Supervised dimension reduction for functional time series

Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal c...

Full description

Saved in:
Bibliographic Details
Published inStatistical papers (Berlin, Germany) Vol. 65; no. 7; pp. 4057 - 4077
Main Authors Wang, Guochang, Wen, Zengyao, Jia, Shanming, Liang, Shanshan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0932-5026
1613-9798
DOI10.1007/s00362-023-01505-1

Cover

Abstract Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods.
AbstractList Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods.
Author Wen, Zengyao
Wang, Guochang
Jia, Shanming
Liang, Shanshan
Author_xml – sequence: 1
  givenname: Guochang
  surname: Wang
  fullname: Wang, Guochang
  organization: School of Economics, Jinan University
– sequence: 2
  givenname: Zengyao
  surname: Wen
  fullname: Wen, Zengyao
  organization: School of Economics, Jinan University
– sequence: 3
  givenname: Shanming
  surname: Jia
  fullname: Jia, Shanming
  organization: School of Economics, Jinan University
– sequence: 4
  givenname: Shanshan
  surname: Liang
  fullname: Liang, Shanshan
  email: iessliang@scut.edu.cn
  organization: School of International Education, South China University of Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqMzySbZPUpRKxQ8qOeQ5kNS2t2a7Ar-e7ddQfDQ08zA8wwv74xMmrbxhFwj3CKAussAXDIKjFNAAYLiGZmiRE5rVVcTMoWaMyqAyQsyy3kDgFVVwZTUr_3ep6-YvStc3Pkmx7Ypkne97Q5baFMR-uZ4mG3RDUiRfYo-X5LzYLbZX_3OOXl_fHhbLOnq5el5cb-ilgvW0bVgDp00XAgp1wZdyUIJyEprsPRoeRBeDLuUwrqqQhDg1kYJpRhXKhg-Jzfj331qP3ufO71p-zSEyZojKMFKxWGgqpGyqc05-aBt7MwhdZdM3GoEfShKj0XpoSh9LErjoLJ_6j7FnUnfpyU-SnmAmw-f_lKdsH4AXBJ8JQ
CitedBy_id crossref_primary_10_1080_02331888_2024_2448475
Cites_doi 10.1080/0233188031000112845
10.1111/jtsa.12192
10.1007/s00357-018-9256-z
10.2307/1912773
10.1007/978-1-4612-1154-9
10.1007/978-1-4614-3655-3
10.1016/j.jmva.2012.11.005
10.1111/1467-9868.03411
10.1016/j.csda.2004.12.007
10.1016/j.jeconom.2013.11.002
10.1016/0304-4076(86)90063-1
10.1016/j.jeconom.2011.08.002
10.1016/j.jmva.2013.10.019
10.1007/b98888
10.1017/S0266466612000345
10.1080/03610918.2022.2087878
10.1016/j.csda.2015.05.011
10.1016/j.physa.2020.125109
10.1016/j.ecosta.2017.04.002
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AO
8C1
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
L.-
L6V
L7M
L~C
L~D
M0C
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00362-023-01505-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Science Database
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
EISSN 1613-9798
EndPage 4077
ExternalDocumentID 10_1007_s00362_023_01505_1
GrantInformation_xml – fundername: The national social science fund of China
  grantid: 20BTJ041
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8C1
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBA
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PUEGO
7SC
7XB
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c352t-b52d1d6a35566ba1d42f40124ca14e1c3f5e5ca1665cd881050dba75772377fa3
IEDL.DBID AGYKE
ISSN 0932-5026
IngestDate Tue Sep 02 03:19:09 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Wed Oct 01 03:41:37 EDT 2025
Fri Feb 21 02:38:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Functional sliced inverse regression
Supervised method
Dimension reduction
Functional time series model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b52d1d6a35566ba1d42f40124ca14e1c3f5e5ca1665cd881050dba75772377fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3107524730
PQPubID 31177
PageCount 21
ParticipantIDs proquest_journals_3107524730
crossref_citationtrail_10_1007_s00362_023_01505_1
crossref_primary_10_1007_s00362_023_01505_1
springer_journals_10_1007_s00362_023_01505_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Statistical papers (Berlin, Germany)
PublicationTitleAbbrev Stat Papers
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Horváth, Kokoszka (CR10) 2012
Lian, Li (CR13) 2014; 124
Amato, Antoniadis, Feis (CR1) 2006; 50
Hormann, Horváth, Reeder (CR9) 2013; 29
Wang, Zhou, Feng, Zhang (CR20) 2015; 91
CR5
Horváth, Kokoszka, Rice (CR11) 2014; 179
Ferré, Yao (CR8) 2003; 37
CR14
Aue, Horvath, Daniel (CR2) 2017; 38
CR12
Wang, Zhang, Yan (CR21) 2022; 51
Xia, Tong, Li, Zhu (CR22) 2002; 64
Wang, Lin, Zhang (CR19) 2013; 116
Wang, Song (CR18) 2018; 35
Bosq (CR4) 2000
Bollerslev (CR3) 1986; 31
Ramsay, Silverman (CR16) 2005
Müller, Sen, Stadtmuller (CR15) 2011; 165
Wang, Lian (CR17) 2020; 30
Engle (CR6) 1982; 50
Ferraty, Vieu (CR7) 2006
RF Engle (1505_CR6) 1982; 50
L Ferré (1505_CR8) 2003; 37
JO Ramsay (1505_CR16) 2005
H Lian (1505_CR13) 2014; 124
1505_CR14
BC Wang (1505_CR21) 2022; 51
S Hormann (1505_CR9) 2013; 29
GC Wang (1505_CR17) 2020; 30
1505_CR12
F Ferraty (1505_CR7) 2006
GC Wang (1505_CR19) 2013; 116
A Aue (1505_CR2) 2017; 38
T Bollerslev (1505_CR3) 1986; 31
D Bosq (1505_CR4) 2000
1505_CR5
GC Wang (1505_CR20) 2015; 91
L Horváth (1505_CR10) 2012
H Müller (1505_CR15) 2011; 165
GC Wang (1505_CR18) 2018; 35
Y Xia (1505_CR22) 2002; 64
U Amato (1505_CR1) 2006; 50
L Horváth (1505_CR11) 2014; 179
References_xml – volume: 37
  start-page: 475
  year: 2003
  end-page: 488
  ident: CR8
  article-title: Functional sliced inverse regression analysis
  publication-title: Statistics
  doi: 10.1080/0233188031000112845
– volume: 38
  start-page: 3
  year: 2017
  end-page: 21
  ident: CR2
  article-title: Functional generalized autoregressive conditional heteroskedasticity
  publication-title: J Times Ser Anal
  doi: 10.1111/jtsa.12192
– volume: 35
  start-page: 250
  year: 2018
  end-page: 272
  ident: CR18
  article-title: Functional sufficient dimension reduction for functional data classification
  publication-title: J Classif
  doi: 10.1007/s00357-018-9256-z
– volume: 50
  start-page: 987
  year: 1982
  end-page: 1007
  ident: CR6
  article-title: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
  publication-title: Econometrica
  doi: 10.2307/1912773
– ident: CR14
– year: 2000
  ident: CR4
  publication-title: Linear processes in functional spaces
  doi: 10.1007/978-1-4612-1154-9
– year: 2012
  ident: CR10
  publication-title: Inference for functional data with applications
  doi: 10.1007/978-1-4614-3655-3
– ident: CR12
– volume: 116
  start-page: 1
  year: 2013
  end-page: 13
  ident: CR19
  article-title: Functional contour regression
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2012.11.005
– volume: 64
  start-page: 363
  year: 2002
  end-page: 410
  ident: CR22
  article-title: An adaptive estimation of dimension reduction space
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.03411
– volume: 50
  start-page: 2422
  year: 2006
  end-page: 2446
  ident: CR1
  article-title: Dimension reduction in functional regression with applications
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2004.12.007
– year: 2006
  ident: CR7
  publication-title: Nonparametric functional data analysis: theory and practice
– volume: 179
  start-page: 66
  year: 2014
  end-page: 84
  ident: CR11
  article-title: Testing stationarity of functional time series
  publication-title: J Econometr
  doi: 10.1016/j.jeconom.2013.11.002
– volume: 31
  start-page: 307
  year: 1986
  end-page: 327
  ident: CR3
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: J Econometr
  doi: 10.1016/0304-4076(86)90063-1
– volume: 165
  start-page: 233
  year: 2011
  end-page: 245
  ident: CR15
  article-title: Functional data analysis for volatility
  publication-title: J Econometr
  doi: 10.1016/j.jeconom.2011.08.002
– volume: 124
  start-page: 150
  year: 2014
  end-page: 165
  ident: CR13
  article-title: Series expansion for functional sufficient dimension reduction
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2013.10.019
– ident: CR5
– year: 2005
  ident: CR16
  publication-title: Functional data analysis
  doi: 10.1007/b98888
– volume: 29
  start-page: 267
  year: 2013
  end-page: 288
  ident: CR9
  article-title: A functional version of ARCH model
  publication-title: Economet Theory
  doi: 10.1017/S0266466612000345
– volume: 51
  start-page: 6902
  issue: 11
  year: 2022
  end-page: 6923
  ident: CR21
  article-title: Functional sufficient dimension reduction based on weighted method
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2022.2087878
– volume: 91
  start-page: 64
  year: 2015
  end-page: 77
  ident: CR20
  article-title: The hybrid method of FSIR and FSAVE for functional effective dimension reduction
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2015.05.011
– volume: 30
  start-page: 17
  year: 2020
  end-page: 33
  ident: CR17
  article-title: functional sliced inverse regression in a reproducing Kernel Hilbert space: a theoretical connection to functional linear regression
  publication-title: Stat Sin
– ident: 1505_CR5
  doi: 10.1016/j.physa.2020.125109
– volume: 50
  start-page: 2422
  year: 2006
  ident: 1505_CR1
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2004.12.007
– volume: 165
  start-page: 233
  year: 2011
  ident: 1505_CR15
  publication-title: J Econometr
  doi: 10.1016/j.jeconom.2011.08.002
– volume: 64
  start-page: 363
  year: 2002
  ident: 1505_CR22
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.03411
– volume-title: Inference for functional data with applications
  year: 2012
  ident: 1505_CR10
  doi: 10.1007/978-1-4614-3655-3
– volume-title: Linear processes in functional spaces
  year: 2000
  ident: 1505_CR4
  doi: 10.1007/978-1-4612-1154-9
– volume: 37
  start-page: 475
  year: 2003
  ident: 1505_CR8
  publication-title: Statistics
  doi: 10.1080/0233188031000112845
– volume: 31
  start-page: 307
  year: 1986
  ident: 1505_CR3
  publication-title: J Econometr
  doi: 10.1016/0304-4076(86)90063-1
– volume: 50
  start-page: 987
  year: 1982
  ident: 1505_CR6
  publication-title: Econometrica
  doi: 10.2307/1912773
– volume: 30
  start-page: 17
  year: 2020
  ident: 1505_CR17
  publication-title: Stat Sin
– volume: 35
  start-page: 250
  year: 2018
  ident: 1505_CR18
  publication-title: J Classif
  doi: 10.1007/s00357-018-9256-z
– volume: 38
  start-page: 3
  year: 2017
  ident: 1505_CR2
  publication-title: J Times Ser Anal
  doi: 10.1111/jtsa.12192
– volume-title: Functional data analysis
  year: 2005
  ident: 1505_CR16
  doi: 10.1007/b98888
– volume: 179
  start-page: 66
  year: 2014
  ident: 1505_CR11
  publication-title: J Econometr
  doi: 10.1016/j.jeconom.2013.11.002
– volume: 124
  start-page: 150
  year: 2014
  ident: 1505_CR13
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2013.10.019
– volume: 116
  start-page: 1
  year: 2013
  ident: 1505_CR19
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2012.11.005
– ident: 1505_CR12
– volume: 91
  start-page: 64
  year: 2015
  ident: 1505_CR20
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2015.05.011
– volume: 51
  start-page: 6902
  issue: 11
  year: 2022
  ident: 1505_CR21
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2022.2087878
– volume: 29
  start-page: 267
  year: 2013
  ident: 1505_CR9
  publication-title: Economet Theory
  doi: 10.1017/S0266466612000345
– ident: 1505_CR14
  doi: 10.1016/j.ecosta.2017.04.002
– volume-title: Nonparametric functional data analysis: theory and practice
  year: 2006
  ident: 1505_CR7
SSID ssj0018880
Score 2.3322196
Snippet Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4057
SubjectTerms Data analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Regression models
Regular Article
Statistics
Statistics for Business
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbGdtkF8RSDgXrgBhFNmqTdASFAmyYkJgRM2q1Km_SEtrHH_8dO200gsVultjk4jv3Zjj8DXMeFTSKXaKa0STBACR0zRhhWmNxxmSl0gpTQfx3p4Vi-TNSkAaO6F4auVdY20RtqO8spR36HMCRWQqJCPsy_GU2NoupqPULDVKMV7L2nGNuDliBmrCa0nvqjt_dNXQHjPZ91QdTCFIYfVRuNb6bz1CwMfRijLIBi_Ler2uLPPyVT74kGB7BfQcjgsdzzQ2i46RG0CTWWpMvH0PtYz8kGLJ0NLNH3U0osWBBLK-1DgEA1IIdW5gEDmi8fkCq65QmMB_3P5yGrZiSwHKHTimVKWG61QdigdWa4laLAkEnI3HDpeB4Vyil81ppYABJEU6HNTKwQVEdxXJjoFJrT2dSdQYChamFCpxNL_bU9nkkuQmVDmXMRC9HrAK_FkeYVgTjNsfhKN9THXoQpijD1Ikx5B242_8xL-oydX3drKafVUVqm243vwG0t-e3r_1c7373aBbQFApTyvlgXmqvF2l0iwFhlV5XW_AD4U8kh
  priority: 102
  providerName: ProQuest
Title Supervised dimension reduction for functional time series
URI https://link.springer.com/article/10.1007/s00362-023-01505-1
https://www.proquest.com/docview/3107524730
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1613-9798
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0018880
  issn: 0932-5026
  databaseCode: AMVHM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1613-9798
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018880
  issn: 0932-5026
  databaseCode: AFBBN
  dateStart: 19601201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1613-9798
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0018880
  issn: 0932-5026
  databaseCode: 8FG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1613-9798
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018880
  issn: 0932-5026
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1613-9798
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0018880
  issn: 0932-5026
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BO8DCo4AolCoDG7iK3dhJx1L1IVArBASVKXJiZwGVqkkXfj3nPFpRAVKXOJIdKzk7vu_Ovu8Art1YeW3tCcKF9NBAsTWRkkkSy0hTJ-SoBI1DfzwRI9-5n_JpERSWlKfdyy3JbKVeBbtl1CkEdQwxVjonaPNUM76tClS7w7eH_mr3AK26zLeC2IRwNDKKYJnfe_mpkNYoc2NjNNM3g0PwyzfNj5m8t5Zp2Iq-Nkgct_2UIzgoAKjVzWfMMezoWQ32yvjkpAb7Bn_m9M0n0Hlezs1qkmhlKZMIwDjXrIXhezUjaiHktYxqzD2KlslUb5lJrZNT8Af9l96IFNkWSIQgLCUhZ4oqIRGACBFKqhwWo_HFnEhSR9OoHXPN8V4IwyfgIS6zVShdjvC87bqxbJ9BZfY50-dgodEbS1sLT5lI3Q4NHcpsrmwnosxlrFMHWoo8iAoqcpMR4yNYkShnEgpQQkEmoYDW4Wb1zDwn4vi3daMcyaD4KZMAkazLmYNrWh1uy4FZV__d28V2zS9hnyH0yU-iNaCSLpb6CqFLGjZh1-tRcx0Mm8WsNeX4dTTG8q4_eXzCWp91vwHX-OX2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGeiCeIpCAQ8wgUXsxk46IIQKqEDLApW6BSd2JtQWWoT4U_xG7vJoBRLdukVKYinnL3ffne8BcBykNmy4UHOlTYgOiue4MdLw1CRO-LFCI0gB_e6jbvf8-77qL8F3WQtDaZWlTswUtR0mFCM_RxoSKOkjIC9Hb5ymRtHpajlCI4fFg_v6RJdtfHF3jft7IuXtzXOrzYupAjxBsjHhsZJWWG3Q0GodG2F9maKTIf3ECN-JpJEqp_Baa6qbD5F_eDY2gUIa2giC1DRw3WVYwW8ISBGErWlKiUBvMovpICfiCp2bokgnK9XLGr9wtJCcYgyKi9-GcMZu_xzIZnbudh3WCoLKrnJEbcCSG2xClThp3tJ5C5pPHyPSMGNnmaXhABRwY-_UA5Z2mSENZmQu8ygjo-n1jIDuxtvQW4isdqAyGA7cLjB0hFPjOR1aqt5titgX0lPW8xMhAymbNRClOKKkaE9OUzJeo2lj5UyEEYowykQYiRqcTt8Z5c055j5dL6UcFT_qOJrBqgZnpeRnt_9fbW_-akew2n7udqLO3ePDPlQlUqE8M60Olcn7hztAKjOJDzP8MHhZNGB_AM-g_m4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58gPQiPrFadQ960sXsJrtJDyJiLdZqEVTwFjfZzUlqtS3iX_PXOZNHi4K9eQsk2cPky843szPfAByEmY18F2mutIkwQPEcN0YanpnUiSBR6AQpoX_b01ePwfWTepqDr6oXhsoqqz0x36jta0o58hOkIaGSAQLyJCvLIu5a7bPBG6cJUnTSWo3TKCDSdZ8fGL4NTzst_NaHUrYvHy6ueDlhgKdIPEY8UdIKqw06Xa0TI2wgMww4ZJAaETiR-plyCq-1ph76CLmIZxMTKqSkfhhmxsd152Ex9LUm3f7oYlJeIjCyzPM7yI-4wkCnbNjJ2_ZyERiO3pJTvkFx8dMpTpnur8PZ3Oe1V2C5JKvsvEDXKsy5_hrUiJ8W8s7r0LwfD2i3GTrLLA0KoOQbeyc9WPriDCkxI9dZZBwZTbJnBHo33IDHf7HVJiz0X_tuCxgGxZnxnI4sdfI2RRII6SnrBamQoZTNOojKHHFaSpXTxIyXeCKynJswRhPGuQljUYejyTuDQqhj5tONyspx-dMO4ynE6nBcWX56--_Vtmevtg9LCNX4ptPr7kBNIisqitQasDB6H7tdZDWjZC-HD4Pn_8brN9jyArc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+dimension+reduction+for+functional+time+series&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Guochang&rft.au=Wen%2C+Zengyao&rft.au=Jia%2C+Shanming&rft.au=Liang%2C+Shanshan&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0932-5026&rft.eissn=1613-9798&rft.volume=65&rft.issue=7&rft.spage=4057&rft.epage=4077&rft_id=info:doi/10.1007%2Fs00362-023-01505-1&rft.externalDocID=10_1007_s00362_023_01505_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon