelascoNBi-objective vehicle routing problem for hazardous materials transportationJournal of Cleaner Production2019206976986 BoussaïdILepagnotJSiarryPA survey on optimization metaheuristicsInformation Sciences201323782117 BaeHMoonIMulti-depot vehicle routing problem with time windows considering delivery and installation vehiclesApplied Mathematical Modelling2016401365366549 MusaAAGoal programming model for optimal water allocation of limited resources under increasing demandsEnvironment, Development and Sustainability202123459565984 ChenYCo T Dokeroglu (2066_CR16) 2019; 137 S Zajac (2066_CR62) 2021; 290 2066_CR31 2066_CR32 R Pradhananga (2066_CR45) 2010; 2 R Pradhananga (2066_CR47) 2014; 125 L Talarico (2066_CR53) 2015; 244 Y Chen (2066_CR13) 2017; 257 A Shuib (2066_CR49) 2018; 1 2066_CR39 2066_CR1 L Talarico (2066_CR55) 2017; 78 2066_CR33 A Kumar (2066_CR28) 2018; 264 2066_CR34 V Kazantzi (2066_CR26) 2011; 24 G Laporte (2066_CR30) 1984; 4 P Lacomme (2066_CR29) 2006; 33 KN Androutsopoulos (2066_CR2) 2012; 1 YH Chang (2066_CR11) 2011 SY Yan (2066_CR60) 2012; 63 M Parsafard (2066_CR42) 2015; 2478 2066_CR20 2066_CR64 2066_CR65 S Karakatič (2066_CR25) 2015; 27 A Ghaderi (2066_CR18) 2019; 127 2066_CR27 HI Calvete (2066_CR9) 2007; 177 2066_CR24 2066_CR22 A Soriano (2066_CR52) 2020; 286 E Demir (2066_CR15) 2014; 232 B Crevier (2066_CR14) 2007; 176 I Boussaïd (2066_CR7) 2013; 237 A Zakariazadeh (2066_CR63) 2014; 79 G Poonthalir (2066_CR44) 2018; 100 2066_CR10 2066_CR51 2066_CR50 2066_CR17 2066_CR58 R Pradhananga (2066_CR46) 2014; 48 2066_CR56 L Xing (2066_CR59) 2010; 14 R Bolanos (2066_CR6) 2018; 9 L Talarico (2066_CR54) 2015; 244 D Pisinger (2066_CR43) 2007; 34 H Bae (2066_CR5) 2016; 40 K Ghoseiri (2066_CR19) 2010; 10 MS Thobane (2066_CR57) 2019; 57 AA Muazu (2066_CR37) 2020; 3 A Azadeh (2066_CR4) 2019; 11 AA Musa (2066_CR38) 2021; 23 H Youssef (2066_CR61) 2001; 14 A Charnes (2066_CR12) 1977; 1 2066_CR41 GA Bula (2066_CR8) 2019; 206 G Mavrotas (2066_CR36) 2009; 213 2066_CR48 W Irawan (2066_CR23) 2021; 17 B Ombuki (2066_CR40) 2006; 24 MA Arostegui (2066_CR3) 2006; 103 W Ho (2066_CR21) 2008; 21 H Masri (2066_CR35) 2016; 23 |
| References_xml | – reference: KarakatičSPodgorelecVA survey of genetic algorithms for solving multi depot vehicle routing problemApplied Soft Computing201527519532 – reference: ShuibAMuhamadNAMixed integer multi-objective goal programming model for green capacitated vehicle routing problemAdvances in Transportation and Logistics Research20181356368 – reference: PradhanangaRTaniguchiEYamadaTQureshiAGBi-objective decision support system for routing and scheduling of hazardous materialsSocio-Economic Planning Sciences2014482135148 – reference: Li, G. (2009). Research on open vehicle routing problem with time windows based on improved genetic algorithm. In 2009 International conference on computational intelligence and software engineering. – reference: GhoseiriKGhannadpourSFMulti-objective vehicle routing problem with time windows using goal programming and genetic algorithmApplied Soft Computing201010410961107 – reference: Tam, V., & Ma, K. (2008). An effective search framework combining meta-heuristics to solve the vehicle routing problems with time windows. Vehicle Routing Problem, 35. – reference: PradhanangaRTaniguchiEYamadaTQureshiAGEnvironmental analysis of pareto optimal routes in hazardous material transportationProcedia—Social and Behavioral Sciences2014125506517 – reference: Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot Vehicle Routing Problems. Research anthology on multi-industry uses of genetic programming and algorithms, IGI Global: 375–402. – reference: MavrotasGEffective implementation of the ε-constraint method in multi-objective mathematical programming problemsApplied Mathematics and Computation20092132455465 – reference: HoWHoGTSJiPLauHCWA hybrid genetic algorithm for the multi-depot vehicle routing problemEngineering Applications of Artificial Intelligence2008214548557 – reference: CalveteHIGaléCOliverosM-JSánchez-ValverdeBA goal programming approach to vehicle routing problems with soft time windowsEuropean Journal of Operational Research2007177317201733 – reference: SorianoAVidalTGanstererMDoernerKThe vehicle routing problem with arrival time diversification on a multigraphEuropean Journal of Operational Research20202862564575 – reference: GhaderiABurdettRLAn integrated location and routing approach for transporting hazardous materials in a bi-modal transportation networkTransportation Research Part E: Logistics and Transportation Review20191274965 – reference: LaporteGOptimal solutions to capacitated multidepot vehicle routing problemsCongressus Nemerantium19844283292 – reference: ChangYHThe cash pick-up and delivery vehicle routing/scheduling under stochastic travel times2011National Central University – reference: ZakariazadehAJadidSSianoPMulti-objective scheduling of electric vehicles in smart distribution systemEnergy Conversion and Management2014794353 – reference: BoussaïdILepagnotJSiarryPA survey on optimization metaheuristicsInformation Sciences201323782117 – reference: DemirEBektaşTLaporteGThe bi-objective pollution-routing problemEuropean Journal of Operational Research20142323464478 – reference: KumarARoyDVerterVSharmaDIntegrated fleet mix and routing decision for hazmat transportation: A developing country perspectiveEuropean Journal of Operational Research20182641225238 – reference: ChenYCowlingPPolackFRemdeSMourdjisPDynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage systemEuropean Journal of Operational Research20172572494510 – reference: ZajacSHuberSObjectives and methods in multi-objective routing problems: A survey and classification schemeEuropean Journal of Operational Research20212901125 – reference: Zhang, Z., Wang, L., Song, X., Huang, H., & Yin, Y. (2021). Improved genetic-simulated annealing algorithm for seru loading problem with downward substitution under stochastic environment. Journal of the Operational Research Society, pp. 1–12. – reference: EMISIA. (2021). The environmental tools of COPERTE V. Retrieved 3, March, 2021, from https://www.emisia.com/. – reference: PradhanangaRTaniguchiEYamadaTAnt colony system based routing and scheduling for hazardous material transportationProcedia—Social and Behavioral Sciences20102360976108 – reference: Martí, R., Luis González Velarde, J., & Duarte, A. (2009). Heuristics for the bi-objective path dissimilarity problem. Computers & Operations Research, 36(11): 2905–2912. – reference: MasriHBen AbdelazizFAlayaHA recourse stochastic goal programming approach for the multi-objective stochastic vehicle routing problemJournal of Multi-Criteria Decision Analysis2016231–2314 – reference: PoonthalirGNadarajanRA fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP)Expert Systems with Applications2018100131144 – reference: Skok, M., Skrlec, D., & Krajcar, S. (2000). The genetic algorithm method for multiple depot capacitated vehicle routing problem solving. In KES'2000. Fourth international conference on knowledge-based intelligent engineering systems and allied technologies. proceedings (Cat. No.00TH8516). – reference: BaeHMoonIMulti-depot vehicle routing problem with time windows considering delivery and installation vehiclesApplied Mathematical Modelling2016401365366549 – reference: Khairy, O. M., Shehata, O. M., & Morgan, E. I. (2020). Meta-heuristic algorithms for solving the multi-depot vehicle routing problem. In 2020 2nd Novel intelligent and leading emerging sciences conference (NILES). – reference: MusaAAGoal programming model for optimal water allocation of limited resources under increasing demandsEnvironment, Development and Sustainability202123459565984 – reference: DokerogluTSevincEKucukyilmazTCosarAA survey on new generation metaheuristic algorithmsComputers & Industrial Engineering2019137106040 – reference: BolanosREscobarJEcheverriMA metaheuristic algorithm for the multi-depot vehicle routing problem with heterogeneous fleetInternational Journal of Industrial Engineering Computations201894461478 – reference: CBA. (2021). 2020 Annual Report on the Development of China's Banking Industry. Retrieved 24, March, 2021, from https://www.china-cba.net/. – reference: Liu, F., Fang, K., Tang, J., & Yin, Y. (2021). Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms. Journal of Management Science and Engineering. – reference: Google. (2021). Solving a TSP with OR-Tools. Retrieved 7 January, 2021, from https://developers.google.cn/optimization/routing/tsp. – reference: Aksoy, D. (2020). Operational management challenges for cash-in-transit services during an outbreak of a global disease. 5. International EMI Entrepreneurship and Social Sciences Congress PROCEEDINGS E-BOOK. – reference: CharnesACooperWWGoal programming and multiple objective optimizations: Part 1European Journal of Operational Research1977113954 – reference: Loomis. (2021). We are the international specialist in cash handling. Retrieved 25, March, 2021, from https://www.loomis.com/en/business-markets. – reference: BulaGAMurat AfsarHGonzálezFAProdhonCVelascoNBi-objective vehicle routing problem for hazardous materials transportationJournal of Cleaner Production2019206976986 – reference: ArosteguiMAKadipasaogluSNKhumawalaBMAn empirical comparison of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities location problemsInternational Journal of Production Economics20061032742754 – reference: YanSYWangSSWuMWA model with a solution algorithm for the cash transportation vehicle routing and scheduling problemComputers and Industrial Engineering2012632464473 – reference: AzadehAFarrokhi-AslHThe close–open mixed multi depot vehicle routing problem considering internal and external fleet of vehiclesTransportation Letters20191127892 – reference: AndroutsopoulosKNZografosKGA bi-objective time-dependent vehicle routing and scheduling problem for hazardous materials distributionEURO Journal on Transportation and Logistics201211157183 – reference: Ji, Y., Du, J., Wu, X., Wu, Z., Qu, D., & Yang, D. (2021). Robust optimization approach to two-echelon agricultural cold chain logistics considering carbon emission and stochastic demand. Environment, Development and Sustainability. – reference: Ombuki-Berman, B., & Hanshar, F. T. (2009). Using genetic algorithms for multi-depot vehicle routing. In F. B. Pereira and J. Tavares (Eds.), Bio-inspired algorithms for the vehicle routing problem, pp. 77–99. Springer. – reference: YoussefHSaitSMAdicheHEvolutionary algorithms, simulated annealing and tabu search: A comparative studyEngineering Applications of Artificial Intelligence2001142167181 – reference: TalaricoLSpringaelJSorensenKTalaricoFA large neighbourhood metaheuristic for the risk-constrained cash-in-transit vehicle routing problemComputers & Operations Research201778547556 – reference: OmbukiBRossBJHansharFMulti-objective genetic algorithms for vehicle routing problem with time windowsApplied Intelligence20062411730 – reference: Hosken, G. (2018). The fightback against cash heists is on—And technology should be the ultimate weapon. Retrieved 25, March, 2021, from https://www.timeslive.co.za/news/south-africa/2018-07-24-the-fightback-against-cash-heists-is-on--and-technology-should-be-the-ultimate-weapon/. – reference: CrevierBCordeauJ-FLaporteGThe multi-depot vehicle routing problem with inter-depot routesEuropean Journal of Operational Research20071762756773 – reference: MuazuAANuraAEfficient assignment algorithms for multi depot vehicle routing problem using genetic algorithmIlorin Journal of Computer Science and Information Technology202031110 – reference: TalaricoLSörensenKSpringaelJThe k-dissimilar vehicle routing problemEuropean Journal of Operational Research20152441129140 – reference: ThobaneMSThe South African cash-in-transit heist enterprise: Managing its wellspring and concatenationInternational Annals of Criminology2019571–2198224 – reference: KazantziVKazantzisNGerogiannisVCRisk informed optimization of a hazardous material multi-periodic transportation modelJournal of Loss Prevention in the Process Industries2011246767773 – reference: LacommePPrinsCSevauxMA genetic algorithm for a bi-objective capacitated arc routing problemComputers and Operations Research2006331234733493 – reference: Zhang, Y., Liu, J., Duan, F., & Ren, J. (2007). Genetic algorithm in vehicle routing problem. In Third international conference on intelligent information hiding and multimedia signal processing (IIH-MSP 2007). – reference: ParsafardMEsmaeelAMasoudKMohammadrezaNLiXPractical approach for finding optimum routes for fuel delivery trucks in large citiesTransportation Research Record2015247816674 – reference: Sai, S., Kumar, L. A., & Paneerselvam, S. (2018). Computational intelligence paradigms for optimization problems using MATLAB®/SIMULINK®. – reference: IrawanWManaqibMFitriyatiNImplementation of the model capacited vehicle routing problem with time windows with a goal programming approach in determining the best route for goods distributionJurnal Matematika, Statistika Dan Komputasi2021172231239 – reference: TalaricoLSörensenKSpringaelJMetaheuristics for the risk-constrained cash-in-transit vehicle routing problemEuropean Journal of Operational Research20152442457470 – reference: PisingerDRopkeSA general heuristic for vehicle routing problemsComputers and Operations Research200734824032435 – reference: XingLRohlfshagenPChenYYaoXAn evolutionary approach to the multidepot capacitated arc routing problemIEEE Transactions on Evolutionary Computation2010143356374 – reference: Ntziachristos, L., & Samaras, Z. (2000). COPERT III, Computer programme to calculate emissions from road transport. Copenhagen, European Energy Agency (EEA). – reference: Wink, S., Bäck, T., & Emmerich, M. (2012). A meta-genetic algorithm for solving the capacitated vehicle routing problem. In 2012 IEEE congress on evolutionary computation. – ident: 2066_CR56 doi: 10.5772/5638 – ident: 2066_CR27 doi: 10.1109/NILES50944.2020.9257879 – volume: 2478 start-page: 66 issue: 1 year: 2015 ident: 2066_CR42 publication-title: Transportation Research Record doi: 10.3141/2478-08 – volume: 232 start-page: 464 issue: 3 year: 2014 ident: 2066_CR15 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2013.08.002 – ident: 2066_CR32 doi: 10.1016/j.jmse.2021.05.004 – ident: 2066_CR50 doi: 10.4018/978-1-7998-8048-6.ch020 – ident: 2066_CR34 doi: 10.1016/j.cor.2009.01.003 – volume: 103 start-page: 742 issue: 2 year: 2006 ident: 2066_CR3 publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2005.08.010 – volume: 176 start-page: 756 issue: 2 year: 2007 ident: 2066_CR14 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.08.015 – ident: 2066_CR48 – volume: 286 start-page: 564 issue: 2 year: 2020 ident: 2066_CR52 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.03.061 – volume: 206 start-page: 976 year: 2019 ident: 2066_CR8 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.09.228 – volume: 23 start-page: 5956 issue: 4 year: 2021 ident: 2066_CR38 publication-title: Environment, Development and Sustainability doi: 10.1007/s10668-020-00856-1 – volume: 244 start-page: 129 issue: 1 year: 2015 ident: 2066_CR53 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.01.019 – volume: 1 start-page: 39 issue: 1 year: 1977 ident: 2066_CR12 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(77)81007-2 – volume: 4 start-page: 283 year: 1984 ident: 2066_CR30 publication-title: Congressus Nemerantium – volume: 177 start-page: 1720 issue: 3 year: 2007 ident: 2066_CR9 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.10.010 – ident: 2066_CR1 – volume: 21 start-page: 548 issue: 4 year: 2008 ident: 2066_CR21 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2007.06.001 – ident: 2066_CR24 doi: 10.1007/s10668-021-01236-z – ident: 2066_CR10 – ident: 2066_CR65 doi: 10.1080/01605682.2021.1939172 – ident: 2066_CR64 doi: 10.1109/IIHMSP.2007.4457776 – ident: 2066_CR17 – volume: 34 start-page: 2403 issue: 8 year: 2007 ident: 2066_CR43 publication-title: Computers and Operations Research doi: 10.1016/j.cor.2005.09.012 – volume: 63 start-page: 464 issue: 2 year: 2012 ident: 2066_CR60 publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2012.04.004 – volume: 9 start-page: 461 issue: 4 year: 2018 ident: 2066_CR6 publication-title: International Journal of Industrial Engineering Computations doi: 10.5267/j.ijiec.2017.11.005 – volume: 3 start-page: 1 issue: 1 year: 2020 ident: 2066_CR37 publication-title: Ilorin Journal of Computer Science and Information Technology – ident: 2066_CR31 doi: 10.1109/CISE.2009.5362726 – ident: 2066_CR20 – volume: 1 start-page: 157 issue: 1 year: 2012 ident: 2066_CR2 publication-title: EURO Journal on Transportation and Logistics doi: 10.1007/s13676-012-0004-y – volume: 257 start-page: 494 issue: 2 year: 2017 ident: 2066_CR13 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.07.027 – volume: 40 start-page: 6536 issue: 13 year: 2016 ident: 2066_CR5 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2016.01.059 – volume: 57 start-page: 198 issue: 1–2 year: 2019 ident: 2066_CR57 publication-title: International Annals of Criminology doi: 10.1017/cri.2020.11 – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 2066_CR36 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.03.037 – ident: 2066_CR58 doi: 10.1109/CEC.2012.6253010 – ident: 2066_CR39 – volume: 100 start-page: 131 year: 2018 ident: 2066_CR44 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.01.052 – volume: 24 start-page: 767 issue: 6 year: 2011 ident: 2066_CR26 publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2011.05.006 – volume: 237 start-page: 82 year: 2013 ident: 2066_CR7 publication-title: Information Sciences doi: 10.1016/j.ins.2013.02.041 – volume: 48 start-page: 135 issue: 2 year: 2014 ident: 2066_CR46 publication-title: Socio-Economic Planning Sciences doi: 10.1016/j.seps.2014.02.003 – volume: 10 start-page: 1096 issue: 4 year: 2010 ident: 2066_CR19 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.04.001 – volume: 17 start-page: 231 issue: 2 year: 2021 ident: 2066_CR23 publication-title: Jurnal Matematika, Statistika Dan Komputasi doi: 10.20956/jmsk.v17i2.11107 – volume: 1 start-page: 356 year: 2018 ident: 2066_CR49 publication-title: Advances in Transportation and Logistics Research – volume: 125 start-page: 506 year: 2014 ident: 2066_CR47 publication-title: Procedia—Social and Behavioral Sciences doi: 10.1016/j.sbspro.2014.01.1492 – volume: 11 start-page: 78 issue: 2 year: 2019 ident: 2066_CR4 publication-title: Transportation Letters doi: 10.1080/19427867.2016.1274468 – volume: 14 start-page: 167 issue: 2 year: 2001 ident: 2066_CR61 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/S0952-1976(00)00065-8 – volume: 78 start-page: 547 year: 2017 ident: 2066_CR55 publication-title: Computers & Operations Research doi: 10.1016/j.cor.2016.04.003 – volume: 264 start-page: 225 issue: 1 year: 2018 ident: 2066_CR28 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.06.012 – volume-title: The cash pick-up and delivery vehicle routing/scheduling under stochastic travel times year: 2011 ident: 2066_CR11 – volume: 24 start-page: 17 issue: 1 year: 2006 ident: 2066_CR40 publication-title: Applied Intelligence doi: 10.1007/s10489-006-6926-z – volume: 137 start-page: 106040 year: 2019 ident: 2066_CR16 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.106040 – volume: 14 start-page: 356 issue: 3 year: 2010 ident: 2066_CR59 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2033578 – volume: 23 start-page: 3 issue: 1–2 year: 2016 ident: 2066_CR35 publication-title: Journal of Multi-Criteria Decision Analysis doi: 10.1002/mcda.1563 – ident: 2066_CR33 – volume: 290 start-page: 1 issue: 1 year: 2021 ident: 2066_CR62 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.07.005 – volume: 79 start-page: 43 year: 2014 ident: 2066_CR63 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2013.11.042 – ident: 2066_CR51 doi: 10.1109/KES.2000.884102 – volume: 127 start-page: 49 year: 2019 ident: 2066_CR18 publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2019.04.011 – ident: 2066_CR41 doi: 10.1007/978-3-540-85152-3_4 – volume: 244 start-page: 457 issue: 2 year: 2015 ident: 2066_CR54 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.01.040 – ident: 2066_CR22 – volume: 27 start-page: 519 year: 2015 ident: 2066_CR25 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.11.005 – volume: 33 start-page: 3473 issue: 12 year: 2006 ident: 2066_CR29 publication-title: Computers and Operations Research doi: 10.1016/j.cor.2005.02.017 – volume: 2 start-page: 6097 issue: 3 year: 2010 ident: 2066_CR45 publication-title: Procedia—Social and Behavioral Sciences doi: 10.1016/j.sbspro.2010.04.022 |
| SSID | ssj0020926 |
| Score | 2.3539863 |
| Snippet | With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 557 |
| SubjectTerms | Algorithms business development case studies Chromosomes Commercial banks Decision makers Decision making Earth and Environmental Science Ecology Economic Geology Economic Growth Environment Environmental Economics Environmental Management Genetic algorithms Goal programming Optimization Performance tests Population density risk Risk analysis Risk factors Route planning Sustainable Development Time dependence Trade Traffic Traffic congestion Traffic flow Traffic information Traffic jams Transportation planning Vehicle routing Vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEB70fNCXYq3itVpS8E2DuzGX3RREtCgieEhRuLclv84TdNe6e33oX9-ZveydFupzsskmk2QmmZnvA9hDOXupQuBOKMels5KbzKbc6NQ6a1MnPOU7Xw_V5Z28Gg1GSzDscmEorLI7E9uD2leO3sgPBd63lSR49pPnX5xYo8i72lFomEit4I9biLFlWBGEjNWDlbPz4c3P-RUs0S0BW0qIsmgoj2IaTUymUyrnFLKQEMY5129V1cL-_Mdl2mqii3X4EE1IdjqT-UdYCuUGrHYZxvUn-ENY0ljISUV5Zh7vcSDN5KlmaKEyZ-oJfyh5Q1rqoWFtSCHzaIg37HeYUJvspZpSODSLdDP1dxZi88yUnr3KjsMfqfDUeYrpnJtwd3F---OSR44F7tD0arjN9CARLhsIo603SZABJ9Ci3s-tP7LSinFKnkzvBmasU50Ll6tMJl5JOybCxy3olVUZtoEFi1eVLEmMQInbzOlg8LaS51bIzItc9SHtprNwEYCceDAeiwV0MomgQBEUrQgK3Yf9-TfPM_iNd2vvdFIq4lasi8XC6cO3eTFuIvKMmDJUU6yTS42jVALrHHTSXTTx_x4_v9_jF1gjevrZk80O9JqXadhFI6axX-PK_AvLT-97 priority: 102 providerName: ProQuest |
| Title | Genetic-based algorithms for cash-in-transit multi depot vehicle routing problems: economic and environmental optimization |
| URI | https://link.springer.com/article/10.1007/s10668-021-02066-9 https://www.proquest.com/docview/2761648287 https://www.proquest.com/docview/2849891627 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-2975 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0020926 issn: 1387-585X databaseCode: BENPR dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2975 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0020926 issn: 1387-585X databaseCode: 8FG dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020926 issn: 1387-585X databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2975 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020926 issn: 1387-585X databaseCode: U2A dateStart: 19990301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9si-iLaFU8rccKvulCsm42u76dcteiWEQ8OJ_Cfl2v0CbS5AT9653Jbe6qqOBTHjKZfPx2d2ayM78BeI44B6li5F4oz6V3ktvS5dya3Hnnci8C1Tt_OFUnc_luUSxSUVg7ZLsPW5L9Sn2t2E0pzSmlICMOcm724KAgOi8cxXMx2YZZmembrOXEGovO8CKVyvxZx6_maOdj_rYt2lub2V24k9xENtngeg9uxPoQbk57iunvh3BrqCdu78MPYo5GMU4GKTB7cdZgwL-6bBn6o8zbdsXPa96RTTrvWJ9AyAK63R37FleknV01a0p-Zqm5TPuaxaSe2Tqwa7Vw-EgNrjGXqXjzAcxn089vT3jqqMA9Olodd6UpMuHLQljjgs2ijOgxObTy2oVXTjqxzGnfMvjCLk1utPBalTILSroltXd8CPt1U8dHwKLDwKTMMisQX1d6Ey3GJlo7IcsgtBpBPnzYyie6cep6cVHtiJIJjArBqHowKjOCF9trvm7INv4pfTTgVaWJ11aiVBgAEov_CJ5tT-OUoX0QW8dmjTJaGnxLJVDm5YDzTsXf7_j4_8SfwG1qTr_5YXME-93VOj5FF6ZzY9jTs-MxHEyOv7yf4vHN9PTjp3E_jn8CJnHs0Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfG9jBeEJ_iYIwgwRNEtFkubZCmiY9NN7adENqkeyv5ut2krR1rD8T-uP1t2L30DpDY256bOm3sxHZs_wzwEvnspQqBO6Ecl85KbjKbcqNT66xNnfBU73wwVIMj-XnUHy3BVVcLQ2mV3ZnYHtS-cnRH_lagv60kwbNvnX_n1DWKoqtdCw0TWyv4zRZiLBZ27IVfP9GFqzd3PyG_Xwmxs334ccBjlwHu0PhouM10PxEu6wujrTdJkAFJWNR8ufUbVloxTimW513fjDX66MLlKpOJV9KOqeUh0r0FK3JDanT-Vj5sD798nbt8iW4bvqWEYIuG-SiW7cTiPaVyTikSCWGqc_23alzYu_-EaFvNt3MX7kSTlb2fydg9WArlfVjtKprrB3BJ2NX4kJNK9MycHuPCNZOzmqFFzJypJ_yk5A1pxZOGtSmMzKPh37AfYUI02UU1pfRrFtvb1O9YiOSZKT37oxoPP6TCU-4slo8-hKMbWe1HsFxWZXgMLFh0jbIkMQIlzGZOB4PeUZ5bITMvctWDtFvOwkXAc-q7cVosoJqJBQWyoGhZUOgevJ6_cz6D-7h29FrHpSJu_bpYCGoPXswf46alSIwpQzXFMbnU-JdK4Jg3HXcXJP4_45PrZ3wOq4PDg_1if3e49xRuCzTIZtdFa7DcXEzDMzSgGrsepZTBt5veGL8BV1ErgA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJOqLAT_CKcia6JNuaNe9bZeEGAOcIEp8kOTe6n6dRwIt0p5G_jT-Omd62zsxkTeeu51td2Z3frPzBfAS-eylCoE7oRyXzkpuMptyo1PrrE2d8JTv_PlI7R_Lj8P-cAGuulwYCqvszsT2oPaVozvyTYH2tpJUnn1zFMMivuwO3p3_4NRBijytXTuNqYgcht-_0Hyrtw92kdevhBjsfd3Z57HDAHcIPBpuM91PhMv6wmjrTRJkQARhUevl1r-10opRSn487_pmpNE-Fy5XmUy8knZE7Q6R7h1YyqiKO2WpDz7MjL1Et63eUqpdi5B8GBN2YtqeUjmn4IiEqqlzfV0pzpHuP87ZVucNluFBBKvs_VS6VmAhlA_hXpfLXD-CS6pajQ85KUPPzOl3XKZmfFYzxMLMmXrMT0rekD48aVgbvMg8Qv6G_QxjoskuqgkFXrPY2KbeYiGSZ6b07K88PPyQCs-3s5g4-hiOb2Wtn8BiWZVhFViwaBRlSWIEypbNnA4G7aI8t0JmXuSqB2m3nIWLpc6p48ZpMS_STCwokAVFy4JC9-D17J3zaaGPG0evdVwq4qavi7mI9uDF7DFuV_LBmDJUExyTS41_qQSOedNxd07i_zM-vXnGDbiL26H4dHB0-AzuC0Ri03uiNVhsLiZhHZFTY5-3Isrg223viT8Y3ika |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic-based+algorithms+for+cash-in-transit+multi+depot+vehicle+routing+problems%3A+economic+and+environmental+optimization&rft.jtitle=Environment%2C+development+and+sustainability&rft.au=Ge%2C+Xianlong&rft.au=Jin%2C+Yuanzhi&rft.au=Zhang%2C+Long&rft.date=2023-01-01&rft.pub=Springer+Netherlands&rft.issn=1387-585X&rft.eissn=1573-2975&rft.volume=25&rft.issue=1&rft.spage=557&rft.epage=586&rft_id=info:doi/10.1007%2Fs10668-021-02066-9&rft.externalDocID=10_1007_s10668_021_02066_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-585X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-585X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-585X&client=summon |