Towards better shale gas production forecasting using transfer learning
Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the...
        Saved in:
      
    
          | Published in | Upstream Oil and Gas Technology Vol. 9; p. 100072 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2666-2604 2666-2604  | 
| DOI | 10.1016/j.upstre.2022.100072 | 
Cover
| Abstract | Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model. | 
    
|---|---|
| AbstractList | Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model. | 
    
| ArticleNumber | 100072 | 
    
| Author | Alolayan, Omar S. Montgomery, Justin B. Williams, John R. Raymond, Samuel J.  | 
    
| Author_xml | – sequence: 1 givenname: Omar S. orcidid: 0000-0002-1542-6253 surname: Alolayan fullname: Alolayan, Omar S. email: olyanos@mit.edu organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States – sequence: 2 givenname: Samuel J. orcidid: 0000-0003-2691-652X surname: Raymond fullname: Raymond, Samuel J. organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States – sequence: 3 givenname: Justin B. surname: Montgomery fullname: Montgomery, Justin B. organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States – sequence: 4 givenname: John R. surname: Williams fullname: Williams, John R. organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, United States  | 
    
| BookMark | eNqNkMtOwzAQRS1UJErpH7DIDyQ4E8dpWCChCgpSJTZlbTl-FFfBiWyHqn-Po7BALIDNzOjqnlmcSzSznVUIXec4y3FObw7Z0PvgVAYYIEYYV3CG5kApTYFiMvt2X6Cl94dYgbIGvCrmaLPrjtxJnzQqBOUS_8Zbley5T3rXyUEE09lEd04J7oOx-2Tw4wyOW69jv1Xc2ZhcoXPNW6-WX3uBXh8fduundPuyeV7fb1NRlBDSBiQVWuK61gRDJSvZ0KZUpeQCyhzTuqhyKUBAJbDW9YoXmJCKkBWGopYFKRaonP4OtuenI29b1jvzzt2J5ZiNQtiBTULYKIRNQiJHJk64znun9H-x2x-YMIGPUqIB0_4F302wikI-jHLMC6OsUNJEn4HJzvz-4BNjK5Kr | 
    
| CitedBy_id | crossref_primary_10_3390_pr11113105 crossref_primary_10_1021_acs_energyfuels_3c00234 crossref_primary_10_1016_j_cageo_2023_105452 crossref_primary_10_1016_j_geoen_2023_212131 crossref_primary_10_1016_j_energy_2023_127443 crossref_primary_10_1017_dce_2024_10 crossref_primary_10_3390_electronics13234750 crossref_primary_10_1007_s10479_024_05986_7 crossref_primary_10_2118_223588_PA crossref_primary_10_3390_app15042156 crossref_primary_10_1016_j_engappai_2024_109465 crossref_primary_10_3390_en16020860 crossref_primary_10_1016_j_egyr_2023_06_026  | 
    
| Cites_doi | 10.3390/en11030552 10.1073/pnas.1313380110 10.3390/en13112765 10.1016/j.jngse.2015.03.025 10.1090/qam/10666 10.1016/j.upstre.2020.100022 10.2118/08-07-57 10.1109/JPROC.2020.3004555 10.2118/192046-MS 10.1137/0111030 10.1016/j.apenergy.2017.03.038  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.upstre.2022.100072 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2666-2604 | 
    
| ExternalDocumentID | 10.1016/j.upstre.2022.100072 10_1016_j_upstre_2022_100072 S266626042200010X  | 
    
| GroupedDBID | AAEDW AAHCO AAIAV AAXUO ABQYD ACRLP AEBSH AFKWA AIEXJ AIKHN ALMA_UNASSIGNED_HOLDINGS AMRAJ ATOGT AXJTR BELTK BKOJK EBS EFJIC EFLBG FDB FYGXN M41 ROL SPC SPCBC SSE SSR T5K 0R~ AALRI AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AITUG AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c352t-b2d6cfd099f4027d7db6b5e5dac251069371dc2c27c0ff98a304474480239d343 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 2666-2604 | 
    
| IngestDate | Tue Aug 19 09:35:46 EDT 2025 Wed Oct 01 03:08:07 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Fri Feb 23 02:39:33 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Decline curve analysis Shale gas forecasting County-specific models Transfer learning Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-b2d6cfd099f4027d7db6b5e5dac251069371dc2c27c0ff98a304474480239d343 | 
    
| ORCID | 0000-0003-2691-652X 0000-0002-1542-6253  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S266626042200010X | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_upstre_2022_100072 crossref_primary_10_1016_j_upstre_2022_100072 crossref_citationtrail_10_1016_j_upstre_2022_100072 elsevier_sciencedirect_doi_10_1016_j_upstre_2022_100072  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2022 2022-09-00  | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Upstream Oil and Gas Technology | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | US Energy Information Administration, Oil and gas supply module of the national energy modeling system 2018b (2018). Lee, Lim, Yoon, Jung (bib0005) 2019; 24 Xia, Xu, Yuan, Xin (bib0043) 2020 Montgomery, Raymond, O’Sullivan, Williams (bib0015) 2020; 5 A. Ataei, E. Motaei, M.E. Yazdi, R. Masoudi, A. Bashir, Rate Transient Analysis RTA and Its Application for Well Connectivity Analysis: An Integrated Production Driven Reservoir Characterization and a Case Study, volume Day 1 Tue, October 23, 2018 of SPE Asia Pacific Oil and Gas Conference and Exhibition, D011S001R001 Manda, Nkazi (bib0008) 2020; 13 Patzek, Male, Marder (bib0009) 2013; 110 Deng, Dong, Socher, Li (bib0034) 2009 Li, Han (bib0017) 2017 US Energy Information Administration. URL Accessed: 2021-01-30. Accessed: 2020-01-30. Yang, Zhang, Dai, Pan (bib0031) 2020 Clark, Lake, Patzek (bib0012) 2011 Accessed: 2020-09-30. Pan, Yang (bib0032) 2010; 22 Marquardt (bib0025) 1963; 11 Goodfellow, Bengio, Courville (bib0036) 2016 Zhao, Wang, Sun, Jiang, Yu, Kang, Wang (bib0014) 2020; 7 Kingma, Ba (bib0029) 2017 De Holanda, Gildin, Valko (bib0010) 2018 Clarkson, Williams-Kovacs, Qanbari, Heidari Sureshjanid (bib0004) 2015; 26 . J. Brownlee, Use early stopping to halt the training of neural networks at the right time, 2019 A. Agosta, G. Boccara, B. Heringa, N. Browne, D. Dediu, Mckinsey & company global gas outlook to 2050, 2021 Accessed: 2021-03-30. Hastie, Tibshirani, Friedman (bib0027) 2016 2018. D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, L. van der Maaten, Exploring the limits of weakly supervised pretraining Accessed: 2021-05-30. Lee, Sidel (bib0003) 2010; 2 Sun, Ma, Kazi (bib0018) 2018 Railroad Commission of Texas, Online research queries, 2019 Arps (bib0013) 1945; 160 Pennsylvania Department of Environmental Protection, Pa oil and gas mapping, 2020 M. Nielsen, Neural Networks and Deep Learning, 2020. Huston (bib0040) 2018; 359 Tan, Zuo, Wang (bib0007) 2018; 11 Bishop (bib0038) 2006 Duong (bib0011) 2011 J. Brownlee, How to classify photos of dogs and cats (with 97% accuracy), 2019 Zisserman, Simonyan (bib0033) 2015 Al-Fattah, Startzman (bib0016) 2001 Han, Jung, Kwon (bib0006) 2020; 10 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0028) 2014; 15 F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning, 2020. Montgomery, O’Sullivan (bib0042) 2017; 195 (2018). M. Newville, T. Stensitzki, M. Allen, D.and Rawlik, A. Ingargiola, A. Nelson, Non-linear least-squares minimization and curve-fitting for python, 2020, URL Okuszko, Gault, Mattar (bib0023) 2008 Levenberg (bib0024) 1944; 2 De Holanda (10.1016/j.upstre.2022.100072_bib0010) 2018 Clark (10.1016/j.upstre.2022.100072_bib0012) 2011 Li (10.1016/j.upstre.2022.100072_bib0017) 2017 Montgomery (10.1016/j.upstre.2022.100072_bib0042) 2017; 195 Sun (10.1016/j.upstre.2022.100072_bib0018) 2018 Levenberg (10.1016/j.upstre.2022.100072_bib0024) 1944; 2 Xia (10.1016/j.upstre.2022.100072_bib0043) 2020 Al-Fattah (10.1016/j.upstre.2022.100072_bib0016) 2001 10.1016/j.upstre.2022.100072_bib0022 10.1016/j.upstre.2022.100072_bib0021 10.1016/j.upstre.2022.100072_bib0020 Manda (10.1016/j.upstre.2022.100072_bib0008) 2020; 13 10.1016/j.upstre.2022.100072_bib0041 Hastie (10.1016/j.upstre.2022.100072_bib0027) 2016 Clarkson (10.1016/j.upstre.2022.100072_bib0004) 2015; 26 Lee (10.1016/j.upstre.2022.100072_bib0005) 2019; 24 Zhao (10.1016/j.upstre.2022.100072_bib0014) 2020; 7 Huston (10.1016/j.upstre.2022.100072_bib0040) 2018; 359 10.1016/j.upstre.2022.100072_bib0026 Duong (10.1016/j.upstre.2022.100072_bib0011) 2011 10.1016/j.upstre.2022.100072_bib0002 10.1016/j.upstre.2022.100072_bib0001 Kingma (10.1016/j.upstre.2022.100072_bib0029) 2017 Yang (10.1016/j.upstre.2022.100072_bib0031) 2020 Deng (10.1016/j.upstre.2022.100072_bib0034) 2009 Srivastava (10.1016/j.upstre.2022.100072_bib0028) 2014; 15 Bishop (10.1016/j.upstre.2022.100072_bib0038) 2006 Tan (10.1016/j.upstre.2022.100072_bib0007) 2018; 11 Han (10.1016/j.upstre.2022.100072_bib0006) 2020; 10 Patzek (10.1016/j.upstre.2022.100072_bib0009) 2013; 110 10.1016/j.upstre.2022.100072_bib0030 Pan (10.1016/j.upstre.2022.100072_bib0032) 2010; 22 Lee (10.1016/j.upstre.2022.100072_bib0003) 2010; 2 Arps (10.1016/j.upstre.2022.100072_bib0013) 1945; 160 Marquardt (10.1016/j.upstre.2022.100072_bib0025) 1963; 11 10.1016/j.upstre.2022.100072_bib0019 Goodfellow (10.1016/j.upstre.2022.100072_bib0036) 2016 Montgomery (10.1016/j.upstre.2022.100072_bib0015) 2020; 5 Zisserman (10.1016/j.upstre.2022.100072_bib0033) 2015 Okuszko (10.1016/j.upstre.2022.100072_bib0023) 2008 10.1016/j.upstre.2022.100072_bib0039 10.1016/j.upstre.2022.100072_bib0037 10.1016/j.upstre.2022.100072_bib0035  | 
    
| References_xml | – volume: 110 start-page: 19731 year: 2013 end-page: 19736 ident: bib0009 article-title: Gas production in the Barnett shale obeys a simple scaling theory publication-title: Proc. Natl. Acad. Sci. – year: 2011 ident: bib0012 article-title: Production forecasting with logistic growth models publication-title: Soc. Pet. Eng. – reference: Accessed: 2021-05-30. – volume: 26 year: 2015 ident: bib0004 article-title: History-matching and forecasting tight/shale gas condensate wells using combined analytical, semi-analytical, and empirical methods publication-title: J. Nat. Gas Sci. Eng. – reference: J. Brownlee, Use early stopping to halt the training of neural networks at the right time, 2019, – volume: 24 start-page: 2423 year: 2019 end-page: 2437 ident: bib0005 article-title: Prediction of shale-gas production at Duvernay formation using deep-learning algorithm publication-title: Soc. Pet. Eng. – year: 2017 ident: bib0029 article-title: Adam: A method for stochastic optimization publication-title: 3rd International Conference for Learning Representations, San Diego – volume: 2 year: 2010 ident: bib0003 article-title: Gas reserves estimation in resource plays publication-title: Soc. Pet. Eng. – volume: 10 year: 2020 ident: bib0006 article-title: Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach publication-title: Appl. Sci. – reference: US Energy Information Administration, Oil and gas supply module of the national energy modeling system 2018b (2018). – year: 2015 ident: bib0033 article-title: Very deep convolutional networks for large-scale image recognition publication-title: International Conference on Learning Representations, San Diego, Ca, USA – year: 2011 ident: bib0011 article-title: Rate-decline analysis for fracture-dominated shale reservoirs publication-title: Soc. Pet. Eng. – volume: 359 year: 2018 ident: bib0040 article-title: American association for the advancement of science publication-title: Am. Assoc. Adv. Sci. – volume: 2 year: 1944 ident: bib0024 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – volume: 7 year: 2020 ident: bib0014 article-title: A logical growth model considering the influence of shale gas reservoirs and development characteristics publication-title: Nat. Gas Ind. B – reference: A. Agosta, G. Boccara, B. Heringa, N. Browne, D. Dediu, Mckinsey & company global gas outlook to 2050, 2021, – reference: D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, L. van der Maaten, Exploring the limits of weakly supervised pretraining, – year: 2018 ident: bib0018 article-title: Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells publication-title: SPE Western Regional Meeting – year: 2018 ident: bib0010 article-title: Combining physics, statistics, and heuristics in the decline-curve analysis of large data sets in unconventional reservoirs publication-title: Soc. Pet. Eng. – reference: . Accessed: 2020-01-30. – year: 2016 ident: bib0036 article-title: Deep Learning – year: 2020 ident: bib0031 article-title: Transfer Learning – reference: . Accessed: 2020-09-30. – volume: 5 year: 2020 ident: bib0015 article-title: Shale gas production forecasting is an ill-posed inverse problem and requires regularization publication-title: Upstream Oil Gas Technol. – volume: 160 year: 1945 ident: bib0013 article-title: Analysis of decline curves publication-title: Trans. Am. Inst. Min. Eng. – reference: Pennsylvania Department of Environmental Protection, Pa oil and gas mapping, 2020, – reference: M. Nielsen, Neural Networks and Deep Learning, 2020. – year: 2017 ident: bib0017 article-title: Decline curve analysis for production forecasting based on machine learning publication-title: SPE Symposium: Production Enhancement and Cost Optimisation, Kuala Lumpur, Malaysia – reference: . Accessed: 2021-03-30. – volume: 13 start-page: 2765 year: 2020 ident: bib0008 article-title: The evaluation and sensitivity of decline curve modelling publication-title: Energies – reference: . Accessed: 2021-01-30. – reference: F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning, 2020. – volume: 11 year: 1963 ident: bib0025 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0028 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – reference: J. Brownlee, How to classify photos of dogs and cats (with 97% accuracy), 2019, – volume: 195 year: 2017 ident: bib0042 article-title: Spatial variability of tight oil well productivity and the impact of technology publication-title: Appl. Energy – volume: 11 year: 2018 ident: bib0007 article-title: Methods of decline curve analysis for shale gas reservoirs publication-title: Energies – reference: . Accessed: 2021-05-30. – year: 2009 ident: bib0034 article-title: Imagenet: a large-scale hierarchical image database publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA – reference: A. Ataei, E. Motaei, M.E. Yazdi, R. Masoudi, A. Bashir, Rate Transient Analysis RTA and Its Application for Well Connectivity Analysis: An Integrated Production Driven Reservoir Characterization and a Case Study, volume Day 1 Tue, October 23, 2018 of SPE Asia Pacific Oil and Gas Conference and Exhibition, D011S001R001, – year: 2001 ident: bib0016 article-title: Predicting natural gas production using artificial neural network publication-title: Soc. Pet. Eng. – year: 2020 ident: bib0043 article-title: Effect of Perforation Interval Design on Gas Production from the Validated Hydrate-Bearing Deposits with Layered Heterogeneity by Depressurization – year: 2016 ident: bib0027 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – reference: , 2018. – year: 2006 ident: bib0038 article-title: Pattern Recognition and Machine Learning – reference: M. Newville, T. Stensitzki, M. Allen, D.and Rawlik, A. Ingargiola, A. Nelson, Non-linear least-squares minimization and curve-fitting for python, 2020, URL: – reference: US Energy Information Administration. URL – reference: Railroad Commission of Texas, Online research queries, 2019, – year: 2008 ident: bib0023 article-title: Production decline performance of CBM wells publication-title: J. Can. Pet. Technol. – reference: . – volume: 22 year: 2010 ident: bib0032 article-title: A survey on transfer learning publication-title: Inst. Electr. Electron. Eng. Trans. Knowl. Data Eng. – reference: (2018). – year: 2020 ident: 10.1016/j.upstre.2022.100072_bib0043 – volume: 11 year: 2018 ident: 10.1016/j.upstre.2022.100072_bib0007 article-title: Methods of decline curve analysis for shale gas reservoirs publication-title: Energies doi: 10.3390/en11030552 – volume: 110 start-page: 19731 year: 2013 ident: 10.1016/j.upstre.2022.100072_bib0009 article-title: Gas production in the Barnett shale obeys a simple scaling theory publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1313380110 – volume: 13 start-page: 2765 year: 2020 ident: 10.1016/j.upstre.2022.100072_bib0008 article-title: The evaluation and sensitivity of decline curve modelling publication-title: Energies doi: 10.3390/en13112765 – year: 2011 ident: 10.1016/j.upstre.2022.100072_bib0011 article-title: Rate-decline analysis for fracture-dominated shale reservoirs publication-title: Soc. Pet. Eng. – year: 2016 ident: 10.1016/j.upstre.2022.100072_bib0027 – volume: 160 year: 1945 ident: 10.1016/j.upstre.2022.100072_bib0013 article-title: Analysis of decline curves publication-title: Trans. Am. Inst. Min. Eng. – year: 2017 ident: 10.1016/j.upstre.2022.100072_bib0029 article-title: Adam: A method for stochastic optimization – year: 2006 ident: 10.1016/j.upstre.2022.100072_bib0038 – volume: 7 year: 2020 ident: 10.1016/j.upstre.2022.100072_bib0014 article-title: A logical growth model considering the influence of shale gas reservoirs and development characteristics publication-title: Nat. Gas Ind. B – year: 2020 ident: 10.1016/j.upstre.2022.100072_bib0031 – volume: 26 year: 2015 ident: 10.1016/j.upstre.2022.100072_bib0004 article-title: History-matching and forecasting tight/shale gas condensate wells using combined analytical, semi-analytical, and empirical methods publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.03.025 – volume: 2 year: 2010 ident: 10.1016/j.upstre.2022.100072_bib0003 article-title: Gas reserves estimation in resource plays publication-title: Soc. Pet. Eng. – ident: 10.1016/j.upstre.2022.100072_bib0002 – ident: 10.1016/j.upstre.2022.100072_bib0021 – year: 2001 ident: 10.1016/j.upstre.2022.100072_bib0016 article-title: Predicting natural gas production using artificial neural network publication-title: Soc. Pet. Eng. – volume: 2 year: 1944 ident: 10.1016/j.upstre.2022.100072_bib0024 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – year: 2018 ident: 10.1016/j.upstre.2022.100072_bib0018 article-title: Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells – year: 2015 ident: 10.1016/j.upstre.2022.100072_bib0033 article-title: Very deep convolutional networks for large-scale image recognition – ident: 10.1016/j.upstre.2022.100072_bib0037 – volume: 5 year: 2020 ident: 10.1016/j.upstre.2022.100072_bib0015 article-title: Shale gas production forecasting is an ill-posed inverse problem and requires regularization publication-title: Upstream Oil Gas Technol. doi: 10.1016/j.upstre.2020.100022 – year: 2011 ident: 10.1016/j.upstre.2022.100072_bib0012 article-title: Production forecasting with logistic growth models publication-title: Soc. Pet. Eng. – year: 2008 ident: 10.1016/j.upstre.2022.100072_bib0023 article-title: Production decline performance of CBM wells publication-title: J. Can. Pet. Technol. doi: 10.2118/08-07-57 – ident: 10.1016/j.upstre.2022.100072_bib0030 doi: 10.1109/JPROC.2020.3004555 – ident: 10.1016/j.upstre.2022.100072_bib0039 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.upstre.2022.100072_bib0028 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 359 year: 2018 ident: 10.1016/j.upstre.2022.100072_bib0040 article-title: American association for the advancement of science publication-title: Am. Assoc. Adv. Sci. – ident: 10.1016/j.upstre.2022.100072_bib0019 – ident: 10.1016/j.upstre.2022.100072_bib0035 – ident: 10.1016/j.upstre.2022.100072_bib0022 doi: 10.2118/192046-MS – volume: 11 year: 1963 ident: 10.1016/j.upstre.2022.100072_bib0025 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 24 start-page: 2423 year: 2019 ident: 10.1016/j.upstre.2022.100072_bib0005 article-title: Prediction of shale-gas production at Duvernay formation using deep-learning algorithm publication-title: Soc. Pet. Eng. – year: 2009 ident: 10.1016/j.upstre.2022.100072_bib0034 article-title: Imagenet: a large-scale hierarchical image database – volume: 10 year: 2020 ident: 10.1016/j.upstre.2022.100072_bib0006 article-title: Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach publication-title: Appl. Sci. – ident: 10.1016/j.upstre.2022.100072_bib0020 – year: 2017 ident: 10.1016/j.upstre.2022.100072_bib0017 article-title: Decline curve analysis for production forecasting based on machine learning – year: 2018 ident: 10.1016/j.upstre.2022.100072_bib0010 article-title: Combining physics, statistics, and heuristics in the decline-curve analysis of large data sets in unconventional reservoirs publication-title: Soc. Pet. Eng. – ident: 10.1016/j.upstre.2022.100072_bib0001 – volume: 22 year: 2010 ident: 10.1016/j.upstre.2022.100072_bib0032 article-title: A survey on transfer learning publication-title: Inst. Electr. Electron. Eng. Trans. Knowl. Data Eng. – ident: 10.1016/j.upstre.2022.100072_bib0041 – ident: 10.1016/j.upstre.2022.100072_bib0026 – year: 2016 ident: 10.1016/j.upstre.2022.100072_bib0036 – volume: 195 year: 2017 ident: 10.1016/j.upstre.2022.100072_bib0042 article-title: Spatial variability of tight oil well productivity and the impact of technology publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.038  | 
    
| SSID | ssj0002592083 | 
    
| Score | 2.3109007 | 
    
| Snippet | Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 100072 | 
    
| SubjectTerms | County-specific models Decline curve analysis Machine learning Shale gas forecasting Transfer learning  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1qexAPfosVlT14TbvdfGxyLMVaPBTBFuop7EdSqyUGkyD6651NNqUKUsVrmCXZvGXnDbw3g9CVHyhg4Sy2lCLCcnxOrED52gjcU5xE1GOiFMiOvdHUuZ25swYa1F4YLas0d391p5e3tXnSNX-zmy4W3XtILZqNO1S7TXpktoVanguEvIla0_Fd_0GPlYMQS8fUprlS2VWk2ocBtSGlWiRAGP0pKW0XScrf3_hyuZZ0hntI1Z9baU2eO0UuOvLjWyfHf-5nH-0aUor7VdwBakTJIdpZa1V4hG4mpb42w6L0_-DsETILnvMMp1XPWMAXAwGOJM-0khprQf0c5yUvhngznWJ-jKbD68lgZJkhDJYEbpZbgipPxgqIZAylJlNMCU-4kau4BGpEPN1PT0kqKZMkjgOf28RxGBR92jWrbMc-Qc3kJYlOEfY8bgvYpRtBWRn4RFAScyBMkKa5o5RoI7tGIZSmQ7kelLEMaynaU1hhF2rswgq7NrJWq9KqQ8eGeFYDHH5BJoQksmFlZ3UefvWqs78uOEfN_LWILoDn5OLSnONP4g8AWg priority: 102 providerName: Unpaywall  | 
    
| Title | Towards better shale gas production forecasting using transfer learning | 
    
| URI | https://dx.doi.org/10.1016/j.upstre.2022.100072 https://www.sciencedirect.com/science/article/pii/S266626042200010X  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 2666-2604 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0002592083 issn: 2666-2604 databaseCode: ACRLP dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 2666-2604 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0002592083 issn: 2666-2604 databaseCode: AIKHN dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2666-2604 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002592083 issn: 2666-2604 databaseCode: AKRWK dateStart: 20191201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze1AfxCvOy8iDr3FZekn7OIZzXhhDN5hPJWnaORm12A7x33vSpmM-yMSnkpJDypdwznfKd04QuvJ8BSycx0QpKontCUp85elC4I4SNGIul4VAdugOJvb91JnWUK-qhdGySuP7S59eeGvzpm3QbKfzefsZQotm4zbT1SYdOt1CDYg_nldHje7dw2C4-tUCDJ_RoiGnNiHapiqiK5Rey1TXZUCuyJgWDVDOfgtS28skFV-fYrFYC0L9fbRn2CPulh94gGpRcoh213oKHqHbcSGEzbAsCnVw9gohAM9EhtOyuStsBAamGoUi05JnrJXvM5wXBBbmm2skZsdo0r8Z9wbE3JZAQiBROZFMuWGsgPHFkBNyxZV0pRM5SoTAYairG9-pkIWMhzSOfU9Y1LY5ZGe6vFVZtnWC6sl7Ep0i7LrCkoCVE0H-53tUMhoLYDYQT4WtlGwiq4InCE0rcX2jxSKoNGNvQQlqoEENSlCbiKys0rKVxob5vEI--HEkAvD2GyyvVxv1p6XO_r3UOdrRo1J1doHq-ccyugSakssWHMPe0-OoZY4jPCfDUfflG7bm6QM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QDujB-Bnxswevk9p9dDsSIoIgFyHh1rTrhhgyFzdi_O993TqCB4PxuvWly2v73u8tv98rQrd-oACFs9hSikjL8QWxAuVrIfC9EiSiHpMFQXbs9afO08yd1VC30sJoWqWJ_WVML6K1edI23myni0X7BVKLRuMO1WqTezLbQQ3HtRmczkZnMOyP179aAOFTUjTk1CaWtqlEdAXTa5VqXQbUipRq0gBh9Lck1Vwlqfj6FMvlRhLqHaB9gx5xp_zAQ1SLkiO0t9FT8Bg9TgoibIZlIdTB2SukADwXGU7L5q6wEBiQahSKTFOesWa-z3FeAFgYb66RmJ-gae9h0u1b5rYEKwQQlVuSKi-MFSC-GGpCppiSnnQjV4kQMAzxdOM7FdKQspDEceALmzgOg-pMy1uV7dinqJ68J9EZwp4nbAm-ciOo_wKfSEpiAcgG8qlwlJItZFfu4aFpJa5vtFjyijP2xkuncu1UXjq1hay1VVq20tgynlWe5z-2BIdov8Xybr1Qf5rq_N9T3aBmf_I84qPBeHiBdvWbkoF2ier5xyq6AsiSy2uzJb8BEEvonw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1qexAPfosVlT14TbvdfGxyLMVaPBTBFuop7EdSqyUGkyD6651NNqUKUsVrmCXZvGXnDbw3g9CVHyhg4Sy2lCLCcnxOrED52gjcU5xE1GOiFMiOvdHUuZ25swYa1F4YLas0d391p5e3tXnSNX-zmy4W3XtILZqNO1S7TXpktoVanguEvIla0_Fd_0GPlYMQS8fUprlS2VWk2ocBtSGlWiRAGP0pKW0XScrf3_hyuZZ0hntI1Z9baU2eO0UuOvLjWyfHf-5nH-0aUor7VdwBakTJIdpZa1V4hG4mpb42w6L0_-DsETILnvMMp1XPWMAXAwGOJM-0khprQf0c5yUvhngznWJ-jKbD68lgZJkhDJYEbpZbgipPxgqIZAylJlNMCU-4kau4BGpEPN1PT0kqKZMkjgOf28RxGBR92jWrbMc-Qc3kJYlOEfY8bgvYpRtBWRn4RFAScyBMkKa5o5RoI7tGIZSmQ7kelLEMaynaU1hhF2rswgq7NrJWq9KqQ8eGeFYDHH5BJoQksmFlZ3UefvWqs78uOEfN_LWILoDn5OLSnONP4g8AWg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+better+shale+gas+production+forecasting+using+transfer+learning&rft.jtitle=Upstream+Oil+and+Gas+Technology&rft.au=Alolayan%2C+Omar+S.&rft.au=Raymond%2C+Samuel+J.&rft.au=Montgomery%2C+Justin+B.&rft.au=Williams%2C+John+R.&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-2604&rft.eissn=2666-2604&rft.volume=9&rft_id=info:doi/10.1016%2Fj.upstre.2022.100072&rft.externalDocID=S266626042200010X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-2604&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-2604&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-2604&client=summon |