Genetic-based algorithms for cash-in-transit multi depot vehicle routing problems: economic and environmental optimization

With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities to the business development of Cash-In-Transit (CIT) sectors. However, the branches are often distributed in densely populated areas where tr...

Full description

Saved in:
Bibliographic Details
Published inEnvironment, development and sustainability Vol. 25; no. 1; pp. 557 - 586
Main Authors Ge, Xianlong, Jin, Yuanzhi, Zhang, Long
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1387-585X
1573-2975
DOI10.1007/s10668-021-02066-9

Cover

Abstract With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities to the business development of Cash-In-Transit (CIT) sectors. However, the branches are often distributed in densely populated areas where traffic jams occur from time to time, which poses a severe challenge to the route planning of CIT vehicles. In addition, risk factors need to be considered during the optimization process because the goods transported belong to valuables. In order to effectively deal with the routing problem of CIT sectors, this paper established a bi-objective model and a goal programming model of Risk-Constrained Multi Depot Vehicle Routing Problems (RCMDVRPs) using real-time traffic data. Based on the traditional genetic algorithm, a Hybrid Genetic Algorithm with Intensification procedures (HGAI) is proposed to solve the goal programming model by using a three-level linked list structure to express chromosomes visually. Then, a new Self-constrained Hybrid Genetic Algorithm (SHGA) is designed for the bi-objective model. Besides, an online path updating strategy is developed to guide remote vehicles against time-dependent traffic flows. Finally, the HGAI is performed on benchmark instances to verify its accuracy. Experimental results of performance test show that the algorithm can achieve a gap of about 3% compared with the Best Known Result (BKR). The results of a case study also show that the two models and the corresponding algorithms are feasible and can be used to solve large-scale problems according to the special preferences and goals of decision-makers.
AbstractList With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities to the business development of Cash-In-Transit (CIT) sectors. However, the branches are often distributed in densely populated areas where traffic jams occur from time to time, which poses a severe challenge to the route planning of CIT vehicles. In addition, risk factors need to be considered during the optimization process because the goods transported belong to valuables. In order to effectively deal with the routing problem of CIT sectors, this paper established a bi-objective model and a goal programming model of Risk-Constrained Multi Depot Vehicle Routing Problems (RCMDVRPs) using real-time traffic data. Based on the traditional genetic algorithm, a Hybrid Genetic Algorithm with Intensification procedures (HGAI) is proposed to solve the goal programming model by using a three-level linked list structure to express chromosomes visually. Then, a new Self-constrained Hybrid Genetic Algorithm (SHGA) is designed for the bi-objective model. Besides, an online path updating strategy is developed to guide remote vehicles against time-dependent traffic flows. Finally, the HGAI is performed on benchmark instances to verify its accuracy. Experimental results of performance test show that the algorithm can achieve a gap of about 3% compared with the Best Known Result (BKR). The results of a case study also show that the two models and the corresponding algorithms are feasible and can be used to solve large-scale problems according to the special preferences and goals of decision-makers.
Author Ge, Xianlong
Jin, Yuanzhi
Zhang, Long
Author_xml – sequence: 1
  givenname: Xianlong
  surname: Ge
  fullname: Ge, Xianlong
  organization: School of Economics and Management, Chongqing Jiaotong University
– sequence: 2
  givenname: Yuanzhi
  orcidid: 0000-0001-8781-6990
  surname: Jin
  fullname: Jin, Yuanzhi
  email: jinyuanzhi@haust.edu.cn, 47393039@qq.com
  organization: School of Economics and Management, Chongqing Jiaotong University, Department of Computer Technology and Information Engineering, Sanmenxia Polytechnic
– sequence: 3
  givenname: Long
  surname: Zhang
  fullname: Zhang, Long
  organization: School of Business, Xinyang Normal University
BookMark eNp9kcFrHSEQxqWk0CTtP9CT0EsvNuquq_ZWQpMWArm00JuoO_uewdVXdQPNX1-TVyjkkMMwc_h-Mx_znaGTlBMg9J7RT4xSeVEZnSZFKGe9-kj0K3TKhBwI11Kc9HlQkgglfr1BZ7Xe0a7SfDpFD9eQoAVPnK0wYxt3uYS2XytecsHe1j0JibRiUw0Nr1tsAc9wyA3fwz74CLjkrYW0w4eSXYS1fsbgc8pr8NimGUO6DyWnFVKzEedDC2t4sC3k9Ba9Xmys8O5fP0c_r77-uPxGbm6vv19-uSF-ELwRJ7Wg3EvBrXazpTCCEMwxxZSbBzc6vjCl2TB7YRfNtOJeTXKk8zS6hcphOEcfj3u7w98b1GbWUD3EaBPkrRquRt0XTFx26Ydn0ru8ldTdGS4nNo2Kq0cVP6p8ybUWWMyhhNWWP4ZR8xiHOcZhehzmKQ6jO6SeQT60pz_054b4Mjoc0drvpB2U_65eoP4CrFujJg
CitedBy_id crossref_primary_10_1007_s10668_023_04123_x
crossref_primary_10_3390_su15043208
crossref_primary_10_1007_s00500_023_08811_8
crossref_primary_10_17341_gazimmfd_1218090
crossref_primary_10_3233_JIFS_235260
Cites_doi 10.5772/5638
10.1109/NILES50944.2020.9257879
10.3141/2478-08
10.1016/j.ejor.2013.08.002
10.1016/j.jmse.2021.05.004
10.4018/978-1-7998-8048-6.ch020
10.1016/j.cor.2009.01.003
10.1016/j.ijpe.2005.08.010
10.1016/j.ejor.2005.08.015
10.1016/j.ejor.2020.03.061
10.1016/j.jclepro.2018.09.228
10.1007/s10668-020-00856-1
10.1016/j.ejor.2015.01.019
10.1016/S0377-2217(77)81007-2
10.1016/j.ejor.2005.10.010
10.1016/j.engappai.2007.06.001
10.1007/s10668-021-01236-z
10.1080/01605682.2021.1939172
10.1109/IIHMSP.2007.4457776
10.1016/j.cor.2005.09.012
10.1016/j.cie.2012.04.004
10.5267/j.ijiec.2017.11.005
10.1109/CISE.2009.5362726
10.1007/s13676-012-0004-y
10.1016/j.ejor.2016.07.027
10.1016/j.apm.2016.01.059
10.1017/cri.2020.11
10.1016/j.amc.2009.03.037
10.1109/CEC.2012.6253010
10.1016/j.eswa.2018.01.052
10.1016/j.jlp.2011.05.006
10.1016/j.ins.2013.02.041
10.1016/j.seps.2014.02.003
10.1016/j.asoc.2010.04.001
10.20956/jmsk.v17i2.11107
10.1016/j.sbspro.2014.01.1492
10.1080/19427867.2016.1274468
10.1016/S0952-1976(00)00065-8
10.1016/j.cor.2016.04.003
10.1016/j.ejor.2017.06.012
10.1007/s10489-006-6926-z
10.1016/j.cie.2019.106040
10.1109/TEVC.2009.2033578
10.1002/mcda.1563
10.1016/j.ejor.2020.07.005
10.1016/j.enconman.2013.11.042
10.1109/KES.2000.884102
10.1016/j.tre.2019.04.011
10.1007/978-3-540-85152-3_4
10.1016/j.ejor.2015.01.040
10.1016/j.asoc.2014.11.005
10.1016/j.cor.2005.02.017
10.1016/j.sbspro.2010.04.022
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
3V.
7ST
7U6
7WY
7WZ
7XB
87Z
8AO
8BJ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FQK
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JBE
K60
K6~
KR7
L.-
L6V
M0C
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s10668-021-02066-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Sustainability Science Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
International Bibliography of the Social Sciences
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Sustainability Science Abstracts
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Ecology
EISSN 1573-2975
EndPage 586
ExternalDocumentID 10_1007_s10668_021_02066_9
GrantInformation_xml – fundername: Chongqing graduate Scientific research innovation Project
  grantid: CYB20178
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
7WY
7XC
8AO
8FE
8FG
8FH
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L6V
L8X
LAK
LLZTM
M0C
M4Y
M7S
MA-
ML.
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7V
Z7Y
Z81
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7ST
7U6
7XB
8BJ
8FD
8FK
AZQEC
C1K
FQK
FR3
GNUQQ
JBE
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-b79502c752a9bda0e4e551b1818bd3b4b2f18913dc5af91982c86740d64bf0733
IEDL.DBID U2A
ISSN 1387-585X
IngestDate Wed Oct 01 07:54:30 EDT 2025
Sat Aug 23 14:17:57 EDT 2025
Wed Oct 01 03:33:12 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Fri Feb 21 02:46:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Risk constraints
Bi-objective optimization
Multi depot vehicle routing problem
Cash-in-transit
Goal programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b79502c752a9bda0e4e551b1818bd3b4b2f18913dc5af91982c86740d64bf0733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8781-6990
PQID 2761648287
PQPubID 25739
PageCount 30
ParticipantIDs proquest_miscellaneous_2849891627
proquest_journals_2761648287
crossref_primary_10_1007_s10668_021_02066_9
crossref_citationtrail_10_1007_s10668_021_02066_9
springer_journals_10_1007_s10668_021_02066_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle A Multidisciplinary Approach to the Theory and Practice of Sustainable Development
PublicationTitle Environment, development and sustainability
PublicationTitleAbbrev Environ Dev Sustain
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LacommePPrinsCSevauxMA genetic algorithm for a bi-objective capacitated arc routing problemComputers and Operations Research2006331234733493
Khairy, O. M., Shehata, O. M., & Morgan, E. I. (2020). Meta-heuristic algorithms for solving the multi-depot vehicle routing problem. In 2020 2nd Novel intelligent and leading emerging sciences conference (NILES).
YoussefHSaitSMAdicheHEvolutionary algorithms, simulated annealing and tabu search: A comparative studyEngineering Applications of Artificial Intelligence2001142167181
Wink, S., Bäck, T., & Emmerich, M. (2012). A meta-genetic algorithm for solving the capacitated vehicle routing problem. In 2012 IEEE congress on evolutionary computation.
PradhanangaRTaniguchiEYamadaTAnt colony system based routing and scheduling for hazardous material transportationProcedia—Social and Behavioral Sciences20102360976108
Zhang, Z., Wang, L., Song, X., Huang, H., & Yin, Y. (2021). Improved genetic-simulated annealing algorithm for seru loading problem with downward substitution under stochastic environment. Journal of the Operational Research Society, pp. 1–12.
Liu, F., Fang, K., Tang, J., & Yin, Y. (2021). Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms. Journal of Management Science and Engineering.
TalaricoLSörensenKSpringaelJThe k-dissimilar vehicle routing problemEuropean Journal of Operational Research20152441129140
PisingerDRopkeSA general heuristic for vehicle routing problemsComputers and Operations Research200734824032435
Ntziachristos, L., & Samaras, Z. (2000). COPERT III, Computer programme to calculate emissions from road transport. Copenhagen, European Energy Agency (EEA).
Zhang, Y., Liu, J., Duan, F., & Ren, J. (2007). Genetic algorithm in vehicle routing problem. In Third international conference on intelligent information hiding and multimedia signal processing (IIH-MSP 2007).
AzadehAFarrokhi-AslHThe close–open mixed multi depot vehicle routing problem considering internal and external fleet of vehiclesTransportation Letters20191127892
Aksoy, D. (2020). Operational management challenges for cash-in-transit services during an outbreak of a global disease. 5. International EMI Entrepreneurship and Social Sciences Congress PROCEEDINGS E-BOOK.
Skok, M., Skrlec, D., & Krajcar, S. (2000). The genetic algorithm method for multiple depot capacitated vehicle routing problem solving. In KES'2000. Fourth international conference on knowledge-based intelligent engineering systems and allied technologies. proceedings (Cat. No.00TH8516).
TalaricoLSpringaelJSorensenKTalaricoFA large neighbourhood metaheuristic for the risk-constrained cash-in-transit vehicle routing problemComputers & Operations Research201778547556
ShuibAMuhamadNAMixed integer multi-objective goal programming model for green capacitated vehicle routing problemAdvances in Transportation and Logistics Research20181356368
GhaderiABurdettRLAn integrated location and routing approach for transporting hazardous materials in a bi-modal transportation networkTransportation Research Part E: Logistics and Transportation Review20191274965
CrevierBCordeauJ-FLaporteGThe multi-depot vehicle routing problem with inter-depot routesEuropean Journal of Operational Research20071762756773
CBA. (2021). 2020 Annual Report on the Development of China's Banking Industry. Retrieved 24, March, 2021, from https://www.china-cba.net/.
IrawanWManaqibMFitriyatiNImplementation of the model capacited vehicle routing problem with time windows with a goal programming approach in determining the best route for goods distributionJurnal Matematika, Statistika Dan Komputasi2021172231239
BolanosREscobarJEcheverriMA metaheuristic algorithm for the multi-depot vehicle routing problem with heterogeneous fleetInternational Journal of Industrial Engineering Computations201894461478
KarakatičSPodgorelecVA survey of genetic algorithms for solving multi depot vehicle routing problemApplied Soft Computing201527519532
XingLRohlfshagenPChenYYaoXAn evolutionary approach to the multidepot capacitated arc routing problemIEEE Transactions on Evolutionary Computation2010143356374
YanSYWangSSWuMWA model with a solution algorithm for the cash transportation vehicle routing and scheduling problemComputers and Industrial Engineering2012632464473
Ombuki-Berman, B., & Hanshar, F. T. (2009). Using genetic algorithms for multi-depot vehicle routing. In F. B. Pereira and J. Tavares (Eds.), Bio-inspired algorithms for the vehicle routing problem, pp. 77–99. Springer.
ChangYHThe cash pick-up and delivery vehicle routing/scheduling under stochastic travel times2011National Central University
DemirEBektaşTLaporteGThe bi-objective pollution-routing problemEuropean Journal of Operational Research20142323464478
KumarARoyDVerterVSharmaDIntegrated fleet mix and routing decision for hazmat transportation: A developing country perspectiveEuropean Journal of Operational Research20182641225238
MavrotasGEffective implementation of the ε-constraint method in multi-objective mathematical programming problemsApplied Mathematics and Computation20092132455465
SorianoAVidalTGanstererMDoernerKThe vehicle routing problem with arrival time diversification on a multigraphEuropean Journal of Operational Research20202862564575
MasriHBen AbdelazizFAlayaHA recourse stochastic goal programming approach for the multi-objective stochastic vehicle routing problemJournal of Multi-Criteria Decision Analysis2016231–2314
ArosteguiMAKadipasaogluSNKhumawalaBMAn empirical comparison of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities location problemsInternational Journal of Production Economics20061032742754
PradhanangaRTaniguchiEYamadaTQureshiAGEnvironmental analysis of pareto optimal routes in hazardous material transportationProcedia—Social and Behavioral Sciences2014125506517
Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot Vehicle Routing Problems. Research anthology on multi-industry uses of genetic programming and algorithms, IGI Global: 375–402.
PradhanangaRTaniguchiEYamadaTQureshiAGBi-objective decision support system for routing and scheduling of hazardous materialsSocio-Economic Planning Sciences2014482135148
ZakariazadehAJadidSSianoPMulti-objective scheduling of electric vehicles in smart distribution systemEnergy Conversion and Management2014794353
KazantziVKazantzisNGerogiannisVCRisk informed optimization of a hazardous material multi-periodic transportation modelJournal of Loss Prevention in the Process Industries2011246767773
MuazuAANuraAEfficient assignment algorithms for multi depot vehicle routing problem using genetic algorithmIlorin Journal of Computer Science and Information Technology202031110
Tam, V., & Ma, K. (2008). An effective search framework combining meta-heuristics to solve the vehicle routing problems with time windows. Vehicle Routing Problem, 35.
Hosken, G. (2018). The fightback against cash heists is on—And technology should be the ultimate weapon. Retrieved 25, March, 2021, from https://www.timeslive.co.za/news/south-africa/2018-07-24-the-fightback-against-cash-heists-is-on--and-technology-should-be-the-ultimate-weapon/.
Martí, R., Luis González Velarde, J., & Duarte, A. (2009). Heuristics for the bi-objective path dissimilarity problem. Computers & Operations Research, 36(11): 2905–2912.
TalaricoLSörensenKSpringaelJMetaheuristics for the risk-constrained cash-in-transit vehicle routing problemEuropean Journal of Operational Research20152442457470
GhoseiriKGhannadpourSFMulti-objective vehicle routing problem with time windows using goal programming and genetic algorithmApplied Soft Computing201010410961107
EMISIA. (2021). The environmental tools of COPERTE V. Retrieved 3, March, 2021, from https://www.emisia.com/.
Li, G. (2009). Research on open vehicle routing problem with time windows based on improved genetic algorithm. In 2009 International conference on computational intelligence and software engineering.
HoWHoGTSJiPLauHCWA hybrid genetic algorithm for the multi-depot vehicle routing problemEngineering Applications of Artificial Intelligence2008214548557
AndroutsopoulosKNZografosKGA bi-objective time-dependent vehicle routing and scheduling problem for hazardous materials distributionEURO Journal on Transportation and Logistics201211157183
OmbukiBRossBJHansharFMulti-objective genetic algorithms for vehicle routing problem with time windowsApplied Intelligence20062411730
ParsafardMEsmaeelAMasoudKMohammadrezaNLiXPractical approach for finding optimum routes for fuel delivery trucks in large citiesTransportation Research Record2015247816674
CharnesACooperWWGoal programming and multiple objective optimizations: Part 1European Journal of Operational Research1977113954
Ji, Y., Du, J., Wu, X., Wu, Z., Qu, D., & Yang, D. (2021). Robust optimization approach to two-echelon agricultural cold chain logistics considering carbon emission and stochastic demand. Environment, Development and Sustainability.
ZajacSHuberSObjectives and methods in multi-objective routing problems: A survey and classification schemeEuropean Journal of Operational Research20212901125
PoonthalirGNadarajanRA fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP)Expert Systems with Applications2018100131144
Sai, S., Kumar, L. A., & Paneerselvam, S. (2018). Computational intelligence paradigms for optimization problems using MATLAB®/SIMULINK®.
BulaGAMurat AfsarHGonzálezFAProdhonCVelascoNBi-objective vehicle routing problem for hazardous materials transportationJournal of Cleaner Production2019206976986
BoussaïdILepagnotJSiarryPA survey on optimization metaheuristicsInformation Sciences201323782117
BaeHMoonIMulti-depot vehicle routing problem with time windows considering delivery and installation vehiclesApplied Mathematical Modelling2016401365366549
MusaAAGoal programming model for optimal water allocation of limited resources under increasing demandsEnvironment, Development and Sustainability202123459565984
ChenYCo
T Dokeroglu (2066_CR16) 2019; 137
S Zajac (2066_CR62) 2021; 290
2066_CR31
2066_CR32
R Pradhananga (2066_CR45) 2010; 2
R Pradhananga (2066_CR47) 2014; 125
L Talarico (2066_CR53) 2015; 244
Y Chen (2066_CR13) 2017; 257
A Shuib (2066_CR49) 2018; 1
2066_CR39
2066_CR1
L Talarico (2066_CR55) 2017; 78
2066_CR33
A Kumar (2066_CR28) 2018; 264
2066_CR34
V Kazantzi (2066_CR26) 2011; 24
G Laporte (2066_CR30) 1984; 4
P Lacomme (2066_CR29) 2006; 33
KN Androutsopoulos (2066_CR2) 2012; 1
YH Chang (2066_CR11) 2011
SY Yan (2066_CR60) 2012; 63
M Parsafard (2066_CR42) 2015; 2478
2066_CR20
2066_CR64
2066_CR65
S Karakatič (2066_CR25) 2015; 27
A Ghaderi (2066_CR18) 2019; 127
2066_CR27
HI Calvete (2066_CR9) 2007; 177
2066_CR24
2066_CR22
A Soriano (2066_CR52) 2020; 286
E Demir (2066_CR15) 2014; 232
B Crevier (2066_CR14) 2007; 176
I Boussaïd (2066_CR7) 2013; 237
A Zakariazadeh (2066_CR63) 2014; 79
G Poonthalir (2066_CR44) 2018; 100
2066_CR10
2066_CR51
2066_CR50
2066_CR17
2066_CR58
R Pradhananga (2066_CR46) 2014; 48
2066_CR56
L Xing (2066_CR59) 2010; 14
R Bolanos (2066_CR6) 2018; 9
L Talarico (2066_CR54) 2015; 244
D Pisinger (2066_CR43) 2007; 34
H Bae (2066_CR5) 2016; 40
K Ghoseiri (2066_CR19) 2010; 10
MS Thobane (2066_CR57) 2019; 57
AA Muazu (2066_CR37) 2020; 3
A Azadeh (2066_CR4) 2019; 11
AA Musa (2066_CR38) 2021; 23
H Youssef (2066_CR61) 2001; 14
A Charnes (2066_CR12) 1977; 1
2066_CR41
GA Bula (2066_CR8) 2019; 206
G Mavrotas (2066_CR36) 2009; 213
2066_CR48
W Irawan (2066_CR23) 2021; 17
B Ombuki (2066_CR40) 2006; 24
MA Arostegui (2066_CR3) 2006; 103
W Ho (2066_CR21) 2008; 21
H Masri (2066_CR35) 2016; 23
References_xml – reference: KarakatičSPodgorelecVA survey of genetic algorithms for solving multi depot vehicle routing problemApplied Soft Computing201527519532
– reference: ShuibAMuhamadNAMixed integer multi-objective goal programming model for green capacitated vehicle routing problemAdvances in Transportation and Logistics Research20181356368
– reference: PradhanangaRTaniguchiEYamadaTQureshiAGBi-objective decision support system for routing and scheduling of hazardous materialsSocio-Economic Planning Sciences2014482135148
– reference: Li, G. (2009). Research on open vehicle routing problem with time windows based on improved genetic algorithm. In 2009 International conference on computational intelligence and software engineering.
– reference: GhoseiriKGhannadpourSFMulti-objective vehicle routing problem with time windows using goal programming and genetic algorithmApplied Soft Computing201010410961107
– reference: Tam, V., & Ma, K. (2008). An effective search framework combining meta-heuristics to solve the vehicle routing problems with time windows. Vehicle Routing Problem, 35.
– reference: PradhanangaRTaniguchiEYamadaTQureshiAGEnvironmental analysis of pareto optimal routes in hazardous material transportationProcedia—Social and Behavioral Sciences2014125506517
– reference: Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot Vehicle Routing Problems. Research anthology on multi-industry uses of genetic programming and algorithms, IGI Global: 375–402.
– reference: MavrotasGEffective implementation of the ε-constraint method in multi-objective mathematical programming problemsApplied Mathematics and Computation20092132455465
– reference: HoWHoGTSJiPLauHCWA hybrid genetic algorithm for the multi-depot vehicle routing problemEngineering Applications of Artificial Intelligence2008214548557
– reference: CalveteHIGaléCOliverosM-JSánchez-ValverdeBA goal programming approach to vehicle routing problems with soft time windowsEuropean Journal of Operational Research2007177317201733
– reference: SorianoAVidalTGanstererMDoernerKThe vehicle routing problem with arrival time diversification on a multigraphEuropean Journal of Operational Research20202862564575
– reference: GhaderiABurdettRLAn integrated location and routing approach for transporting hazardous materials in a bi-modal transportation networkTransportation Research Part E: Logistics and Transportation Review20191274965
– reference: LaporteGOptimal solutions to capacitated multidepot vehicle routing problemsCongressus Nemerantium19844283292
– reference: ChangYHThe cash pick-up and delivery vehicle routing/scheduling under stochastic travel times2011National Central University
– reference: ZakariazadehAJadidSSianoPMulti-objective scheduling of electric vehicles in smart distribution systemEnergy Conversion and Management2014794353
– reference: BoussaïdILepagnotJSiarryPA survey on optimization metaheuristicsInformation Sciences201323782117
– reference: DemirEBektaşTLaporteGThe bi-objective pollution-routing problemEuropean Journal of Operational Research20142323464478
– reference: KumarARoyDVerterVSharmaDIntegrated fleet mix and routing decision for hazmat transportation: A developing country perspectiveEuropean Journal of Operational Research20182641225238
– reference: ChenYCowlingPPolackFRemdeSMourdjisPDynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage systemEuropean Journal of Operational Research20172572494510
– reference: ZajacSHuberSObjectives and methods in multi-objective routing problems: A survey and classification schemeEuropean Journal of Operational Research20212901125
– reference: Zhang, Z., Wang, L., Song, X., Huang, H., & Yin, Y. (2021). Improved genetic-simulated annealing algorithm for seru loading problem with downward substitution under stochastic environment. Journal of the Operational Research Society, pp. 1–12.
– reference: EMISIA. (2021). The environmental tools of COPERTE V. Retrieved 3, March, 2021, from https://www.emisia.com/.
– reference: PradhanangaRTaniguchiEYamadaTAnt colony system based routing and scheduling for hazardous material transportationProcedia—Social and Behavioral Sciences20102360976108
– reference: Martí, R., Luis González Velarde, J., & Duarte, A. (2009). Heuristics for the bi-objective path dissimilarity problem. Computers & Operations Research, 36(11): 2905–2912.
– reference: MasriHBen AbdelazizFAlayaHA recourse stochastic goal programming approach for the multi-objective stochastic vehicle routing problemJournal of Multi-Criteria Decision Analysis2016231–2314
– reference: PoonthalirGNadarajanRA fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP)Expert Systems with Applications2018100131144
– reference: Skok, M., Skrlec, D., & Krajcar, S. (2000). The genetic algorithm method for multiple depot capacitated vehicle routing problem solving. In KES'2000. Fourth international conference on knowledge-based intelligent engineering systems and allied technologies. proceedings (Cat. No.00TH8516).
– reference: BaeHMoonIMulti-depot vehicle routing problem with time windows considering delivery and installation vehiclesApplied Mathematical Modelling2016401365366549
– reference: Khairy, O. M., Shehata, O. M., & Morgan, E. I. (2020). Meta-heuristic algorithms for solving the multi-depot vehicle routing problem. In 2020 2nd Novel intelligent and leading emerging sciences conference (NILES).
– reference: MusaAAGoal programming model for optimal water allocation of limited resources under increasing demandsEnvironment, Development and Sustainability202123459565984
– reference: DokerogluTSevincEKucukyilmazTCosarAA survey on new generation metaheuristic algorithmsComputers & Industrial Engineering2019137106040
– reference: BolanosREscobarJEcheverriMA metaheuristic algorithm for the multi-depot vehicle routing problem with heterogeneous fleetInternational Journal of Industrial Engineering Computations201894461478
– reference: CBA. (2021). 2020 Annual Report on the Development of China's Banking Industry. Retrieved 24, March, 2021, from https://www.china-cba.net/.
– reference: Liu, F., Fang, K., Tang, J., & Yin, Y. (2021). Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms. Journal of Management Science and Engineering.
– reference: Google. (2021). Solving a TSP with OR-Tools. Retrieved 7 January, 2021, from https://developers.google.cn/optimization/routing/tsp.
– reference: Aksoy, D. (2020). Operational management challenges for cash-in-transit services during an outbreak of a global disease. 5. International EMI Entrepreneurship and Social Sciences Congress PROCEEDINGS E-BOOK.
– reference: CharnesACooperWWGoal programming and multiple objective optimizations: Part 1European Journal of Operational Research1977113954
– reference: Loomis. (2021). We are the international specialist in cash handling. Retrieved 25, March, 2021, from https://www.loomis.com/en/business-markets.
– reference: BulaGAMurat AfsarHGonzálezFAProdhonCVelascoNBi-objective vehicle routing problem for hazardous materials transportationJournal of Cleaner Production2019206976986
– reference: ArosteguiMAKadipasaogluSNKhumawalaBMAn empirical comparison of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities location problemsInternational Journal of Production Economics20061032742754
– reference: YanSYWangSSWuMWA model with a solution algorithm for the cash transportation vehicle routing and scheduling problemComputers and Industrial Engineering2012632464473
– reference: AzadehAFarrokhi-AslHThe close–open mixed multi depot vehicle routing problem considering internal and external fleet of vehiclesTransportation Letters20191127892
– reference: AndroutsopoulosKNZografosKGA bi-objective time-dependent vehicle routing and scheduling problem for hazardous materials distributionEURO Journal on Transportation and Logistics201211157183
– reference: Ji, Y., Du, J., Wu, X., Wu, Z., Qu, D., & Yang, D. (2021). Robust optimization approach to two-echelon agricultural cold chain logistics considering carbon emission and stochastic demand. Environment, Development and Sustainability.
– reference: Ombuki-Berman, B., & Hanshar, F. T. (2009). Using genetic algorithms for multi-depot vehicle routing. In F. B. Pereira and J. Tavares (Eds.), Bio-inspired algorithms for the vehicle routing problem, pp. 77–99. Springer.
– reference: YoussefHSaitSMAdicheHEvolutionary algorithms, simulated annealing and tabu search: A comparative studyEngineering Applications of Artificial Intelligence2001142167181
– reference: TalaricoLSpringaelJSorensenKTalaricoFA large neighbourhood metaheuristic for the risk-constrained cash-in-transit vehicle routing problemComputers & Operations Research201778547556
– reference: OmbukiBRossBJHansharFMulti-objective genetic algorithms for vehicle routing problem with time windowsApplied Intelligence20062411730
– reference: Hosken, G. (2018). The fightback against cash heists is on—And technology should be the ultimate weapon. Retrieved 25, March, 2021, from https://www.timeslive.co.za/news/south-africa/2018-07-24-the-fightback-against-cash-heists-is-on--and-technology-should-be-the-ultimate-weapon/.
– reference: CrevierBCordeauJ-FLaporteGThe multi-depot vehicle routing problem with inter-depot routesEuropean Journal of Operational Research20071762756773
– reference: MuazuAANuraAEfficient assignment algorithms for multi depot vehicle routing problem using genetic algorithmIlorin Journal of Computer Science and Information Technology202031110
– reference: TalaricoLSörensenKSpringaelJThe k-dissimilar vehicle routing problemEuropean Journal of Operational Research20152441129140
– reference: ThobaneMSThe South African cash-in-transit heist enterprise: Managing its wellspring and concatenationInternational Annals of Criminology2019571–2198224
– reference: KazantziVKazantzisNGerogiannisVCRisk informed optimization of a hazardous material multi-periodic transportation modelJournal of Loss Prevention in the Process Industries2011246767773
– reference: LacommePPrinsCSevauxMA genetic algorithm for a bi-objective capacitated arc routing problemComputers and Operations Research2006331234733493
– reference: Zhang, Y., Liu, J., Duan, F., & Ren, J. (2007). Genetic algorithm in vehicle routing problem. In Third international conference on intelligent information hiding and multimedia signal processing (IIH-MSP 2007).
– reference: ParsafardMEsmaeelAMasoudKMohammadrezaNLiXPractical approach for finding optimum routes for fuel delivery trucks in large citiesTransportation Research Record2015247816674
– reference: Sai, S., Kumar, L. A., & Paneerselvam, S. (2018). Computational intelligence paradigms for optimization problems using MATLAB®/SIMULINK®.
– reference: IrawanWManaqibMFitriyatiNImplementation of the model capacited vehicle routing problem with time windows with a goal programming approach in determining the best route for goods distributionJurnal Matematika, Statistika Dan Komputasi2021172231239
– reference: TalaricoLSörensenKSpringaelJMetaheuristics for the risk-constrained cash-in-transit vehicle routing problemEuropean Journal of Operational Research20152442457470
– reference: PisingerDRopkeSA general heuristic for vehicle routing problemsComputers and Operations Research200734824032435
– reference: XingLRohlfshagenPChenYYaoXAn evolutionary approach to the multidepot capacitated arc routing problemIEEE Transactions on Evolutionary Computation2010143356374
– reference: Ntziachristos, L., & Samaras, Z. (2000). COPERT III, Computer programme to calculate emissions from road transport. Copenhagen, European Energy Agency (EEA).
– reference: Wink, S., Bäck, T., & Emmerich, M. (2012). A meta-genetic algorithm for solving the capacitated vehicle routing problem. In 2012 IEEE congress on evolutionary computation.
– ident: 2066_CR56
  doi: 10.5772/5638
– ident: 2066_CR27
  doi: 10.1109/NILES50944.2020.9257879
– volume: 2478
  start-page: 66
  issue: 1
  year: 2015
  ident: 2066_CR42
  publication-title: Transportation Research Record
  doi: 10.3141/2478-08
– volume: 232
  start-page: 464
  issue: 3
  year: 2014
  ident: 2066_CR15
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.08.002
– ident: 2066_CR32
  doi: 10.1016/j.jmse.2021.05.004
– ident: 2066_CR50
  doi: 10.4018/978-1-7998-8048-6.ch020
– ident: 2066_CR34
  doi: 10.1016/j.cor.2009.01.003
– volume: 103
  start-page: 742
  issue: 2
  year: 2006
  ident: 2066_CR3
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2005.08.010
– volume: 176
  start-page: 756
  issue: 2
  year: 2007
  ident: 2066_CR14
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.08.015
– ident: 2066_CR48
– volume: 286
  start-page: 564
  issue: 2
  year: 2020
  ident: 2066_CR52
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.03.061
– volume: 206
  start-page: 976
  year: 2019
  ident: 2066_CR8
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.09.228
– volume: 23
  start-page: 5956
  issue: 4
  year: 2021
  ident: 2066_CR38
  publication-title: Environment, Development and Sustainability
  doi: 10.1007/s10668-020-00856-1
– volume: 244
  start-page: 129
  issue: 1
  year: 2015
  ident: 2066_CR53
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.01.019
– volume: 1
  start-page: 39
  issue: 1
  year: 1977
  ident: 2066_CR12
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(77)81007-2
– volume: 4
  start-page: 283
  year: 1984
  ident: 2066_CR30
  publication-title: Congressus Nemerantium
– volume: 177
  start-page: 1720
  issue: 3
  year: 2007
  ident: 2066_CR9
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.10.010
– ident: 2066_CR1
– volume: 21
  start-page: 548
  issue: 4
  year: 2008
  ident: 2066_CR21
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2007.06.001
– ident: 2066_CR24
  doi: 10.1007/s10668-021-01236-z
– ident: 2066_CR10
– ident: 2066_CR65
  doi: 10.1080/01605682.2021.1939172
– ident: 2066_CR64
  doi: 10.1109/IIHMSP.2007.4457776
– ident: 2066_CR17
– volume: 34
  start-page: 2403
  issue: 8
  year: 2007
  ident: 2066_CR43
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2005.09.012
– volume: 63
  start-page: 464
  issue: 2
  year: 2012
  ident: 2066_CR60
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2012.04.004
– volume: 9
  start-page: 461
  issue: 4
  year: 2018
  ident: 2066_CR6
  publication-title: International Journal of Industrial Engineering Computations
  doi: 10.5267/j.ijiec.2017.11.005
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 2066_CR37
  publication-title: Ilorin Journal of Computer Science and Information Technology
– ident: 2066_CR31
  doi: 10.1109/CISE.2009.5362726
– ident: 2066_CR20
– volume: 1
  start-page: 157
  issue: 1
  year: 2012
  ident: 2066_CR2
  publication-title: EURO Journal on Transportation and Logistics
  doi: 10.1007/s13676-012-0004-y
– volume: 257
  start-page: 494
  issue: 2
  year: 2017
  ident: 2066_CR13
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.07.027
– volume: 40
  start-page: 6536
  issue: 13
  year: 2016
  ident: 2066_CR5
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2016.01.059
– volume: 57
  start-page: 198
  issue: 1–2
  year: 2019
  ident: 2066_CR57
  publication-title: International Annals of Criminology
  doi: 10.1017/cri.2020.11
– volume: 213
  start-page: 455
  issue: 2
  year: 2009
  ident: 2066_CR36
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.037
– ident: 2066_CR58
  doi: 10.1109/CEC.2012.6253010
– ident: 2066_CR39
– volume: 100
  start-page: 131
  year: 2018
  ident: 2066_CR44
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.052
– volume: 24
  start-page: 767
  issue: 6
  year: 2011
  ident: 2066_CR26
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2011.05.006
– volume: 237
  start-page: 82
  year: 2013
  ident: 2066_CR7
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.02.041
– volume: 48
  start-page: 135
  issue: 2
  year: 2014
  ident: 2066_CR46
  publication-title: Socio-Economic Planning Sciences
  doi: 10.1016/j.seps.2014.02.003
– volume: 10
  start-page: 1096
  issue: 4
  year: 2010
  ident: 2066_CR19
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.04.001
– volume: 17
  start-page: 231
  issue: 2
  year: 2021
  ident: 2066_CR23
  publication-title: Jurnal Matematika, Statistika Dan Komputasi
  doi: 10.20956/jmsk.v17i2.11107
– volume: 1
  start-page: 356
  year: 2018
  ident: 2066_CR49
  publication-title: Advances in Transportation and Logistics Research
– volume: 125
  start-page: 506
  year: 2014
  ident: 2066_CR47
  publication-title: Procedia—Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2014.01.1492
– volume: 11
  start-page: 78
  issue: 2
  year: 2019
  ident: 2066_CR4
  publication-title: Transportation Letters
  doi: 10.1080/19427867.2016.1274468
– volume: 14
  start-page: 167
  issue: 2
  year: 2001
  ident: 2066_CR61
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(00)00065-8
– volume: 78
  start-page: 547
  year: 2017
  ident: 2066_CR55
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.04.003
– volume: 264
  start-page: 225
  issue: 1
  year: 2018
  ident: 2066_CR28
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.06.012
– volume-title: The cash pick-up and delivery vehicle routing/scheduling under stochastic travel times
  year: 2011
  ident: 2066_CR11
– volume: 24
  start-page: 17
  issue: 1
  year: 2006
  ident: 2066_CR40
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-006-6926-z
– volume: 137
  start-page: 106040
  year: 2019
  ident: 2066_CR16
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106040
– volume: 14
  start-page: 356
  issue: 3
  year: 2010
  ident: 2066_CR59
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2033578
– volume: 23
  start-page: 3
  issue: 1–2
  year: 2016
  ident: 2066_CR35
  publication-title: Journal of Multi-Criteria Decision Analysis
  doi: 10.1002/mcda.1563
– ident: 2066_CR33
– volume: 290
  start-page: 1
  issue: 1
  year: 2021
  ident: 2066_CR62
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.07.005
– volume: 79
  start-page: 43
  year: 2014
  ident: 2066_CR63
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2013.11.042
– ident: 2066_CR51
  doi: 10.1109/KES.2000.884102
– volume: 127
  start-page: 49
  year: 2019
  ident: 2066_CR18
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2019.04.011
– ident: 2066_CR41
  doi: 10.1007/978-3-540-85152-3_4
– volume: 244
  start-page: 457
  issue: 2
  year: 2015
  ident: 2066_CR54
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.01.040
– ident: 2066_CR22
– volume: 27
  start-page: 519
  year: 2015
  ident: 2066_CR25
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.11.005
– volume: 33
  start-page: 3473
  issue: 12
  year: 2006
  ident: 2066_CR29
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2005.02.017
– volume: 2
  start-page: 6097
  issue: 3
  year: 2010
  ident: 2066_CR45
  publication-title: Procedia—Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2010.04.022
SSID ssj0020926
Score 2.3539863
Snippet With the gradual increase of commercial banks and the expansion of their branches, the demand for cash transportation inflates sharply, bringing opportunities...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 557
SubjectTerms Algorithms
business development
case studies
Chromosomes
Commercial banks
Decision makers
Decision making
Earth and Environmental Science
Ecology
Economic Geology
Economic Growth
Environment
Environmental Economics
Environmental Management
Genetic algorithms
Goal programming
Optimization
Performance tests
Population density
risk
Risk analysis
Risk factors
Route planning
Sustainable Development
Time dependence
Trade
Traffic
Traffic congestion
Traffic flow
Traffic information
Traffic jams
Transportation planning
Vehicle routing
Vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEB70fNCXYq3itVpS8E2DuzGX3RREtCgieEhRuLclv84TdNe6e33oX9-ZveydFupzsskmk2QmmZnvA9hDOXupQuBOKMels5KbzKbc6NQ6a1MnPOU7Xw_V5Z28Gg1GSzDscmEorLI7E9uD2leO3sgPBd63lSR49pPnX5xYo8i72lFomEit4I9biLFlWBGEjNWDlbPz4c3P-RUs0S0BW0qIsmgoj2IaTUymUyrnFLKQEMY5129V1cL-_Mdl2mqii3X4EE1IdjqT-UdYCuUGrHYZxvUn-ENY0ljISUV5Zh7vcSDN5KlmaKEyZ-oJfyh5Q1rqoWFtSCHzaIg37HeYUJvspZpSODSLdDP1dxZi88yUnr3KjsMfqfDUeYrpnJtwd3F---OSR44F7tD0arjN9CARLhsIo603SZABJ9Ci3s-tP7LSinFKnkzvBmasU50Ll6tMJl5JOybCxy3olVUZtoEFi1eVLEmMQInbzOlg8LaS51bIzItc9SHtprNwEYCceDAeiwV0MomgQBEUrQgK3Yf9-TfPM_iNd2vvdFIq4lasi8XC6cO3eTFuIvKMmDJUU6yTS42jVALrHHTSXTTx_x4_v9_jF1gjevrZk80O9JqXadhFI6axX-PK_AvLT-97
  priority: 102
  providerName: ProQuest
Title Genetic-based algorithms for cash-in-transit multi depot vehicle routing problems: economic and environmental optimization
URI https://link.springer.com/article/10.1007/s10668-021-02066-9
https://www.proquest.com/docview/2761648287
https://www.proquest.com/docview/2849891627
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2975
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0020926
  issn: 1387-585X
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2975
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0020926
  issn: 1387-585X
  databaseCode: 8FG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020926
  issn: 1387-585X
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2975
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020926
  issn: 1387-585X
  databaseCode: U2A
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9si-iLaFU8rccKvulCsm42u76dcteiWEQ8OJ_Cfl2v0CbS5AT9653Jbe6qqOBTHjKZfPx2d2ayM78BeI44B6li5F4oz6V3ktvS5dya3Hnnci8C1Tt_OFUnc_luUSxSUVg7ZLsPW5L9Sn2t2E0pzSmlICMOcm724KAgOi8cxXMx2YZZmembrOXEGovO8CKVyvxZx6_maOdj_rYt2lub2V24k9xENtngeg9uxPoQbk57iunvh3BrqCdu78MPYo5GMU4GKTB7cdZgwL-6bBn6o8zbdsXPa96RTTrvWJ9AyAK63R37FleknV01a0p-Zqm5TPuaxaSe2Tqwa7Vw-EgNrjGXqXjzAcxn089vT3jqqMA9Olodd6UpMuHLQljjgs2ijOgxObTy2oVXTjqxzGnfMvjCLk1utPBalTILSroltXd8CPt1U8dHwKLDwKTMMisQX1d6Ey3GJlo7IcsgtBpBPnzYyie6cep6cVHtiJIJjArBqHowKjOCF9trvm7INv4pfTTgVaWJ11aiVBgAEov_CJ5tT-OUoX0QW8dmjTJaGnxLJVDm5YDzTsXf7_j4_8SfwG1qTr_5YXME-93VOj5FF6ZzY9jTs-MxHEyOv7yf4vHN9PTjp3E_jn8CJnHs0Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfG9jBeEJ_iYIwgwRNEtFkubZCmiY9NN7adENqkeyv5ut2krR1rD8T-uP1t2L30DpDY256bOm3sxHZs_wzwEvnspQqBO6Ecl85KbjKbcqNT66xNnfBU73wwVIMj-XnUHy3BVVcLQ2mV3ZnYHtS-cnRH_lagv60kwbNvnX_n1DWKoqtdCw0TWyv4zRZiLBZ27IVfP9GFqzd3PyG_Xwmxs334ccBjlwHu0PhouM10PxEu6wujrTdJkAFJWNR8ufUbVloxTimW513fjDX66MLlKpOJV9KOqeUh0r0FK3JDanT-Vj5sD798nbt8iW4bvqWEYIuG-SiW7cTiPaVyTikSCWGqc_23alzYu_-EaFvNt3MX7kSTlb2fydg9WArlfVjtKprrB3BJ2NX4kJNK9MycHuPCNZOzmqFFzJypJ_yk5A1pxZOGtSmMzKPh37AfYUI02UU1pfRrFtvb1O9YiOSZKT37oxoPP6TCU-4slo8-hKMbWe1HsFxWZXgMLFh0jbIkMQIlzGZOB4PeUZ5bITMvctWDtFvOwkXAc-q7cVosoJqJBQWyoGhZUOgevJ6_cz6D-7h29FrHpSJu_bpYCGoPXswf46alSIwpQzXFMbnU-JdK4Jg3HXcXJP4_45PrZ3wOq4PDg_1if3e49xRuCzTIZtdFa7DcXEzDMzSgGrsepZTBt5veGL8BV1ErgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJOqLAT_CKcia6JNuaNe9bZeEGAOcIEp8kOTe6n6dRwIt0p5G_jT-Omd62zsxkTeeu51td2Z3frPzBfAS-eylCoE7oRyXzkpuMptyo1PrrE2d8JTv_PlI7R_Lj8P-cAGuulwYCqvszsT2oPaVozvyTYH2tpJUnn1zFMMivuwO3p3_4NRBijytXTuNqYgcht-_0Hyrtw92kdevhBjsfd3Z57HDAHcIPBpuM91PhMv6wmjrTRJkQARhUevl1r-10opRSn487_pmpNE-Fy5XmUy8knZE7Q6R7h1YyqiKO2WpDz7MjL1Et63eUqpdi5B8GBN2YtqeUjmn4IiEqqlzfV0pzpHuP87ZVucNluFBBKvs_VS6VmAhlA_hXpfLXD-CS6pajQ85KUPPzOl3XKZmfFYzxMLMmXrMT0rekD48aVgbvMg8Qv6G_QxjoskuqgkFXrPY2KbeYiGSZ6b07K88PPyQCs-3s5g4-hiOb2Wtn8BiWZVhFViwaBRlSWIEypbNnA4G7aI8t0JmXuSqB2m3nIWLpc6p48ZpMS_STCwokAVFy4JC9-D17J3zaaGPG0evdVwq4qavi7mI9uDF7DFuV_LBmDJUExyTS41_qQSOedNxd07i_zM-vXnGDbiL26H4dHB0-AzuC0Ri03uiNVhsLiZhHZFTY5-3Isrg223viT8Y3ika
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic-based+algorithms+for+cash-in-transit+multi+depot+vehicle+routing+problems%3A+economic+and+environmental+optimization&rft.jtitle=Environment%2C+development+and+sustainability&rft.au=Ge%2C+Xianlong&rft.au=Jin%2C+Yuanzhi&rft.au=Zhang%2C+Long&rft.date=2023-01-01&rft.pub=Springer+Netherlands&rft.issn=1387-585X&rft.eissn=1573-2975&rft.volume=25&rft.issue=1&rft.spage=557&rft.epage=586&rft_id=info:doi/10.1007%2Fs10668-021-02066-9&rft.externalDocID=10_1007_s10668_021_02066_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-585X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-585X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-585X&client=summon