An evaluation of ECG data fusion algorithms for wearable IoT sensors
In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from multiple sensor sources has the potential to enhance accuracy, even in the presence of disruptive noise. This paper aims to introduce and compa...
        Saved in:
      
    
          | Published in | Information fusion Vol. 96; pp. 237 - 251 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.08.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1566-2535 1872-6305 1872-6305  | 
| DOI | 10.1016/j.inffus.2023.03.017 | 
Cover
| Abstract | In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from multiple sensor sources has the potential to enhance accuracy, even in the presence of disruptive noise. This paper aims to introduce and compare various existing state-of-the-art and novel data fusion techniques to improve the reliability of heart rate estimation. The comparisons were implemented using the MIT-BIH Arrhythmia database with additive noise signals taken from MIT Noise Stress Test Database. When it comes to the challenging low signal-to-noise ratio (SNR) regions, the Kalman fusion and the α-trim mean filtering approach exhibits the best performance. The Kalman fusion approach dominates when both channels are corrupted, while the α-trim mean filtering elimination algorithm takes the lead when at least one channel is clean. To make the most of these strengths, we have developed an innovative algorithm that can switch between the two fusion methods based on a signal quality indicator (SQI) that serves as a surrogate SNR. This algorithm outperforms the baseline 2-channel RR-interval averaging approach by ≃54% and ≃21% at SNRs of 20dB and −20dB respectively. Moreover, it outperforms other cutting-edge heart rate estimation methods.
•Investigation of fusion methods for heart rate estimation from ECG signals.•Signal quality aware fusion algorithm selection.•Fusion methods analyzed at varying input signal-to-noise ratios.•Signal quality index proposed as a surrogate for input signal-to-noise ratio.•Fusion selection method proposed for varying input signal-to-noise ratios. | 
    
|---|---|
| AbstractList | In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from multiple sensor sources has the potential to enhance accuracy, even in the presence of disruptive noise. This paper aims to introduce and compare various existing state-of-the-art and novel data fusion techniques to improve the reliability of heart rate estimation. The comparisons were implemented using the MIT-BIH Arrhythmia database with additive noise signals taken from MIT Noise Stress Test Database. When it comes to the challenging low signal-to-noise ratio (SNR) regions, the Kalman fusion and the α-trim mean filtering approach exhibits the best performance. The Kalman fusion approach dominates when both channels are corrupted, while the α-trim mean filtering elimination algorithm takes the lead when at least one channel is clean. To make the most of these strengths, we have developed an innovative algorithm that can switch between the two fusion methods based on a signal quality indicator (SQI) that serves as a surrogate SNR. This algorithm outperforms the baseline 2-channel RR-interval averaging approach by ≃54% and ≃21% at SNRs of 20dB and −20dB respectively. Moreover, it outperforms other cutting-edge heart rate estimation methods.
•Investigation of fusion methods for heart rate estimation from ECG signals.•Signal quality aware fusion algorithm selection.•Fusion methods analyzed at varying input signal-to-noise ratios.•Signal quality index proposed as a surrogate for input signal-to-noise ratio.•Fusion selection method proposed for varying input signal-to-noise ratios. | 
    
| Author | John, Arlene Padinjarathala, Antony Cardiff, Barry Doheny, Emer John, Deepu  | 
    
| Author_xml | – sequence: 1 givenname: Arlene orcidid: 0000-0001-7310-284X surname: John fullname: John, Arlene email: arlene.john@ucdconnect.ie – sequence: 2 givenname: Antony surname: Padinjarathala fullname: Padinjarathala, Antony – sequence: 3 givenname: Emer surname: Doheny fullname: Doheny, Emer – sequence: 4 givenname: Barry surname: Cardiff fullname: Cardiff, Barry – sequence: 5 givenname: Deepu surname: John fullname: John, Deepu  | 
    
| BookMark | eNqNkM1KAzEURoNUsK2-gYu8wIz5aTJTF0KptRYKbuo63MkkmjJNSjKt9O2dOq5cqPDBvVzu-RZnhAY-eIPQLSU5JVTebXPnrT2knBHGc9KFFhdoSMuCZZITMeh2IWXGBBdXaJTSlnQfhNMhepx5bI7QHKB1weNg8WK-xDW0gLvC8wmatxBd-75L2IaIPwxEqBqDV2GDk_EpxHSNLi00ydx8zzF6fVps5s_Z-mW5ms_WmeaCtVlFWWUsp5XmEyGF0GA48LooawpAZFkRqEtDS0bLSko6lXYqWSGnAmoJWlg-RqLvPfg9nD6gadQ-uh3Ek6JEnVWorepVqLMKRbrQouMmPadjSCka-1_s_gemXfvlqY3gmr_ghx42nZCjM1El7YzXpnbR6FbVwf1e8Al2MZBM | 
    
| CitedBy_id | crossref_primary_10_3390_s24248043 crossref_primary_10_1016_j_inffus_2023_102076 crossref_primary_10_1016_j_enconman_2024_118361 crossref_primary_10_1016_j_eswa_2025_126995 crossref_primary_10_1016_j_inffus_2023_102023 crossref_primary_10_1016_j_applthermaleng_2024_125225 crossref_primary_10_1016_j_compbiomed_2025_109901 crossref_primary_10_1016_j_heliyon_2023_e22420 crossref_primary_10_1049_htl2_12121 crossref_primary_10_1016_j_displa_2023_102605 crossref_primary_10_1016_j_inffus_2024_102391  | 
    
| Cites_doi | 10.1088/1361-6579/ac7938 10.1016/j.inffus.2016.09.005 10.1016/j.bspc.2016.12.004 10.1109/OJCAS.2020.3009520 10.1023/A:1007476707284 10.1109/5.554205 10.1016/j.ins.2021.09.046 10.1109/TITB.2011.2128337 10.1186/cc1021 10.3390/app9010105 10.1016/j.inffus.2021.07.010 10.1186/cc7129 10.1016/j.inffus.2019.06.024 10.1016/j.bspc.2022.104302 10.1109/JBHI.2014.2311582 10.1016/j.cmpb.2014.09.002 10.1109/TBME.1979.326461 10.1109/JIOT.2017.2670022 10.1016/j.inffus.2020.03.010 10.1109/ACCESS.2019.2902619 10.1109/JBHI.2013.2274211 10.1109/EMBC.2015.7319896 10.1109/51.932724 10.3390/math10111911 10.1016/j.inffus.2019.06.004 10.1161/01.CIR.101.23.e215 10.1109/JIOT.2018.2844090 10.1007/s11831-021-09597-4 10.1088/0967-3334/36/8/1629 10.1109/JIOT.2020.2977164  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors | 
    
| Copyright_xml | – notice: 2023 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.inffus.2023.03.017 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1872-6305 | 
    
| EndPage | 251 | 
    
| ExternalDocumentID | 10.1016/j.inffus.2023.03.017 10_1016_j_inffus_2023_03_017 S1566253523001069  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c352t-b12bef31bc345655cae3a3d78d1aa068b0ad8e18218b66196f9627695ad6ac5f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1566-2535 1872-6305  | 
    
| IngestDate | Tue Aug 19 19:22:57 EDT 2025 Wed Oct 29 21:06:27 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Fri Feb 23 02:37:07 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Electrocardiography Data fusion Signal quality indicators Bayesian filtering Kalman fusion Heart rate estimation  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-b12bef31bc345655cae3a3d78d1aa068b0ad8e18218b66196f9627695ad6ac5f3 | 
    
| ORCID | 0000-0001-7310-284X | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.inffus.2023.03.017 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_inffus_2023_03_017 crossref_primary_10_1016_j_inffus_2023_03_017 crossref_citationtrail_10_1016_j_inffus_2023_03_017 elsevier_sciencedirect_doi_10_1016_j_inffus_2023_03_017  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2023 2023-08-00  | 
    
| PublicationDateYYYYMMDD | 2023-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Information fusion | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Gravina (b9) 2017; 35 Rankawat, Rankawat, Dubey (b26) 2015 John (b3) 2021 Rankawat, Dubey (b22) 2017; 33 Chambrin (b8) 2001; 5 Silva, Moody (b40) 2014; 2 Pimentel (b29) 2014 Satija, Ramkumar, Sabarimalai Manikandan (b31) 2017; 4 John, Cardiff, John (b34) 2020 Hassan (b12) 2022; 77 Silva, Moody, Celi (b36) 2011 Bruser (b20) 2011; 15 Feng (b13) 2022; 582 Schumm (b16) 2010 Moody, Muldrow, Mark (b39) 1984; vol. 11 Liu (b5) 2019; 6 Cecconi (b42) 2009; 13 Montella (b43) 2011 John (b33) 2020; 1 Feldman, Ebrahim, Bar-Kana (b41) 1997; 13 Goldberger (b38) 2000; 101 V. Nathan, I. Akkaya, R. Jafari, A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2015, pp. 6560–6565. He (b44) 2017 Abdel-Basset, Ding, Abdel-Fatah (b2) 2020; 61 Dong (b15) 2022; 43 Orphanidou (b32) 2015; 19 Santos (b1) 2020; 53 Zhang (b19) 2023; 80 Wartzek (b7) 2014; 18 Meqdad, Abdali-Mohammadi, Kadry (b14) 2022; 10 Wu (b6) 2020; 7 Yao (b4) 2020; 53 Pankaj (b18) 2022; 29 Diao, Wang, Cai (b27) 2019; 9 Johnson (b30) 2014 Li, Rajagopalan, Clifford (b35) 2014; 117 Okada (b17) 1979; BME-26 Xie, Li, Zhu, Liu (b24) 2019; 7 Di, Li, Liu (b25) 2020 John (b10) 2021 Hall, Llinas (b11) 1997; 85 Moody, Mark (b37) 2001; 20 Silva (b21) 2015; 36 Brüser (b28) 2015; 19 Santos (10.1016/j.inffus.2023.03.017_b1) 2020; 53 Silva (10.1016/j.inffus.2023.03.017_b21) 2015; 36 Abdel-Basset (10.1016/j.inffus.2023.03.017_b2) 2020; 61 Moody (10.1016/j.inffus.2023.03.017_b37) 2001; 20 Yao (10.1016/j.inffus.2023.03.017_b4) 2020; 53 Gravina (10.1016/j.inffus.2023.03.017_b9) 2017; 35 Zhang (10.1016/j.inffus.2023.03.017_b19) 2023; 80 Bruser (10.1016/j.inffus.2023.03.017_b20) 2011; 15 Meqdad (10.1016/j.inffus.2023.03.017_b14) 2022; 10 Pankaj (10.1016/j.inffus.2023.03.017_b18) 2022; 29 John (10.1016/j.inffus.2023.03.017_b34) 2020 Okada (10.1016/j.inffus.2023.03.017_b17) 1979; BME-26 Liu (10.1016/j.inffus.2023.03.017_b5) 2019; 6 Pimentel (10.1016/j.inffus.2023.03.017_b29) 2014 Schumm (10.1016/j.inffus.2023.03.017_b16) 2010 Moody (10.1016/j.inffus.2023.03.017_b39) 1984; vol. 11 Goldberger (10.1016/j.inffus.2023.03.017_b38) 2000; 101 Orphanidou (10.1016/j.inffus.2023.03.017_b32) 2015; 19 Diao (10.1016/j.inffus.2023.03.017_b27) 2019; 9 Hall (10.1016/j.inffus.2023.03.017_b11) 1997; 85 John (10.1016/j.inffus.2023.03.017_b3) 2021 Montella (10.1016/j.inffus.2023.03.017_b43) 2011 John (10.1016/j.inffus.2023.03.017_b10) 2021 Satija (10.1016/j.inffus.2023.03.017_b31) 2017; 4 Rankawat (10.1016/j.inffus.2023.03.017_b22) 2017; 33 Silva (10.1016/j.inffus.2023.03.017_b40) 2014; 2 He (10.1016/j.inffus.2023.03.017_b44) 2017 Feng (10.1016/j.inffus.2023.03.017_b13) 2022; 582 Hassan (10.1016/j.inffus.2023.03.017_b12) 2022; 77 Rankawat (10.1016/j.inffus.2023.03.017_b26) 2015 Brüser (10.1016/j.inffus.2023.03.017_b28) 2015; 19 John (10.1016/j.inffus.2023.03.017_b33) 2020; 1 Dong (10.1016/j.inffus.2023.03.017_b15) 2022; 43 Johnson (10.1016/j.inffus.2023.03.017_b30) 2014 Silva (10.1016/j.inffus.2023.03.017_b36) 2011 Di (10.1016/j.inffus.2023.03.017_b25) 2020 Chambrin (10.1016/j.inffus.2023.03.017_b8) 2001; 5 Cecconi (10.1016/j.inffus.2023.03.017_b42) 2009; 13 Li (10.1016/j.inffus.2023.03.017_b35) 2014; 117 Wu (10.1016/j.inffus.2023.03.017_b6) 2020; 7 Wartzek (10.1016/j.inffus.2023.03.017_b7) 2014; 18 Xie (10.1016/j.inffus.2023.03.017_b24) 2019; 7 10.1016/j.inffus.2023.03.017_b23 Feldman (10.1016/j.inffus.2023.03.017_b41) 1997; 13  | 
    
| References_xml | – volume: 80 year: 2023 ident: b19 article-title: A Conv -Transformer network for heart rate estimation using ballistocardiographic signals publication-title: Biomed. Signal Process. Control – volume: 53 start-page: 174 year: 2020 end-page: 182 ident: b4 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inf. Fusion – start-page: 281 year: 2014 end-page: 284 ident: b30 article-title: R-peak estimation using multimodal lead switching publication-title: Computing in Cardiology – start-page: 1534 year: 2015 end-page: 1539 ident: b26 article-title: Heart rate estimation from non-cardiovascular signals using slope sum function and Teager energy publication-title: 2015 International Conference on Industrial Instrumentation and Control – volume: vol. 11 start-page: 381 year: 1984 end-page: 384 ident: b39 article-title: A noise stress test for arrhythmia detectors publication-title: Computers in Cardiology – volume: 43 year: 2022 ident: b15 article-title: Detection of arrhythmia in 12-lead varied-length ECG using multi-branch Signal Fusion Network publication-title: Physiol. Meas. – start-page: 273 year: 2011 end-page: 276 ident: b36 article-title: Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in cardiology challenge 2011 publication-title: 2011 Computing in Cardiology – volume: 13 start-page: 379 year: 1997 end-page: 384 ident: b41 article-title: Robust sensor fusion improves heart rate estimation: Clinical evaluation publication-title: J. Clin. Monit. – volume: 19 start-page: 227 year: 2015 end-page: 235 ident: b28 article-title: Improvement of force-sensor-based heart rate estimation using multichannel data fusion publication-title: IEEE J. Biomed. Health Inf. – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b37 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 53 start-page: 222 year: 2020 end-page: 239 ident: b1 article-title: Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook publication-title: Inf. Fusion – volume: 61 start-page: 84 year: 2020 end-page: 100 ident: b2 article-title: The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model publication-title: Inf. Fusion – volume: 77 start-page: 70 year: 2022 end-page: 80 ident: b12 article-title: Early detection of cardiovascular autonomic neuropathy: A multi-class classification model based on feature selection and deep learning feature fusion publication-title: Inf. Fusion – start-page: 553 year: 2014 end-page: 556 ident: b29 article-title: Hidden semi-Markov model-based heartbeat detection using multimodal data and signal quality indices publication-title: Computing in Cardiology 2014 – volume: 1 start-page: 88 year: 2020 end-page: 99 ident: b33 article-title: Binary classifiers for data integrity detection in wearable IoT edge devices publication-title: IEEE Open J. Circuits Syst. – volume: 29 start-page: 921 year: 2022 end-page: 940 ident: b18 article-title: A review on computation methods used in photoplethysmography signal analysis for heart rate estimation publication-title: Arch. Comput. Methods Eng. – volume: 6 start-page: 1363 year: 2019 end-page: 1374 ident: b5 article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system publication-title: IEEE Internet Things J. – volume: 19 start-page: 832 year: 2015 end-page: 838 ident: b32 article-title: Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring publication-title: IEEE J. Biomed. Health Inf. – volume: 18 start-page: 654 year: 2014 end-page: 660 ident: b7 article-title: Robust sensor fusion of unobtrusively measured heart rate publication-title: IEEE J. Biomed. Health Inf. – start-page: 307 year: 2020 end-page: 312 ident: b25 article-title: A Bayesian fusion model for heart rate annotations publication-title: 2020 International Conference on Sensing, Measurement Data Analytics in the Era of Artificial Intelligence – volume: BME-26 start-page: 700 year: 1979 end-page: 703 ident: b17 article-title: A digital filter for the QRS complex detection publication-title: IEEE Trans. Biomed. Eng. – start-page: 1 year: 2017 end-page: 7 ident: b44 article-title: Application of Kalman filter and k-NN classifier in wearable fall detection device publication-title: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) – start-page: 1 year: 2020 end-page: 5 ident: b34 article-title: A generalized signal quality estimation method for IoT sensors publication-title: 2020 IEEE International Symposium on Circuits and Systems – volume: 5 start-page: 184 year: 2001 end-page: 188 ident: b8 article-title: Alarms in the intensive care unit: how can the number of false alarms be reduced? publication-title: Crit. Care – volume: 35 start-page: 68 year: 2017 end-page: 80 ident: b9 article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges publication-title: Inf. Fusion – start-page: 1 year: 2021 ident: b10 article-title: Multimodal multiresolution data fusion using convolutional neural networks for wearable sensing publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 582 start-page: 509 year: 2022 end-page: 528 ident: b13 article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection publication-title: Inform. Sci. – year: 2010 ident: b16 article-title: Quality Assessment of physiological signals during ambulatory measurements – volume: 7 start-page: 37664 year: 2019 end-page: 37671 ident: b24 article-title: Continuous-valued annotations aggregation for heart rate detection publication-title: IEEE Access – volume: 15 start-page: 778 year: 2011 end-page: 786 ident: b20 article-title: Adaptive beat-to-beat heart rate estimation in ballistocardiograms publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 13 start-page: 201 year: 2009 ident: b42 article-title: Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output publication-title: Crit. Care – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b38 article-title: Physiobank physiotoolkit and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 10 year: 2022 ident: b14 article-title: A new 12-lead ECG signals fusion method using evolutionary CNN trees for arrhythmia detection publication-title: Mathematics – volume: 7 start-page: 6932 year: 2020 end-page: 6945 ident: b6 article-title: A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications publication-title: IEEE Internet Things J. – volume: 4 start-page: 815 year: 2017 end-page: 823 ident: b31 article-title: Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring publication-title: IEEE Internet Things J. – start-page: 1 year: 2021 ident: b3 article-title: A multimodal data fusion technique for heartbeat detection in wearable IoT sensors publication-title: IEEE Internet Things J. – volume: 33 start-page: 201 year: 2017 end-page: 212 ident: b22 article-title: Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method publication-title: Biomed. Signal Process. Control – volume: 2 year: 2014 ident: b40 article-title: An open-source toolbox for analysing and processing PhysioNet Databases in MATLAB and Octave publication-title: J. Open Res. Softw. – volume: 9 year: 2019 ident: b27 article-title: Data fusion of multivariate time series: Application to noisy 12-lead ECG signals publication-title: Appl. Sci. – volume: 36 start-page: 549 year: 2015 end-page: 552 ident: b21 article-title: Robust detection of heart beats in multimodal data publication-title: Physiol. Meas. – reference: V. Nathan, I. Akkaya, R. Jafari, A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2015, pp. 6560–6565. – volume: 85 start-page: 6 year: 1997 end-page: 23 ident: b11 article-title: An introduction to multisensor data fusion publication-title: Proc. IEEE – year: 2011 ident: b43 article-title: The Kalman filter and related algorithms: A literature review – volume: 117 start-page: 435 year: 2014 end-page: 447 ident: b35 article-title: A machine learning approach to multi-level ECG signal quality classification publication-title: Comput. Methods Programs Biomed. – volume: 43 issue: 10 year: 2022 ident: 10.1016/j.inffus.2023.03.017_b15 article-title: Detection of arrhythmia in 12-lead varied-length ECG using multi-branch Signal Fusion Network publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac7938 – volume: 35 start-page: 68 year: 2017 ident: 10.1016/j.inffus.2023.03.017_b9 article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.09.005 – volume: 33 start-page: 201 year: 2017 ident: 10.1016/j.inffus.2023.03.017_b22 article-title: Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.12.004 – start-page: 1534 year: 2015 ident: 10.1016/j.inffus.2023.03.017_b26 article-title: Heart rate estimation from non-cardiovascular signals using slope sum function and Teager energy – year: 2010 ident: 10.1016/j.inffus.2023.03.017_b16 – volume: 1 start-page: 88 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b33 article-title: Binary classifiers for data integrity detection in wearable IoT edge devices publication-title: IEEE Open J. Circuits Syst. doi: 10.1109/OJCAS.2020.3009520 – volume: 13 start-page: 379 issue: 6 year: 1997 ident: 10.1016/j.inffus.2023.03.017_b41 article-title: Robust sensor fusion improves heart rate estimation: Clinical evaluation publication-title: J. Clin. Monit. doi: 10.1023/A:1007476707284 – volume: 85 start-page: 6 issue: 1 year: 1997 ident: 10.1016/j.inffus.2023.03.017_b11 article-title: An introduction to multisensor data fusion publication-title: Proc. IEEE doi: 10.1109/5.554205 – volume: 582 start-page: 509 year: 2022 ident: 10.1016/j.inffus.2023.03.017_b13 article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.09.046 – volume: 15 start-page: 778 issue: 5 year: 2011 ident: 10.1016/j.inffus.2023.03.017_b20 article-title: Adaptive beat-to-beat heart rate estimation in ballistocardiograms publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2128337 – volume: 5 start-page: 184 issue: 4 year: 2001 ident: 10.1016/j.inffus.2023.03.017_b8 article-title: Alarms in the intensive care unit: how can the number of false alarms be reduced? publication-title: Crit. Care doi: 10.1186/cc1021 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.inffus.2023.03.017_b27 article-title: Data fusion of multivariate time series: Application to noisy 12-lead ECG signals publication-title: Appl. Sci. doi: 10.3390/app9010105 – volume: 77 start-page: 70 year: 2022 ident: 10.1016/j.inffus.2023.03.017_b12 article-title: Early detection of cardiovascular autonomic neuropathy: A multi-class classification model based on feature selection and deep learning feature fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.07.010 – volume: vol. 11 start-page: 381 year: 1984 ident: 10.1016/j.inffus.2023.03.017_b39 article-title: A noise stress test for arrhythmia detectors – start-page: 553 year: 2014 ident: 10.1016/j.inffus.2023.03.017_b29 article-title: Hidden semi-Markov model-based heartbeat detection using multimodal data and signal quality indices – volume: 13 start-page: 201 year: 2009 ident: 10.1016/j.inffus.2023.03.017_b42 article-title: Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output publication-title: Crit. Care doi: 10.1186/cc7129 – start-page: 1 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b34 article-title: A generalized signal quality estimation method for IoT sensors – volume: 53 start-page: 174 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b4 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.024 – volume: 80 year: 2023 ident: 10.1016/j.inffus.2023.03.017_b19 article-title: A Conv -Transformer network for heart rate estimation using ballistocardiographic signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104302 – year: 2011 ident: 10.1016/j.inffus.2023.03.017_b43 – volume: 19 start-page: 227 issue: 1 year: 2015 ident: 10.1016/j.inffus.2023.03.017_b28 article-title: Improvement of force-sensor-based heart rate estimation using multichannel data fusion publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2311582 – start-page: 1 year: 2021 ident: 10.1016/j.inffus.2023.03.017_b3 article-title: A multimodal data fusion technique for heartbeat detection in wearable IoT sensors publication-title: IEEE Internet Things J. – volume: 2 issue: 1 year: 2014 ident: 10.1016/j.inffus.2023.03.017_b40 article-title: An open-source toolbox for analysing and processing PhysioNet Databases in MATLAB and Octave publication-title: J. Open Res. Softw. – volume: 117 start-page: 435 issue: 3 year: 2014 ident: 10.1016/j.inffus.2023.03.017_b35 article-title: A machine learning approach to multi-level ECG signal quality classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.002 – volume: BME-26 start-page: 700 issue: 12 year: 1979 ident: 10.1016/j.inffus.2023.03.017_b17 article-title: A digital filter for the QRS complex detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1979.326461 – start-page: 281 year: 2014 ident: 10.1016/j.inffus.2023.03.017_b30 article-title: R-peak estimation using multimodal lead switching – volume: 4 start-page: 815 issue: 3 year: 2017 ident: 10.1016/j.inffus.2023.03.017_b31 article-title: Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2670022 – volume: 61 start-page: 84 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b2 article-title: The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.03.010 – volume: 7 start-page: 37664 year: 2019 ident: 10.1016/j.inffus.2023.03.017_b24 article-title: Continuous-valued annotations aggregation for heart rate detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902619 – volume: 18 start-page: 654 issue: 2 year: 2014 ident: 10.1016/j.inffus.2023.03.017_b7 article-title: Robust sensor fusion of unobtrusively measured heart rate publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2013.2274211 – volume: 19 start-page: 832 issue: 3 year: 2015 ident: 10.1016/j.inffus.2023.03.017_b32 article-title: Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring publication-title: IEEE J. Biomed. Health Inf. – start-page: 1 year: 2017 ident: 10.1016/j.inffus.2023.03.017_b44 article-title: Application of Kalman filter and k-NN classifier in wearable fall detection device – ident: 10.1016/j.inffus.2023.03.017_b23 doi: 10.1109/EMBC.2015.7319896 – start-page: 307 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b25 article-title: A Bayesian fusion model for heart rate annotations – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.inffus.2023.03.017_b37 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – start-page: 273 year: 2011 ident: 10.1016/j.inffus.2023.03.017_b36 article-title: Improving the quality of ECGs collected using mobile phones: The PhysioNet/Computing in cardiology challenge 2011 – volume: 10 issue: 11 year: 2022 ident: 10.1016/j.inffus.2023.03.017_b14 article-title: A new 12-lead ECG signals fusion method using evolutionary CNN trees for arrhythmia detection publication-title: Mathematics doi: 10.3390/math10111911 – volume: 53 start-page: 222 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b1 article-title: Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.004 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.inffus.2023.03.017_b38 article-title: Physiobank physiotoolkit and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 6 start-page: 1363 issue: 2 year: 2019 ident: 10.1016/j.inffus.2023.03.017_b5 article-title: Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2844090 – start-page: 1 year: 2021 ident: 10.1016/j.inffus.2023.03.017_b10 article-title: Multimodal multiresolution data fusion using convolutional neural networks for wearable sensing publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 29 start-page: 921 issue: 2 year: 2022 ident: 10.1016/j.inffus.2023.03.017_b18 article-title: A review on computation methods used in photoplethysmography signal analysis for heart rate estimation publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09597-4 – volume: 36 start-page: 549 issue: 8 year: 2015 ident: 10.1016/j.inffus.2023.03.017_b21 article-title: Robust detection of heart beats in multimodal data publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/8/1629 – volume: 7 start-page: 6932 issue: 8 year: 2020 ident: 10.1016/j.inffus.2023.03.017_b6 article-title: A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2977164  | 
    
| SSID | ssj0017031 | 
    
| Score | 2.437932 | 
    
| Snippet | In wearable sensing, accurate estimation of physiological parameters is paramount, although these signals can be corrupted by noise. The fusion of data from... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 237 | 
    
| SubjectTerms | Bayesian filtering Data fusion Electrocardiography Heart rate estimation Kalman fusion Signal quality indicators  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jF_UgfuL8Igev2damSdPjmJtTmBc32K3ko9XJbMe6Mbz4t5vXj6kgTIReGhLSvjzeR_i930PoBkjOtGYOUUow4olIEmltIGFS6CjwfME1XOgPH_lg7D1M2KSGulUtDMAqS9tf2PTcWpcjrVKarfl02nqCzMMFdhKaJzZQxOd5PnQxaH5sYB4O8LPnnKmcE5hdlc_lGC97iPEKSLtdmlOd5m3LfnVPO6tkLt_Xcjb75n76B2i_jBtxp_i0Q1SLkiO0N9yQrmbH6LaT4C_ybpzGuNe9wwABxXZ7GJKz53QxXb68ZdjGqnhttRwqp_B9OsKZzWfTRXaCxv3eqDsgZZMEou2vL4lyXBXF1FGaQnDGtIyopMYXxpGyzYVqSyMim0U4QllfHPAY2u3wgEnDpWYxPUX1JE2iM4QDowLjUS4dZjxfysCnsTGQsTHhKhU3EK1kE-qSQRwaWczCCir2GhYSDUGiYds-jt9AZLNqXjBobJnvV2IPf2hCaI38lpXNzSn9aavzf291gXbhrUACXqL6crGKrmx0slTXufp9AvVr4hA priority: 102 providerName: Elsevier  | 
    
| Title | An evaluation of ECG data fusion algorithms for wearable IoT sensors | 
    
| URI | https://dx.doi.org/10.1016/j.inffus.2023.03.017 https://doi.org/10.1016/j.inffus.2023.03.017  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 96 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1872-6305 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1872-6305 databaseCode: ACRLP dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1872-6305 databaseCode: .~1 dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1872-6305 databaseCode: AIKHN dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1872-6305 databaseCode: AKRWK dateStart: 20000701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owEB7xOFQ97PapZdVFPvRYIxzHjnNEdCm0BaEKJHqK_Eja7rIJgqBVe9jfvjZJ6ENCUClSpCjjODOTzOdk5huAt47kTGtGsFKCYV_EEkv7DsRMCh2HfiC4dh_0xxM-nPsfF2xRg3dVLcxf_-93eVhW0cnWEWt7dEdHSoI6NDmzyLsBzflk2vu6o0TlHHts10-TiMDD3PpxVSl3YJhDkejJNl3Jn_dyufwj0gzOYVzNsUgwue1sc9XRv_6hbzz1Jp7BWQk5Ua_wkedQi9MX8HS852vdvIT3vRT95v1GWYKu-x-Qyx5FdkB3SC6_Zesf-fe7DbIwF93bB8QVXaFRNkMbuxTO1ptXMB9cz_pDXPZXwNrCrhwr4qk4oURp6nAd0zKmkppAGCJllwvVlUbEdgFChLJhPOSJ69TDQyYNl5ol9DU00iyNLwCFRoXGp1wSZvxAyjCgiTFusceEp1TSAlrpOtIl-bjrgbGMqiyzm6jQUeR0FHXtRoIW4L3UqiDfOHJ-UJkxKgFEAQwia5Ejkp291U-61OX_CryBRr7exlcWwuSqDfXOA2lDs9f_8nnq9qNPw0m79OdHlbDwzg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCp2fOBq2sSx4xyr0lKg5UIr9RZ5SaCoJFUXIS58O54sBSQkEFJOji0n49Es1ps3CF0AyZnWzCFKCUY8EUkirQ0kTAodBZ4vuIYL_d497wy82yEbVlCzrIUBWGVh-3ObnlnrYqRWSLM2GY1qD5B5uMBOQrPEJlhBqx5zfcjALt-XOA8HCNoz0lTOCUwv6-cykJc9xXgBrN0uzbhOs75lP_qntUUykW-vcjz-4n_aW2izCBxxI_-2bVSJkh200Vuyrs520VUjwZ_s3TiNcat5jQEDiu32MCTHj-l0NH96mWEbrOJXq-ZQOoVv0j6e2YQ2nc720KDd6jc7pOiSQLT99zlRjquimDpKU4jOmJYRldT4wjhS1rlQdWlEZNMIRyjrjAMeQ78dHjBpuNQspvuomqRJdIBwYFRgPMqlw4znSxn4NDYGUjYmXKXiQ0RL2YS6oBCHThbjsMSKPYe5REOQaFi3j-MfIrJcNckpNH6Z75diD7-pQmit_C8rL5en9Ketjv691Tla6_R73bB7c393jNbhTQ4LPEHV-XQRndpQZa7OMlX8AGYC5TM | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gHIwH30aMmj14dAnb7W63R4IgmkA8QIKnZh-tL2wJlBD99e7SFh8JAZOems62nZl2vmlnvgHgypKcKUUxkpJT5PJQIGHegYgKrkLf9ThT9oN-t8c6A_d-SIclcF30wvz6f7-owzKKjmaWWNshCzpS7G2BCqMGeZdBZdB7aDwuKFEZQw5dzNPE3HMQM35cdMqtWGZVJNqexWPxMRej0Y9I094D3eIaswKTt9oslTX1-Ye-cdOb2Ae7OeSEjcxHDkApjA_BTnfJ1zo9AjeNGH7zfsMkgq3mLbTVo9AsaHeJ0VMyeUmf36fQwFw4Nw-IbbqCd0kfTk0qnEymx2DQbvWbHZTPV0DKwK4USezIMCJYKmJxHVUiJIJoj2ssRJ1xWReahyYBwVyaMO6zyE7qYT4VmglFI3ICynESh6cA-lr62iVMYKpdTwjfI5HWNtmj3JEyqgJS6DpQOfm4nYExCooqs9cg01FgdRTUzYa9KkBLqXFGvrHmeK8wY5ADiAwYBMYiayRrS6tvdKqz_wqcg3I6mYUXBsKk8jL33C8YTOyt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+ECG+data+fusion+algorithms+for+wearable+IoT+sensors&rft.jtitle=Information+fusion&rft.au=John%2C+Arlene&rft.au=Padinjarathala%2C+Antony&rft.au=Doheny%2C+Emer&rft.au=Cardiff%2C+Barry&rft.date=2023-08-01&rft.issn=1566-2535&rft.volume=96&rft.spage=237&rft.epage=251&rft_id=info:doi/10.1016%2Fj.inffus.2023.03.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2023_03_017 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |