Toward Precise Long-Term Rockburst Forecasting: A Fusion of SVM and Cutting-Edge Meta-heuristic Algorithms
Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In th...
        Saved in:
      
    
          | Published in | Natural resources research (New York, N.Y.) Vol. 33; no. 5; pp. 2037 - 2062 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1520-7439 1573-8981  | 
| DOI | 10.1007/s11053-024-10371-z | 
Cover
| Abstract | Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress (
σ
θ
), uniaxial compressive strength of rock (
σ
c
), uniaxial tensile strength of rock (
σ
t
), stress coefficient (
σ
θ
/σ
t
), rock brittleness coefficient (
σ
c
/σ
t
), and elastic energy index (
Wet
) as inputs. By integrating three novel meta-heuristic algorithms—dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)—with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA–SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA–SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA–SVM, OOA–SVM, and RIME–SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between
σ
θ
and
Wet
with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts. | 
    
|---|---|
| AbstractList | Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress (σθ), uniaxial compressive strength of rock (σc), uniaxial tensile strength of rock (σt), stress coefficient (σθ/σt), rock brittleness coefficient (σc/σt), and elastic energy index (Wet) as inputs. By integrating three novel meta-heuristic algorithms—dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)—with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA–SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA–SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA–SVM, OOA–SVM, and RIME–SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σθ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts. Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress (σθ), uniaxial compressive strength of rock (σc), uniaxial tensile strength of rock (σₜ), stress coefficient (σθ/σₜ), rock brittleness coefficient (σc/σₜ), and elastic energy index (Wet) as inputs. By integrating three novel meta-heuristic algorithms-dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)-with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA-SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA-SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA-SVM, OOA-SVM, and RIME-SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σθ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts. Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress ( σ θ ), uniaxial compressive strength of rock ( σ c ), uniaxial tensile strength of rock ( σ t ), stress coefficient ( σ θ /σ t ), rock brittleness coefficient ( σ c /σ t ), and elastic energy index ( Wet ) as inputs. By integrating three novel meta-heuristic algorithms—dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)—with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA–SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA–SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA–SVM, OOA–SVM, and RIME–SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σ θ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts.  | 
    
| Author | Pradhan, Biswajeet Zhou, Jian Armaghani, Danial Jahed Yang, Peixi He, Xuzhen Sheng, Daichao  | 
    
| Author_xml | – sequence: 1 givenname: Danial Jahed surname: Armaghani fullname: Armaghani, Danial Jahed organization: School of Civil and Environmental Engineering, University of Technology Sydney – sequence: 2 givenname: Peixi surname: Yang fullname: Yang, Peixi organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Xuzhen surname: He fullname: He, Xuzhen organization: School of Civil and Environmental Engineering, University of Technology Sydney – sequence: 4 givenname: Biswajeet surname: Pradhan fullname: Pradhan, Biswajeet organization: Centre for Advanced Modelling and Geospatial Information Systems, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney – sequence: 5 givenname: Jian surname: Zhou fullname: Zhou, Jian email: j.zhou@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University – sequence: 6 givenname: Daichao surname: Sheng fullname: Sheng, Daichao organization: School of Civil and Environmental Engineering, University of Technology Sydney  | 
    
| BookMark | eNp9kcFuGyEQhlGVSk3SvEBPSLn0QsMsYNjeLCtuIjlq1Tq9IsyyG9w1pMCqap4-OI4UKYecBmm-bzTDf4KOQgwOoU9AvwCl8iIDUMEIbTgByiSQh3foGIRkRLUKjvbvhhLJWfsBneS8pVViShyj7Tr-M6nDP5KzPju8imEga5d2-Ge0fzZTygUvY22aXHwYvuI5Xk7Zx4Bjj3_9vsEmdHgxlX2TXHaDwzeuGHLnpuSrYfF8HGLy5W6XP6L3vRmzO3uup-h2ebleXJHV92_Xi_mKWCaaQja8EUbZVtaLnOqscZJb1s5628CMb0y9E6gSim-63oBQilZIdkCN4G4GHTtFnw9z71P8O7lc9M5n68bRBBenrBkIDlI1LVT0_BW6jVMKdTvNaNs2tOWSVUodKJtizsn12vpiSv2EkowfNVC9D0EfQtA1BP0Ugn6oavNKvU9-Z9L_tyV2kHKFw-DSy1ZvWI-Mj5t5 | 
    
| CitedBy_id | crossref_primary_10_1002_ese3_1877 crossref_primary_10_1007_s12145_024_01596_w crossref_primary_10_1007_s10706_024_03047_1  | 
    
| Cites_doi | 10.1007/s11440-023-01988-0 10.1016/j.tust.2019.103069 10.1109/ACCESS.2020.2982366 10.3390/app13042217 10.1016/j.gete.2023.100478 10.1016/j.ijrmms.2019.104174 10.1016/j.tust.2017.05.011 10.1155/2021/8873993 10.1016/j.ijmst.2023.06.001 10.2139/ssrn.4591159 10.1016/j.tust.2015.04.016 10.3724/SP.J.1235.2010.00193 10.1007/s10614-020-10054-w 10.3390/su11113212 10.1007/BF01239496 10.1016/j.jrmge.2019.07.005 10.1016/j.jrmge.2021.07.013 10.1007/s00366-016-0475-9 10.1088/1755-1315/189/2/022055 10.1016/j.neucom.2023.02.010 10.5937/fme2201331M 10.1109/ACCESS.2021.3120207 10.1007/BF00994018 10.1007/s10462-022-10140-5 10.1007/s11600-018-0178-2 10.1007/s00603-024-03947-x 10.1007/978-1-4899-7641-3_9 10.1007/s11053-023-10259-4 10.1016/j.tust.2013.02.003 10.1007/s10064-020-01788-w 10.1007/s00366-020-01105-9 10.1007/s00366-020-01131-7 10.1007/s40789-014-0044-z 10.3389/fmech.2022.1126450 10.1007/s10064-021-02460-7 10.1016/j.tust.2018.09.022 10.1504/IJRAM.2007.014094 10.1007/s00521-023-09189-2 10.36487/ACG_repo/574_0.5 10.3390/ijerph15122907 10.1007/11427469_155 10.1016/j.gsf.2020.09.020 10.1126/science.aaa8415 10.1111/0272-4332.00040 10.12691/ajams-8-2-1 10.1109/TMM.2022.3172547 10.1007/s11771-023-5294-8 10.1016/0148-9062(81)91194-3 10.1007/s00603-023-03522-w 10.1007/s00366-020-01014-x 10.1155/2021/9107547 10.1007/978-3-642-00296-0_5 10.1201/9781482288926 10.1016/S1003-6326(13)62487-5 10.1016/j.ijrmms.2013.02.010 10.1016/B978-0-12-813314-9.00010-4 10.1016/j.renene.2023.119177 10.1007/s00603-011-0218-6 10.1007/s00366-018-0624-4 10.1007/s00366-021-01374-y 10.3390/en11123257 10.1109/ICIECS.2009.5362936 10.1016/0925-7535(91)90019-I 10.1016/j.undsp.2023.05.009 10.1007/s00366-018-00695-9 10.1016/j.ssci.2011.08.065 10.1109/ACCESS.2022.3173059 10.1016/j.tust.2022.104494 10.1016/j.undsp.2021.12.009 10.1007/s00521-016-2746-1 10.7326/0003-4819-110-11-916 10.1201/b11646-272 10.1007/s00366-019-00908-9 10.1007/s10064-010-0275-1 10.1007/s41870-017-0080-1 10.1109/COMITCon.2019.8862451 10.1016/j.jobe.2023.108386 10.1016/j.tust.2018.08.029 10.1007/s00603-011-0150-9 10.1016/0148-9062(93)91718-X 10.1109/WorldS450073.2020.9210338 10.1061/(ASCE)CP.1943-5487.0000553 10.1007/s11771-021-4619-8 10.3389/fpubh.2022.1023890  | 
    
| ContentType | Journal Article | 
    
| Copyright | International Association for Mathematical Geosciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: International Association for Mathematical Geosciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7S9 L.6  | 
    
| DOI | 10.1007/s11053-024-10371-z | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Central Student AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering Geology Physics Computer Science  | 
    
| EISSN | 1573-8981 | 
    
| EndPage | 2062 | 
    
| ExternalDocumentID | 10_1007_s11053_024_10371_z | 
    
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c352t-b425a8c97105e8dcae74c396fc2164ba053108584bdfa158808dc7d10a54e61d3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1520-7439 | 
    
| IngestDate | Thu Sep 04 19:10:19 EDT 2025 Mon Oct 06 16:37:30 EDT 2025 Wed Oct 01 04:56:20 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Fri Feb 21 02:39:10 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Rime-ice optimization algorithm Osprey optimization algorithm LIME Dingo optimization algorithm Long-term rockburst  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-b425a8c97105e8dcae74c396fc2164ba053108584bdfa158808dc7d10a54e61d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 3099209473 | 
    
| PQPubID | 2043663 | 
    
| PageCount | 26 | 
    
| ParticipantIDs | proquest_miscellaneous_3154178291 proquest_journals_3099209473 crossref_citationtrail_10_1007_s11053_024_10371_z crossref_primary_10_1007_s11053_024_10371_z springer_journals_10_1007_s11053_024_10371_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241000 2024-10-00 20241001  | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences | 
    
| PublicationTitle | Natural resources research (New York, N.Y.) | 
    
| PublicationTitleAbbrev | Nat Resour Res | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | QiuYZhouJShort-term rockburst prediction in underground project: Insights from an explainable and interpretable ensemble learning modelActa Geotechnica202318126655668510.1007/s11440-023-01988-0 LiangZYStudy on the prediction and prevention of rockburst in the diversion tunnel of Jinping II hydropower station2004Chengdu University of Technology, Chendu ZhouJYangPPengPKhandelwalMQiuYPerformance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid modelsMining, Metallurgy & Exploration2023402617635 Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4). LinshengXULanshengWANGStudy on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain roadChinese Journal of Geotechnical Engineering1999215569572 ZhangHChenLChenSSunJYangJThe spatiotemporal distribution law of microseismic events and rockburst characteristics of the deeply buried tunnel groupEnergies20181112325710.3390/en11123257 Zhang, L. X., & Li, C. H. (2009). Study on tendency analysis of rockburst and comprehensive prediction of different types of surrounding rock. In Proceedings of the 13th International Symposium on Rockburst and Seismicity in Mines (pp. 1451–1456). Dalian: Rinton Press. BaiYFDengJDongLJFDA model of rockburst prediction and its application in deep hard rock engineeringJournal of Central South University: Science and Technology200940514171422 Su, G., Zhang, Y., & Chen, G. (2010). Identify rockburst grades for Jinping II hydropower station using Gaussian process for binary classification. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 2, pp. 364–367). IEEE. ZhangCQZhouHFengXTAn index for estimating the stability of brittle surrounding rock mass: FAI and its engineering applicationRock Mechanics and Rock Engineering20114440141410.1007/s00603-011-0150-9 Shirani FaradonbehRTaheriALong-term prediction of rockburst hazard in deep underground openings using three robust data mining techniquesEngineering with Computers201935265967510.1007/s00366-018-0624-4 NguyenHBuiX-NTopalEZhouJChoiYZhangWApplications of artificial intelligence in mining2024Elsevier MilenkovićBJovanovićĐKrstićMAn application of Dingo Optimization Algorithm (DOA) for solving continuous engineering problemsFME Transactions202250233133810.5937/fme2201331M Li, L. (2009). Study on scheme optimization and rockburst prediction in deep mining in Xincheng gold mine. Doctoral dissertation, University of Science and Technology. WuSWuZZhangCRock burst prediction probability model based on case analysisTunnelling and Underground Space Technology20199310.1016/j.tust.2019.103069 DuKLuoXYangSDanialJAZhouJAn insight from energy index characterization to determine the proneness of rockburst for hard rockGeomechanics for Energy and the Environment20233510.1016/j.gete.2023.100478 QiuYZhouJShort-term rockburst damage assessment in burst-prone mines: An explainable XGBOOST hybrid model with SCSO algorithmRock Mechanics and Rock Engineering2023568745877010.1007/s00603-023-03522-w ZhangLWZhangDYQiuDHApplication of extension evaluation method in rockburst prediction based on rough set theoryJournal of China Coal Society201035914611465 DongLJLiXBKangPENGPrediction of rockburst classification using Random ForestTransactions of Nonferrous Metals Society of China201323247247710.1016/S1003-6326(13)62487-5 XueRLiangZXuNDongLRockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoringInternational Journal of Rock Mechanics and Mining Sciences202012610.1016/j.ijrmms.2019.104174 MaTHTangCATangLXZhangWDWangLRockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower StationTunnelling and Underground Space Technology20154934536810.1016/j.tust.2015.04.016 ChandraMABediSSSurvey on SVM and their application in image classificationInternational Journal of Information Technology20211311110.1007/s41870-017-0080-1 QiuYLiCHuangSMaDZhouJAn ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear wallsJournal of Building Engineering20248210.1016/j.jobe.2023.108386 Ray, S. (2019). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 35–39). IEEE. CortesCVapnikVSupport-vector networksMachine Learning19952027329710.1007/BF00994018 Russenes, B. F. (1974). Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology. ShangYJZhangJJFuBJAnalyses of three parameters for strain mode rockburst and expression of rockburst potentialChinese Journal of Rock Mechanics and Engineering201332815201527 Zhang, J. J., Fu, B. J., Li, Z. K., Song, S. W., & Shang, Y. J. (2012c). Criterion and classification for strain mode rockbursts based on five-factor comprehensive method. In Qian, Q., Zhou, J. (eds.), Proc., 12th ISRM Int. Congress on Rock Mechanics, Harmonising Rock Engineering and the Environment (pp. 1435–1440). London: Taylor & Francis Group. JiangQFengXTXiangTBSuGSRockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2,500 m depthBulletin of Engineering Geology and the Environment20106938138810.1007/s10064-010-0275-11:CAS:528:DC%2BC3cXpt1OjsL8%3D GhasemiEGholizadehHAdokoACEvaluation of rockburst occurrence and intensity in underground structures using decision tree approachEngineering with Computers20203621322510.1007/s00366-018-00695-9 WangJZhangJPreliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II projectJournal of Rock Mechanics and Geotechnical Engineering20102319320810.3724/SP.J.1235.2010.00193 FathyAEfficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distributionRenewable Energy202321710.1016/j.renene.2023.119177 Xu, C., Jia, W., Wang, R., Luo, X., & He, X. (2022). MorphText: Deep morphology regularized accurate arbitrary-shape scene text detection. IEEE Transactions on Multimedia. LiCZhouJDuKArmaghaniDJHuangSPrediction of flyrock distance in surface mining using a novel hybrid model of harris hawks optimization with multi-strategies-based support vector regressionNatural Resources Research20233262995302310.1007/s11053-023-10259-4 YiYCaoPPuCMulti-factorial comprehensive estimation for Jinchuan's deep typical rockburst tendencyKeji Daobao/Science & Technology Review20102827680 CemilogluAZhuLArslanSXuJYuanXAzarafzaMDerakhshaniRSupport vector machine (SVM) application for uniaxial compression strength (UCS) prediction: A case study for Maragheh limestoneApplied Sciences2023134221710.3390/app130422171:CAS:528:DC%2BB3sXjvFSrtbg%3D SaydamSLiuBLiBZhangWSinghSKRavalSA coarse-to-fine approach for rock bolt detection from 3D point cloudsIEEE Access2021914887314888310.1109/ACCESS.2021.3120207 Liang, R., Zhang, C., Li, B., Saydam, S., & Canbulat, I. (2023). Data-driven model development and 3d visual analytics framework for underground mining. Available at SSRN 4591159. WangSMZhouJLiCQArmaghaniDJLiXBMitriHSRockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniquesJournal of Central South University202128252754210.1007/s11771-021-4619-8 SimserBPRockburst management in Canadian hard rock minesJournal of Rock Mechanics and Geotechnical Engineering20191151036104310.1016/j.jrmge.2019.07.005 LingBCPrediction of rockburst by artificial neural networkJournal of Rock Mechanics and Geotechnical Engineering2003225762768 SunYLiGZhangJHuangJRockburst intensity evaluation by a novel systematic and evolved approach: Machine learning booster and applicationBulletin of Engineering Geology and the Environment2021808385839510.1007/s10064-021-02460-7 Kaiser, P. K., McCreath, D. R., & Tannant, D. D. (1996). Canadian rockburst support handbook. Geomechanics Research Center. HasanipanahMFaradonbehRSAmniehHBArmaghaniDJMonjeziMForecasting blast-induced ground vibration developing a CART modelEngineering with Computers20173330731610.1007/s00366-016-0475-9 Ma, G., Chao, Z., Zhang, Y., Zhu, Y., & Hu, H. (2018, November). The application of support vector machine in geotechnical engineering. In IOP Conference Series: Earth and Environmental Science (Vol. 189, p. 022055). IOP Publishing. ZhouJQiuYArmaghaniDJZhangWLiCZhuSTarinejadRPredicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniquesGeoscience Frontiers202112310.1016/j.gsf.2020.09.020 Xu, C., Fu, H., Ma, L., Jia, W., Zhang, C., Xia, F., Ai, X., Li, B., & Zhang, W. (2024). Seeing text in the dark: Algorithm and benchmark. arXiv preprint arXiv:2404.08965. ZhouJLiXShiXLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSafety Science201250462964410.1016/j.ssci.2011.08.065 ZhangCQFengXTZhouHQiuSLWuWPCase histories of four extremely intense rockbursts in deep tunnelsRock Mechanics and Rock Engineering201245327528810.1007/s00603-011-0218-6 ZhouJHuangSZhouTArmaghaniDJQiuYEmploying a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potentialArtificial Intelligence Review20225575673570510.1007/s10462-022-10140-5 LiCZhouJDuKDiasDStability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithmsInternational Journal of Mining Science and Technology20233381019103610.1016/j.ijmst.2023.06.001 ZhouJKoopialipoorMLiEArmaghaniDJPrediction of rockburst risk in underground projects developing a neuro-bee intelligent systemBulletin of Engineering Geology and the Environment2020794265427910.1007/s10064-020-01788-w Lee, P. K. K., Tsui, Y., Tham, L. G., Wang, Y. H., & Li, W. D. (1998). Method of fuzzy comprehensive eval SM Wang (10371_CR97) 2021; 28 10371_CR110 HS Mitri (10371_CR66) 1999; 99 10371_CR117 Y Pu (10371_CR71) 2018; 66 MI Jordan (10371_CR40) 2015; 349 10371_CR59 H Su (10371_CR89) 2023; 532 10371_CR118 10371_CR119 E Li (10371_CR54) 2021; 37 10371_CR55 N Shrestha (10371_CR86) 2020; 8 Y Qiu (10371_CR73) 2024; 82 R Shirani Faradonbeh (10371_CR84) 2019; 35 M Cai (10371_CR9) 2013; 36 10371_CR62 J Zhou (10371_CR128) 2022; 124 M Kamran (10371_CR42) 2022; 10 Y Sun (10371_CR90) 2021; 80 J Zhou (10371_CR132) 2018; 81 BC Ling (10371_CR57) 2003; 22 H Nguyen (10371_CR67) 2024 HS Mitri (10371_CR65) 2007; 7 J Yoon (10371_CR115) 2021; 57 LM Dou (10371_CR20) 2014; 1 CQ Zhang (10371_CR122) 2011; 44 10371_CR48 J Zhou (10371_CR133) 2012; 50 10371_CR49 10371_CR46 R Xue (10371_CR112) 2020; 126 XT Feng (10371_CR24) 1994; 4 YC Wang (10371_CR98) 2010; 31 S Kumar (10371_CR45) 2018; 15 N Barton (10371_CR7) 1974; 6 10371_CR120 H Zhang (10371_CR123) 2018; 11 J Zhou (10371_CR136) 2024; 14 K Du (10371_CR21) 2023; 35 M Dehghani (10371_CR18) 2023; 8 Q Jiang (10371_CR39) 2010; 69 M Hasanipanah (10371_CR33) 2017; 33 LW Zhang (10371_CR125) 2010; 35 10371_CR77 10371_CR78 10371_CR8 M Hasanipanah (10371_CR32) 2018; 30 J Zhou (10371_CR135) 2023; 40 C Li (10371_CR51) 2023; 33 Y Yi (10371_CR114) 2010; 28 10371_CR80 HB Ly (10371_CR61) 2021; 2021 Q Peng (10371_CR68) 2010; 42 10371_CR1 10371_CR4 LF Jiang (10371_CR38) 2008 Y Qiu (10371_CR74) 2023; 56 S Afraei (10371_CR3) 2019; 83 Z You (10371_CR116) 2012; 17 J Zhou (10371_CR127) 2021; 37 A Cemiloglu (10371_CR12) 2023; 13 YP Jia (10371_CR37) 2013; 32 LS Wang (10371_CR96) 1999; 2 ZJ Liu (10371_CR60) 2008; 27 MA Chandra (10371_CR13) 2021; 13 X Chong (10371_CR15) 2021; 33 E Li (10371_CR53) 2021; 13 10371_CR72 J Wang (10371_CR95) 2010; 2 A Saltelli (10371_CR79) 2002; 22 10371_CR70 L Weng (10371_CR99) 2017; 69 B Ji (10371_CR36) 2020; 8 J Zhou (10371_CR129) 2022; 55 CQ Zhang (10371_CR121) 2012; 45 J Yang (10371_CR113) 2010; 6 LJ Dong (10371_CR19) 2013; 23 H Xie (10371_CR107) 1993; 30 Y Qiu (10371_CR75) 2023; 18 R Shirani Faradonbeh (10371_CR85) 2024; 36 10371_CR16 F Gong (10371_CR26) 2007; 26 ZY Liang (10371_CR56) 2004 YF Bai (10371_CR6) 2009; 40 10371_CR11 E Ghasemi (10371_CR25) 2020; 36 JP Leger (10371_CR47) 1991; 14 J Guo (10371_CR28) 2022; 10 C Haijun (10371_CR29) 2002; 24 JJ Zhang (10371_CR124) 2008; 27 J Zhou (10371_CR130) 2020; 79 C Cortes (10371_CR17) 1995; 20 B Milenković (10371_CR64) 2022; 50 XZ Shi (10371_CR83) 2010; 29 BP Simser (10371_CR87) 2019; 11 MZ Bai (10371_CR5) 2002; 12 C Chen (10371_CR14) 2023; 30 10371_CR88 H Peraza-Vázquez (10371_CR69) 2021; 2021 J Zhou (10371_CR134) 2021; 12 FT Suorineni (10371_CR91) 2014; 114 10371_CR93 10371_CR94 10371_CR92 Y Qiu (10371_CR76) 2024 G Feng (10371_CR23) 2019; 11 S Saydam (10371_CR81) 2021; 9 FQ Gong (10371_CR27) 2010; 31 S Wu (10371_CR103) 2019; 93 10371_CR35 10371_CR34 10371_CR43 10371_CR41 D Li (10371_CR52) 2022; 7 XU Linsheng (10371_CR58) 1999; 21 10371_CR101 10371_CR100 10371_CR105 10371_CR106 10371_CR104 10371_CR109 YJ Shang (10371_CR82) 2013; 32 AC Adoko (10371_CR2) 2013; 61 A Fathy (10371_CR22) 2023; 217 10371_CR108 10371_CR31 MG Xu (10371_CR111) 2008; 27 10371_CR30 DF Williamson (10371_CR102) 1989; 110 A Kidybiński (10371_CR44) 1981; 18 TH Ma (10371_CR63) 2015; 49 J Zhou (10371_CR131) 2016; 30 MF Cai (10371_CR10) 2013; 32 HB Zhao (10371_CR126) 2005; 26 C Li (10371_CR50) 2023; 32  | 
    
| References_xml | – reference: Xu, C., Fu, H., Ma, L., Jia, W., Zhang, C., Xia, F., Ai, X., Li, B., & Zhang, W. (2024). Seeing text in the dark: Algorithm and benchmark. arXiv preprint arXiv:2404.08965. – reference: SuHZhaoDHeidariAALiuLZhangXMafarjaMChenHRIME: A physics-based optimizationNeurocomputing202353218321410.1016/j.neucom.2023.02.010 – reference: LiEZhouJShiXJahed ArmaghaniDYuZChenXHuangPDeveloping a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfillEngineering with Computers2021373519354010.1007/s00366-020-01014-x – reference: YouZChenJIn-situ stress features and prediction analysis for rock burst in deep and over-length highway tunnelElectronic Journal of Geotechnical Engineering20121726472657 – reference: JiaYPLuQShangYQRockburst prediction based on particle swarm optimization and generalized regression neural networkChinese Journal of Rock Mechanics and Engineering2013322343348 – reference: Hall, M. A. (1999). Correlation-based feature selection for machine learning. Doctoral dissertation, The University of Waikato. – reference: Potvin, Y., Hudyma, M., & Jewell, R. J. (2000). Rockburst and seismic activity in underground Australian mines-an introduction to a new research project. In ISRM international symposium (pp. ISRM-IS). ISRM. – reference: Russenes, B. F. (1974). Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology. – reference: LiCZhouJDuKDiasDStability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithmsInternational Journal of Mining Science and Technology20233381019103610.1016/j.ijmst.2023.06.001 – reference: Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms: A comprehensive review. In Computational intelligence for multimedia big data on the cloud with engineering applications (pp. 185–231). – reference: Li, X., Wang, X., Kang, Y., & He, Z. (2005). Artificial neural network for prediction of rockburst in deep-buried long tunnel. In International Symposium on Neural Networks (pp. 983-986). Berlin: Springer. – reference: LegerJPTrends and causes of fatalities in South African minesSafety Science1991143–416918510.1016/0925-7535(91)90019-I – reference: ZhangJJRockburst and its criteria and controlChinese Journal of Rock Mechanics and Engineering2008272034 – reference: LiDLiuZXiaoPZhouJArmaghaniDJIntelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimizationUnderground Space20227583384610.1016/j.undsp.2021.12.009 – reference: DongLJLiXBKangPENGPrediction of rockburst classification using Random ForestTransactions of Nonferrous Metals Society of China201323247247710.1016/S1003-6326(13)62487-5 – reference: MitriHSAssessment of horizontal pillar burst in deep hard rock minesInternational Journal of Risk Assessment and Management20077569570710.1504/IJRAM.2007.014094 – reference: PengQQianAGXiaoYResearch on prediction system for rockburst based on artificial intelligence application methodsJournal of Sichuan University (Engineering Science Edition)20104221824 – reference: ZhouJLiXMitriHSEvaluation method of rockburst: State-of-the-art literature reviewTunnelling and Underground Space Technology20188163265910.1016/j.tust.2018.08.029 – reference: CortesCVapnikVSupport-vector networksMachine Learning19952027329710.1007/BF00994018 – reference: Zhang, L. X., & Li, C. H. (2009). Study on tendency analysis of rockburst and comprehensive prediction of different types of surrounding rock. In Proceedings of the 13th International Symposium on Rockburst and Seismicity in Mines (pp. 1451–1456). Dalian: Rinton Press. – reference: GuoJGuoJZhangQHuangMResearch on rockburst classification prediction based on BP-SVM modelIEEE Access202210504275044710.1109/ACCESS.2022.3173059 – reference: ZhangCQFengXTZhouHQiuSLWuWPCase histories of four extremely intense rockbursts in deep tunnelsRock Mechanics and Rock Engineering201245327528810.1007/s00603-011-0218-6 – reference: YiYCaoPPuCMulti-factorial comprehensive estimation for Jinchuan's deep typical rockburst tendencyKeji Daobao/Science & Technology Review20102827680 – reference: Xiao, X. P. (2005). A study on the prediction and prevention of rockburst traffic tunnel of Jinping II hydropower station. Chengdu Univ. of Technology. – reference: Suthaharan, S., & Suthaharan, S. (2016). Support vector machine. Machine learning models and algorithms for big data classification: Thinking with examples for effective learning, 207–235. – reference: ZhouJHuangSZhouTArmaghaniDJQiuYEmploying a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potentialArtificial Intelligence Review20225575673570510.1007/s10462-022-10140-5 – reference: CaiMPrinciples of rock support in burst-prone groundTunnelling and Underground Space Technology201336465610.1016/j.tust.2013.02.003 – reference: ZhangLWZhangDYQiuDHApplication of extension evaluation method in rockburst prediction based on rough set theoryJournal of China Coal Society201035914611465 – reference: ChandraMABediSSSurvey on SVM and their application in image classificationInternational Journal of Information Technology20211311110.1007/s41870-017-0080-1 – reference: Qin, S. W., Chen, J. P., Wang, Q., & Qiu, D. H. (2009). Research on rockburst prediction with extenics evaluation based on rough set. In Proceedings of the 13th international symposium on rockburst and seismicity in mines (pp. 937–944). Dalian: Rinton Press. – reference: ZhaoHBClassification of rockburst using support vector machineYantu Lixue (Rock Soil Mech.)2005264642644 – reference: Hoek, E., & Brown, E. T. (1980). Underground excavations in rock. In Inst. Mining and Metallurgy, London, 156. – reference: Zeng, F., Nait Amar, M., Mohammed, A. S., Motahari, M. R., & Hasanipanah, M. (2021). Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms. Engineering with Computers, 1–12. – reference: DouLMMuZLLiZLCaoAYGongSYResearch progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in ChinaInternational Journal of Coal Science & Technology2014127828810.1007/s40789-014-0044-z – reference: ZhouJLiXShiXLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSafety Science201250462964410.1016/j.ssci.2011.08.065 – reference: QiuYZhouJShort-term rockburst prediction in underground project: Insights from an explainable and interpretable ensemble learning modelActa Geotechnica202318126655668510.1007/s11440-023-01988-0 – reference: SaydamSLiuBLiBZhangWSinghSKRavalSA coarse-to-fine approach for rock bolt detection from 3D point cloudsIEEE Access2021914887314888310.1109/ACCESS.2021.3120207 – reference: ShiXZZhouJDongLHuHYWangHYChenSRApplication of unascertained measurement model to prediction of classification of rockburst intensityChinese Journal of Rock Mechanics and Engineering201029S127202726 – reference: CaiMFJiDGuoQFStudy of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbanceChinese Journal of Rock Mechanics and Engineering2013321019731980 – reference: Saydam, S., Xu, C., Li, B., Topal, B., & Saydam, S. (2023). Feature Sampling and Balancing for Detecting Rock Bolts from the LiDAR Point Clouds. In ISRM Congress (pp. ISRM-15CONGRESS). ISRM. – reference: DehghaniMTrojovskýPOsprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problemsFrontiers in Mechanical Engineering20238112645010.3389/fmech.2022.1126450 – reference: Peraza-VázquezHPeña-DelgadoAFEchavarría-CastilloGMorales-CepedaABVelasco-ÁlvarezJRuiz-PerezFA bio-inspired method for engineering design optimization inspired by dingoes hunting strategiesMathematical Problems in Engineering2021202111910.1155/2021/9107547 – reference: Shirani FaradonbehRTaheriALong-term prediction of rockburst hazard in deep underground openings using three robust data mining techniquesEngineering with Computers201935265967510.1007/s00366-018-0624-4 – reference: ZhouJKoopialipoorMLiEArmaghaniDJPrediction of rockburst risk in underground projects developing a neuro-bee intelligent systemBulletin of Engineering Geology and the Environment2020794265427910.1007/s10064-020-01788-w – reference: Wiles, T. D. (2005). Rockburst prediction using numerical modelling: Realistic limits for failure prediction accuracy. In 6th International Symposium on Rockbursts and Seismicity in Mines (RaSiM 6), Perth, Australia (pp. 57-63). – reference: DuKLuoXYangSDanialJAZhouJAn insight from energy index characterization to determine the proneness of rockburst for hard rockGeomechanics for Energy and the Environment20233510.1016/j.gete.2023.100478 – reference: Ray, S. (2019). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 35–39). IEEE. – reference: HaijunCNenghuiLDexinNYuequanSHANGA model for prediction of rockburst by artificial neural networkChinese Journal of Geotechnical Engineering2002242229232 – reference: CemilogluAZhuLArslanSXuJYuanXAzarafzaMDerakhshaniRSupport vector machine (SVM) application for uniaxial compression strength (UCS) prediction: A case study for Maragheh limestoneApplied Sciences2023134221710.3390/app130422171:CAS:528:DC%2BB3sXjvFSrtbg%3D – reference: SunYLiGZhangJHuangJRockburst intensity evaluation by a novel systematic and evolved approach: Machine learning booster and applicationBulletin of Engineering Geology and the Environment2021808385839510.1007/s10064-021-02460-7 – reference: LiEYangFRenMZhangXZhouJKhandelwalMPrediction of blasting mean fragment size using support vector regression combined with five optimization algorithmsJournal of Rock Mechanics and Geotechnical Engineering20211361380139710.1016/j.jrmge.2021.07.013 – reference: LinshengXULanshengWANGStudy on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain roadChinese Journal of Geotechnical Engineering1999215569572 – reference: Wang, X. F., Li, X. H., Gu, Y. L., Jin, X. G., Kang, Y., & Li, D. X. (2004). Application of BP neural network into prediction of rockburst in tunneling. In Proceedings of the 2004 international symposiumon safety science and technology (Vol. 4, pp. 617–621). – reference: AfraeiSShahriarKMadaniSHDeveloping intelligent classification models for rock burst prediction after recognizing significant predictor variables, Sec tion 1: Literature review and data preprocessing procedureTunnelling and Underground Space Technology20198332435310.1016/j.tust.2018.09.022 – reference: ZhangCQZhouHFengXTAn index for estimating the stability of brittle surrounding rock mass: FAI and its engineering applicationRock Mechanics and Rock Engineering20114440141410.1007/s00603-011-0150-9 – reference: LiangZYStudy on the prediction and prevention of rockburst in the diversion tunnel of Jinping II hydropower station2004Chengdu University of Technology, Chendu – reference: HasanipanahMAmniehHBArabHZamzamMSFeasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blastingNeural Computing and Applications2018301015102410.1007/s00521-016-2746-1 – reference: Borson, N. S., Kabir, M. R., Zamal, Z., & Rahman, R. M. (2020). Correlation analysis of demographic factors on low birth weight and prediction modeling using machine learning techniques. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4) (pp. 169–173). IEEE. – reference: PuYApelDBWangCWilsonBEvaluation of burst liability in kimberlite using support vector machineActa Geophysica20186697398210.1007/s11600-018-0178-2 – reference: XieHPariseauWGFractal character and mechanism of rock burstsInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts199330434335010.1016/0148-9062(93)91718-X – reference: WangYCShangYQSunHYYanXSStudy of prediction of rockburst intensity based on efficacy coefficient methodRock and Soil Mechanics2010312529534 – reference: HasanipanahMFaradonbehRSAmniehHBArmaghaniDJMonjeziMForecasting blast-induced ground vibration developing a CART modelEngineering with Computers20173330731610.1007/s00366-016-0475-9 – reference: GongFLiXA distance discriminant analysis method for prediction of possibility and classification of rockburst and its applicationYanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering200726510121018 – reference: LingBCPrediction of rockburst by artificial neural networkJournal of Rock Mechanics and Geotechnical Engineering2003225762768 – reference: Castro, L. A. M., Bewick, R. P., & Carter, T. G. (2012). An overview of numerical modelling applied to deep mining. Innovative Numerical Modelling in Geomechanics, 393–414. – reference: JiangQFengXTXiangTBSuGSRockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2,500 m depthBulletin of Engineering Geology and the Environment20106938138810.1007/s10064-010-0275-11:CAS:528:DC%2BC3cXpt1OjsL8%3D – reference: JiBXieFWangXHeSSongDInvestigate contribution of multi-microseismic data to rockburst risk prediction using support vector machine with genetic algorithmIEEE Access20208588175882810.1109/ACCESS.2020.2982366 – reference: Kang, Y. (2006). Research on relevant problems about failure mechanism of surrounding rock in deep buried tunnel. Doctoral dissertation, Ph. D. thesis, Chongqing Univ., Chongqing, China (pp. 118–120). – reference: WuSWuZZhangCRock burst prediction probability model based on case analysisTunnelling and Underground Space Technology20199310.1016/j.tust.2019.103069 – reference: ZhouJLiXMitriHSClassification of rockburst in underground projects: Comparison of ten supervised learning methodsJournal of Computing in Civil Engineering20163050401600310.1061/(ASCE)CP.1943-5487.0000553 – reference: YoonJForecasting of real GDP growth using machine learning models: Gradient boosting and random forest approachComputational Economics202157124726510.1007/s10614-020-10054-w – reference: ChenCZhouJA new empirical chart for coal burst liability classification using Kriging methodJournal of Central South University20233041205121610.1007/s11771-023-5294-8 – reference: SuorineniFTHebblewhiteBSaydamSGeomechanics challenges of contemporary deep mining: A suggested model for increasing future mining safety and productivityJournal of the Southern African Institute of Mining and Metallurgy20141141210231032 – reference: MitriHSTangBSimonRFE modelling of mining-induced energy release and storage ratesJournal of the Southern African Institute of Mining and Metallurgy1999992103110 – reference: Zhang, Z. L. (2002). Study on rockburst and large deformation of Xuefeng mountain tunnel of Shaohuai highway (Doctoral dissertation, Master’s Thesis, Chengdu University of Technology, Chengdu, China). – reference: ShresthaNDetecting multicollinearity in regression analysisAmerican Journal of Applied Mathematics and Statistics202082394210.12691/ajams-8-2-1 – reference: ZhouJYangPPengPKhandelwalMQiuYPerformance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid modelsMining, Metallurgy & Exploration2023402617635 – reference: MaTHTangCATangLXZhangWDWangLRockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower StationTunnelling and Underground Space Technology20154934536810.1016/j.tust.2015.04.016 – reference: Ai, X., Xu, C., Li, B., & Xia, F. (2024). Robot-As-A-sensor: Forming a sensing network with robots for underground mining missions. arXiv preprint arXiv:2405.00266. – reference: Zhang, J. J., Fu, B. J., Li, Z. K., Song, S. W., & Shang, Y. J. (2012c). Criterion and classification for strain mode rockbursts based on five-factor comprehensive method. In Qian, Q., Zhou, J. (eds.), Proc., 12th ISRM Int. Congress on Rock Mechanics, Harmonising Rock Engineering and the Environment (pp. 1435–1440). London: Taylor & Francis Group. – reference: ZhouJHuangSQiuYOptimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavationsTunnelling and Underground Space Technology202212410.1016/j.tust.2022.104494 – reference: ZhouJQiuYArmaghaniDJZhangWLiCZhuSTarinejadRPredicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniquesGeoscience Frontiers202112310.1016/j.gsf.2020.09.020 – reference: Wang, H., Ma, C., & Zhou, L. (2009). A brief review of machine learning and its application. In 2009 International Conference on Information Engineering and Computer Science (pp. 1–4). IEEE. – reference: AdokoACGokceogluCWuLZuoQJKnowledge-based and data-driven fuzzy modeling for rockburst predictionInternational Journal of Rock Mechanics and Mining Sciences201361869510.1016/j.ijrmms.2013.02.010 – reference: Ma, G., Chao, Z., Zhang, Y., Zhu, Y., & Hu, H. (2018, November). The application of support vector machine in geotechnical engineering. In IOP Conference Series: Earth and Environmental Science (Vol. 189, p. 022055). IOP Publishing. – reference: MilenkovićBJovanovićĐKrstićMAn application of Dingo Optimization Algorithm (DOA) for solving continuous engineering problemsFME Transactions202250233133810.5937/fme2201331M – reference: XuMGDuZJYaoGHLiuZPRockburst prediction of chengchao iron mine during deep miningChinese Journal of Rock Mechanics and Engineering200827S129212928 – reference: FathyAEfficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distributionRenewable Energy202321710.1016/j.renene.2023.119177 – reference: Hasanipanah, M., Keshtegar, B., Thai, D. K., & Troung, N. T. (2022). An ANN-adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting. Engineering with Computers, 1–13. – reference: BaiYFDengJDongLJFDA model of rockburst prediction and its application in deep hard rock engineeringJournal of Central South University: Science and Technology200940514171422 – reference: FengXTWangLNRockburst prediction based on neural networksTransactions of Nonferrous Metals Society of China1994417141:CAS:528:DyaK2cXntVOhtL8%3D – reference: GhasemiEGholizadehHAdokoACEvaluation of rockburst occurrence and intensity in underground structures using decision tree approachEngineering with Computers20203621322510.1007/s00366-018-00695-9 – reference: QiuYLiCHuangSMaDZhouJAn ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear wallsJournal of Building Engineering20248210.1016/j.jobe.2023.108386 – reference: KidybińskiABursting liability indices of coalInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts198118429530410.1016/0148-9062(81)91194-3 – reference: KumarSChongICorrelation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion statesInternational Journal of Environmental Research and Public Health20181512290710.3390/ijerph15122907 – reference: Liang, R., Zhang, C., Li, B., Saydam, S., & Canbulat, I. (2023). Data-driven model development and 3d visual analytics framework for underground mining. Available at SSRN 4591159. – reference: WengLHuangLTaheriALiXRockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, ChinaTunnelling and Underground Space Technology20176922323210.1016/j.tust.2017.05.011 – reference: ShangYJZhangJJFuBJAnalyses of three parameters for strain mode rockburst and expression of rockburst potentialChinese Journal of Rock Mechanics and Engineering201332815201527 – reference: SaltelliASensitivity analysis for importance assessmentRisk Analysis200222357959010.1111/0272-4332.00040 – reference: White, B. G., & Whyatt, J. K. (1999). Role of fault slip on mechanisms of rockburst damage, Lucky Friday Mine, Idaho, USA. – reference: JiangLFStudy on prediction and prevention of rockburst in Anlu tunnel. Doctoral dissertation, Master’s thesis2008Southwest Jiaotong Univ – reference: YangJLiXZhouZLinYA Fuzzy assessment method of rock-burst prediction based on rough set theoryJinshu Kuangshan/Metal Mine201062629 – reference: ChongXShangSLKrajewskiAMShimanekJDDuWWangYCorrelation analysis of materials properties by machine learning: Illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloysJournal of Physics: Condensed Matter202133292957021:CAS:528:DC%2BB3MXhvF2hurzJ – reference: LiuZJYuanQPLiJLApplication of fuzzy probability model to prediction of rockburst intensityChin. J. Rock Mechan. Eng.200827Suppl. 130953103 – reference: JordanMIMitchellTMMachine learning: Trends, perspectives, and prospectsScience2015349624525526010.1126/science.aaa84151:CAS:528:DC%2BC2MXhtFKktL%2FM – reference: WangLSLiTBXuJStudy on rockburst and its intensity classifies in the tunnel of Erlang Mountain roadRoad199924145 – reference: QiuYZhouJHeBArmaghaniDJHuangSHeXZEvaluation and interpretation of blasting-induced tunnel overbreak: Using heuristic-based ensemble learning and gene expression programming techniquesRock Mechanics and Rock Engineering202410.1007/s00603-024-03947-x – reference: ZhouJZhangYLiCHeHLiXRockburst prediction and prevention in underground space excavationUnderground Space202414709810.1016/j.undsp.2023.05.009 – reference: NguyenHBuiX-NTopalEZhouJChoiYZhangWApplications of artificial intelligence in mining2024Elsevier – reference: Xu, C., Jia, W., Wang, R., Luo, X., & He, X. (2022). MorphText: Deep morphology regularized accurate arbitrary-shape scene text detection. IEEE Transactions on Multimedia. – reference: FengGXiaGChenBXiaoYZhouRA method for rockburst prediction in the deep tunnels of hydropower stations based on the monitored microseismicity and an optimized probabilistic neural network modelSustainability20191111321210.3390/su11113212 – reference: Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4). – reference: ZhangHChenLChenSSunJYangJThe spatiotemporal distribution law of microseismic events and rockburst characteristics of the deeply buried tunnel groupEnergies20181112325710.3390/en11123257 – reference: QiuYZhouJShort-term rockburst damage assessment in burst-prone mines: An explainable XGBOOST hybrid model with SCSO algorithmRock Mechanics and Rock Engineering2023568745877010.1007/s00603-023-03522-w – reference: XueRLiangZXuNDongLRockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoringInternational Journal of Rock Mechanics and Mining Sciences202012610.1016/j.ijrmms.2019.104174 – reference: LyHBNguyenTAPhamBTEstimation of soil cohesion using machine learning method: A random forest approachAdvances in Civil Engineering2021202111410.1155/2021/8873993 – reference: Heal, D., Hudyma, M., & Potvin, Y. (2006, June). Evaluating rockburst damage potential in underground mining. In Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS). OnePetro. – reference: SimserBPRockburst management in Canadian hard rock minesJournal of Rock Mechanics and Geotechnical Engineering20191151036104310.1016/j.jrmge.2019.07.005 – reference: BaiMZWangLJXuZYStudy on a neutral network model and its application in predicting the risk of rock blastChina Safety Science Journal20021246569 – reference: KamranMUllahBAhmadMSabriMMSApplication of KNN-based isometric mapping and fuzzy c-means algorithm to predict short-term rockburst risk in deep underground projectsFrontiers in Public Health202210102389010.3389/fpubh.2022.1023890 – reference: Shirani FaradonbehRVaiseyWSharifzadehMZhouJHybridized intelligent multi-class classifiers for rockburst risk assessment in deep underground minesNeural Computing and Applications20243641681169810.1007/s00521-023-09189-2 – reference: Su, G., Zhang, Y., & Chen, G. (2010). Identify rockburst grades for Jinping II hydropower station using Gaussian process for binary classification. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 2, pp. 364–367). IEEE. – reference: Lee, P. K. K., Tsui, Y., Tham, L. G., Wang, Y. H., & Li, W. D. (1998). Method of fuzzy comprehensive evaluations for rockburst prediction (in Chinese). Chinese Journal of Rock Mechanics and Engineering. – reference: LiCZhouJDuKArmaghaniDJHuangSPrediction of flyrock distance in surface mining using a novel hybrid model of harris hawks optimization with multi-strategies-based support vector regressionNatural Resources Research20233262995302310.1007/s11053-023-10259-4 – reference: Xia, B. W. (2006). Study on prediction and forecast of geologic disaster in highway tunnel construction Doctoral dissertation, Master’s thesis, Chongqing Univ., Chongqing, China. – reference: Liu, J. P. (2011). Studies on relationship between Microseism time-space evolution and ground pressure activities in deep mine. Doctoral dissertation, Ph. D’s Thesis, Northeastern University, Shengyang, China. – reference: ZhouJGuoHKoopialipoorMJahed ArmaghaniDTahirMMInvestigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithmEngineering with Computers2021371679169410.1007/s00366-019-00908-9 – reference: BartonNLienRLundeJJRMEngineering classification of rock masses for the design of tunnel supportRock Mechanics1974618923610.1007/BF01239496 – reference: Kaiser, P. K., McCreath, D. R., & Tannant, D. D. (1996). Canadian rockburst support handbook. Geomechanics Research Center. – reference: GongFQLiXBZhangWRockburst prediction of underground engineering based on Bayes discriminant analysis methodRock and Soil Mechanics201031S1370377 – reference: Xu, C., Nait Amar, M., Ghriga, M. A., Ouaer, H., Zhang, X., & Hasanipanah, M. (2022). Evolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rock. Engineering with Computers, 1–15. – reference: WangSMZhouJLiCQArmaghaniDJLiXBMitriHSRockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniquesJournal of Central South University202128252754210.1007/s11771-021-4619-8 – reference: Li, L. (2009). Study on scheme optimization and rockburst prediction in deep mining in Xincheng gold mine. Doctoral dissertation, University of Science and Technology. – reference: WangJZhangJPreliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II projectJournal of Rock Mechanics and Geotechnical Engineering20102319320810.3724/SP.J.1235.2010.00193 – reference: Xiating, F., Binrui, C., Chuanqing, Z., Shaojun, L., & Shiyong, W. (2013). Mechanism, warning and dynamic control of rockburst development process. – reference: WilliamsonDFParkerRAKendrickJSThe box plot: A simple visual method to interpret dataAnnals of Internal Medicine19891101191692110.7326/0003-4819-110-11-9161:STN:280:DyaL1M3ksFGktQ%3D%3D – volume: 18 start-page: 6655 issue: 12 year: 2023 ident: 10371_CR75 publication-title: Acta Geotechnica doi: 10.1007/s11440-023-01988-0 – volume: 93 year: 2019 ident: 10371_CR103 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2019.103069 – volume: 8 start-page: 58817 year: 2020 ident: 10371_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982366 – volume: 13 start-page: 2217 issue: 4 year: 2023 ident: 10371_CR12 publication-title: Applied Sciences doi: 10.3390/app13042217 – volume: 35 year: 2023 ident: 10371_CR21 publication-title: Geomechanics for Energy and the Environment doi: 10.1016/j.gete.2023.100478 – volume: 126 year: 2020 ident: 10371_CR112 publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2019.104174 – volume: 33 start-page: 295702 issue: 29 year: 2021 ident: 10371_CR15 publication-title: Journal of Physics: Condensed Matter – volume: 26 start-page: 1012 issue: 5 year: 2007 ident: 10371_CR26 publication-title: Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering – volume-title: Study on the prediction and prevention of rockburst in the diversion tunnel of Jinping II hydropower station year: 2004 ident: 10371_CR56 – volume: 69 start-page: 223 year: 2017 ident: 10371_CR99 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2017.05.011 – volume: 6 start-page: 26 year: 2010 ident: 10371_CR113 publication-title: Jinshu Kuangshan/Metal Mine – volume: 2021 start-page: 1 year: 2021 ident: 10371_CR61 publication-title: Advances in Civil Engineering doi: 10.1155/2021/8873993 – volume: 33 start-page: 1019 issue: 8 year: 2023 ident: 10371_CR51 publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2023.06.001 – ident: 10371_CR55 doi: 10.2139/ssrn.4591159 – volume: 49 start-page: 345 year: 2015 ident: 10371_CR63 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2015.04.016 – volume: 2 start-page: 193 issue: 3 year: 2010 ident: 10371_CR95 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.3724/SP.J.1235.2010.00193 – volume: 57 start-page: 247 issue: 1 year: 2021 ident: 10371_CR115 publication-title: Computational Economics doi: 10.1007/s10614-020-10054-w – ident: 10371_CR34 – ident: 10371_CR59 – ident: 10371_CR72 – ident: 10371_CR106 – volume: 11 start-page: 3212 issue: 11 year: 2019 ident: 10371_CR23 publication-title: Sustainability doi: 10.3390/su11113212 – ident: 10371_CR104 – volume: 6 start-page: 189 year: 1974 ident: 10371_CR7 publication-title: Rock Mechanics doi: 10.1007/BF01239496 – volume: 11 start-page: 1036 issue: 5 year: 2019 ident: 10371_CR87 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2019.07.005 – volume: 13 start-page: 1380 issue: 6 year: 2021 ident: 10371_CR53 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2021.07.013 – ident: 10371_CR110 – volume: 29 start-page: 2720 issue: S1 year: 2010 ident: 10371_CR83 publication-title: Chinese Journal of Rock Mechanics and Engineering – ident: 10371_CR46 – volume: 33 start-page: 307 year: 2017 ident: 10371_CR33 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0475-9 – ident: 10371_CR62 doi: 10.1088/1755-1315/189/2/022055 – volume: 532 start-page: 183 year: 2023 ident: 10371_CR89 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 50 start-page: 331 issue: 2 year: 2022 ident: 10371_CR64 publication-title: FME Transactions doi: 10.5937/fme2201331M – volume: 114 start-page: 1023 issue: 12 year: 2014 ident: 10371_CR91 publication-title: Journal of the Southern African Institute of Mining and Metallurgy – volume: 9 start-page: 148873 year: 2021 ident: 10371_CR81 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3120207 – volume: 20 start-page: 273 year: 1995 ident: 10371_CR17 publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 55 start-page: 5673 issue: 7 year: 2022 ident: 10371_CR129 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-022-10140-5 – volume: 32 start-page: 1973 issue: 10 year: 2013 ident: 10371_CR10 publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 66 start-page: 973 year: 2018 ident: 10371_CR71 publication-title: Acta Geophysica doi: 10.1007/s11600-018-0178-2 – year: 2024 ident: 10371_CR76 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-024-03947-x – ident: 10371_CR92 doi: 10.1007/978-1-4899-7641-3_9 – ident: 10371_CR43 – ident: 10371_CR118 – volume: 27 start-page: 2921 issue: S1 year: 2008 ident: 10371_CR111 publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 32 start-page: 2995 issue: 6 year: 2023 ident: 10371_CR50 publication-title: Natural Resources Research doi: 10.1007/s11053-023-10259-4 – ident: 10371_CR80 – volume: 36 start-page: 46 year: 2013 ident: 10371_CR9 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2013.02.003 – volume: 79 start-page: 4265 year: 2020 ident: 10371_CR130 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-020-01788-w – ident: 10371_CR88 – ident: 10371_CR31 doi: 10.1007/s00366-020-01105-9 – ident: 10371_CR109 doi: 10.1007/s00366-020-01131-7 – volume: 27 start-page: 2034 year: 2008 ident: 10371_CR124 publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 1 start-page: 278 year: 2014 ident: 10371_CR20 publication-title: International Journal of Coal Science & Technology doi: 10.1007/s40789-014-0044-z – ident: 10371_CR4 – volume: 4 start-page: 7 issue: 1 year: 1994 ident: 10371_CR24 publication-title: Transactions of Nonferrous Metals Society of China – volume: 8 start-page: 1126450 year: 2023 ident: 10371_CR18 publication-title: Frontiers in Mechanical Engineering doi: 10.3389/fmech.2022.1126450 – volume: 80 start-page: 8385 year: 2021 ident: 10371_CR90 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-021-02460-7 – volume: 83 start-page: 324 year: 2019 ident: 10371_CR3 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2018.09.022 – volume: 7 start-page: 695 issue: 5 year: 2007 ident: 10371_CR65 publication-title: International Journal of Risk Assessment and Management doi: 10.1504/IJRAM.2007.014094 – volume: 36 start-page: 1681 issue: 4 year: 2024 ident: 10371_CR85 publication-title: Neural Computing and Applications doi: 10.1007/s00521-023-09189-2 – ident: 10371_CR101 doi: 10.36487/ACG_repo/574_0.5 – volume: 15 start-page: 2907 issue: 12 year: 2018 ident: 10371_CR45 publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15122907 – ident: 10371_CR48 doi: 10.1007/11427469_155 – volume: 12 issue: 3 year: 2021 ident: 10371_CR134 publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2020.09.020 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10371_CR40 publication-title: Science doi: 10.1126/science.aaa8415 – volume: 22 start-page: 579 issue: 3 year: 2002 ident: 10371_CR79 publication-title: Risk Analysis doi: 10.1111/0272-4332.00040 – volume: 8 start-page: 39 issue: 2 year: 2020 ident: 10371_CR86 publication-title: American Journal of Applied Mathematics and Statistics doi: 10.12691/ajams-8-2-1 – ident: 10371_CR108 doi: 10.1109/TMM.2022.3172547 – ident: 10371_CR119 – volume: 40 start-page: 617 issue: 2 year: 2023 ident: 10371_CR135 publication-title: Mining, Metallurgy & Exploration – volume: 30 start-page: 1205 issue: 4 year: 2023 ident: 10371_CR14 publication-title: Journal of Central South University doi: 10.1007/s11771-023-5294-8 – volume: 18 start-page: 295 issue: 4 year: 1981 ident: 10371_CR44 publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts doi: 10.1016/0148-9062(81)91194-3 – volume: 56 start-page: 8745 year: 2023 ident: 10371_CR74 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-023-03522-w – volume: 37 start-page: 3519 year: 2021 ident: 10371_CR54 publication-title: Engineering with Computers doi: 10.1007/s00366-020-01014-x – ident: 10371_CR105 – volume: 17 start-page: 2647 year: 2012 ident: 10371_CR116 publication-title: Electronic Journal of Geotechnical Engineering – volume: 2021 start-page: 1 year: 2021 ident: 10371_CR69 publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/9107547 – ident: 10371_CR16 doi: 10.1007/978-3-642-00296-0_5 – ident: 10371_CR35 doi: 10.1201/9781482288926 – ident: 10371_CR30 – volume: 28 start-page: 76 issue: 2 year: 2010 ident: 10371_CR114 publication-title: Keji Daobao/Science & Technology Review – volume: 31 start-page: 370 issue: S1 year: 2010 ident: 10371_CR27 publication-title: Rock and Soil Mechanics – volume: 23 start-page: 472 issue: 2 year: 2013 ident: 10371_CR19 publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S1003-6326(13)62487-5 – ident: 10371_CR49 – volume: 61 start-page: 86 year: 2013 ident: 10371_CR2 publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2013.02.010 – ident: 10371_CR1 doi: 10.1016/B978-0-12-813314-9.00010-4 – ident: 10371_CR41 – volume: 22 start-page: 762 issue: 5 year: 2003 ident: 10371_CR57 publication-title: Journal of Rock Mechanics and Geotechnical Engineering – volume-title: Study on prediction and prevention of rockburst in Anlu tunnel. Doctoral dissertation, Master’s thesis year: 2008 ident: 10371_CR38 – volume-title: Applications of artificial intelligence in mining year: 2024 ident: 10371_CR67 – ident: 10371_CR93 – volume: 217 year: 2023 ident: 10371_CR22 publication-title: Renewable Energy doi: 10.1016/j.renene.2023.119177 – volume: 45 start-page: 275 issue: 3 year: 2012 ident: 10371_CR121 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-011-0218-6 – volume: 35 start-page: 659 issue: 2 year: 2019 ident: 10371_CR84 publication-title: Engineering with Computers doi: 10.1007/s00366-018-0624-4 – ident: 10371_CR117 doi: 10.1007/s00366-021-01374-y – volume: 31 start-page: 529 issue: 2 year: 2010 ident: 10371_CR98 publication-title: Rock and Soil Mechanics – volume: 11 start-page: 3257 issue: 12 year: 2018 ident: 10371_CR123 publication-title: Energies doi: 10.3390/en11123257 – volume: 42 start-page: 18 issue: 2 year: 2010 ident: 10371_CR68 publication-title: Journal of Sichuan University (Engineering Science Edition) – ident: 10371_CR94 doi: 10.1109/ICIECS.2009.5362936 – volume: 14 start-page: 169 issue: 3–4 year: 1991 ident: 10371_CR47 publication-title: Safety Science doi: 10.1016/0925-7535(91)90019-I – volume: 27 start-page: 3095 issue: Suppl. 1 year: 2008 ident: 10371_CR60 publication-title: Chin. J. Rock Mechan. Eng. – volume: 14 start-page: 70 year: 2024 ident: 10371_CR136 publication-title: Underground Space doi: 10.1016/j.undsp.2023.05.009 – volume: 36 start-page: 213 year: 2020 ident: 10371_CR25 publication-title: Engineering with Computers doi: 10.1007/s00366-018-00695-9 – volume: 26 start-page: 642 issue: 4 year: 2005 ident: 10371_CR126 publication-title: Yantu Lixue (Rock Soil Mech.) – volume: 50 start-page: 629 issue: 4 year: 2012 ident: 10371_CR133 publication-title: Safety Science doi: 10.1016/j.ssci.2011.08.065 – volume: 10 start-page: 50427 year: 2022 ident: 10371_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3173059 – volume: 24 start-page: 229 issue: 2 year: 2002 ident: 10371_CR29 publication-title: Chinese Journal of Geotechnical Engineering – volume: 124 year: 2022 ident: 10371_CR128 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2022.104494 – volume: 7 start-page: 833 issue: 5 year: 2022 ident: 10371_CR52 publication-title: Underground Space doi: 10.1016/j.undsp.2021.12.009 – volume: 35 start-page: 1461 issue: 9 year: 2010 ident: 10371_CR125 publication-title: Journal of China Coal Society – volume: 30 start-page: 1015 year: 2018 ident: 10371_CR32 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2746-1 – volume: 110 start-page: 916 issue: 11 year: 1989 ident: 10371_CR102 publication-title: Annals of Internal Medicine doi: 10.7326/0003-4819-110-11-916 – ident: 10371_CR120 doi: 10.1201/b11646-272 – volume: 2 start-page: 41 year: 1999 ident: 10371_CR96 publication-title: Road – volume: 21 start-page: 569 issue: 5 year: 1999 ident: 10371_CR58 publication-title: Chinese Journal of Geotechnical Engineering – volume: 37 start-page: 1679 year: 2021 ident: 10371_CR127 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00908-9 – volume: 69 start-page: 381 year: 2010 ident: 10371_CR39 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-010-0275-1 – volume: 32 start-page: 343 issue: 2 year: 2013 ident: 10371_CR37 publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 99 start-page: 103 issue: 2 year: 1999 ident: 10371_CR66 publication-title: Journal of the Southern African Institute of Mining and Metallurgy – volume: 32 start-page: 1520 issue: 8 year: 2013 ident: 10371_CR82 publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 13 start-page: 1 year: 2021 ident: 10371_CR13 publication-title: International Journal of Information Technology doi: 10.1007/s41870-017-0080-1 – ident: 10371_CR77 doi: 10.1109/COMITCon.2019.8862451 – volume: 82 year: 2024 ident: 10371_CR73 publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2023.108386 – volume: 81 start-page: 632 year: 2018 ident: 10371_CR132 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2018.08.029 – volume: 44 start-page: 401 year: 2011 ident: 10371_CR122 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-011-0150-9 – ident: 10371_CR11 – volume: 30 start-page: 343 issue: 4 year: 1993 ident: 10371_CR107 publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts doi: 10.1016/0148-9062(93)91718-X – ident: 10371_CR70 – volume: 40 start-page: 1417 issue: 5 year: 2009 ident: 10371_CR6 publication-title: Journal of Central South University: Science and Technology – ident: 10371_CR100 – ident: 10371_CR8 doi: 10.1109/WorldS450073.2020.9210338 – ident: 10371_CR78 – volume: 12 start-page: 65 issue: 4 year: 2002 ident: 10371_CR5 publication-title: China Safety Science Journal – volume: 30 start-page: 04016003 issue: 5 year: 2016 ident: 10371_CR131 publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000553 – volume: 28 start-page: 527 issue: 2 year: 2021 ident: 10371_CR97 publication-title: Journal of Central South University doi: 10.1007/s11771-021-4619-8 – volume: 10 start-page: 1023890 year: 2022 ident: 10371_CR42 publication-title: Frontiers in Public Health doi: 10.3389/fpubh.2022.1023890  | 
    
| SSID | ssj0007385 | 
    
| Score | 2.428856 | 
    
| Snippet | Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2037 | 
    
| SubjectTerms | Accuracy Algorithms brittleness Chemistry and Earth Sciences compression strength Compressive properties Compressive strength Computer Science data collection Earth and Environmental Science Earth Sciences Effectiveness energy Forecasting Fossil Fuels (incl. Carbon Capture) Geography Geological hazards Heuristic methods hybrids Machine learning Mathematical Modeling and Industrial Mathematics Mineral Resources Optimization Optimization algorithms Original Paper Pandion haliaetus Parameters Performance evaluation Performance prediction Physics prediction Problem solving Recall Rime Rockbursts Rocks Statistics for Engineering Support vector machines Sustainable Development tensile strength Uniaxial tensile strength  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48EPXBoyrWixV804Vuria-FbGKWBFtxbewV1tFEzHJg_56Z7dJq6KCb4FsNpC5vs3MfANwIBqScTeSVElmW3JCKkJTOcUDjvGNa983jcKdq-C8513c-_dlU1hWVbtXKUnrqSfNbggFTM7Ro6a3jdH3aZj1DZ0XanHPaY39r-FnsSypeDAycLtslfl5j6_haIIxv6VFbbRpr8BSCRNJayTXVZjSSQ2WqxEMpLTIGix-4hOswXw50nz4VoO5Mzuz11zZKk-ZrcFj1xbJkmtDaZFpcpkmA9pF30xu0C3i581yYmZ1Sp6Zauhj0iLtwvxOI2mf3N51CE8UOSlsqTQ9VQNNOjrndKiLEd8zaT0N0teHfPicrUOvfdo9OaflsAUqEYPlVKDx8lBGiDh8HSrJddOTbhT0pYMnKsGNsSI8Cz2h-pz5aPa4qKlYg_ueDphyN2AmSRO9CQQjXCBDlL0OGl5fqNBhIgqlz1RTuIHSdWDVN49lyURuBmI8xRMOZSOnGOUUWznF73U4HD_zMuLh-HP1TiXKuLTJLHYRDDt4mm26ddgf30ZrMikSnui0wDWIKBmCpojV4ahSgckWv79x63_Lt2HBGWkhbbAdmMlfC72L6CYXe1aZPwBSL-6b priority: 102 providerName: Springer Nature  | 
    
| Title | Toward Precise Long-Term Rockburst Forecasting: A Fusion of SVM and Cutting-Edge Meta-heuristic Algorithms | 
    
| URI | https://link.springer.com/article/10.1007/s11053-024-10371-z https://www.proquest.com/docview/3099209473 https://www.proquest.com/docview/3154178291  | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-8981 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9trZDgAcEA0TEqI_EGFnW-miAhFKa2E9BqGi0aT5G_2gmNZCPJA_vruXOSFpDYa-LE0p3v_LPv7ncAL9VIC-knmhstXElOzFVMmVMykri_SRuGVCg8X0Qnq-DjeXi-B4uuFobSKjuf6By1KTTdkb_xEcp4eBYZ---vrjl1jaLoatdCQ7atFcw7RzG2D32PmLF60P8wWZyebX0zcbc4BlU8NBEUb8tommI6hBoU0ww41c4JfvP3VrXDn_-ETN1ONH0A91sIydJG5w9hz-YHcO8PYsEDuDNzDXt_PYLvS5cXy06JxaK07HORb_gS3TE7Q0-IEi0rRu05tSwpAfotS9m0phs0VqzZl69zJnPDjmuXHc0nZmPZ3FaSX9i6oXhm6eUGxVRd_Cgfw2o6WR6f8La_AtcIuyqu0F5lrBMEGaGNjZZ2HGg_idbaw0OUkmSfiMjiQJm1FCFaOg4aGzGSYWAjYfwn0MuL3D4FhptapGNUt41GwVqZ2BMqiXUozFj5kbEDEJ0oM92Sj1MPjMtsR5tM4s9Q_JkTf3YzgFfbb64a6o1bRx91GspaMyyz3aIZwIvtazQgiorI3BY1jkEQKRAnJWIArzvN7n7x_xkPb5_xGdz1msXER-IIetXP2j5HAFOpIezH09kQ-uns26fJsF2j-HTlpb8BBrbuJQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQh4QDBAFAYYCZ7Aos5XE6QJldHSsbaaRjftLfirndBIBkmEtj-Ov407J2kBib3tOY4t3Z19v7PvfgfwQnW1kH6iudHCleTEXMWUOSUjif5N2jCkQuHJNBodBp-Ow-M1-NXWwlBaZXsmuoPa5JruyN_4CGU8jEV6_ruz75y6RtHrattCQzatFcy2oxhrCjv27PlPDOGK7d0PqO-XnjcczHZGvOkywDWCj5IrtFoZ6wRdbWhjo6XtBdpPorn2MJRQkqwUcUkcKDOXIkR7x0E9I7oyDGwkjI_zXoONwA8SDP423g-m-wdLX0BcMY6xFYM0gv5N2U5dvIcL0htqwKlWT_CLv13jCu_-80TrPN_wDtxuICvr1zZ2F9Zstgm3_iAy3ITrH12D4PN78HXm8nDZPrFmFJaN82zBZ3j8swM8eVGDRcmoHaiWBSVcv2V9Nqzoxo7lc_b5aMJkZthO5bKx-cAsLJvYUvITW9WU0qx_ukC1lCffivtweCWSfgDrWZ7Zh8DQiUY6RvOyUTeYKxN7QiWxDoXpKT8ytgOiFWWqG7Jz6rlxmq5omkn8KYo_deJPLzrwavnPWU31cenorVZDabPti3RlpB14vvyMG5ZeYWRm8wrHIGgViMsS0YHXrWZXU_x_xUeXr_gMboxmk3E63p3uPYabXm1YvCu2YL38UdknCJ5K9bSxUAZfrnpT_AapBCcZ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVrwOPFIQgRYWqTdYNetXbG5RaVqgqaqSoN6sfTkBFbuq7QP99cys7aRFBYmbJa_Xkuf1rWfmG4AdNdBC-onmRgvXkhNzFVPllIwkxjdpw5AahSfH0eEs-HwWnl3r4nfV7l1KsulpIJamvNq9MNnuqvENYQHlHwNOfW6CX92BjYCIElCjZ95o6YuJq8UxpuIhiaB32zZz-x43Q9MKb_6RInWRZ_wEHrWQkY0aGT-FNZv34HE3joG11tmDh9e4BXtwvx1vvvjVg7sHbn4vXbmKT11uwo-pK5hlJ0RvUVp2VORzPkU_zU7RReKnLitGczu1LKky-gMbsXFNv9ZYkbGv3yZM5obt1a5smu-buWUTW0m-sHXD_cxG5_Pi8nu1-Fk-g9l4f7p3yNvBC1wjHqu4QkOWsU4QfYQ2NlraYaD9JMq0h6crJclwEarFgTKZFCG6AFw0NGIgw8BGwvjPYT0vcvsCGEa7SMeoBzYaBJkysSdUEutQmKHyI2P7ILpvnuqWlZyGY5ynKz5lklOKckqdnNKrPrxbPnPRcHL8c_VWJ8q0tc8y9REYe3iyHfp9eLu8jZZF6RKZ26LGNYguBQKoRPThfacCqy3-_saX_7f8Ddw7-ThOjz4df3kFD7xGIflAbMF6dVnbbQQ9lXrt9Po3qNX1ww | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Precise+Long-Term+Rockburst+Forecasting%3A+A+Fusion+of+SVM+and+Cutting-Edge+Meta-heuristic+Algorithms&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Yang%2C+Peixi&rft.au=He%2C+Xuzhen&rft.au=Pradhan%2C+Biswajeet&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=33&rft.issue=5&rft.spage=2037&rft.epage=2062&rft_id=info:doi/10.1007%2Fs11053-024-10371-z | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |