An evaluation of ECG data fusion algorithms for wearable IoT sensors

In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from multiple sensor sources has the potential to enhance accuracy, even in the presence of disruptive noise. This paper aims to introduce and compa...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 96; pp. 237 - 251
Main Authors John, Arlene, Padinjarathala, Antony, Doheny, Emer, Cardiff, Barry, John, Deepu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text
ISSN1566-2535
1872-6305
1872-6305
DOI10.1016/j.inffus.2023.03.017

Cover

Abstract In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from multiple sensor sources has the potential to enhance accuracy, even in the presence of disruptive noise. This paper aims to introduce and compare various existing state-of-the-art and novel data fusion techniques to improve the reliability of heart rate estimation. The comparisons were implemented using the MIT-BIH Arrhythmia database with additive noise signals taken from MIT Noise Stress Test Database. When it comes to the challenging low signal-to-noise ratio (SNR) regions, the Kalman fusion and the α-trim mean filtering approach exhibits the best performance. The Kalman fusion approach dominates when both channels are corrupted, while the α-trim mean filtering elimination algorithm takes the lead when at least one channel is clean. To make the most of these strengths, we have developed an innovative algorithm that can switch between the two fusion methods based on a signal quality indicator (SQI) that serves as a surrogate SNR. This algorithm outperforms the baseline 2-channel RR-interval averaging approach by ≃54% and ≃21% at SNRs of 20dB and −20dB respectively. Moreover, it outperforms other cutting-edge heart rate estimation methods. •Investigation of fusion methods for heart rate estimation from ECG signals.•Signal quality aware fusion algorithm selection.•Fusion methods analyzed at varying input signal-to-noise ratios.•Signal quality index proposed as a surrogate for input signal-to-noise ratio.•Fusion selection method proposed for varying input signal-to-noise ratios.
AbstractList In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from multiple sensor sources has the potential to enhance accuracy, even in the presence of disruptive noise. This paper aims to introduce and compare various existing state-of-the-art and novel data fusion techniques to improve the reliability of heart rate estimation. The comparisons were implemented using the MIT-BIH Arrhythmia database with additive noise signals taken from MIT Noise Stress Test Database. When it comes to the challenging low signal-to-noise ratio (SNR) regions, the Kalman fusion and the α-trim mean filtering approach exhibits the best performance. The Kalman fusion approach dominates when both channels are corrupted, while the α-trim mean filtering elimination algorithm takes the lead when at least one channel is clean. To make the most of these strengths, we have developed an innovative algorithm that can switch between the two fusion methods based on a signal quality indicator (SQI) that serves as a surrogate SNR. This algorithm outperforms the baseline 2-channel RR-interval averaging approach by ≃54% and ≃21% at SNRs of 20dB and −20dB respectively. Moreover, it outperforms other cutting-edge heart rate estimation methods. •Investigation of fusion methods for heart rate estimation from ECG signals.•Signal quality aware fusion algorithm selection.•Fusion methods analyzed at varying input signal-to-noise ratios.•Signal quality index proposed as a surrogate for input signal-to-noise ratio.•Fusion selection method proposed for varying input signal-to-noise ratios.
Author John, Arlene
Padinjarathala, Antony
Cardiff, Barry
Doheny, Emer
John, Deepu
Author_xml – sequence: 1
  givenname: Arlene
  orcidid: 0000-0001-7310-284X
  surname: John
  fullname: John, Arlene
  email: arlene.john@ucdconnect.ie
– sequence: 2
  givenname: Antony
  surname: Padinjarathala
  fullname: Padinjarathala, Antony
– sequence: 3
  givenname: Emer
  surname: Doheny
  fullname: Doheny, Emer
– sequence: 4
  givenname: Barry
  surname: Cardiff
  fullname: Cardiff, Barry
– sequence: 5
  givenname: Deepu
  surname: John
  fullname: John, Deepu
BookMark eNqNkM1KAzEURoNUsK2-gYu8wIz5aTJTF0KptRYKbuo63MkkmjJNSjKt9O2dOq5cqPDBvVzu-RZnhAY-eIPQLSU5JVTebXPnrT2knBHGc9KFFhdoSMuCZZITMeh2IWXGBBdXaJTSlnQfhNMhepx5bI7QHKB1weNg8WK-xDW0gLvC8wmatxBd-75L2IaIPwxEqBqDV2GDk_EpxHSNLi00ydx8zzF6fVps5s_Z-mW5ms_WmeaCtVlFWWUsp5XmEyGF0GA48LooawpAZFkRqEtDS0bLSko6lXYqWSGnAmoJWlg-RqLvPfg9nD6gadQ-uh3Ek6JEnVWorepVqLMKRbrQouMmPadjSCka-1_s_gemXfvlqY3gmr_ghx42nZCjM1El7YzXpnbR6FbVwf1e8Al2MZBM
CitedBy_id crossref_primary_10_3390_s24248043
crossref_primary_10_1016_j_inffus_2023_102076
crossref_primary_10_1016_j_enconman_2024_118361
crossref_primary_10_1016_j_eswa_2025_126995
crossref_primary_10_1016_j_inffus_2023_102023
crossref_primary_10_1016_j_applthermaleng_2024_125225
crossref_primary_10_1016_j_compbiomed_2025_109901
crossref_primary_10_1016_j_heliyon_2023_e22420
crossref_primary_10_1049_htl2_12121
crossref_primary_10_1016_j_displa_2023_102605
crossref_primary_10_1016_j_inffus_2024_102391
Cites_doi 10.1088/1361-6579/ac7938
10.1016/j.inffus.2016.09.005
10.1016/j.bspc.2016.12.004
10.1109/OJCAS.2020.3009520
10.1023/A:1007476707284
10.1109/5.554205
10.1016/j.ins.2021.09.046
10.1109/TITB.2011.2128337
10.1186/cc1021
10.3390/app9010105
10.1016/j.inffus.2021.07.010
10.1186/cc7129
10.1016/j.inffus.2019.06.024
10.1016/j.bspc.2022.104302
10.1109/JBHI.2014.2311582
10.1016/j.cmpb.2014.09.002
10.1109/TBME.1979.326461
10.1109/JIOT.2017.2670022
10.1016/j.inffus.2020.03.010
10.1109/ACCESS.2019.2902619
10.1109/JBHI.2013.2274211
10.1109/EMBC.2015.7319896
10.1109/51.932724
10.3390/math10111911
10.1016/j.inffus.2019.06.004
10.1161/01.CIR.101.23.e215
10.1109/JIOT.2018.2844090
10.1007/s11831-021-09597-4
10.1088/0967-3334/36/8/1629
10.1109/JIOT.2020.2977164
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.inffus.2023.03.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
EndPage 251
ExternalDocumentID 10.1016/j.inffus.2023.03.017
10_1016_j_inffus_2023_03_017
S1566253523001069
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c352t-b12bef31bc345655cae3a3d78d1aa068b0ad8e18218b66196f9627695ad6ac5f3
IEDL.DBID UNPAY
ISSN 1566-2535
1872-6305
IngestDate Tue Aug 19 19:22:57 EDT 2025
Wed Oct 29 21:06:27 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Fri Feb 23 02:37:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrocardiography
Data fusion
Signal quality indicators
Bayesian filtering
Kalman fusion
Heart rate estimation
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b12bef31bc345655cae3a3d78d1aa068b0ad8e18218b66196f9627695ad6ac5f3
ORCID 0000-0001-7310-284X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.inffus.2023.03.017
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_inffus_2023_03_017
crossref_primary_10_1016_j_inffus_2023_03_017
crossref_citationtrail_10_1016_j_inffus_2023_03_017
elsevier_sciencedirect_doi_10_1016_j_inffus_2023_03_017
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gravina (b9) 2017; 35
Rankawat, Rankawat, Dubey (b26) 2015
John (b3) 2021
Rankawat, Dubey (b22) 2017; 33
Chambrin (b8) 2001; 5
Silva, Moody (b40) 2014; 2
Pimentel (b29) 2014
Satija, Ramkumar, Sabarimalai Manikandan (b31) 2017; 4
John, Cardiff, John (b34) 2020
Hassan (b12) 2022; 77
Silva, Moody, Celi (b36) 2011
Bruser (b20) 2011; 15
Feng (b13) 2022; 582
Schumm (b16) 2010
Moody, Muldrow, Mark (b39) 1984; vol. 11
Liu (b5) 2019; 6
Cecconi (b42) 2009; 13
Montella (b43) 2011
John (b33) 2020; 1
Feldman, Ebrahim, Bar-Kana (b41) 1997; 13
Goldberger (b38) 2000; 101
V. Nathan, I. Akkaya, R. Jafari, A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2015, pp. 6560–6565.
He (b44) 2017
Abdel-Basset, Ding, Abdel-Fatah (b2) 2020; 61
Dong (b15) 2022; 43
Orphanidou (b32) 2015; 19
Santos (b1) 2020; 53
Zhang (b19) 2023; 80
Wartzek (b7) 2014; 18
Meqdad, Abdali-Mohammadi, Kadry (b14) 2022; 10
Wu (b6) 2020; 7
Yao (b4) 2020; 53
Pankaj (b18) 2022; 29
Diao, Wang, Cai (b27) 2019; 9
Johnson (b30) 2014
Li, Rajagopalan, Clifford (b35) 2014; 117
Okada (b17) 1979; BME-26
Xie, Li, Zhu, Liu (b24) 2019; 7
Di, Li, Liu (b25) 2020
John (b10) 2021
Hall, Llinas (b11) 1997; 85
Moody, Mark (b37) 2001; 20
Silva (b21) 2015; 36
Brüser (b28) 2015; 19
Santos (10.1016/j.inffus.2023.03.017_b1) 2020; 53
Silva (10.1016/j.inffus.2023.03.017_b21) 2015; 36
Abdel-Basset (10.1016/j.inffus.2023.03.017_b2) 2020; 61
Moody (10.1016/j.inffus.2023.03.017_b37) 2001; 20
Yao (10.1016/j.inffus.2023.03.017_b4) 2020; 53
Gravina (10.1016/j.inffus.2023.03.017_b9) 2017; 35
Zhang (10.1016/j.inffus.2023.03.017_b19) 2023; 80
Bruser (10.1016/j.inffus.2023.03.017_b20) 2011; 15
Meqdad (10.1016/j.inffus.2023.03.017_b14) 2022; 10
Pankaj (10.1016/j.inffus.2023.03.017_b18) 2022; 29
John (10.1016/j.inffus.2023.03.017_b34) 2020
Okada (10.1016/j.inffus.2023.03.017_b17) 1979; BME-26
Liu (10.1016/j.inffus.2023.03.017_b5) 2019; 6
Pimentel (10.1016/j.inffus.2023.03.017_b29) 2014
Schumm (10.1016/j.inffus.2023.03.017_b16) 2010
Moody (10.1016/j.inffus.2023.03.017_b39) 1984; vol. 11
Goldberger (10.1016/j.inffus.2023.03.017_b38) 2000; 101
Orphanidou (10.1016/j.inffus.2023.03.017_b32) 2015; 19
Diao (10.1016/j.inffus.2023.03.017_b27) 2019; 9
Hall (10.1016/j.inffus.2023.03.017_b11) 1997; 85
John (10.1016/j.inffus.2023.03.017_b3) 2021
Montella (10.1016/j.inffus.2023.03.017_b43) 2011
John (10.1016/j.inffus.2023.03.017_b10) 2021
Satija (10.1016/j.inffus.2023.03.017_b31) 2017; 4
Rankawat (10.1016/j.inffus.2023.03.017_b22) 2017; 33
Silva (10.1016/j.inffus.2023.03.017_b40) 2014; 2
He (10.1016/j.inffus.2023.03.017_b44) 2017
Feng (10.1016/j.inffus.2023.03.017_b13) 2022; 582
Hassan (10.1016/j.inffus.2023.03.017_b12) 2022; 77
Rankawat (10.1016/j.inffus.2023.03.017_b26) 2015
Brüser (10.1016/j.inffus.2023.03.017_b28) 2015; 19
John (10.1016/j.inffus.2023.03.017_b33) 2020; 1
Dong (10.1016/j.inffus.2023.03.017_b15) 2022; 43
Johnson (10.1016/j.inffus.2023.03.017_b30) 2014
Silva (10.1016/j.inffus.2023.03.017_b36) 2011
Di (10.1016/j.inffus.2023.03.017_b25) 2020
Chambrin (10.1016/j.inffus.2023.03.017_b8) 2001; 5
Cecconi (10.1016/j.inffus.2023.03.017_b42) 2009; 13
Li (10.1016/j.inffus.2023.03.017_b35) 2014; 117
Wu (10.1016/j.inffus.2023.03.017_b6) 2020; 7
Wartzek (10.1016/j.inffus.2023.03.017_b7) 2014; 18
Xie (10.1016/j.inffus.2023.03.017_b24) 2019; 7
10.1016/j.inffus.2023.03.017_b23
Feldman (10.1016/j.inffus.2023.03.017_b41) 1997; 13
References_xml – volume: 80
  year: 2023
  ident: b19
  article-title: A Conv -Transformer network for heart rate estimation using ballistocardiographic signals
  publication-title: Biomed. Signal Process. Control
– volume: 53
  start-page: 174
  year: 2020
  end-page: 182
  ident: b4
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
– start-page: 281
  year: 2014
  end-page: 284
  ident: b30
  article-title: R-peak estimation using multimodal lead switching
  publication-title: Computing in Cardiology
– start-page: 1534
  year: 2015
  end-page: 1539
  ident: b26
  article-title: Heart rate estimation from non-cardiovascular signals using slope sum function and Teager energy
  publication-title: 2015 International Conference on Industrial Instrumentation and Control
– volume: vol. 11
  start-page: 381
  year: 1984
  end-page: 384
  ident: b39
  article-title: A noise stress test for arrhythmia detectors
  publication-title: Computers in Cardiology
– volume: 43
  year: 2022
  ident: b15
  article-title: Detection of arrhythmia in 12-lead varied-length ECG using multi-branch Signal Fusion Network
  publication-title: Physiol. Meas.
– start-page: 273
  year: 2011
  end-page: 276
  ident: b36
  article-title: Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in cardiology challenge 2011
  publication-title: 2011 Computing in Cardiology
– volume: 13
  start-page: 379
  year: 1997
  end-page: 384
  ident: b41
  article-title: Robust sensor fusion improves heart rate estimation: Clinical evaluation
  publication-title: J. Clin. Monit.
– volume: 19
  start-page: 227
  year: 2015
  end-page: 235
  ident: b28
  article-title: Improvement of force-sensor-based heart rate estimation using multichannel data fusion
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b37
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 53
  start-page: 222
  year: 2020
  end-page: 239
  ident: b1
  article-title: Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook
  publication-title: Inf. Fusion
– volume: 61
  start-page: 84
  year: 2020
  end-page: 100
  ident: b2
  article-title: The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model
  publication-title: Inf. Fusion
– volume: 77
  start-page: 70
  year: 2022
  end-page: 80
  ident: b12
  article-title: Early detection of cardiovascular autonomic neuropathy: A multi-class classification model based on feature selection and deep learning feature fusion
  publication-title: Inf. Fusion
– start-page: 553
  year: 2014
  end-page: 556
  ident: b29
  article-title: Hidden semi-Markov model-based heartbeat detection using multimodal data and signal quality indices
  publication-title: Computing in Cardiology 2014
– volume: 1
  start-page: 88
  year: 2020
  end-page: 99
  ident: b33
  article-title: Binary classifiers for data integrity detection in wearable IoT edge devices
  publication-title: IEEE Open J. Circuits Syst.
– volume: 29
  start-page: 921
  year: 2022
  end-page: 940
  ident: b18
  article-title: A review on computation methods used in photoplethysmography signal analysis for heart rate estimation
  publication-title: Arch. Comput. Methods Eng.
– volume: 6
  start-page: 1363
  year: 2019
  end-page: 1374
  ident: b5
  article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system
  publication-title: IEEE Internet Things J.
– volume: 19
  start-page: 832
  year: 2015
  end-page: 838
  ident: b32
  article-title: Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 18
  start-page: 654
  year: 2014
  end-page: 660
  ident: b7
  article-title: Robust sensor fusion of unobtrusively measured heart rate
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 307
  year: 2020
  end-page: 312
  ident: b25
  article-title: A Bayesian fusion model for heart rate annotations
  publication-title: 2020 International Conference on Sensing, Measurement Data Analytics in the Era of Artificial Intelligence
– volume: BME-26
  start-page: 700
  year: 1979
  end-page: 703
  ident: b17
  article-title: A digital filter for the QRS complex detection
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2017
  end-page: 7
  ident: b44
  article-title: Application of Kalman filter and k-NN classifier in wearable fall detection device
  publication-title: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
– start-page: 1
  year: 2020
  end-page: 5
  ident: b34
  article-title: A generalized signal quality estimation method for IoT sensors
  publication-title: 2020 IEEE International Symposium on Circuits and Systems
– volume: 5
  start-page: 184
  year: 2001
  end-page: 188
  ident: b8
  article-title: Alarms in the intensive care unit: how can the number of false alarms be reduced?
  publication-title: Crit. Care
– volume: 35
  start-page: 68
  year: 2017
  end-page: 80
  ident: b9
  article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges
  publication-title: Inf. Fusion
– start-page: 1
  year: 2021
  ident: b10
  article-title: Multimodal multiresolution data fusion using convolutional neural networks for wearable sensing
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 582
  start-page: 509
  year: 2022
  end-page: 528
  ident: b13
  article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection
  publication-title: Inform. Sci.
– year: 2010
  ident: b16
  article-title: Quality Assessment of physiological signals during ambulatory measurements
– volume: 7
  start-page: 37664
  year: 2019
  end-page: 37671
  ident: b24
  article-title: Continuous-valued annotations aggregation for heart rate detection
  publication-title: IEEE Access
– volume: 15
  start-page: 778
  year: 2011
  end-page: 786
  ident: b20
  article-title: Adaptive beat-to-beat heart rate estimation in ballistocardiograms
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 13
  start-page: 201
  year: 2009
  ident: b42
  article-title: Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output
  publication-title: Crit. Care
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b38
  article-title: Physiobank physiotoolkit and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 10
  year: 2022
  ident: b14
  article-title: A new 12-lead ECG signals fusion method using evolutionary CNN trees for arrhythmia detection
  publication-title: Mathematics
– volume: 7
  start-page: 6932
  year: 2020
  end-page: 6945
  ident: b6
  article-title: A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications
  publication-title: IEEE Internet Things J.
– volume: 4
  start-page: 815
  year: 2017
  end-page: 823
  ident: b31
  article-title: Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2021
  ident: b3
  article-title: A multimodal data fusion technique for heartbeat detection in wearable IoT sensors
  publication-title: IEEE Internet Things J.
– volume: 33
  start-page: 201
  year: 2017
  end-page: 212
  ident: b22
  article-title: Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method
  publication-title: Biomed. Signal Process. Control
– volume: 2
  year: 2014
  ident: b40
  article-title: An open-source toolbox for analysing and processing PhysioNet Databases in MATLAB and Octave
  publication-title: J. Open Res. Softw.
– volume: 9
  year: 2019
  ident: b27
  article-title: Data fusion of multivariate time series: Application to noisy 12-lead ECG signals
  publication-title: Appl. Sci.
– volume: 36
  start-page: 549
  year: 2015
  end-page: 552
  ident: b21
  article-title: Robust detection of heart beats in multimodal data
  publication-title: Physiol. Meas.
– reference: V. Nathan, I. Akkaya, R. Jafari, A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2015, pp. 6560–6565.
– volume: 85
  start-page: 6
  year: 1997
  end-page: 23
  ident: b11
  article-title: An introduction to multisensor data fusion
  publication-title: Proc. IEEE
– year: 2011
  ident: b43
  article-title: The Kalman filter and related algorithms: A literature review
– volume: 117
  start-page: 435
  year: 2014
  end-page: 447
  ident: b35
  article-title: A machine learning approach to multi-level ECG signal quality classification
  publication-title: Comput. Methods Programs Biomed.
– volume: 43
  issue: 10
  year: 2022
  ident: 10.1016/j.inffus.2023.03.017_b15
  article-title: Detection of arrhythmia in 12-lead varied-length ECG using multi-branch Signal Fusion Network
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac7938
– volume: 35
  start-page: 68
  year: 2017
  ident: 10.1016/j.inffus.2023.03.017_b9
  article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.09.005
– volume: 33
  start-page: 201
  year: 2017
  ident: 10.1016/j.inffus.2023.03.017_b22
  article-title: Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.12.004
– start-page: 1534
  year: 2015
  ident: 10.1016/j.inffus.2023.03.017_b26
  article-title: Heart rate estimation from non-cardiovascular signals using slope sum function and Teager energy
– year: 2010
  ident: 10.1016/j.inffus.2023.03.017_b16
– volume: 1
  start-page: 88
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b33
  article-title: Binary classifiers for data integrity detection in wearable IoT edge devices
  publication-title: IEEE Open J. Circuits Syst.
  doi: 10.1109/OJCAS.2020.3009520
– volume: 13
  start-page: 379
  issue: 6
  year: 1997
  ident: 10.1016/j.inffus.2023.03.017_b41
  article-title: Robust sensor fusion improves heart rate estimation: Clinical evaluation
  publication-title: J. Clin. Monit.
  doi: 10.1023/A:1007476707284
– volume: 85
  start-page: 6
  issue: 1
  year: 1997
  ident: 10.1016/j.inffus.2023.03.017_b11
  article-title: An introduction to multisensor data fusion
  publication-title: Proc. IEEE
  doi: 10.1109/5.554205
– volume: 582
  start-page: 509
  year: 2022
  ident: 10.1016/j.inffus.2023.03.017_b13
  article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.09.046
– volume: 15
  start-page: 778
  issue: 5
  year: 2011
  ident: 10.1016/j.inffus.2023.03.017_b20
  article-title: Adaptive beat-to-beat heart rate estimation in ballistocardiograms
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2128337
– volume: 5
  start-page: 184
  issue: 4
  year: 2001
  ident: 10.1016/j.inffus.2023.03.017_b8
  article-title: Alarms in the intensive care unit: how can the number of false alarms be reduced?
  publication-title: Crit. Care
  doi: 10.1186/cc1021
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.03.017_b27
  article-title: Data fusion of multivariate time series: Application to noisy 12-lead ECG signals
  publication-title: Appl. Sci.
  doi: 10.3390/app9010105
– volume: 77
  start-page: 70
  year: 2022
  ident: 10.1016/j.inffus.2023.03.017_b12
  article-title: Early detection of cardiovascular autonomic neuropathy: A multi-class classification model based on feature selection and deep learning feature fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.07.010
– volume: vol. 11
  start-page: 381
  year: 1984
  ident: 10.1016/j.inffus.2023.03.017_b39
  article-title: A noise stress test for arrhythmia detectors
– start-page: 553
  year: 2014
  ident: 10.1016/j.inffus.2023.03.017_b29
  article-title: Hidden semi-Markov model-based heartbeat detection using multimodal data and signal quality indices
– volume: 13
  start-page: 201
  year: 2009
  ident: 10.1016/j.inffus.2023.03.017_b42
  article-title: Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output
  publication-title: Crit. Care
  doi: 10.1186/cc7129
– start-page: 1
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b34
  article-title: A generalized signal quality estimation method for IoT sensors
– volume: 53
  start-page: 174
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b4
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– volume: 80
  year: 2023
  ident: 10.1016/j.inffus.2023.03.017_b19
  article-title: A Conv -Transformer network for heart rate estimation using ballistocardiographic signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104302
– year: 2011
  ident: 10.1016/j.inffus.2023.03.017_b43
– volume: 19
  start-page: 227
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2023.03.017_b28
  article-title: Improvement of force-sensor-based heart rate estimation using multichannel data fusion
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2311582
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.03.017_b3
  article-title: A multimodal data fusion technique for heartbeat detection in wearable IoT sensors
  publication-title: IEEE Internet Things J.
– volume: 2
  issue: 1
  year: 2014
  ident: 10.1016/j.inffus.2023.03.017_b40
  article-title: An open-source toolbox for analysing and processing PhysioNet Databases in MATLAB and Octave
  publication-title: J. Open Res. Softw.
– volume: 117
  start-page: 435
  issue: 3
  year: 2014
  ident: 10.1016/j.inffus.2023.03.017_b35
  article-title: A machine learning approach to multi-level ECG signal quality classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.002
– volume: BME-26
  start-page: 700
  issue: 12
  year: 1979
  ident: 10.1016/j.inffus.2023.03.017_b17
  article-title: A digital filter for the QRS complex detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1979.326461
– start-page: 281
  year: 2014
  ident: 10.1016/j.inffus.2023.03.017_b30
  article-title: R-peak estimation using multimodal lead switching
– volume: 4
  start-page: 815
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2023.03.017_b31
  article-title: Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2670022
– volume: 61
  start-page: 84
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b2
  article-title: The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.03.010
– volume: 7
  start-page: 37664
  year: 2019
  ident: 10.1016/j.inffus.2023.03.017_b24
  article-title: Continuous-valued annotations aggregation for heart rate detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902619
– volume: 18
  start-page: 654
  issue: 2
  year: 2014
  ident: 10.1016/j.inffus.2023.03.017_b7
  article-title: Robust sensor fusion of unobtrusively measured heart rate
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2013.2274211
– volume: 19
  start-page: 832
  issue: 3
  year: 2015
  ident: 10.1016/j.inffus.2023.03.017_b32
  article-title: Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 1
  year: 2017
  ident: 10.1016/j.inffus.2023.03.017_b44
  article-title: Application of Kalman filter and k-NN classifier in wearable fall detection device
– ident: 10.1016/j.inffus.2023.03.017_b23
  doi: 10.1109/EMBC.2015.7319896
– start-page: 307
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b25
  article-title: A Bayesian fusion model for heart rate annotations
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.inffus.2023.03.017_b37
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– start-page: 273
  year: 2011
  ident: 10.1016/j.inffus.2023.03.017_b36
  article-title: Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in cardiology challenge 2011
– volume: 10
  issue: 11
  year: 2022
  ident: 10.1016/j.inffus.2023.03.017_b14
  article-title: A new 12-lead ECG signals fusion method using evolutionary CNN trees for arrhythmia detection
  publication-title: Mathematics
  doi: 10.3390/math10111911
– volume: 53
  start-page: 222
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b1
  article-title: Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.004
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.inffus.2023.03.017_b38
  article-title: Physiobank physiotoolkit and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 6
  start-page: 1363
  issue: 2
  year: 2019
  ident: 10.1016/j.inffus.2023.03.017_b5
  article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2844090
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.03.017_b10
  article-title: Multimodal multiresolution data fusion using convolutional neural networks for wearable sensing
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 29
  start-page: 921
  issue: 2
  year: 2022
  ident: 10.1016/j.inffus.2023.03.017_b18
  article-title: A review on computation methods used in photoplethysmography signal analysis for heart rate estimation
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09597-4
– volume: 36
  start-page: 549
  issue: 8
  year: 2015
  ident: 10.1016/j.inffus.2023.03.017_b21
  article-title: Robust detection of heart beats in multimodal data
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/8/1629
– volume: 7
  start-page: 6932
  issue: 8
  year: 2020
  ident: 10.1016/j.inffus.2023.03.017_b6
  article-title: A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2977164
SSID ssj0017031
Score 2.437932
Snippet In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Bayesian filtering
Data fusion
Electrocardiography
Heart rate estimation
Kalman fusion
Signal quality indicators
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jF_UgfuL8Igev2damSdPjmJtTmBc32K3ko9XJbMe6Mbz4t5vXj6kgTIReGhLSvjzeR_i930PoBkjOtGYOUUow4olIEmltIGFS6CjwfME1XOgPH_lg7D1M2KSGulUtDMAqS9tf2PTcWpcjrVKarfl02nqCzMMFdhKaJzZQxOd5PnQxaH5sYB4O8LPnnKmcE5hdlc_lGC97iPEKSLtdmlOd5m3LfnVPO6tkLt_Xcjb75n76B2i_jBtxp_i0Q1SLkiO0N9yQrmbH6LaT4C_ybpzGuNe9wwABxXZ7GJKz53QxXb68ZdjGqnhttRwqp_B9OsKZzWfTRXaCxv3eqDsgZZMEou2vL4lyXBXF1FGaQnDGtIyopMYXxpGyzYVqSyMim0U4QllfHPAY2u3wgEnDpWYxPUX1JE2iM4QDowLjUS4dZjxfysCnsTGQsTHhKhU3EK1kE-qSQRwaWczCCir2GhYSDUGiYds-jt9AZLNqXjBobJnvV2IPf2hCaI38lpXNzSn9aavzf291gXbhrUACXqL6crGKrmx0slTXufp9AvVr4hA
  priority: 102
  providerName: Elsevier
Title An evaluation of ECG data fusion algorithms for wearable IoT sensors
URI https://dx.doi.org/10.1016/j.inffus.2023.03.017
https://doi.org/10.1016/j.inffus.2023.03.017
UnpaywallVersion publishedVersion
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1872-6305
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1872-6305
  databaseCode: ACRLP
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1872-6305
  databaseCode: .~1
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1872-6305
  databaseCode: AIKHN
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1872-6305
  databaseCode: AKRWK
  dateStart: 20000701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owEB7xOFQ97PapZdVFPvRYIxzHjnNEdCm0BaEKJHqK_Eja7rIJgqBVe9jfvjZJ6ENCUClSpCjjODOTzOdk5huAt47kTGtGsFKCYV_EEkv7DsRMCh2HfiC4dh_0xxM-nPsfF2xRg3dVLcxf_-93eVhW0cnWEWt7dEdHSoI6NDmzyLsBzflk2vu6o0TlHHts10-TiMDD3PpxVSl3YJhDkejJNl3Jn_dyufwj0gzOYVzNsUgwue1sc9XRv_6hbzz1Jp7BWQk5Ua_wkedQi9MX8HS852vdvIT3vRT95v1GWYKu-x-Qyx5FdkB3SC6_Zesf-fe7DbIwF93bB8QVXaFRNkMbuxTO1ptXMB9cz_pDXPZXwNrCrhwr4qk4oURp6nAd0zKmkppAGCJllwvVlUbEdgFChLJhPOSJ69TDQyYNl5ol9DU00iyNLwCFRoXGp1wSZvxAyjCgiTFusceEp1TSAlrpOtIl-bjrgbGMqiyzm6jQUeR0FHXtRoIW4L3UqiDfOHJ-UJkxKgFEAQwia5Ejkp291U-61OX_CryBRr7exlcWwuSqDfXOA2lDs9f_8nnq9qNPw0m79OdHlbDwzg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCp2fOBq2sSx4xyr0lKg5UIr9RZ5SaCoJFUXIS58O54sBSQkEFJOji0n49Es1ps3CF0AyZnWzCFKCUY8EUkirQ0kTAodBZ4vuIYL_d497wy82yEbVlCzrIUBWGVh-3ObnlnrYqRWSLM2GY1qD5B5uMBOQrPEJlhBqx5zfcjALt-XOA8HCNoz0lTOCUwv6-cykJc9xXgBrN0uzbhOs75lP_qntUUykW-vcjz-4n_aW2izCBxxI_-2bVSJkh200Vuyrs520VUjwZ_s3TiNcat5jQEDiu32MCTHj-l0NH96mWEbrOJXq-ZQOoVv0j6e2YQ2nc720KDd6jc7pOiSQLT99zlRjquimDpKU4jOmJYRldT4wjhS1rlQdWlEZNMIRyjrjAMeQ78dHjBpuNQspvuomqRJdIBwYFRgPMqlw4znSxn4NDYGUjYmXKXiQ0RL2YS6oBCHThbjsMSKPYe5REOQaFi3j-MfIrJcNckpNH6Z75diD7-pQmit_C8rL5en9Ketjv691Tla6_R73bB7c393jNbhTQ4LPEHV-XQRndpQZa7OMlX8AGYC5TM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gHIwH30aMmj14dAnb7W63R4IgmkA8QIKnZh-tL2wJlBD99e7SFh8JAZOems62nZl2vmlnvgHgypKcKUUxkpJT5PJQIGHegYgKrkLf9ThT9oN-t8c6A_d-SIclcF30wvz6f7-owzKKjmaWWNshCzpS7G2BCqMGeZdBZdB7aDwuKFEZQw5dzNPE3HMQM35cdMqtWGZVJNqexWPxMRej0Y9I094D3eIaswKTt9oslTX1-Ye-cdOb2Ae7OeSEjcxHDkApjA_BTnfJ1zo9AjeNGH7zfsMkgq3mLbTVo9AsaHeJ0VMyeUmf36fQwFw4Nw-IbbqCd0kfTk0qnEymx2DQbvWbHZTPV0DKwK4USezIMCJYKmJxHVUiJIJoj2ssRJ1xWReahyYBwVyaMO6zyE7qYT4VmglFI3ICynESh6cA-lr62iVMYKpdTwjfI5HWNtmj3JEyqgJS6DpQOfm4nYExCooqs9cg01FgdRTUzYa9KkBLqXFGvrHmeK8wY5ADiAwYBMYiayRrS6tvdKqz_wqcg3I6mYUXBsKk8jL33C8YTOyt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+ECG+data+fusion+algorithms+for+wearable+IoT+sensors&rft.jtitle=Information+fusion&rft.au=John%2C+Arlene&rft.au=Padinjarathala%2C+Antony&rft.au=Doheny%2C+Emer&rft.au=Cardiff%2C+Barry&rft.date=2023-08-01&rft.issn=1566-2535&rft.volume=96&rft.spage=237&rft.epage=251&rft_id=info:doi/10.1016%2Fj.inffus.2023.03.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2023_03_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon