Towards better shale gas production forecasting using transfer learning

Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the...

Full description

Saved in:
Bibliographic Details
Published inUpstream Oil and Gas Technology Vol. 9; p. 100072
Main Authors Alolayan, Omar S., Raymond, Samuel J., Montgomery, Justin B., Williams, John R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN2666-2604
2666-2604
DOI10.1016/j.upstre.2022.100072

Cover

Abstract Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model.
AbstractList Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model.
ArticleNumber 100072
Author Alolayan, Omar S.
Montgomery, Justin B.
Williams, John R.
Raymond, Samuel J.
Author_xml – sequence: 1
  givenname: Omar S.
  orcidid: 0000-0002-1542-6253
  surname: Alolayan
  fullname: Alolayan, Omar S.
  email: olyanos@mit.edu
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States
– sequence: 2
  givenname: Samuel J.
  orcidid: 0000-0003-2691-652X
  surname: Raymond
  fullname: Raymond, Samuel J.
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States
– sequence: 3
  givenname: Justin B.
  surname: Montgomery
  fullname: Montgomery, Justin B.
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States
– sequence: 4
  givenname: John R.
  surname: Williams
  fullname: Williams, John R.
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States
BookMark eNqNkMtOwzAQRS1UJErpH7DIDyQ4E8dpWCChCgpSJTZlbTl-FFfBiWyHqn-Po7BALIDNzOjqnlmcSzSznVUIXec4y3FObw7Z0PvgVAYYIEYYV3CG5kApTYFiMvt2X6Cl94dYgbIGvCrmaLPrjtxJnzQqBOUS_8Zbley5T3rXyUEE09lEd04J7oOx-2Tw4wyOW69jv1Xc2ZhcoXPNW6-WX3uBXh8fduundPuyeV7fb1NRlBDSBiQVWuK61gRDJSvZ0KZUpeQCyhzTuqhyKUBAJbDW9YoXmJCKkBWGopYFKRaonP4OtuenI29b1jvzzt2J5ZiNQtiBTULYKIRNQiJHJk64znun9H-x2x-YMIGPUqIB0_4F302wikI-jHLMC6OsUNJEn4HJzvz-4BNjK5Kr
CitedBy_id crossref_primary_10_3390_pr11113105
crossref_primary_10_1021_acs_energyfuels_3c00234
crossref_primary_10_1016_j_cageo_2023_105452
crossref_primary_10_1016_j_geoen_2023_212131
crossref_primary_10_1016_j_energy_2023_127443
crossref_primary_10_1017_dce_2024_10
crossref_primary_10_3390_electronics13234750
crossref_primary_10_1007_s10479_024_05986_7
crossref_primary_10_2118_223588_PA
crossref_primary_10_3390_app15042156
crossref_primary_10_1016_j_engappai_2024_109465
crossref_primary_10_3390_en16020860
crossref_primary_10_1016_j_egyr_2023_06_026
Cites_doi 10.3390/en11030552
10.1073/pnas.1313380110
10.3390/en13112765
10.1016/j.jngse.2015.03.025
10.1090/qam/10666
10.1016/j.upstre.2020.100022
10.2118/08-07-57
10.1109/JPROC.2020.3004555
10.2118/192046-MS
10.1137/0111030
10.1016/j.apenergy.2017.03.038
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.upstre.2022.100072
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-2604
ExternalDocumentID 10.1016/j.upstre.2022.100072
10_1016_j_upstre_2022_100072
S266626042200010X
GroupedDBID AAEDW
AAHCO
AAIAV
AAXUO
ABQYD
ACRLP
AEBSH
AFKWA
AIEXJ
AIKHN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATOGT
AXJTR
BELTK
BKOJK
EBS
EFJIC
EFLBG
FDB
FYGXN
M41
ROL
SPC
SPCBC
SSE
SSR
T5K
0R~
AALRI
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AITUG
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c352t-b2d6cfd099f4027d7db6b5e5dac251069371dc2c27c0ff98a304474480239d343
IEDL.DBID AIKHN
ISSN 2666-2604
IngestDate Tue Aug 19 09:35:46 EDT 2025
Wed Oct 01 03:08:07 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Decline curve analysis
Shale gas forecasting
County-specific models
Transfer learning
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b2d6cfd099f4027d7db6b5e5dac251069371dc2c27c0ff98a304474480239d343
ORCID 0000-0003-2691-652X
0000-0002-1542-6253
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S266626042200010X
ParticipantIDs unpaywall_primary_10_1016_j_upstre_2022_100072
crossref_primary_10_1016_j_upstre_2022_100072
crossref_citationtrail_10_1016_j_upstre_2022_100072
elsevier_sciencedirect_doi_10_1016_j_upstre_2022_100072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Upstream Oil and Gas Technology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References US Energy Information Administration, Oil and gas supply module of the national energy modeling system 2018b (2018).
Lee, Lim, Yoon, Jung (bib0005) 2019; 24
Xia, Xu, Yuan, Xin (bib0043) 2020
Montgomery, Raymond, O’Sullivan, Williams (bib0015) 2020; 5
A. Ataei, E. Motaei, M.E. Yazdi, R. Masoudi, A. Bashir, Rate Transient Analysis RTA and Its Application for Well Connectivity Analysis: An Integrated Production Driven Reservoir Characterization and a Case Study, volume Day 1 Tue, October 23, 2018 of SPE Asia Pacific Oil and Gas Conference and Exhibition, D011S001R001
Manda, Nkazi (bib0008) 2020; 13
Patzek, Male, Marder (bib0009) 2013; 110
Deng, Dong, Socher, Li (bib0034) 2009
Li, Han (bib0017) 2017
US Energy Information Administration. URL
Accessed: 2021-01-30.
Accessed: 2020-01-30.
Yang, Zhang, Dai, Pan (bib0031) 2020
Clark, Lake, Patzek (bib0012) 2011
Accessed: 2020-09-30.
Pan, Yang (bib0032) 2010; 22
Marquardt (bib0025) 1963; 11
Goodfellow, Bengio, Courville (bib0036) 2016
Zhao, Wang, Sun, Jiang, Yu, Kang, Wang (bib0014) 2020; 7
Kingma, Ba (bib0029) 2017
De Holanda, Gildin, Valko (bib0010) 2018
Clarkson, Williams-Kovacs, Qanbari, Heidari Sureshjanid (bib0004) 2015; 26
.
J. Brownlee, Use early stopping to halt the training of neural networks at the right time, 2019
A. Agosta, G. Boccara, B. Heringa, N. Browne, D. Dediu, Mckinsey & company global gas outlook to 2050, 2021
Accessed: 2021-03-30.
Hastie, Tibshirani, Friedman (bib0027) 2016
2018.
D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, L. van der Maaten, Exploring the limits of weakly supervised pretraining
Accessed: 2021-05-30.
Lee, Sidel (bib0003) 2010; 2
Sun, Ma, Kazi (bib0018) 2018
Railroad Commission of Texas, Online research queries, 2019
Arps (bib0013) 1945; 160
Pennsylvania Department of Environmental Protection, Pa oil and gas mapping, 2020
M. Nielsen, Neural Networks and Deep Learning, 2020.
Huston (bib0040) 2018; 359
Tan, Zuo, Wang (bib0007) 2018; 11
Bishop (bib0038) 2006
Duong (bib0011) 2011
J. Brownlee, How to classify photos of dogs and cats (with 97% accuracy), 2019
Zisserman, Simonyan (bib0033) 2015
Al-Fattah, Startzman (bib0016) 2001
Han, Jung, Kwon (bib0006) 2020; 10
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0028) 2014; 15
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning, 2020.
Montgomery, O’Sullivan (bib0042) 2017; 195
(2018).
M. Newville, T. Stensitzki, M. Allen, D.and Rawlik, A. Ingargiola, A. Nelson, Non-linear least-squares minimization and curve-fitting for python, 2020, URL
Okuszko, Gault, Mattar (bib0023) 2008
Levenberg (bib0024) 1944; 2
De Holanda (10.1016/j.upstre.2022.100072_bib0010) 2018
Clark (10.1016/j.upstre.2022.100072_bib0012) 2011
Li (10.1016/j.upstre.2022.100072_bib0017) 2017
Montgomery (10.1016/j.upstre.2022.100072_bib0042) 2017; 195
Sun (10.1016/j.upstre.2022.100072_bib0018) 2018
Levenberg (10.1016/j.upstre.2022.100072_bib0024) 1944; 2
Xia (10.1016/j.upstre.2022.100072_bib0043) 2020
Al-Fattah (10.1016/j.upstre.2022.100072_bib0016) 2001
10.1016/j.upstre.2022.100072_bib0022
10.1016/j.upstre.2022.100072_bib0021
10.1016/j.upstre.2022.100072_bib0020
Manda (10.1016/j.upstre.2022.100072_bib0008) 2020; 13
10.1016/j.upstre.2022.100072_bib0041
Hastie (10.1016/j.upstre.2022.100072_bib0027) 2016
Clarkson (10.1016/j.upstre.2022.100072_bib0004) 2015; 26
Lee (10.1016/j.upstre.2022.100072_bib0005) 2019; 24
Zhao (10.1016/j.upstre.2022.100072_bib0014) 2020; 7
Huston (10.1016/j.upstre.2022.100072_bib0040) 2018; 359
10.1016/j.upstre.2022.100072_bib0026
Duong (10.1016/j.upstre.2022.100072_bib0011) 2011
10.1016/j.upstre.2022.100072_bib0002
10.1016/j.upstre.2022.100072_bib0001
Kingma (10.1016/j.upstre.2022.100072_bib0029) 2017
Yang (10.1016/j.upstre.2022.100072_bib0031) 2020
Deng (10.1016/j.upstre.2022.100072_bib0034) 2009
Srivastava (10.1016/j.upstre.2022.100072_bib0028) 2014; 15
Bishop (10.1016/j.upstre.2022.100072_bib0038) 2006
Tan (10.1016/j.upstre.2022.100072_bib0007) 2018; 11
Han (10.1016/j.upstre.2022.100072_bib0006) 2020; 10
Patzek (10.1016/j.upstre.2022.100072_bib0009) 2013; 110
10.1016/j.upstre.2022.100072_bib0030
Pan (10.1016/j.upstre.2022.100072_bib0032) 2010; 22
Lee (10.1016/j.upstre.2022.100072_bib0003) 2010; 2
Arps (10.1016/j.upstre.2022.100072_bib0013) 1945; 160
Marquardt (10.1016/j.upstre.2022.100072_bib0025) 1963; 11
10.1016/j.upstre.2022.100072_bib0019
Goodfellow (10.1016/j.upstre.2022.100072_bib0036) 2016
Montgomery (10.1016/j.upstre.2022.100072_bib0015) 2020; 5
Zisserman (10.1016/j.upstre.2022.100072_bib0033) 2015
Okuszko (10.1016/j.upstre.2022.100072_bib0023) 2008
10.1016/j.upstre.2022.100072_bib0039
10.1016/j.upstre.2022.100072_bib0037
10.1016/j.upstre.2022.100072_bib0035
References_xml – volume: 110
  start-page: 19731
  year: 2013
  end-page: 19736
  ident: bib0009
  article-title: Gas production in the Barnett shale obeys a simple scaling theory
  publication-title: Proc. Natl. Acad. Sci.
– year: 2011
  ident: bib0012
  article-title: Production forecasting with logistic growth models
  publication-title: Soc. Pet. Eng.
– reference: Accessed: 2021-05-30.
– volume: 26
  year: 2015
  ident: bib0004
  article-title: History-matching and forecasting tight/shale gas condensate wells using combined analytical, semi-analytical, and empirical methods
  publication-title: J. Nat. Gas Sci. Eng.
– reference: J. Brownlee, Use early stopping to halt the training of neural networks at the right time, 2019,
– volume: 24
  start-page: 2423
  year: 2019
  end-page: 2437
  ident: bib0005
  article-title: Prediction of shale-gas production at Duvernay formation using deep-learning algorithm
  publication-title: Soc. Pet. Eng.
– year: 2017
  ident: bib0029
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference for Learning Representations, San Diego
– volume: 2
  year: 2010
  ident: bib0003
  article-title: Gas reserves estimation in resource plays
  publication-title: Soc. Pet. Eng.
– volume: 10
  year: 2020
  ident: bib0006
  article-title: Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach
  publication-title: Appl. Sci.
– reference: US Energy Information Administration, Oil and gas supply module of the national energy modeling system 2018b (2018).
– year: 2015
  ident: bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations, San Diego, Ca, USA
– year: 2011
  ident: bib0011
  article-title: Rate-decline analysis for fracture-dominated shale reservoirs
  publication-title: Soc. Pet. Eng.
– volume: 359
  year: 2018
  ident: bib0040
  article-title: American association for the advancement of science
  publication-title: Am. Assoc. Adv. Sci.
– volume: 2
  year: 1944
  ident: bib0024
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 7
  year: 2020
  ident: bib0014
  article-title: A logical growth model considering the influence of shale gas reservoirs and development characteristics
  publication-title: Nat. Gas Ind. B
– reference: A. Agosta, G. Boccara, B. Heringa, N. Browne, D. Dediu, Mckinsey & company global gas outlook to 2050, 2021,
– reference: D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, L. van der Maaten, Exploring the limits of weakly supervised pretraining,
– year: 2018
  ident: bib0018
  article-title: Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells
  publication-title: SPE Western Regional Meeting
– year: 2018
  ident: bib0010
  article-title: Combining physics, statistics, and heuristics in the decline-curve analysis of large data sets in unconventional reservoirs
  publication-title: Soc. Pet. Eng.
– reference: . Accessed: 2020-01-30.
– year: 2016
  ident: bib0036
  article-title: Deep Learning
– year: 2020
  ident: bib0031
  article-title: Transfer Learning
– reference: . Accessed: 2020-09-30.
– volume: 5
  year: 2020
  ident: bib0015
  article-title: Shale gas production forecasting is an ill-posed inverse problem and requires regularization
  publication-title: Upstream Oil Gas Technol.
– volume: 160
  year: 1945
  ident: bib0013
  article-title: Analysis of decline curves
  publication-title: Trans. Am. Inst. Min. Eng.
– reference: Pennsylvania Department of Environmental Protection, Pa oil and gas mapping, 2020,
– reference: M. Nielsen, Neural Networks and Deep Learning, 2020.
– year: 2017
  ident: bib0017
  article-title: Decline curve analysis for production forecasting based on machine learning
  publication-title: SPE Symposium: Production Enhancement and Cost Optimisation, Kuala Lumpur, Malaysia
– reference: . Accessed: 2021-03-30.
– volume: 13
  start-page: 2765
  year: 2020
  ident: bib0008
  article-title: The evaluation and sensitivity of decline curve modelling
  publication-title: Energies
– reference: . Accessed: 2021-01-30.
– reference: F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning, 2020.
– volume: 11
  year: 1963
  ident: bib0025
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0028
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– reference: J. Brownlee, How to classify photos of dogs and cats (with 97% accuracy), 2019,
– volume: 195
  year: 2017
  ident: bib0042
  article-title: Spatial variability of tight oil well productivity and the impact of technology
  publication-title: Appl. Energy
– volume: 11
  year: 2018
  ident: bib0007
  article-title: Methods of decline curve analysis for shale gas reservoirs
  publication-title: Energies
– reference: . Accessed: 2021-05-30.
– year: 2009
  ident: bib0034
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA
– reference: A. Ataei, E. Motaei, M.E. Yazdi, R. Masoudi, A. Bashir, Rate Transient Analysis RTA and Its Application for Well Connectivity Analysis: An Integrated Production Driven Reservoir Characterization and a Case Study, volume Day 1 Tue, October 23, 2018 of SPE Asia Pacific Oil and Gas Conference and Exhibition, D011S001R001,
– year: 2001
  ident: bib0016
  article-title: Predicting natural gas production using artificial neural network
  publication-title: Soc. Pet. Eng.
– year: 2020
  ident: bib0043
  article-title: Effect of Perforation Interval Design on Gas Production from the Validated Hydrate-Bearing Deposits with Layered Heterogeneity by Depressurization
– year: 2016
  ident: bib0027
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– reference: , 2018.
– year: 2006
  ident: bib0038
  article-title: Pattern Recognition and Machine Learning
– reference: M. Newville, T. Stensitzki, M. Allen, D.and Rawlik, A. Ingargiola, A. Nelson, Non-linear least-squares minimization and curve-fitting for python, 2020, URL:
– reference: US Energy Information Administration. URL
– reference: Railroad Commission of Texas, Online research queries, 2019,
– year: 2008
  ident: bib0023
  article-title: Production decline performance of CBM wells
  publication-title: J. Can. Pet. Technol.
– reference: .
– volume: 22
  year: 2010
  ident: bib0032
  article-title: A survey on transfer learning
  publication-title: Inst. Electr. Electron. Eng. Trans. Knowl. Data Eng.
– reference: (2018).
– year: 2020
  ident: 10.1016/j.upstre.2022.100072_bib0043
– volume: 11
  year: 2018
  ident: 10.1016/j.upstre.2022.100072_bib0007
  article-title: Methods of decline curve analysis for shale gas reservoirs
  publication-title: Energies
  doi: 10.3390/en11030552
– volume: 110
  start-page: 19731
  year: 2013
  ident: 10.1016/j.upstre.2022.100072_bib0009
  article-title: Gas production in the Barnett shale obeys a simple scaling theory
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1313380110
– volume: 13
  start-page: 2765
  year: 2020
  ident: 10.1016/j.upstre.2022.100072_bib0008
  article-title: The evaluation and sensitivity of decline curve modelling
  publication-title: Energies
  doi: 10.3390/en13112765
– year: 2011
  ident: 10.1016/j.upstre.2022.100072_bib0011
  article-title: Rate-decline analysis for fracture-dominated shale reservoirs
  publication-title: Soc. Pet. Eng.
– year: 2016
  ident: 10.1016/j.upstre.2022.100072_bib0027
– volume: 160
  year: 1945
  ident: 10.1016/j.upstre.2022.100072_bib0013
  article-title: Analysis of decline curves
  publication-title: Trans. Am. Inst. Min. Eng.
– year: 2017
  ident: 10.1016/j.upstre.2022.100072_bib0029
  article-title: Adam: A method for stochastic optimization
– year: 2006
  ident: 10.1016/j.upstre.2022.100072_bib0038
– volume: 7
  year: 2020
  ident: 10.1016/j.upstre.2022.100072_bib0014
  article-title: A logical growth model considering the influence of shale gas reservoirs and development characteristics
  publication-title: Nat. Gas Ind. B
– year: 2020
  ident: 10.1016/j.upstre.2022.100072_bib0031
– volume: 26
  year: 2015
  ident: 10.1016/j.upstre.2022.100072_bib0004
  article-title: History-matching and forecasting tight/shale gas condensate wells using combined analytical, semi-analytical, and empirical methods
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.03.025
– volume: 2
  year: 2010
  ident: 10.1016/j.upstre.2022.100072_bib0003
  article-title: Gas reserves estimation in resource plays
  publication-title: Soc. Pet. Eng.
– ident: 10.1016/j.upstre.2022.100072_bib0002
– ident: 10.1016/j.upstre.2022.100072_bib0021
– year: 2001
  ident: 10.1016/j.upstre.2022.100072_bib0016
  article-title: Predicting natural gas production using artificial neural network
  publication-title: Soc. Pet. Eng.
– volume: 2
  year: 1944
  ident: 10.1016/j.upstre.2022.100072_bib0024
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– year: 2018
  ident: 10.1016/j.upstre.2022.100072_bib0018
  article-title: Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells
– year: 2015
  ident: 10.1016/j.upstre.2022.100072_bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: 10.1016/j.upstre.2022.100072_bib0037
– volume: 5
  year: 2020
  ident: 10.1016/j.upstre.2022.100072_bib0015
  article-title: Shale gas production forecasting is an ill-posed inverse problem and requires regularization
  publication-title: Upstream Oil Gas Technol.
  doi: 10.1016/j.upstre.2020.100022
– year: 2011
  ident: 10.1016/j.upstre.2022.100072_bib0012
  article-title: Production forecasting with logistic growth models
  publication-title: Soc. Pet. Eng.
– year: 2008
  ident: 10.1016/j.upstre.2022.100072_bib0023
  article-title: Production decline performance of CBM wells
  publication-title: J. Can. Pet. Technol.
  doi: 10.2118/08-07-57
– ident: 10.1016/j.upstre.2022.100072_bib0030
  doi: 10.1109/JPROC.2020.3004555
– ident: 10.1016/j.upstre.2022.100072_bib0039
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.upstre.2022.100072_bib0028
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 359
  year: 2018
  ident: 10.1016/j.upstre.2022.100072_bib0040
  article-title: American association for the advancement of science
  publication-title: Am. Assoc. Adv. Sci.
– ident: 10.1016/j.upstre.2022.100072_bib0019
– ident: 10.1016/j.upstre.2022.100072_bib0035
– ident: 10.1016/j.upstre.2022.100072_bib0022
  doi: 10.2118/192046-MS
– volume: 11
  year: 1963
  ident: 10.1016/j.upstre.2022.100072_bib0025
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 24
  start-page: 2423
  year: 2019
  ident: 10.1016/j.upstre.2022.100072_bib0005
  article-title: Prediction of shale-gas production at Duvernay formation using deep-learning algorithm
  publication-title: Soc. Pet. Eng.
– year: 2009
  ident: 10.1016/j.upstre.2022.100072_bib0034
  article-title: Imagenet: a large-scale hierarchical image database
– volume: 10
  year: 2020
  ident: 10.1016/j.upstre.2022.100072_bib0006
  article-title: Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach
  publication-title: Appl. Sci.
– ident: 10.1016/j.upstre.2022.100072_bib0020
– year: 2017
  ident: 10.1016/j.upstre.2022.100072_bib0017
  article-title: Decline curve analysis for production forecasting based on machine learning
– year: 2018
  ident: 10.1016/j.upstre.2022.100072_bib0010
  article-title: Combining physics, statistics, and heuristics in the decline-curve analysis of large data sets in unconventional reservoirs
  publication-title: Soc. Pet. Eng.
– ident: 10.1016/j.upstre.2022.100072_bib0001
– volume: 22
  year: 2010
  ident: 10.1016/j.upstre.2022.100072_bib0032
  article-title: A survey on transfer learning
  publication-title: Inst. Electr. Electron. Eng. Trans. Knowl. Data Eng.
– ident: 10.1016/j.upstre.2022.100072_bib0041
– ident: 10.1016/j.upstre.2022.100072_bib0026
– year: 2016
  ident: 10.1016/j.upstre.2022.100072_bib0036
– volume: 195
  year: 2017
  ident: 10.1016/j.upstre.2022.100072_bib0042
  article-title: Spatial variability of tight oil well productivity and the impact of technology
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.038
SSID ssj0002592083
Score 2.3109007
Snippet Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100072
SubjectTerms County-specific models
Decline curve analysis
Machine learning
Shale gas forecasting
Transfer learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1qexAPfosVlT14TbvdfGxyLMVaPBTBFuop7EdSqyUGkyD6651NNqUKUsVrmCXZvGXnDbw3g9CVHyhg4Sy2lCLCcnxOrED52gjcU5xE1GOiFMiOvdHUuZ25swYa1F4YLas0d391p5e3tXnSNX-zmy4W3XtILZqNO1S7TXpktoVanguEvIla0_Fd_0GPlYMQS8fUprlS2VWk2ocBtSGlWiRAGP0pKW0XScrf3_hyuZZ0hntI1Z9baU2eO0UuOvLjWyfHf-5nH-0aUor7VdwBakTJIdpZa1V4hG4mpb42w6L0_-DsETILnvMMp1XPWMAXAwGOJM-0khprQf0c5yUvhngznWJ-jKbD68lgZJkhDJYEbpZbgipPxgqIZAylJlNMCU-4kau4BGpEPN1PT0kqKZMkjgOf28RxGBR92jWrbMc-Qc3kJYlOEfY8bgvYpRtBWRn4RFAScyBMkKa5o5RoI7tGIZSmQ7kelLEMaynaU1hhF2rswgq7NrJWq9KqQ8eGeFYDHH5BJoQksmFlZ3UefvWqs78uOEfN_LWILoDn5OLSnONP4g8AWg
  priority: 102
  providerName: Unpaywall
Title Towards better shale gas production forecasting using transfer learning
URI https://dx.doi.org/10.1016/j.upstre.2022.100072
https://www.sciencedirect.com/science/article/pii/S266626042200010X
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 2666-2604
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0002592083
  issn: 2666-2604
  databaseCode: ACRLP
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 2666-2604
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0002592083
  issn: 2666-2604
  databaseCode: AIKHN
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-2604
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002592083
  issn: 2666-2604
  databaseCode: AKRWK
  dateStart: 20191201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze1AfxCvOy8iDr3FZekn7OIZzXhhDN5hPJWnaORm12A7x33vSpmM-yMSnkpJDypdwznfKd04QuvJ8BSycx0QpKontCUp85elC4I4SNGIul4VAdugOJvb91JnWUK-qhdGySuP7S59eeGvzpm3QbKfzefsZQotm4zbT1SYdOt1CDYg_nldHje7dw2C4-tUCDJ_RoiGnNiHapiqiK5Rey1TXZUCuyJgWDVDOfgtS28skFV-fYrFYC0L9fbRn2CPulh94gGpRcoh213oKHqHbcSGEzbAsCnVw9gohAM9EhtOyuStsBAamGoUi05JnrJXvM5wXBBbmm2skZsdo0r8Z9wbE3JZAQiBROZFMuWGsgPHFkBNyxZV0pRM5SoTAYairG9-pkIWMhzSOfU9Y1LY5ZGe6vFVZtnWC6sl7Ep0i7LrCkoCVE0H-53tUMhoLYDYQT4WtlGwiq4InCE0rcX2jxSKoNGNvQQlqoEENSlCbiKys0rKVxob5vEI--HEkAvD2GyyvVxv1p6XO_r3UOdrRo1J1doHq-ccyugSakssWHMPe0-OoZY4jPCfDUfflG7bm6QM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QDujB-Bnxswevk9p9dDsSIoIgFyHh1rTrhhgyFzdi_O993TqCB4PxuvWly2v73u8tv98rQrd-oACFs9hSikjL8QWxAuVrIfC9EiSiHpMFQXbs9afO08yd1VC30sJoWqWJ_WVML6K1edI23myni0X7BVKLRuMO1WqTezLbQQ3HtRmczkZnMOyP179aAOFTUjTk1CaWtqlEdAXTa5VqXQbUipRq0gBh9Lck1Vwlqfj6FMvlRhLqHaB9gx5xp_zAQ1SLkiO0t9FT8Bg9TgoibIZlIdTB2SukADwXGU7L5q6wEBiQahSKTFOesWa-z3FeAFgYb66RmJ-gae9h0u1b5rYEKwQQlVuSKi-MFSC-GGpCppiSnnQjV4kQMAzxdOM7FdKQspDEceALmzgOg-pMy1uV7dinqJ68J9EZwp4nbAm-ciOo_wKfSEpiAcgG8qlwlJItZFfu4aFpJa5vtFjyijP2xkuncu1UXjq1hay1VVq20tgynlWe5z-2BIdov8Xybr1Qf5rq_N9T3aBmf_I84qPBeHiBdvWbkoF2ier5xyq6AsiSy2uzJb8BEEvonw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1qexAPfosVlT14TbvdfGxyLMVaPBTBFuop7EdSqyUGkyD6651NNqUKUsVrmCXZvGXnDbw3g9CVHyhg4Sy2lCLCcnxOrED52gjcU5xE1GOiFMiOvdHUuZ25swYa1F4YLas0d391p5e3tXnSNX-zmy4W3XtILZqNO1S7TXpktoVanguEvIla0_Fd_0GPlYMQS8fUprlS2VWk2ocBtSGlWiRAGP0pKW0XScrf3_hyuZZ0hntI1Z9baU2eO0UuOvLjWyfHf-5nH-0aUor7VdwBakTJIdpZa1V4hG4mpb42w6L0_-DsETILnvMMp1XPWMAXAwGOJM-0khprQf0c5yUvhngznWJ-jKbD68lgZJkhDJYEbpZbgipPxgqIZAylJlNMCU-4kau4BGpEPN1PT0kqKZMkjgOf28RxGBR92jWrbMc-Qc3kJYlOEfY8bgvYpRtBWRn4RFAScyBMkKa5o5RoI7tGIZSmQ7kelLEMaynaU1hhF2rswgq7NrJWq9KqQ8eGeFYDHH5BJoQksmFlZ3UefvWqs78uOEfN_LWILoDn5OLSnONP4g8AWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+better+shale+gas+production+forecasting+using+transfer+learning&rft.jtitle=Upstream+Oil+and+Gas+Technology&rft.au=Alolayan%2C+Omar+S.&rft.au=Raymond%2C+Samuel+J.&rft.au=Montgomery%2C+Justin+B.&rft.au=Williams%2C+John+R.&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-2604&rft.eissn=2666-2604&rft.volume=9&rft_id=info:doi/10.1016%2Fj.upstre.2022.100072&rft.externalDocID=S266626042200010X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-2604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-2604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-2604&client=summon