Toward Precise Long-Term Rockburst Forecasting: A Fusion of SVM and Cutting-Edge Meta-heuristic Algorithms

Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In th...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 33; no. 5; pp. 2037 - 2062
Main Authors Armaghani, Danial Jahed, Yang, Peixi, He, Xuzhen, Pradhan, Biswajeet, Zhou, Jian, Sheng, Daichao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1520-7439
1573-8981
DOI10.1007/s11053-024-10371-z

Cover

Abstract Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress ( σ θ ), uniaxial compressive strength of rock ( σ c ), uniaxial tensile strength of rock ( σ t ), stress coefficient ( σ θ /σ t ), rock brittleness coefficient ( σ c /σ t ), and elastic energy index ( Wet ) as inputs. By integrating three novel meta-heuristic algorithms—dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)—with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA–SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA–SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA–SVM, OOA–SVM, and RIME–SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σ θ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts.
AbstractList Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress (σθ), uniaxial compressive strength of rock (σc), uniaxial tensile strength of rock (σt), stress coefficient (σθ/σt), rock brittleness coefficient (σc/σt), and elastic energy index (Wet) as inputs. By integrating three novel meta-heuristic algorithms—dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)—with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA–SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA–SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA–SVM, OOA–SVM, and RIME–SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σθ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts.
Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress (σθ), uniaxial compressive strength of rock (σc), uniaxial tensile strength of rock (σₜ), stress coefficient (σθ/σₜ), rock brittleness coefficient (σc/σₜ), and elastic energy index (Wet) as inputs. By integrating three novel meta-heuristic algorithms-dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)-with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA-SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA-SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA-SVM, OOA-SVM, and RIME-SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σθ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts.
Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there is an imperative for methodologies that can predict rockbursts quickly and effectively to mitigate preemptively the risks and damages. In this study, 259 rockburst instances were analyzed, employing six rockburst feature parameters: maximum tangential stress ( σ θ ), uniaxial compressive strength of rock ( σ c ), uniaxial tensile strength of rock ( σ t ), stress coefficient ( σ θ /σ t ), rock brittleness coefficient ( σ c /σ t ), and elastic energy index ( Wet ) as inputs. By integrating three novel meta-heuristic algorithms—dingo optimization algorithm (DOA), osprey optimization algorithm (OOA), and rime-ice optimization algorithm (RIME)—with support vector machine (SVM), hybrid models for long-term rockburst trend prediction were constructed. Performance evaluations through fivefold cross-validation revealed that for the no rockbursts, DOA–SVM (Pop = 200) demonstrated superior predictive performance, achieving an accuracy of 0.9808, precision of 0.9231, recall of 1, and an F1-score of 0.96. For moderate rockbursts, OOA–SVM (Pop = 100) emerged as the most effective, registering an accuracy of 0.9808, precision of 0.9545, recall of 1, and an F1-score of 0.9767. For light and severe rockbursts, DOA–SVM, OOA–SVM, and RIME–SVM showcased comparable predictive outcomes. However, these hybrid models outperformed traditional SVM models optimized with conventional algorithms in terms of accuracy across all rockburst hazard levels. Moreover, the hybrid models underwent additional validation with a new dataset of 20 rockburst instances collected globally, confirming their robust efficacy and exceptional generalization capabilities. An ensuing analysis using local interpretable model-agnostic explanations (LIME) on the six key feature parameters revealed a significant positive correlation between σ θ and Wet with the severity of rockbursts. These results not only affirm the superior optimization performance of the DOA, OOA, and RIME algorithms but also their substantial potential to enhance the predictive accuracy of machine learning models in forecasting long-term rockbursts.
Author Pradhan, Biswajeet
Zhou, Jian
Armaghani, Danial Jahed
Yang, Peixi
He, Xuzhen
Sheng, Daichao
Author_xml – sequence: 1
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  organization: School of Civil and Environmental Engineering, University of Technology Sydney
– sequence: 2
  givenname: Peixi
  surname: Yang
  fullname: Yang, Peixi
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Xuzhen
  surname: He
  fullname: He, Xuzhen
  organization: School of Civil and Environmental Engineering, University of Technology Sydney
– sequence: 4
  givenname: Biswajeet
  surname: Pradhan
  fullname: Pradhan, Biswajeet
  organization: Centre for Advanced Modelling and Geospatial Information Systems, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney
– sequence: 5
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: j.zhou@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 6
  givenname: Daichao
  surname: Sheng
  fullname: Sheng, Daichao
  organization: School of Civil and Environmental Engineering, University of Technology Sydney
BookMark eNp9kcFuGyEQhlGVSk3SvEBPSLn0QsMsYNjeLCtuIjlq1Tq9IsyyG9w1pMCqap4-OI4UKYecBmm-bzTDf4KOQgwOoU9AvwCl8iIDUMEIbTgByiSQh3foGIRkRLUKjvbvhhLJWfsBneS8pVViShyj7Tr-M6nDP5KzPju8imEga5d2-Ge0fzZTygUvY22aXHwYvuI5Xk7Zx4Bjj3_9vsEmdHgxlX2TXHaDwzeuGHLnpuSrYfF8HGLy5W6XP6L3vRmzO3uup-h2ebleXJHV92_Xi_mKWCaaQja8EUbZVtaLnOqscZJb1s5628CMb0y9E6gSim-63oBQilZIdkCN4G4GHTtFnw9z71P8O7lc9M5n68bRBBenrBkIDlI1LVT0_BW6jVMKdTvNaNs2tOWSVUodKJtizsn12vpiSv2EkowfNVC9D0EfQtA1BP0Ugn6oavNKvU9-Z9L_tyV2kHKFw-DSy1ZvWI-Mj5t5
CitedBy_id crossref_primary_10_1002_ese3_1877
crossref_primary_10_1007_s12145_024_01596_w
crossref_primary_10_1007_s10706_024_03047_1
Cites_doi 10.1007/s11440-023-01988-0
10.1016/j.tust.2019.103069
10.1109/ACCESS.2020.2982366
10.3390/app13042217
10.1016/j.gete.2023.100478
10.1016/j.ijrmms.2019.104174
10.1016/j.tust.2017.05.011
10.1155/2021/8873993
10.1016/j.ijmst.2023.06.001
10.2139/ssrn.4591159
10.1016/j.tust.2015.04.016
10.3724/SP.J.1235.2010.00193
10.1007/s10614-020-10054-w
10.3390/su11113212
10.1007/BF01239496
10.1016/j.jrmge.2019.07.005
10.1016/j.jrmge.2021.07.013
10.1007/s00366-016-0475-9
10.1088/1755-1315/189/2/022055
10.1016/j.neucom.2023.02.010
10.5937/fme2201331M
10.1109/ACCESS.2021.3120207
10.1007/BF00994018
10.1007/s10462-022-10140-5
10.1007/s11600-018-0178-2
10.1007/s00603-024-03947-x
10.1007/978-1-4899-7641-3_9
10.1007/s11053-023-10259-4
10.1016/j.tust.2013.02.003
10.1007/s10064-020-01788-w
10.1007/s00366-020-01105-9
10.1007/s00366-020-01131-7
10.1007/s40789-014-0044-z
10.3389/fmech.2022.1126450
10.1007/s10064-021-02460-7
10.1016/j.tust.2018.09.022
10.1504/IJRAM.2007.014094
10.1007/s00521-023-09189-2
10.36487/ACG_repo/574_0.5
10.3390/ijerph15122907
10.1007/11427469_155
10.1016/j.gsf.2020.09.020
10.1126/science.aaa8415
10.1111/0272-4332.00040
10.12691/ajams-8-2-1
10.1109/TMM.2022.3172547
10.1007/s11771-023-5294-8
10.1016/0148-9062(81)91194-3
10.1007/s00603-023-03522-w
10.1007/s00366-020-01014-x
10.1155/2021/9107547
10.1007/978-3-642-00296-0_5
10.1201/9781482288926
10.1016/S1003-6326(13)62487-5
10.1016/j.ijrmms.2013.02.010
10.1016/B978-0-12-813314-9.00010-4
10.1016/j.renene.2023.119177
10.1007/s00603-011-0218-6
10.1007/s00366-018-0624-4
10.1007/s00366-021-01374-y
10.3390/en11123257
10.1109/ICIECS.2009.5362936
10.1016/0925-7535(91)90019-I
10.1016/j.undsp.2023.05.009
10.1007/s00366-018-00695-9
10.1016/j.ssci.2011.08.065
10.1109/ACCESS.2022.3173059
10.1016/j.tust.2022.104494
10.1016/j.undsp.2021.12.009
10.1007/s00521-016-2746-1
10.7326/0003-4819-110-11-916
10.1201/b11646-272
10.1007/s00366-019-00908-9
10.1007/s10064-010-0275-1
10.1007/s41870-017-0080-1
10.1109/COMITCon.2019.8862451
10.1016/j.jobe.2023.108386
10.1016/j.tust.2018.08.029
10.1007/s00603-011-0150-9
10.1016/0148-9062(93)91718-X
10.1109/WorldS450073.2020.9210338
10.1061/(ASCE)CP.1943-5487.0000553
10.1007/s11771-021-4619-8
10.3389/fpubh.2022.1023890
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: International Association for Mathematical Geosciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7S9
L.6
DOI 10.1007/s11053-024-10371-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 2062
ExternalDocumentID 10_1007_s11053_024_10371_z
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
ID FETCH-LOGICAL-c352t-b425a8c97105e8dcae74c396fc2164ba053108584bdfa158808dc7d10a54e61d3
IEDL.DBID BENPR
ISSN 1520-7439
IngestDate Thu Sep 04 19:10:19 EDT 2025
Mon Oct 06 16:37:30 EDT 2025
Wed Oct 01 04:56:20 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Fri Feb 21 02:39:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Rime-ice optimization algorithm
Osprey optimization algorithm
LIME
Dingo optimization algorithm
Long-term rockburst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b425a8c97105e8dcae74c396fc2164ba053108584bdfa158808dc7d10a54e61d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3099209473
PQPubID 2043663
PageCount 26
ParticipantIDs proquest_miscellaneous_3154178291
proquest_journals_3099209473
crossref_citationtrail_10_1007_s11053_024_10371_z
crossref_primary_10_1007_s11053_024_10371_z
springer_journals_10_1007_s11053_024_10371_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References QiuYZhouJShort-term rockburst prediction in underground project: Insights from an explainable and interpretable ensemble learning modelActa Geotechnica202318126655668510.1007/s11440-023-01988-0
LiangZYStudy on the prediction and prevention of rockburst in the diversion tunnel of Jinping II hydropower station2004Chengdu University of Technology, Chendu
ZhouJYangPPengPKhandelwalMQiuYPerformance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid modelsMining, Metallurgy & Exploration2023402617635
Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4).
LinshengXULanshengWANGStudy on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain roadChinese Journal of Geotechnical Engineering1999215569572
ZhangHChenLChenSSunJYangJThe spatiotemporal distribution law of microseismic events and rockburst characteristics of the deeply buried tunnel groupEnergies20181112325710.3390/en11123257
Zhang, L. X., & Li, C. H. (2009). Study on tendency analysis of rockburst and comprehensive prediction of different types of surrounding rock. In Proceedings of the 13th International Symposium on Rockburst and Seismicity in Mines (pp. 1451–1456). Dalian: Rinton Press.
BaiYFDengJDongLJFDA model of rockburst prediction and its application in deep hard rock engineeringJournal of Central South University: Science and Technology200940514171422
Su, G., Zhang, Y., & Chen, G. (2010). Identify rockburst grades for Jinping II hydropower station using Gaussian process for binary classification. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 2, pp. 364–367). IEEE.
ZhangCQZhouHFengXTAn index for estimating the stability of brittle surrounding rock mass: FAI and its engineering applicationRock Mechanics and Rock Engineering20114440141410.1007/s00603-011-0150-9
Shirani FaradonbehRTaheriALong-term prediction of rockburst hazard in deep underground openings using three robust data mining techniquesEngineering with Computers201935265967510.1007/s00366-018-0624-4
NguyenHBuiX-NTopalEZhouJChoiYZhangWApplications of artificial intelligence in mining2024Elsevier
MilenkovićBJovanovićĐKrstićMAn application of Dingo Optimization Algorithm (DOA) for solving continuous engineering problemsFME Transactions202250233133810.5937/fme2201331M
Li, L. (2009). Study on scheme optimization and rockburst prediction in deep mining in Xincheng gold mine. Doctoral dissertation, University of Science and Technology.
WuSWuZZhangCRock burst prediction probability model based on case analysisTunnelling and Underground Space Technology20199310.1016/j.tust.2019.103069
DuKLuoXYangSDanialJAZhouJAn insight from energy index characterization to determine the proneness of rockburst for hard rockGeomechanics for Energy and the Environment20233510.1016/j.gete.2023.100478
QiuYZhouJShort-term rockburst damage assessment in burst-prone mines: An explainable XGBOOST hybrid model with SCSO algorithmRock Mechanics and Rock Engineering2023568745877010.1007/s00603-023-03522-w
ZhangLWZhangDYQiuDHApplication of extension evaluation method in rockburst prediction based on rough set theoryJournal of China Coal Society201035914611465
DongLJLiXBKangPENGPrediction of rockburst classification using Random ForestTransactions of Nonferrous Metals Society of China201323247247710.1016/S1003-6326(13)62487-5
XueRLiangZXuNDongLRockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoringInternational Journal of Rock Mechanics and Mining Sciences202012610.1016/j.ijrmms.2019.104174
MaTHTangCATangLXZhangWDWangLRockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower StationTunnelling and Underground Space Technology20154934536810.1016/j.tust.2015.04.016
ChandraMABediSSSurvey on SVM and their application in image classificationInternational Journal of Information Technology20211311110.1007/s41870-017-0080-1
QiuYLiCHuangSMaDZhouJAn ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear wallsJournal of Building Engineering20248210.1016/j.jobe.2023.108386
Ray, S. (2019). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 35–39). IEEE.
CortesCVapnikVSupport-vector networksMachine Learning19952027329710.1007/BF00994018
Russenes, B. F. (1974). Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology.
ShangYJZhangJJFuBJAnalyses of three parameters for strain mode rockburst and expression of rockburst potentialChinese Journal of Rock Mechanics and Engineering201332815201527
Zhang, J. J., Fu, B. J., Li, Z. K., Song, S. W., & Shang, Y. J. (2012c). Criterion and classification for strain mode rockbursts based on five-factor comprehensive method. In Qian, Q., Zhou, J. (eds.), Proc., 12th ISRM Int. Congress on Rock Mechanics, Harmonising Rock Engineering and the Environment (pp. 1435–1440). London: Taylor & Francis Group.
JiangQFengXTXiangTBSuGSRockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2,500 m depthBulletin of Engineering Geology and the Environment20106938138810.1007/s10064-010-0275-11:CAS:528:DC%2BC3cXpt1OjsL8%3D
GhasemiEGholizadehHAdokoACEvaluation of rockburst occurrence and intensity in underground structures using decision tree approachEngineering with Computers20203621322510.1007/s00366-018-00695-9
WangJZhangJPreliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II projectJournal of Rock Mechanics and Geotechnical Engineering20102319320810.3724/SP.J.1235.2010.00193
FathyAEfficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distributionRenewable Energy202321710.1016/j.renene.2023.119177
Xu, C., Jia, W., Wang, R., Luo, X., & He, X. (2022). MorphText: Deep morphology regularized accurate arbitrary-shape scene text detection. IEEE Transactions on Multimedia.
LiCZhouJDuKArmaghaniDJHuangSPrediction of flyrock distance in surface mining using a novel hybrid model of harris hawks optimization with multi-strategies-based support vector regressionNatural Resources Research20233262995302310.1007/s11053-023-10259-4
YiYCaoPPuCMulti-factorial comprehensive estimation for Jinchuan's deep typical rockburst tendencyKeji Daobao/Science & Technology Review20102827680
CemilogluAZhuLArslanSXuJYuanXAzarafzaMDerakhshaniRSupport vector machine (SVM) application for uniaxial compression strength (UCS) prediction: A case study for Maragheh limestoneApplied Sciences2023134221710.3390/app130422171:CAS:528:DC%2BB3sXjvFSrtbg%3D
SaydamSLiuBLiBZhangWSinghSKRavalSA coarse-to-fine approach for rock bolt detection from 3D point cloudsIEEE Access2021914887314888310.1109/ACCESS.2021.3120207
Liang, R., Zhang, C., Li, B., Saydam, S., & Canbulat, I. (2023). Data-driven model development and 3d visual analytics framework for underground mining. Available at SSRN 4591159.
WangSMZhouJLiCQArmaghaniDJLiXBMitriHSRockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniquesJournal of Central South University202128252754210.1007/s11771-021-4619-8
SimserBPRockburst management in Canadian hard rock minesJournal of Rock Mechanics and Geotechnical Engineering20191151036104310.1016/j.jrmge.2019.07.005
LingBCPrediction of rockburst by artificial neural networkJournal of Rock Mechanics and Geotechnical Engineering2003225762768
SunYLiGZhangJHuangJRockburst intensity evaluation by a novel systematic and evolved approach: Machine learning booster and applicationBulletin of Engineering Geology and the Environment2021808385839510.1007/s10064-021-02460-7
Kaiser, P. K., McCreath, D. R., & Tannant, D. D. (1996). Canadian rockburst support handbook. Geomechanics Research Center.
HasanipanahMFaradonbehRSAmniehHBArmaghaniDJMonjeziMForecasting blast-induced ground vibration developing a CART modelEngineering with Computers20173330731610.1007/s00366-016-0475-9
Ma, G., Chao, Z., Zhang, Y., Zhu, Y., & Hu, H. (2018, November). The application of support vector machine in geotechnical engineering. In IOP Conference Series: Earth and Environmental Science (Vol. 189, p. 022055). IOP Publishing.
ZhouJQiuYArmaghaniDJZhangWLiCZhuSTarinejadRPredicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniquesGeoscience Frontiers202112310.1016/j.gsf.2020.09.020
Xu, C., Fu, H., Ma, L., Jia, W., Zhang, C., Xia, F., Ai, X., Li, B., & Zhang, W. (2024). Seeing text in the dark: Algorithm and benchmark. arXiv preprint arXiv:2404.08965.
ZhouJLiXShiXLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSafety Science201250462964410.1016/j.ssci.2011.08.065
ZhangCQFengXTZhouHQiuSLWuWPCase histories of four extremely intense rockbursts in deep tunnelsRock Mechanics and Rock Engineering201245327528810.1007/s00603-011-0218-6
ZhouJHuangSZhouTArmaghaniDJQiuYEmploying a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potentialArtificial Intelligence Review20225575673570510.1007/s10462-022-10140-5
LiCZhouJDuKDiasDStability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithmsInternational Journal of Mining Science and Technology20233381019103610.1016/j.ijmst.2023.06.001
ZhouJKoopialipoorMLiEArmaghaniDJPrediction of rockburst risk in underground projects developing a neuro-bee intelligent systemBulletin of Engineering Geology and the Environment2020794265427910.1007/s10064-020-01788-w
Lee, P. K. K., Tsui, Y., Tham, L. G., Wang, Y. H., & Li, W. D. (1998). Method of fuzzy comprehensive eval
SM Wang (10371_CR97) 2021; 28
10371_CR110
HS Mitri (10371_CR66) 1999; 99
10371_CR117
Y Pu (10371_CR71) 2018; 66
MI Jordan (10371_CR40) 2015; 349
10371_CR59
H Su (10371_CR89) 2023; 532
10371_CR118
10371_CR119
E Li (10371_CR54) 2021; 37
10371_CR55
N Shrestha (10371_CR86) 2020; 8
Y Qiu (10371_CR73) 2024; 82
R Shirani Faradonbeh (10371_CR84) 2019; 35
M Cai (10371_CR9) 2013; 36
10371_CR62
J Zhou (10371_CR128) 2022; 124
M Kamran (10371_CR42) 2022; 10
Y Sun (10371_CR90) 2021; 80
J Zhou (10371_CR132) 2018; 81
BC Ling (10371_CR57) 2003; 22
H Nguyen (10371_CR67) 2024
HS Mitri (10371_CR65) 2007; 7
J Yoon (10371_CR115) 2021; 57
LM Dou (10371_CR20) 2014; 1
CQ Zhang (10371_CR122) 2011; 44
10371_CR48
J Zhou (10371_CR133) 2012; 50
10371_CR49
10371_CR46
R Xue (10371_CR112) 2020; 126
XT Feng (10371_CR24) 1994; 4
YC Wang (10371_CR98) 2010; 31
S Kumar (10371_CR45) 2018; 15
N Barton (10371_CR7) 1974; 6
10371_CR120
H Zhang (10371_CR123) 2018; 11
J Zhou (10371_CR136) 2024; 14
K Du (10371_CR21) 2023; 35
M Dehghani (10371_CR18) 2023; 8
Q Jiang (10371_CR39) 2010; 69
M Hasanipanah (10371_CR33) 2017; 33
LW Zhang (10371_CR125) 2010; 35
10371_CR77
10371_CR78
10371_CR8
M Hasanipanah (10371_CR32) 2018; 30
J Zhou (10371_CR135) 2023; 40
C Li (10371_CR51) 2023; 33
Y Yi (10371_CR114) 2010; 28
10371_CR80
HB Ly (10371_CR61) 2021; 2021
Q Peng (10371_CR68) 2010; 42
10371_CR1
10371_CR4
LF Jiang (10371_CR38) 2008
Y Qiu (10371_CR74) 2023; 56
S Afraei (10371_CR3) 2019; 83
Z You (10371_CR116) 2012; 17
J Zhou (10371_CR127) 2021; 37
A Cemiloglu (10371_CR12) 2023; 13
YP Jia (10371_CR37) 2013; 32
LS Wang (10371_CR96) 1999; 2
ZJ Liu (10371_CR60) 2008; 27
MA Chandra (10371_CR13) 2021; 13
X Chong (10371_CR15) 2021; 33
E Li (10371_CR53) 2021; 13
10371_CR72
J Wang (10371_CR95) 2010; 2
A Saltelli (10371_CR79) 2002; 22
10371_CR70
L Weng (10371_CR99) 2017; 69
B Ji (10371_CR36) 2020; 8
J Zhou (10371_CR129) 2022; 55
CQ Zhang (10371_CR121) 2012; 45
J Yang (10371_CR113) 2010; 6
LJ Dong (10371_CR19) 2013; 23
H Xie (10371_CR107) 1993; 30
Y Qiu (10371_CR75) 2023; 18
R Shirani Faradonbeh (10371_CR85) 2024; 36
10371_CR16
F Gong (10371_CR26) 2007; 26
ZY Liang (10371_CR56) 2004
YF Bai (10371_CR6) 2009; 40
10371_CR11
E Ghasemi (10371_CR25) 2020; 36
JP Leger (10371_CR47) 1991; 14
J Guo (10371_CR28) 2022; 10
C Haijun (10371_CR29) 2002; 24
JJ Zhang (10371_CR124) 2008; 27
J Zhou (10371_CR130) 2020; 79
C Cortes (10371_CR17) 1995; 20
B Milenković (10371_CR64) 2022; 50
XZ Shi (10371_CR83) 2010; 29
BP Simser (10371_CR87) 2019; 11
MZ Bai (10371_CR5) 2002; 12
C Chen (10371_CR14) 2023; 30
10371_CR88
H Peraza-Vázquez (10371_CR69) 2021; 2021
J Zhou (10371_CR134) 2021; 12
FT Suorineni (10371_CR91) 2014; 114
10371_CR93
10371_CR94
10371_CR92
Y Qiu (10371_CR76) 2024
G Feng (10371_CR23) 2019; 11
S Saydam (10371_CR81) 2021; 9
FQ Gong (10371_CR27) 2010; 31
S Wu (10371_CR103) 2019; 93
10371_CR35
10371_CR34
10371_CR43
10371_CR41
D Li (10371_CR52) 2022; 7
XU Linsheng (10371_CR58) 1999; 21
10371_CR101
10371_CR100
10371_CR105
10371_CR106
10371_CR104
10371_CR109
YJ Shang (10371_CR82) 2013; 32
AC Adoko (10371_CR2) 2013; 61
A Fathy (10371_CR22) 2023; 217
10371_CR108
10371_CR31
MG Xu (10371_CR111) 2008; 27
10371_CR30
DF Williamson (10371_CR102) 1989; 110
A Kidybiński (10371_CR44) 1981; 18
TH Ma (10371_CR63) 2015; 49
J Zhou (10371_CR131) 2016; 30
MF Cai (10371_CR10) 2013; 32
HB Zhao (10371_CR126) 2005; 26
C Li (10371_CR50) 2023; 32
References_xml – reference: Xu, C., Fu, H., Ma, L., Jia, W., Zhang, C., Xia, F., Ai, X., Li, B., & Zhang, W. (2024). Seeing text in the dark: Algorithm and benchmark. arXiv preprint arXiv:2404.08965.
– reference: SuHZhaoDHeidariAALiuLZhangXMafarjaMChenHRIME: A physics-based optimizationNeurocomputing202353218321410.1016/j.neucom.2023.02.010
– reference: LiEZhouJShiXJahed ArmaghaniDYuZChenXHuangPDeveloping a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfillEngineering with Computers2021373519354010.1007/s00366-020-01014-x
– reference: YouZChenJIn-situ stress features and prediction analysis for rock burst in deep and over-length highway tunnelElectronic Journal of Geotechnical Engineering20121726472657
– reference: JiaYPLuQShangYQRockburst prediction based on particle swarm optimization and generalized regression neural networkChinese Journal of Rock Mechanics and Engineering2013322343348
– reference: Hall, M. A. (1999). Correlation-based feature selection for machine learning. Doctoral dissertation, The University of Waikato.
– reference: Potvin, Y., Hudyma, M., & Jewell, R. J. (2000). Rockburst and seismic activity in underground Australian mines-an introduction to a new research project. In ISRM international symposium (pp. ISRM-IS). ISRM.
– reference: Russenes, B. F. (1974). Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology.
– reference: LiCZhouJDuKDiasDStability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithmsInternational Journal of Mining Science and Technology20233381019103610.1016/j.ijmst.2023.06.001
– reference: Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms: A comprehensive review. In Computational intelligence for multimedia big data on the cloud with engineering applications (pp. 185–231).
– reference: Li, X., Wang, X., Kang, Y., & He, Z. (2005). Artificial neural network for prediction of rockburst in deep-buried long tunnel. In International Symposium on Neural Networks (pp. 983-986). Berlin: Springer.
– reference: LegerJPTrends and causes of fatalities in South African minesSafety Science1991143–416918510.1016/0925-7535(91)90019-I
– reference: ZhangJJRockburst and its criteria and controlChinese Journal of Rock Mechanics and Engineering2008272034
– reference: LiDLiuZXiaoPZhouJArmaghaniDJIntelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimizationUnderground Space20227583384610.1016/j.undsp.2021.12.009
– reference: DongLJLiXBKangPENGPrediction of rockburst classification using Random ForestTransactions of Nonferrous Metals Society of China201323247247710.1016/S1003-6326(13)62487-5
– reference: MitriHSAssessment of horizontal pillar burst in deep hard rock minesInternational Journal of Risk Assessment and Management20077569570710.1504/IJRAM.2007.014094
– reference: PengQQianAGXiaoYResearch on prediction system for rockburst based on artificial intelligence application methodsJournal of Sichuan University (Engineering Science Edition)20104221824
– reference: ZhouJLiXMitriHSEvaluation method of rockburst: State-of-the-art literature reviewTunnelling and Underground Space Technology20188163265910.1016/j.tust.2018.08.029
– reference: CortesCVapnikVSupport-vector networksMachine Learning19952027329710.1007/BF00994018
– reference: Zhang, L. X., & Li, C. H. (2009). Study on tendency analysis of rockburst and comprehensive prediction of different types of surrounding rock. In Proceedings of the 13th International Symposium on Rockburst and Seismicity in Mines (pp. 1451–1456). Dalian: Rinton Press.
– reference: GuoJGuoJZhangQHuangMResearch on rockburst classification prediction based on BP-SVM modelIEEE Access202210504275044710.1109/ACCESS.2022.3173059
– reference: ZhangCQFengXTZhouHQiuSLWuWPCase histories of four extremely intense rockbursts in deep tunnelsRock Mechanics and Rock Engineering201245327528810.1007/s00603-011-0218-6
– reference: YiYCaoPPuCMulti-factorial comprehensive estimation for Jinchuan's deep typical rockburst tendencyKeji Daobao/Science & Technology Review20102827680
– reference: Xiao, X. P. (2005). A study on the prediction and prevention of rockburst traffic tunnel of Jinping II hydropower station. Chengdu Univ. of Technology.
– reference: Suthaharan, S., & Suthaharan, S. (2016). Support vector machine. Machine learning models and algorithms for big data classification: Thinking with examples for effective learning, 207–235.
– reference: ZhouJHuangSZhouTArmaghaniDJQiuYEmploying a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potentialArtificial Intelligence Review20225575673570510.1007/s10462-022-10140-5
– reference: CaiMPrinciples of rock support in burst-prone groundTunnelling and Underground Space Technology201336465610.1016/j.tust.2013.02.003
– reference: ZhangLWZhangDYQiuDHApplication of extension evaluation method in rockburst prediction based on rough set theoryJournal of China Coal Society201035914611465
– reference: ChandraMABediSSSurvey on SVM and their application in image classificationInternational Journal of Information Technology20211311110.1007/s41870-017-0080-1
– reference: Qin, S. W., Chen, J. P., Wang, Q., & Qiu, D. H. (2009). Research on rockburst prediction with extenics evaluation based on rough set. In Proceedings of the 13th international symposium on rockburst and seismicity in mines (pp. 937–944). Dalian: Rinton Press.
– reference: ZhaoHBClassification of rockburst using support vector machineYantu Lixue (Rock Soil Mech.)2005264642644
– reference: Hoek, E., & Brown, E. T. (1980). Underground excavations in rock. In Inst. Mining and Metallurgy, London, 156.
– reference: Zeng, F., Nait Amar, M., Mohammed, A. S., Motahari, M. R., & Hasanipanah, M. (2021). Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms. Engineering with Computers, 1–12.
– reference: DouLMMuZLLiZLCaoAYGongSYResearch progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in ChinaInternational Journal of Coal Science & Technology2014127828810.1007/s40789-014-0044-z
– reference: ZhouJLiXShiXLong-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machinesSafety Science201250462964410.1016/j.ssci.2011.08.065
– reference: QiuYZhouJShort-term rockburst prediction in underground project: Insights from an explainable and interpretable ensemble learning modelActa Geotechnica202318126655668510.1007/s11440-023-01988-0
– reference: SaydamSLiuBLiBZhangWSinghSKRavalSA coarse-to-fine approach for rock bolt detection from 3D point cloudsIEEE Access2021914887314888310.1109/ACCESS.2021.3120207
– reference: ShiXZZhouJDongLHuHYWangHYChenSRApplication of unascertained measurement model to prediction of classification of rockburst intensityChinese Journal of Rock Mechanics and Engineering201029S127202726
– reference: CaiMFJiDGuoQFStudy of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbanceChinese Journal of Rock Mechanics and Engineering2013321019731980
– reference: Saydam, S., Xu, C., Li, B., Topal, B., & Saydam, S. (2023). Feature Sampling and Balancing for Detecting Rock Bolts from the LiDAR Point Clouds. In ISRM Congress (pp. ISRM-15CONGRESS). ISRM.
– reference: DehghaniMTrojovskýPOsprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problemsFrontiers in Mechanical Engineering20238112645010.3389/fmech.2022.1126450
– reference: Peraza-VázquezHPeña-DelgadoAFEchavarría-CastilloGMorales-CepedaABVelasco-ÁlvarezJRuiz-PerezFA bio-inspired method for engineering design optimization inspired by dingoes hunting strategiesMathematical Problems in Engineering2021202111910.1155/2021/9107547
– reference: Shirani FaradonbehRTaheriALong-term prediction of rockburst hazard in deep underground openings using three robust data mining techniquesEngineering with Computers201935265967510.1007/s00366-018-0624-4
– reference: ZhouJKoopialipoorMLiEArmaghaniDJPrediction of rockburst risk in underground projects developing a neuro-bee intelligent systemBulletin of Engineering Geology and the Environment2020794265427910.1007/s10064-020-01788-w
– reference: Wiles, T. D. (2005). Rockburst prediction using numerical modelling: Realistic limits for failure prediction accuracy. In 6th International Symposium on Rockbursts and Seismicity in Mines (RaSiM 6), Perth, Australia (pp. 57-63).
– reference: DuKLuoXYangSDanialJAZhouJAn insight from energy index characterization to determine the proneness of rockburst for hard rockGeomechanics for Energy and the Environment20233510.1016/j.gete.2023.100478
– reference: Ray, S. (2019). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 35–39). IEEE.
– reference: HaijunCNenghuiLDexinNYuequanSHANGA model for prediction of rockburst by artificial neural networkChinese Journal of Geotechnical Engineering2002242229232
– reference: CemilogluAZhuLArslanSXuJYuanXAzarafzaMDerakhshaniRSupport vector machine (SVM) application for uniaxial compression strength (UCS) prediction: A case study for Maragheh limestoneApplied Sciences2023134221710.3390/app130422171:CAS:528:DC%2BB3sXjvFSrtbg%3D
– reference: SunYLiGZhangJHuangJRockburst intensity evaluation by a novel systematic and evolved approach: Machine learning booster and applicationBulletin of Engineering Geology and the Environment2021808385839510.1007/s10064-021-02460-7
– reference: LiEYangFRenMZhangXZhouJKhandelwalMPrediction of blasting mean fragment size using support vector regression combined with five optimization algorithmsJournal of Rock Mechanics and Geotechnical Engineering20211361380139710.1016/j.jrmge.2021.07.013
– reference: LinshengXULanshengWANGStudy on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain roadChinese Journal of Geotechnical Engineering1999215569572
– reference: Wang, X. F., Li, X. H., Gu, Y. L., Jin, X. G., Kang, Y., & Li, D. X. (2004). Application of BP neural network into prediction of rockburst in tunneling. In Proceedings of the 2004 international symposiumon safety science and technology (Vol. 4, pp. 617–621).
– reference: AfraeiSShahriarKMadaniSHDeveloping intelligent classification models for rock burst prediction after recognizing significant predictor variables, Sec tion 1: Literature review and data preprocessing procedureTunnelling and Underground Space Technology20198332435310.1016/j.tust.2018.09.022
– reference: ZhangCQZhouHFengXTAn index for estimating the stability of brittle surrounding rock mass: FAI and its engineering applicationRock Mechanics and Rock Engineering20114440141410.1007/s00603-011-0150-9
– reference: LiangZYStudy on the prediction and prevention of rockburst in the diversion tunnel of Jinping II hydropower station2004Chengdu University of Technology, Chendu
– reference: HasanipanahMAmniehHBArabHZamzamMSFeasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blastingNeural Computing and Applications2018301015102410.1007/s00521-016-2746-1
– reference: Borson, N. S., Kabir, M. R., Zamal, Z., & Rahman, R. M. (2020). Correlation analysis of demographic factors on low birth weight and prediction modeling using machine learning techniques. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4) (pp. 169–173). IEEE.
– reference: PuYApelDBWangCWilsonBEvaluation of burst liability in kimberlite using support vector machineActa Geophysica20186697398210.1007/s11600-018-0178-2
– reference: XieHPariseauWGFractal character and mechanism of rock burstsInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts199330434335010.1016/0148-9062(93)91718-X
– reference: WangYCShangYQSunHYYanXSStudy of prediction of rockburst intensity based on efficacy coefficient methodRock and Soil Mechanics2010312529534
– reference: HasanipanahMFaradonbehRSAmniehHBArmaghaniDJMonjeziMForecasting blast-induced ground vibration developing a CART modelEngineering with Computers20173330731610.1007/s00366-016-0475-9
– reference: GongFLiXA distance discriminant analysis method for prediction of possibility and classification of rockburst and its applicationYanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering200726510121018
– reference: LingBCPrediction of rockburst by artificial neural networkJournal of Rock Mechanics and Geotechnical Engineering2003225762768
– reference: Castro, L. A. M., Bewick, R. P., & Carter, T. G. (2012). An overview of numerical modelling applied to deep mining. Innovative Numerical Modelling in Geomechanics, 393–414.
– reference: JiangQFengXTXiangTBSuGSRockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2,500 m depthBulletin of Engineering Geology and the Environment20106938138810.1007/s10064-010-0275-11:CAS:528:DC%2BC3cXpt1OjsL8%3D
– reference: JiBXieFWangXHeSSongDInvestigate contribution of multi-microseismic data to rockburst risk prediction using support vector machine with genetic algorithmIEEE Access20208588175882810.1109/ACCESS.2020.2982366
– reference: Kang, Y. (2006). Research on relevant problems about failure mechanism of surrounding rock in deep buried tunnel. Doctoral dissertation, Ph. D. thesis, Chongqing Univ., Chongqing, China (pp. 118–120).
– reference: WuSWuZZhangCRock burst prediction probability model based on case analysisTunnelling and Underground Space Technology20199310.1016/j.tust.2019.103069
– reference: ZhouJLiXMitriHSClassification of rockburst in underground projects: Comparison of ten supervised learning methodsJournal of Computing in Civil Engineering20163050401600310.1061/(ASCE)CP.1943-5487.0000553
– reference: YoonJForecasting of real GDP growth using machine learning models: Gradient boosting and random forest approachComputational Economics202157124726510.1007/s10614-020-10054-w
– reference: ChenCZhouJA new empirical chart for coal burst liability classification using Kriging methodJournal of Central South University20233041205121610.1007/s11771-023-5294-8
– reference: SuorineniFTHebblewhiteBSaydamSGeomechanics challenges of contemporary deep mining: A suggested model for increasing future mining safety and productivityJournal of the Southern African Institute of Mining and Metallurgy20141141210231032
– reference: MitriHSTangBSimonRFE modelling of mining-induced energy release and storage ratesJournal of the Southern African Institute of Mining and Metallurgy1999992103110
– reference: Zhang, Z. L. (2002). Study on rockburst and large deformation of Xuefeng mountain tunnel of Shaohuai highway (Doctoral dissertation, Master’s Thesis, Chengdu University of Technology, Chengdu, China).
– reference: ShresthaNDetecting multicollinearity in regression analysisAmerican Journal of Applied Mathematics and Statistics202082394210.12691/ajams-8-2-1
– reference: ZhouJYangPPengPKhandelwalMQiuYPerformance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid modelsMining, Metallurgy & Exploration2023402617635
– reference: MaTHTangCATangLXZhangWDWangLRockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower StationTunnelling and Underground Space Technology20154934536810.1016/j.tust.2015.04.016
– reference: Ai, X., Xu, C., Li, B., & Xia, F. (2024). Robot-As-A-sensor: Forming a sensing network with robots for underground mining missions. arXiv preprint arXiv:2405.00266.
– reference: Zhang, J. J., Fu, B. J., Li, Z. K., Song, S. W., & Shang, Y. J. (2012c). Criterion and classification for strain mode rockbursts based on five-factor comprehensive method. In Qian, Q., Zhou, J. (eds.), Proc., 12th ISRM Int. Congress on Rock Mechanics, Harmonising Rock Engineering and the Environment (pp. 1435–1440). London: Taylor & Francis Group.
– reference: ZhouJHuangSQiuYOptimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavationsTunnelling and Underground Space Technology202212410.1016/j.tust.2022.104494
– reference: ZhouJQiuYArmaghaniDJZhangWLiCZhuSTarinejadRPredicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniquesGeoscience Frontiers202112310.1016/j.gsf.2020.09.020
– reference: Wang, H., Ma, C., & Zhou, L. (2009). A brief review of machine learning and its application. In 2009 International Conference on Information Engineering and Computer Science (pp. 1–4). IEEE.
– reference: AdokoACGokceogluCWuLZuoQJKnowledge-based and data-driven fuzzy modeling for rockburst predictionInternational Journal of Rock Mechanics and Mining Sciences201361869510.1016/j.ijrmms.2013.02.010
– reference: Ma, G., Chao, Z., Zhang, Y., Zhu, Y., & Hu, H. (2018, November). The application of support vector machine in geotechnical engineering. In IOP Conference Series: Earth and Environmental Science (Vol. 189, p. 022055). IOP Publishing.
– reference: MilenkovićBJovanovićĐKrstićMAn application of Dingo Optimization Algorithm (DOA) for solving continuous engineering problemsFME Transactions202250233133810.5937/fme2201331M
– reference: XuMGDuZJYaoGHLiuZPRockburst prediction of chengchao iron mine during deep miningChinese Journal of Rock Mechanics and Engineering200827S129212928
– reference: FathyAEfficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distributionRenewable Energy202321710.1016/j.renene.2023.119177
– reference: Hasanipanah, M., Keshtegar, B., Thai, D. K., & Troung, N. T. (2022). An ANN-adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting. Engineering with Computers, 1–13.
– reference: BaiYFDengJDongLJFDA model of rockburst prediction and its application in deep hard rock engineeringJournal of Central South University: Science and Technology200940514171422
– reference: FengXTWangLNRockburst prediction based on neural networksTransactions of Nonferrous Metals Society of China1994417141:CAS:528:DyaK2cXntVOhtL8%3D
– reference: GhasemiEGholizadehHAdokoACEvaluation of rockburst occurrence and intensity in underground structures using decision tree approachEngineering with Computers20203621322510.1007/s00366-018-00695-9
– reference: QiuYLiCHuangSMaDZhouJAn ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear wallsJournal of Building Engineering20248210.1016/j.jobe.2023.108386
– reference: KidybińskiABursting liability indices of coalInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts198118429530410.1016/0148-9062(81)91194-3
– reference: KumarSChongICorrelation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion statesInternational Journal of Environmental Research and Public Health20181512290710.3390/ijerph15122907
– reference: Liang, R., Zhang, C., Li, B., Saydam, S., & Canbulat, I. (2023). Data-driven model development and 3d visual analytics framework for underground mining. Available at SSRN 4591159.
– reference: WengLHuangLTaheriALiXRockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, ChinaTunnelling and Underground Space Technology20176922323210.1016/j.tust.2017.05.011
– reference: ShangYJZhangJJFuBJAnalyses of three parameters for strain mode rockburst and expression of rockburst potentialChinese Journal of Rock Mechanics and Engineering201332815201527
– reference: SaltelliASensitivity analysis for importance assessmentRisk Analysis200222357959010.1111/0272-4332.00040
– reference: White, B. G., & Whyatt, J. K. (1999). Role of fault slip on mechanisms of rockburst damage, Lucky Friday Mine, Idaho, USA.
– reference: JiangLFStudy on prediction and prevention of rockburst in Anlu tunnel. Doctoral dissertation, Master’s thesis2008Southwest Jiaotong Univ
– reference: YangJLiXZhouZLinYA Fuzzy assessment method of rock-burst prediction based on rough set theoryJinshu Kuangshan/Metal Mine201062629
– reference: ChongXShangSLKrajewskiAMShimanekJDDuWWangYCorrelation analysis of materials properties by machine learning: Illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloysJournal of Physics: Condensed Matter202133292957021:CAS:528:DC%2BB3MXhvF2hurzJ
– reference: LiuZJYuanQPLiJLApplication of fuzzy probability model to prediction of rockburst intensityChin. J. Rock Mechan. Eng.200827Suppl. 130953103
– reference: JordanMIMitchellTMMachine learning: Trends, perspectives, and prospectsScience2015349624525526010.1126/science.aaa84151:CAS:528:DC%2BC2MXhtFKktL%2FM
– reference: WangLSLiTBXuJStudy on rockburst and its intensity classifies in the tunnel of Erlang Mountain roadRoad199924145
– reference: QiuYZhouJHeBArmaghaniDJHuangSHeXZEvaluation and interpretation of blasting-induced tunnel overbreak: Using heuristic-based ensemble learning and gene expression programming techniquesRock Mechanics and Rock Engineering202410.1007/s00603-024-03947-x
– reference: ZhouJZhangYLiCHeHLiXRockburst prediction and prevention in underground space excavationUnderground Space202414709810.1016/j.undsp.2023.05.009
– reference: NguyenHBuiX-NTopalEZhouJChoiYZhangWApplications of artificial intelligence in mining2024Elsevier
– reference: Xu, C., Jia, W., Wang, R., Luo, X., & He, X. (2022). MorphText: Deep morphology regularized accurate arbitrary-shape scene text detection. IEEE Transactions on Multimedia.
– reference: FengGXiaGChenBXiaoYZhouRA method for rockburst prediction in the deep tunnels of hydropower stations based on the monitored microseismicity and an optimized probabilistic neural network modelSustainability20191111321210.3390/su11113212
– reference: Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4).
– reference: ZhangHChenLChenSSunJYangJThe spatiotemporal distribution law of microseismic events and rockburst characteristics of the deeply buried tunnel groupEnergies20181112325710.3390/en11123257
– reference: QiuYZhouJShort-term rockburst damage assessment in burst-prone mines: An explainable XGBOOST hybrid model with SCSO algorithmRock Mechanics and Rock Engineering2023568745877010.1007/s00603-023-03522-w
– reference: XueRLiangZXuNDongLRockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoringInternational Journal of Rock Mechanics and Mining Sciences202012610.1016/j.ijrmms.2019.104174
– reference: LyHBNguyenTAPhamBTEstimation of soil cohesion using machine learning method: A random forest approachAdvances in Civil Engineering2021202111410.1155/2021/8873993
– reference: Heal, D., Hudyma, M., & Potvin, Y. (2006, June). Evaluating rockburst damage potential in underground mining. In Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS). OnePetro.
– reference: SimserBPRockburst management in Canadian hard rock minesJournal of Rock Mechanics and Geotechnical Engineering20191151036104310.1016/j.jrmge.2019.07.005
– reference: BaiMZWangLJXuZYStudy on a neutral network model and its application in predicting the risk of rock blastChina Safety Science Journal20021246569
– reference: KamranMUllahBAhmadMSabriMMSApplication of KNN-based isometric mapping and fuzzy c-means algorithm to predict short-term rockburst risk in deep underground projectsFrontiers in Public Health202210102389010.3389/fpubh.2022.1023890
– reference: Shirani FaradonbehRVaiseyWSharifzadehMZhouJHybridized intelligent multi-class classifiers for rockburst risk assessment in deep underground minesNeural Computing and Applications20243641681169810.1007/s00521-023-09189-2
– reference: Su, G., Zhang, Y., & Chen, G. (2010). Identify rockburst grades for Jinping II hydropower station using Gaussian process for binary classification. In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (Vol. 2, pp. 364–367). IEEE.
– reference: Lee, P. K. K., Tsui, Y., Tham, L. G., Wang, Y. H., & Li, W. D. (1998). Method of fuzzy comprehensive evaluations for rockburst prediction (in Chinese). Chinese Journal of Rock Mechanics and Engineering.
– reference: LiCZhouJDuKArmaghaniDJHuangSPrediction of flyrock distance in surface mining using a novel hybrid model of harris hawks optimization with multi-strategies-based support vector regressionNatural Resources Research20233262995302310.1007/s11053-023-10259-4
– reference: Xia, B. W. (2006). Study on prediction and forecast of geologic disaster in highway tunnel construction Doctoral dissertation, Master’s thesis, Chongqing Univ., Chongqing, China.
– reference: Liu, J. P. (2011). Studies on relationship between Microseism time-space evolution and ground pressure activities in deep mine. Doctoral dissertation, Ph. D’s Thesis, Northeastern University, Shengyang, China.
– reference: ZhouJGuoHKoopialipoorMJahed ArmaghaniDTahirMMInvestigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithmEngineering with Computers2021371679169410.1007/s00366-019-00908-9
– reference: BartonNLienRLundeJJRMEngineering classification of rock masses for the design of tunnel supportRock Mechanics1974618923610.1007/BF01239496
– reference: Kaiser, P. K., McCreath, D. R., & Tannant, D. D. (1996). Canadian rockburst support handbook. Geomechanics Research Center.
– reference: GongFQLiXBZhangWRockburst prediction of underground engineering based on Bayes discriminant analysis methodRock and Soil Mechanics201031S1370377
– reference: Xu, C., Nait Amar, M., Ghriga, M. A., Ouaer, H., Zhang, X., & Hasanipanah, M. (2022). Evolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rock. Engineering with Computers, 1–15.
– reference: WangSMZhouJLiCQArmaghaniDJLiXBMitriHSRockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniquesJournal of Central South University202128252754210.1007/s11771-021-4619-8
– reference: Li, L. (2009). Study on scheme optimization and rockburst prediction in deep mining in Xincheng gold mine. Doctoral dissertation, University of Science and Technology.
– reference: WangJZhangJPreliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II projectJournal of Rock Mechanics and Geotechnical Engineering20102319320810.3724/SP.J.1235.2010.00193
– reference: Xiating, F., Binrui, C., Chuanqing, Z., Shaojun, L., & Shiyong, W. (2013). Mechanism, warning and dynamic control of rockburst development process.
– reference: WilliamsonDFParkerRAKendrickJSThe box plot: A simple visual method to interpret dataAnnals of Internal Medicine19891101191692110.7326/0003-4819-110-11-9161:STN:280:DyaL1M3ksFGktQ%3D%3D
– volume: 18
  start-page: 6655
  issue: 12
  year: 2023
  ident: 10371_CR75
  publication-title: Acta Geotechnica
  doi: 10.1007/s11440-023-01988-0
– volume: 93
  year: 2019
  ident: 10371_CR103
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2019.103069
– volume: 8
  start-page: 58817
  year: 2020
  ident: 10371_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982366
– volume: 13
  start-page: 2217
  issue: 4
  year: 2023
  ident: 10371_CR12
  publication-title: Applied Sciences
  doi: 10.3390/app13042217
– volume: 35
  year: 2023
  ident: 10371_CR21
  publication-title: Geomechanics for Energy and the Environment
  doi: 10.1016/j.gete.2023.100478
– volume: 126
  year: 2020
  ident: 10371_CR112
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2019.104174
– volume: 33
  start-page: 295702
  issue: 29
  year: 2021
  ident: 10371_CR15
  publication-title: Journal of Physics: Condensed Matter
– volume: 26
  start-page: 1012
  issue: 5
  year: 2007
  ident: 10371_CR26
  publication-title: Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering
– volume-title: Study on the prediction and prevention of rockburst in the diversion tunnel of Jinping II hydropower station
  year: 2004
  ident: 10371_CR56
– volume: 69
  start-page: 223
  year: 2017
  ident: 10371_CR99
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2017.05.011
– volume: 6
  start-page: 26
  year: 2010
  ident: 10371_CR113
  publication-title: Jinshu Kuangshan/Metal Mine
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10371_CR61
  publication-title: Advances in Civil Engineering
  doi: 10.1155/2021/8873993
– volume: 33
  start-page: 1019
  issue: 8
  year: 2023
  ident: 10371_CR51
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2023.06.001
– ident: 10371_CR55
  doi: 10.2139/ssrn.4591159
– volume: 49
  start-page: 345
  year: 2015
  ident: 10371_CR63
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2015.04.016
– volume: 2
  start-page: 193
  issue: 3
  year: 2010
  ident: 10371_CR95
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.3724/SP.J.1235.2010.00193
– volume: 57
  start-page: 247
  issue: 1
  year: 2021
  ident: 10371_CR115
  publication-title: Computational Economics
  doi: 10.1007/s10614-020-10054-w
– ident: 10371_CR34
– ident: 10371_CR59
– ident: 10371_CR72
– ident: 10371_CR106
– volume: 11
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10371_CR23
  publication-title: Sustainability
  doi: 10.3390/su11113212
– ident: 10371_CR104
– volume: 6
  start-page: 189
  year: 1974
  ident: 10371_CR7
  publication-title: Rock Mechanics
  doi: 10.1007/BF01239496
– volume: 11
  start-page: 1036
  issue: 5
  year: 2019
  ident: 10371_CR87
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2019.07.005
– volume: 13
  start-page: 1380
  issue: 6
  year: 2021
  ident: 10371_CR53
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2021.07.013
– ident: 10371_CR110
– volume: 29
  start-page: 2720
  issue: S1
  year: 2010
  ident: 10371_CR83
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– ident: 10371_CR46
– volume: 33
  start-page: 307
  year: 2017
  ident: 10371_CR33
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0475-9
– ident: 10371_CR62
  doi: 10.1088/1755-1315/189/2/022055
– volume: 532
  start-page: 183
  year: 2023
  ident: 10371_CR89
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.010
– volume: 50
  start-page: 331
  issue: 2
  year: 2022
  ident: 10371_CR64
  publication-title: FME Transactions
  doi: 10.5937/fme2201331M
– volume: 114
  start-page: 1023
  issue: 12
  year: 2014
  ident: 10371_CR91
  publication-title: Journal of the Southern African Institute of Mining and Metallurgy
– volume: 9
  start-page: 148873
  year: 2021
  ident: 10371_CR81
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3120207
– volume: 20
  start-page: 273
  year: 1995
  ident: 10371_CR17
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 55
  start-page: 5673
  issue: 7
  year: 2022
  ident: 10371_CR129
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-022-10140-5
– volume: 32
  start-page: 1973
  issue: 10
  year: 2013
  ident: 10371_CR10
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 66
  start-page: 973
  year: 2018
  ident: 10371_CR71
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-018-0178-2
– year: 2024
  ident: 10371_CR76
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-024-03947-x
– ident: 10371_CR92
  doi: 10.1007/978-1-4899-7641-3_9
– ident: 10371_CR43
– ident: 10371_CR118
– volume: 27
  start-page: 2921
  issue: S1
  year: 2008
  ident: 10371_CR111
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 32
  start-page: 2995
  issue: 6
  year: 2023
  ident: 10371_CR50
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-023-10259-4
– ident: 10371_CR80
– volume: 36
  start-page: 46
  year: 2013
  ident: 10371_CR9
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2013.02.003
– volume: 79
  start-page: 4265
  year: 2020
  ident: 10371_CR130
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-020-01788-w
– ident: 10371_CR88
– ident: 10371_CR31
  doi: 10.1007/s00366-020-01105-9
– ident: 10371_CR109
  doi: 10.1007/s00366-020-01131-7
– volume: 27
  start-page: 2034
  year: 2008
  ident: 10371_CR124
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 1
  start-page: 278
  year: 2014
  ident: 10371_CR20
  publication-title: International Journal of Coal Science & Technology
  doi: 10.1007/s40789-014-0044-z
– ident: 10371_CR4
– volume: 4
  start-page: 7
  issue: 1
  year: 1994
  ident: 10371_CR24
  publication-title: Transactions of Nonferrous Metals Society of China
– volume: 8
  start-page: 1126450
  year: 2023
  ident: 10371_CR18
  publication-title: Frontiers in Mechanical Engineering
  doi: 10.3389/fmech.2022.1126450
– volume: 80
  start-page: 8385
  year: 2021
  ident: 10371_CR90
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-021-02460-7
– volume: 83
  start-page: 324
  year: 2019
  ident: 10371_CR3
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2018.09.022
– volume: 7
  start-page: 695
  issue: 5
  year: 2007
  ident: 10371_CR65
  publication-title: International Journal of Risk Assessment and Management
  doi: 10.1504/IJRAM.2007.014094
– volume: 36
  start-page: 1681
  issue: 4
  year: 2024
  ident: 10371_CR85
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-09189-2
– ident: 10371_CR101
  doi: 10.36487/ACG_repo/574_0.5
– volume: 15
  start-page: 2907
  issue: 12
  year: 2018
  ident: 10371_CR45
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph15122907
– ident: 10371_CR48
  doi: 10.1007/11427469_155
– volume: 12
  issue: 3
  year: 2021
  ident: 10371_CR134
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2020.09.020
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10371_CR40
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 22
  start-page: 579
  issue: 3
  year: 2002
  ident: 10371_CR79
  publication-title: Risk Analysis
  doi: 10.1111/0272-4332.00040
– volume: 8
  start-page: 39
  issue: 2
  year: 2020
  ident: 10371_CR86
  publication-title: American Journal of Applied Mathematics and Statistics
  doi: 10.12691/ajams-8-2-1
– ident: 10371_CR108
  doi: 10.1109/TMM.2022.3172547
– ident: 10371_CR119
– volume: 40
  start-page: 617
  issue: 2
  year: 2023
  ident: 10371_CR135
  publication-title: Mining, Metallurgy & Exploration
– volume: 30
  start-page: 1205
  issue: 4
  year: 2023
  ident: 10371_CR14
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-023-5294-8
– volume: 18
  start-page: 295
  issue: 4
  year: 1981
  ident: 10371_CR44
  publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
  doi: 10.1016/0148-9062(81)91194-3
– volume: 56
  start-page: 8745
  year: 2023
  ident: 10371_CR74
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-023-03522-w
– volume: 37
  start-page: 3519
  year: 2021
  ident: 10371_CR54
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01014-x
– ident: 10371_CR105
– volume: 17
  start-page: 2647
  year: 2012
  ident: 10371_CR116
  publication-title: Electronic Journal of Geotechnical Engineering
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10371_CR69
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2021/9107547
– ident: 10371_CR16
  doi: 10.1007/978-3-642-00296-0_5
– ident: 10371_CR35
  doi: 10.1201/9781482288926
– ident: 10371_CR30
– volume: 28
  start-page: 76
  issue: 2
  year: 2010
  ident: 10371_CR114
  publication-title: Keji Daobao/Science & Technology Review
– volume: 31
  start-page: 370
  issue: S1
  year: 2010
  ident: 10371_CR27
  publication-title: Rock and Soil Mechanics
– volume: 23
  start-page: 472
  issue: 2
  year: 2013
  ident: 10371_CR19
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S1003-6326(13)62487-5
– ident: 10371_CR49
– volume: 61
  start-page: 86
  year: 2013
  ident: 10371_CR2
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2013.02.010
– ident: 10371_CR1
  doi: 10.1016/B978-0-12-813314-9.00010-4
– ident: 10371_CR41
– volume: 22
  start-page: 762
  issue: 5
  year: 2003
  ident: 10371_CR57
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– volume-title: Study on prediction and prevention of rockburst in Anlu tunnel. Doctoral dissertation, Master’s thesis
  year: 2008
  ident: 10371_CR38
– volume-title: Applications of artificial intelligence in mining
  year: 2024
  ident: 10371_CR67
– ident: 10371_CR93
– volume: 217
  year: 2023
  ident: 10371_CR22
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2023.119177
– volume: 45
  start-page: 275
  issue: 3
  year: 2012
  ident: 10371_CR121
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-011-0218-6
– volume: 35
  start-page: 659
  issue: 2
  year: 2019
  ident: 10371_CR84
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0624-4
– ident: 10371_CR117
  doi: 10.1007/s00366-021-01374-y
– volume: 31
  start-page: 529
  issue: 2
  year: 2010
  ident: 10371_CR98
  publication-title: Rock and Soil Mechanics
– volume: 11
  start-page: 3257
  issue: 12
  year: 2018
  ident: 10371_CR123
  publication-title: Energies
  doi: 10.3390/en11123257
– volume: 42
  start-page: 18
  issue: 2
  year: 2010
  ident: 10371_CR68
  publication-title: Journal of Sichuan University (Engineering Science Edition)
– ident: 10371_CR94
  doi: 10.1109/ICIECS.2009.5362936
– volume: 14
  start-page: 169
  issue: 3–4
  year: 1991
  ident: 10371_CR47
  publication-title: Safety Science
  doi: 10.1016/0925-7535(91)90019-I
– volume: 27
  start-page: 3095
  issue: Suppl. 1
  year: 2008
  ident: 10371_CR60
  publication-title: Chin. J. Rock Mechan. Eng.
– volume: 14
  start-page: 70
  year: 2024
  ident: 10371_CR136
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2023.05.009
– volume: 36
  start-page: 213
  year: 2020
  ident: 10371_CR25
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-00695-9
– volume: 26
  start-page: 642
  issue: 4
  year: 2005
  ident: 10371_CR126
  publication-title: Yantu Lixue (Rock Soil Mech.)
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  ident: 10371_CR133
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2011.08.065
– volume: 10
  start-page: 50427
  year: 2022
  ident: 10371_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3173059
– volume: 24
  start-page: 229
  issue: 2
  year: 2002
  ident: 10371_CR29
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 124
  year: 2022
  ident: 10371_CR128
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2022.104494
– volume: 7
  start-page: 833
  issue: 5
  year: 2022
  ident: 10371_CR52
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2021.12.009
– volume: 35
  start-page: 1461
  issue: 9
  year: 2010
  ident: 10371_CR125
  publication-title: Journal of China Coal Society
– volume: 30
  start-page: 1015
  year: 2018
  ident: 10371_CR32
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2746-1
– volume: 110
  start-page: 916
  issue: 11
  year: 1989
  ident: 10371_CR102
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-110-11-916
– ident: 10371_CR120
  doi: 10.1201/b11646-272
– volume: 2
  start-page: 41
  year: 1999
  ident: 10371_CR96
  publication-title: Road
– volume: 21
  start-page: 569
  issue: 5
  year: 1999
  ident: 10371_CR58
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 37
  start-page: 1679
  year: 2021
  ident: 10371_CR127
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00908-9
– volume: 69
  start-page: 381
  year: 2010
  ident: 10371_CR39
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-010-0275-1
– volume: 32
  start-page: 343
  issue: 2
  year: 2013
  ident: 10371_CR37
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 99
  start-page: 103
  issue: 2
  year: 1999
  ident: 10371_CR66
  publication-title: Journal of the Southern African Institute of Mining and Metallurgy
– volume: 32
  start-page: 1520
  issue: 8
  year: 2013
  ident: 10371_CR82
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 13
  start-page: 1
  year: 2021
  ident: 10371_CR13
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-017-0080-1
– ident: 10371_CR77
  doi: 10.1109/COMITCon.2019.8862451
– volume: 82
  year: 2024
  ident: 10371_CR73
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2023.108386
– volume: 81
  start-page: 632
  year: 2018
  ident: 10371_CR132
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2018.08.029
– volume: 44
  start-page: 401
  year: 2011
  ident: 10371_CR122
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-011-0150-9
– ident: 10371_CR11
– volume: 30
  start-page: 343
  issue: 4
  year: 1993
  ident: 10371_CR107
  publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
  doi: 10.1016/0148-9062(93)91718-X
– ident: 10371_CR70
– volume: 40
  start-page: 1417
  issue: 5
  year: 2009
  ident: 10371_CR6
  publication-title: Journal of Central South University: Science and Technology
– ident: 10371_CR100
– ident: 10371_CR8
  doi: 10.1109/WorldS450073.2020.9210338
– ident: 10371_CR78
– volume: 12
  start-page: 65
  issue: 4
  year: 2002
  ident: 10371_CR5
  publication-title: China Safety Science Journal
– volume: 30
  start-page: 04016003
  issue: 5
  year: 2016
  ident: 10371_CR131
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 28
  start-page: 527
  issue: 2
  year: 2021
  ident: 10371_CR97
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-021-4619-8
– volume: 10
  start-page: 1023890
  year: 2022
  ident: 10371_CR42
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2022.1023890
SSID ssj0007385
Score 2.428856
Snippet Rockburst is one of the most hazardous geological disasters in underground engineering due to its complex causes and destructive nature. To address this, there...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2037
SubjectTerms Accuracy
Algorithms
brittleness
Chemistry and Earth Sciences
compression strength
Compressive properties
Compressive strength
Computer Science
data collection
Earth and Environmental Science
Earth Sciences
Effectiveness
energy
Forecasting
Fossil Fuels (incl. Carbon Capture)
Geography
Geological hazards
Heuristic methods
hybrids
Machine learning
Mathematical Modeling and Industrial Mathematics
Mineral Resources
Optimization
Optimization algorithms
Original Paper
Pandion haliaetus
Parameters
Performance evaluation
Performance prediction
Physics
prediction
Problem solving
Recall
Rime
Rockbursts
Rocks
Statistics for Engineering
Support vector machines
Sustainable Development
tensile strength
Uniaxial tensile strength
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48EPXBoyrWixV804Vuria-FbGKWBFtxbewV1tFEzHJg_56Z7dJq6KCb4FsNpC5vs3MfANwIBqScTeSVElmW3JCKkJTOcUDjvGNa983jcKdq-C8513c-_dlU1hWVbtXKUnrqSfNbggFTM7Ro6a3jdH3aZj1DZ0XanHPaY39r-FnsSypeDAycLtslfl5j6_haIIxv6VFbbRpr8BSCRNJayTXVZjSSQ2WqxEMpLTIGix-4hOswXw50nz4VoO5Mzuz11zZKk-ZrcFj1xbJkmtDaZFpcpkmA9pF30xu0C3i581yYmZ1Sp6Zauhj0iLtwvxOI2mf3N51CE8UOSlsqTQ9VQNNOjrndKiLEd8zaT0N0teHfPicrUOvfdo9OaflsAUqEYPlVKDx8lBGiDh8HSrJddOTbhT0pYMnKsGNsSI8Cz2h-pz5aPa4qKlYg_ueDphyN2AmSRO9CQQjXCBDlL0OGl5fqNBhIgqlz1RTuIHSdWDVN49lyURuBmI8xRMOZSOnGOUUWznF73U4HD_zMuLh-HP1TiXKuLTJLHYRDDt4mm26ddgf30ZrMikSnui0wDWIKBmCpojV4ahSgckWv79x63_Lt2HBGWkhbbAdmMlfC72L6CYXe1aZPwBSL-6b
  priority: 102
  providerName: Springer Nature
Title Toward Precise Long-Term Rockburst Forecasting: A Fusion of SVM and Cutting-Edge Meta-heuristic Algorithms
URI https://link.springer.com/article/10.1007/s11053-024-10371-z
https://www.proquest.com/docview/3099209473
https://www.proquest.com/docview/3154178291
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-8981
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9trZDgAcEA0TEqI_EGFnW-miAhFKa2E9BqGi0aT5G_2gmNZCPJA_vruXOSFpDYa-LE0p3v_LPv7ncAL9VIC-knmhstXElOzFVMmVMykri_SRuGVCg8X0Qnq-DjeXi-B4uuFobSKjuf6By1KTTdkb_xEcp4eBYZ---vrjl1jaLoatdCQ7atFcw7RzG2D32PmLF60P8wWZyebX0zcbc4BlU8NBEUb8tommI6hBoU0ww41c4JfvP3VrXDn_-ETN1ONH0A91sIydJG5w9hz-YHcO8PYsEDuDNzDXt_PYLvS5cXy06JxaK07HORb_gS3TE7Q0-IEi0rRu05tSwpAfotS9m0phs0VqzZl69zJnPDjmuXHc0nZmPZ3FaSX9i6oXhm6eUGxVRd_Cgfw2o6WR6f8La_AtcIuyqu0F5lrBMEGaGNjZZ2HGg_idbaw0OUkmSfiMjiQJm1FCFaOg4aGzGSYWAjYfwn0MuL3D4FhptapGNUt41GwVqZ2BMqiXUozFj5kbEDEJ0oM92Sj1MPjMtsR5tM4s9Q_JkTf3YzgFfbb64a6o1bRx91GspaMyyz3aIZwIvtazQgiorI3BY1jkEQKRAnJWIArzvN7n7x_xkPb5_xGdz1msXER-IIetXP2j5HAFOpIezH09kQ-uns26fJsF2j-HTlpb8BBrbuJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQh4QDBAFAYYCZ7Aos5XE6QJldHSsbaaRjftLfirndBIBkmEtj-Ov407J2kBib3tOY4t3Z19v7PvfgfwQnW1kH6iudHCleTEXMWUOSUjif5N2jCkQuHJNBodBp-Ow-M1-NXWwlBaZXsmuoPa5JruyN_4CGU8jEV6_ruz75y6RtHrattCQzatFcy2oxhrCjv27PlPDOGK7d0PqO-XnjcczHZGvOkywDWCj5IrtFoZ6wRdbWhjo6XtBdpPorn2MJRQkqwUcUkcKDOXIkR7x0E9I7oyDGwkjI_zXoONwA8SDP423g-m-wdLX0BcMY6xFYM0gv5N2U5dvIcL0htqwKlWT_CLv13jCu_-80TrPN_wDtxuICvr1zZ2F9Zstgm3_iAy3ITrH12D4PN78HXm8nDZPrFmFJaN82zBZ3j8swM8eVGDRcmoHaiWBSVcv2V9Nqzoxo7lc_b5aMJkZthO5bKx-cAsLJvYUvITW9WU0qx_ukC1lCffivtweCWSfgDrWZ7Zh8DQiUY6RvOyUTeYKxN7QiWxDoXpKT8ytgOiFWWqG7Jz6rlxmq5omkn8KYo_deJPLzrwavnPWU31cenorVZDabPti3RlpB14vvyMG5ZeYWRm8wrHIGgViMsS0YHXrWZXU_x_xUeXr_gMboxmk3E63p3uPYabXm1YvCu2YL38UdknCJ5K9bSxUAZfrnpT_AapBCcZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVrwOPFIQgRYWqTdYNetXbG5RaVqgqaqSoN6sfTkBFbuq7QP99cys7aRFBYmbJa_Xkuf1rWfmG4AdNdBC-onmRgvXkhNzFVPllIwkxjdpw5AahSfH0eEs-HwWnl3r4nfV7l1KsulpIJamvNq9MNnuqvENYQHlHwNOfW6CX92BjYCIElCjZ95o6YuJq8UxpuIhiaB32zZz-x43Q9MKb_6RInWRZ_wEHrWQkY0aGT-FNZv34HE3joG11tmDh9e4BXtwvx1vvvjVg7sHbn4vXbmKT11uwo-pK5hlJ0RvUVp2VORzPkU_zU7RReKnLitGczu1LKky-gMbsXFNv9ZYkbGv3yZM5obt1a5smu-buWUTW0m-sHXD_cxG5_Pi8nu1-Fk-g9l4f7p3yNvBC1wjHqu4QkOWsU4QfYQ2NlraYaD9JMq0h6crJclwEarFgTKZFCG6AFw0NGIgw8BGwvjPYT0vcvsCGEa7SMeoBzYaBJkysSdUEutQmKHyI2P7ILpvnuqWlZyGY5ynKz5lklOKckqdnNKrPrxbPnPRcHL8c_VWJ8q0tc8y9REYe3iyHfp9eLu8jZZF6RKZ26LGNYguBQKoRPThfacCqy3-_saX_7f8Ddw7-ThOjz4df3kFD7xGIflAbMF6dVnbbQQ9lXrt9Po3qNX1ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Precise+Long-Term+Rockburst+Forecasting%3A+A+Fusion+of+SVM+and+Cutting-Edge+Meta-heuristic+Algorithms&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Yang%2C+Peixi&rft.au=He%2C+Xuzhen&rft.au=Pradhan%2C+Biswajeet&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=33&rft.issue=5&rft.spage=2037&rft.epage=2062&rft_id=info:doi/10.1007%2Fs11053-024-10371-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon