Supervised dimension reduction for functional time series
Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal c...
Saved in:
| Published in | Statistical papers (Berlin, Germany) Vol. 65; no. 7; pp. 4057 - 4077 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0932-5026 1613-9798 |
| DOI | 10.1007/s00362-023-01505-1 |
Cover
| Abstract | Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods. |
|---|---|
| AbstractList | Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods. |
| Author | Wen, Zengyao Wang, Guochang Jia, Shanming Liang, Shanshan |
| Author_xml | – sequence: 1 givenname: Guochang surname: Wang fullname: Wang, Guochang organization: School of Economics, Jinan University – sequence: 2 givenname: Zengyao surname: Wen fullname: Wen, Zengyao organization: School of Economics, Jinan University – sequence: 3 givenname: Shanming surname: Jia fullname: Jia, Shanming organization: School of Economics, Jinan University – sequence: 4 givenname: Shanshan surname: Liang fullname: Liang, Shanshan email: iessliang@scut.edu.cn organization: School of International Education, South China University of Technology |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqMzySbZPUpRKxQ8qOeQ5kNS2t2a7Ar-e7ddQfDQ08zA8wwv74xMmrbxhFwj3CKAussAXDIKjFNAAYLiGZmiRE5rVVcTMoWaMyqAyQsyy3kDgFVVwZTUr_3ep6-YvStc3Pkmx7Ypkne97Q5baFMR-uZ4mG3RDUiRfYo-X5LzYLbZX_3OOXl_fHhbLOnq5el5cb-ilgvW0bVgDp00XAgp1wZdyUIJyEprsPRoeRBeDLuUwrqqQhDg1kYJpRhXKhg-Jzfj331qP3ufO71p-zSEyZojKMFKxWGgqpGyqc05-aBt7MwhdZdM3GoEfShKj0XpoSh9LErjoLJ_6j7FnUnfpyU-SnmAmw-f_lKdsH4AXBJ8JQ |
| CitedBy_id | crossref_primary_10_1080_02331888_2024_2448475 |
| Cites_doi | 10.1080/0233188031000112845 10.1111/jtsa.12192 10.1007/s00357-018-9256-z 10.2307/1912773 10.1007/978-1-4612-1154-9 10.1007/978-1-4614-3655-3 10.1016/j.jmva.2012.11.005 10.1111/1467-9868.03411 10.1016/j.csda.2004.12.007 10.1016/j.jeconom.2013.11.002 10.1016/0304-4076(86)90063-1 10.1016/j.jeconom.2011.08.002 10.1016/j.jmva.2013.10.019 10.1007/b98888 10.1017/S0266466612000345 10.1080/03610918.2022.2087878 10.1016/j.csda.2015.05.011 10.1016/j.physa.2020.125109 10.1016/j.ecosta.2017.04.002 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AO 8C1 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ L.- L6V L7M L~C L~D M0C M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00362-023-01505-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Science Database Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Statistics |
| EISSN | 1613-9798 |
| EndPage | 4077 |
| ExternalDocumentID | 10_1007_s00362_023_01505_1 |
| GrantInformation_xml | – fundername: The national social science fund of China grantid: 20BTJ041 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 88I 8AO 8C1 8FE 8FG 8FL 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBA EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV L6V LAS LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PUEGO 7SC 7XB 8FD 8FK JQ2 L.- L7M L~C L~D PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c352t-b52d1d6a35566ba1d42f40124ca14e1c3f5e5ca1665cd881050dba75772377fa3 |
| IEDL.DBID | AGYKE |
| ISSN | 0932-5026 |
| IngestDate | Tue Sep 02 03:19:09 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Wed Oct 01 03:41:37 EDT 2025 Fri Feb 21 02:38:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Functional sliced inverse regression Supervised method Dimension reduction Functional time series model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-b52d1d6a35566ba1d42f40124ca14e1c3f5e5ca1665cd881050dba75772377fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3107524730 |
| PQPubID | 31177 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3107524730 crossref_citationtrail_10_1007_s00362_023_01505_1 crossref_primary_10_1007_s00362_023_01505_1 springer_journals_10_1007_s00362_023_01505_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Statistical papers (Berlin, Germany) |
| PublicationTitleAbbrev | Stat Papers |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Horváth, Kokoszka (CR10) 2012 Lian, Li (CR13) 2014; 124 Amato, Antoniadis, Feis (CR1) 2006; 50 Hormann, Horváth, Reeder (CR9) 2013; 29 Wang, Zhou, Feng, Zhang (CR20) 2015; 91 CR5 Horváth, Kokoszka, Rice (CR11) 2014; 179 Ferré, Yao (CR8) 2003; 37 CR14 Aue, Horvath, Daniel (CR2) 2017; 38 CR12 Wang, Zhang, Yan (CR21) 2022; 51 Xia, Tong, Li, Zhu (CR22) 2002; 64 Wang, Lin, Zhang (CR19) 2013; 116 Wang, Song (CR18) 2018; 35 Bosq (CR4) 2000 Bollerslev (CR3) 1986; 31 Ramsay, Silverman (CR16) 2005 Müller, Sen, Stadtmuller (CR15) 2011; 165 Wang, Lian (CR17) 2020; 30 Engle (CR6) 1982; 50 Ferraty, Vieu (CR7) 2006 RF Engle (1505_CR6) 1982; 50 L Ferré (1505_CR8) 2003; 37 JO Ramsay (1505_CR16) 2005 H Lian (1505_CR13) 2014; 124 1505_CR14 BC Wang (1505_CR21) 2022; 51 S Hormann (1505_CR9) 2013; 29 GC Wang (1505_CR17) 2020; 30 1505_CR12 F Ferraty (1505_CR7) 2006 GC Wang (1505_CR19) 2013; 116 A Aue (1505_CR2) 2017; 38 T Bollerslev (1505_CR3) 1986; 31 D Bosq (1505_CR4) 2000 1505_CR5 GC Wang (1505_CR20) 2015; 91 L Horváth (1505_CR10) 2012 H Müller (1505_CR15) 2011; 165 GC Wang (1505_CR18) 2018; 35 Y Xia (1505_CR22) 2002; 64 U Amato (1505_CR1) 2006; 50 L Horváth (1505_CR11) 2014; 179 |
| References_xml | – volume: 37 start-page: 475 year: 2003 end-page: 488 ident: CR8 article-title: Functional sliced inverse regression analysis publication-title: Statistics doi: 10.1080/0233188031000112845 – volume: 38 start-page: 3 year: 2017 end-page: 21 ident: CR2 article-title: Functional generalized autoregressive conditional heteroskedasticity publication-title: J Times Ser Anal doi: 10.1111/jtsa.12192 – volume: 35 start-page: 250 year: 2018 end-page: 272 ident: CR18 article-title: Functional sufficient dimension reduction for functional data classification publication-title: J Classif doi: 10.1007/s00357-018-9256-z – volume: 50 start-page: 987 year: 1982 end-page: 1007 ident: CR6 article-title: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation publication-title: Econometrica doi: 10.2307/1912773 – ident: CR14 – year: 2000 ident: CR4 publication-title: Linear processes in functional spaces doi: 10.1007/978-1-4612-1154-9 – year: 2012 ident: CR10 publication-title: Inference for functional data with applications doi: 10.1007/978-1-4614-3655-3 – ident: CR12 – volume: 116 start-page: 1 year: 2013 end-page: 13 ident: CR19 article-title: Functional contour regression publication-title: J Multivar Anal doi: 10.1016/j.jmva.2012.11.005 – volume: 64 start-page: 363 year: 2002 end-page: 410 ident: CR22 article-title: An adaptive estimation of dimension reduction space publication-title: J R Stat Soc Ser B doi: 10.1111/1467-9868.03411 – volume: 50 start-page: 2422 year: 2006 end-page: 2446 ident: CR1 article-title: Dimension reduction in functional regression with applications publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2004.12.007 – year: 2006 ident: CR7 publication-title: Nonparametric functional data analysis: theory and practice – volume: 179 start-page: 66 year: 2014 end-page: 84 ident: CR11 article-title: Testing stationarity of functional time series publication-title: J Econometr doi: 10.1016/j.jeconom.2013.11.002 – volume: 31 start-page: 307 year: 1986 end-page: 327 ident: CR3 article-title: Generalized autoregressive conditional heteroskedasticity publication-title: J Econometr doi: 10.1016/0304-4076(86)90063-1 – volume: 165 start-page: 233 year: 2011 end-page: 245 ident: CR15 article-title: Functional data analysis for volatility publication-title: J Econometr doi: 10.1016/j.jeconom.2011.08.002 – volume: 124 start-page: 150 year: 2014 end-page: 165 ident: CR13 article-title: Series expansion for functional sufficient dimension reduction publication-title: J Multivar Anal doi: 10.1016/j.jmva.2013.10.019 – ident: CR5 – year: 2005 ident: CR16 publication-title: Functional data analysis doi: 10.1007/b98888 – volume: 29 start-page: 267 year: 2013 end-page: 288 ident: CR9 article-title: A functional version of ARCH model publication-title: Economet Theory doi: 10.1017/S0266466612000345 – volume: 51 start-page: 6902 issue: 11 year: 2022 end-page: 6923 ident: CR21 article-title: Functional sufficient dimension reduction based on weighted method publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2022.2087878 – volume: 91 start-page: 64 year: 2015 end-page: 77 ident: CR20 article-title: The hybrid method of FSIR and FSAVE for functional effective dimension reduction publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2015.05.011 – volume: 30 start-page: 17 year: 2020 end-page: 33 ident: CR17 article-title: functional sliced inverse regression in a reproducing Kernel Hilbert space: a theoretical connection to functional linear regression publication-title: Stat Sin – ident: 1505_CR5 doi: 10.1016/j.physa.2020.125109 – volume: 50 start-page: 2422 year: 2006 ident: 1505_CR1 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2004.12.007 – volume: 165 start-page: 233 year: 2011 ident: 1505_CR15 publication-title: J Econometr doi: 10.1016/j.jeconom.2011.08.002 – volume: 64 start-page: 363 year: 2002 ident: 1505_CR22 publication-title: J R Stat Soc Ser B doi: 10.1111/1467-9868.03411 – volume-title: Inference for functional data with applications year: 2012 ident: 1505_CR10 doi: 10.1007/978-1-4614-3655-3 – volume-title: Linear processes in functional spaces year: 2000 ident: 1505_CR4 doi: 10.1007/978-1-4612-1154-9 – volume: 37 start-page: 475 year: 2003 ident: 1505_CR8 publication-title: Statistics doi: 10.1080/0233188031000112845 – volume: 31 start-page: 307 year: 1986 ident: 1505_CR3 publication-title: J Econometr doi: 10.1016/0304-4076(86)90063-1 – volume: 50 start-page: 987 year: 1982 ident: 1505_CR6 publication-title: Econometrica doi: 10.2307/1912773 – volume: 30 start-page: 17 year: 2020 ident: 1505_CR17 publication-title: Stat Sin – volume: 35 start-page: 250 year: 2018 ident: 1505_CR18 publication-title: J Classif doi: 10.1007/s00357-018-9256-z – volume: 38 start-page: 3 year: 2017 ident: 1505_CR2 publication-title: J Times Ser Anal doi: 10.1111/jtsa.12192 – volume-title: Functional data analysis year: 2005 ident: 1505_CR16 doi: 10.1007/b98888 – volume: 179 start-page: 66 year: 2014 ident: 1505_CR11 publication-title: J Econometr doi: 10.1016/j.jeconom.2013.11.002 – volume: 124 start-page: 150 year: 2014 ident: 1505_CR13 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2013.10.019 – volume: 116 start-page: 1 year: 2013 ident: 1505_CR19 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2012.11.005 – ident: 1505_CR12 – volume: 91 start-page: 64 year: 2015 ident: 1505_CR20 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2015.05.011 – volume: 51 start-page: 6902 issue: 11 year: 2022 ident: 1505_CR21 publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2022.2087878 – volume: 29 start-page: 267 year: 2013 ident: 1505_CR9 publication-title: Economet Theory doi: 10.1017/S0266466612000345 – ident: 1505_CR14 doi: 10.1016/j.ecosta.2017.04.002 – volume-title: Nonparametric functional data analysis: theory and practice year: 2006 ident: 1505_CR7 |
| SSID | ssj0018880 |
| Score | 2.3322196 |
| Snippet | Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4057 |
| SubjectTerms | Data analysis Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Operations Research/Decision Theory Probability Theory and Stochastic Processes Regression models Regular Article Statistics Statistics for Business Time series |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbGdtkF8RSDgXrgBhFNmqTdASFAmyYkJgRM2q1Km_SEtrHH_8dO200gsVultjk4jv3Zjj8DXMeFTSKXaKa0STBACR0zRhhWmNxxmSl0gpTQfx3p4Vi-TNSkAaO6F4auVdY20RtqO8spR36HMCRWQqJCPsy_GU2NoupqPULDVKMV7L2nGNuDliBmrCa0nvqjt_dNXQHjPZ91QdTCFIYfVRuNb6bz1CwMfRijLIBi_Ler2uLPPyVT74kGB7BfQcjgsdzzQ2i46RG0CTWWpMvH0PtYz8kGLJ0NLNH3U0osWBBLK-1DgEA1IIdW5gEDmi8fkCq65QmMB_3P5yGrZiSwHKHTimVKWG61QdigdWa4laLAkEnI3HDpeB4Vyil81ppYABJEU6HNTKwQVEdxXJjoFJrT2dSdQYChamFCpxNL_bU9nkkuQmVDmXMRC9HrAK_FkeYVgTjNsfhKN9THXoQpijD1Ikx5B242_8xL-oydX3drKafVUVqm243vwG0t-e3r_1c7373aBbQFApTyvlgXmqvF2l0iwFhlV5XW_AD4U8kh priority: 102 providerName: ProQuest |
| Title | Supervised dimension reduction for functional time series |
| URI | https://link.springer.com/article/10.1007/s00362-023-01505-1 https://www.proquest.com/docview/3107524730 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1613-9798 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0018880 issn: 0932-5026 databaseCode: AMVHM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1613-9798 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018880 issn: 0932-5026 databaseCode: AFBBN dateStart: 19601201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1613-9798 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0018880 issn: 0932-5026 databaseCode: 8FG dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1613-9798 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018880 issn: 0932-5026 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1613-9798 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0018880 issn: 0932-5026 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BO8DCo4AolCoDG7iK3dhJx1L1IVArBASVKXJiZwGVqkkXfj3nPFpRAVKXOJIdKzk7vu_Ovu8Art1YeW3tCcKF9NBAsTWRkkkSy0hTJ-SoBI1DfzwRI9-5n_JpERSWlKfdyy3JbKVeBbtl1CkEdQwxVjonaPNUM76tClS7w7eH_mr3AK26zLeC2IRwNDKKYJnfe_mpkNYoc2NjNNM3g0PwyzfNj5m8t5Zp2Iq-Nkgct_2UIzgoAKjVzWfMMezoWQ32yvjkpAb7Bn_m9M0n0Hlezs1qkmhlKZMIwDjXrIXhezUjaiHktYxqzD2KlslUb5lJrZNT8Af9l96IFNkWSIQgLCUhZ4oqIRGACBFKqhwWo_HFnEhSR9OoHXPN8V4IwyfgIS6zVShdjvC87bqxbJ9BZfY50-dgodEbS1sLT5lI3Q4NHcpsrmwnosxlrFMHWoo8iAoqcpMR4yNYkShnEgpQQkEmoYDW4Wb1zDwn4vi3daMcyaD4KZMAkazLmYNrWh1uy4FZV__d28V2zS9hnyH0yU-iNaCSLpb6CqFLGjZh1-tRcx0Mm8WsNeX4dTTG8q4_eXzCWp91vwHX-OX2 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGeiCeIpCAQ8wgUXsxk46IIQKqEDLApW6BSd2JtQWWoT4U_xG7vJoBRLdukVKYinnL3ffne8BcBykNmy4UHOlTYgOiue4MdLw1CRO-LFCI0gB_e6jbvf8-77qL8F3WQtDaZWlTswUtR0mFCM_RxoSKOkjIC9Hb5ymRtHpajlCI4fFg_v6RJdtfHF3jft7IuXtzXOrzYupAjxBsjHhsZJWWG3Q0GodG2F9maKTIf3ECN-JpJEqp_Baa6qbD5F_eDY2gUIa2giC1DRw3WVYwW8ISBGErWlKiUBvMovpICfiCp2bokgnK9XLGr9wtJCcYgyKi9-GcMZu_xzIZnbudh3WCoLKrnJEbcCSG2xClThp3tJ5C5pPHyPSMGNnmaXhABRwY-_UA5Z2mSENZmQu8ygjo-n1jIDuxtvQW4isdqAyGA7cLjB0hFPjOR1aqt5titgX0lPW8xMhAymbNRClOKKkaE9OUzJeo2lj5UyEEYowykQYiRqcTt8Z5c055j5dL6UcFT_qOJrBqgZnpeRnt_9fbW_-akew2n7udqLO3ePDPlQlUqE8M60Olcn7hztAKjOJDzP8MHhZNGB_AM-g_m4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58gPQiPrFadQ960sXsJrtJDyJiLdZqEVTwFjfZzUlqtS3iX_PXOZNHi4K9eQsk2cPky843szPfAByEmY18F2mutIkwQPEcN0YanpnUiSBR6AQpoX_b01ePwfWTepqDr6oXhsoqqz0x36jta0o58hOkIaGSAQLyJCvLIu5a7bPBG6cJUnTSWo3TKCDSdZ8fGL4NTzst_NaHUrYvHy6ueDlhgKdIPEY8UdIKqw06Xa0TI2wgMww4ZJAaETiR-plyCq-1ph76CLmIZxMTKqSkfhhmxsd152Ex9LUm3f7oYlJeIjCyzPM7yI-4wkCnbNjJ2_ZyERiO3pJTvkFx8dMpTpnur8PZ3Oe1V2C5JKvsvEDXKsy5_hrUiJ8W8s7r0LwfD2i3GTrLLA0KoOQbeyc9WPriDCkxI9dZZBwZTbJnBHo33IDHf7HVJiz0X_tuCxgGxZnxnI4sdfI2RRII6SnrBamQoZTNOojKHHFaSpXTxIyXeCKynJswRhPGuQljUYejyTuDQqhj5tONyspx-dMO4ynE6nBcWX56--_Vtmevtg9LCNX4ptPr7kBNIisqitQasDB6H7tdZDWjZC-HD4Pn_8brN9jyArc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+dimension+reduction+for+functional+time+series&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Guochang&rft.au=Wen%2C+Zengyao&rft.au=Jia%2C+Shanming&rft.au=Liang%2C+Shanshan&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0932-5026&rft.eissn=1613-9798&rft.volume=65&rft.issue=7&rft.spage=4057&rft.epage=4077&rft_id=info:doi/10.1007%2Fs00362-023-01505-1&rft.externalDocID=10_1007_s00362_023_01505_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon |