Distributed Detection via Gaussian Running Consensus: Large Deviations Asymptotic Analysis

We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 59; no. 9; pp. 4381 - 4396
Main Authors Bajovic, D., Jakovetic, D., Xavier, J., Sinopoli, B., Moura, J. M. F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2011.2157147

Cover

Abstract We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its decision variable with the neighbors' decision variables and accounts on-the-fly for its new observation. We show that: 1) when the rate of network information flow (the speed of averaging) is above a threshold, then Gaussian running consensus is asymptotically equivalent to the optimal centralized detector, i.e., the exponential decay rate of the error probability for running consensus equals the Chernoff information; and 2) when the rate of information flow is below a threshold, running consensus achieves only a fraction of the Chernoff information rate. We quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of running consensus detection over random networks.
AbstractList We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its decision variable with the neighbors' decision variables and accounts on-the-fly for its new observation. We show that: 1) when the rate of network information flow (the speed of averaging) is above a threshold, then Gaussian running consensus is asymptotically equivalent to the optimal centralized detector, i.e., the exponential decay rate of the error probability for running consensus equals the Chernoff information; and 2) when the rate of information flow is below a threshold, running consensus achieves only a fraction of the Chernoff information rate. We quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of running consensus detection over random networks.
Author Xavier, J.
Bajovic, D.
Sinopoli, B.
Jakovetic, D.
Moura, J. M. F.
Author_xml – sequence: 1
  givenname: D.
  surname: Bajovic
  fullname: Bajovic, D.
  email: dbajovic@an-drew.cmu.edu
  organization: Inst. for Syst. & Robot. (ISR), Tech. Univ. of Lisbon, Lisbon, Portugal
– sequence: 2
  givenname: D.
  surname: Jakovetic
  fullname: Jakovetic, D.
  email: djakovet@andrew.cmu.edu
  organization: Inst. for Syst. & Robot. (ISR), Tech. Univ. of Lisbon, Lisbon, Portugal
– sequence: 3
  givenname: J.
  surname: Xavier
  fullname: Xavier, J.
  email: jxavier@isr.ist.utl.pt
  organization: Inst. for Syst. & Robot. (ISR), Tech. Univ. of Lisbon, Lisbon, Portugal
– sequence: 4
  givenname: B.
  surname: Sinopoli
  fullname: Sinopoli, B.
  email: brunos@ece.cmu.edu
  organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 5
  givenname: J. M. F.
  surname: Moura
  fullname: Moura, J. M. F.
  email: moura@ece.cmu.edu
  organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24592561$$DView record in Pascal Francis
BookMark eNp9kUFrGzEQhUVJoYnbe6GXpVB6WmeklbS7vRmnTQuGhDaF0ouQ5VFQWGtdjbbgf1-5NjnkkNPM4Xsz8-ZdsLM4RmTsLYc559Bf3v24nQvgfC64arlsX7Bz3kteg2z1WelBNbXq2l-v2AXRAwCXstfn7PdVoJzCesq4qa4wo8thjNXfYKtrOxEFG6vvU4wh3lfLMRJGmuhTtbLpHgtfuANP1YL2210ec3DVItphT4Fes5feDoRvTnXGfn75fLf8Wq9urr8tF6vaNUrk2voOfK83DjwIjWq9UaKHYgKLCyfbzku77qRo0Hpne8edAimk1l7JzjrXzNjH49xdGv9MSNlsAzkcBhtxnMj0XOpGScEL-f4J-TBOqZxLpusEQNeUL83YhxNkydnBJxtdILNLYWvT3gipeqH0YRgcOZdGooT-EeFgDpGYEok5RGJOkRSJfiJxIf9_YE42DM8J3x2FAREf96i25Rra5h-rJpqu
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TIT_2023_3281647
crossref_primary_10_1109_TSP_2012_2210885
crossref_primary_10_1109_LSP_2016_2587327
crossref_primary_10_1109_JSTSP_2017_2676468
crossref_primary_10_1109_TIT_2022_3227587
crossref_primary_10_1109_TSP_2013_2248003
crossref_primary_10_1109_TIT_2014_2331272
crossref_primary_10_1109_TSP_2012_2222398
crossref_primary_10_1016_j_sigpro_2021_108426
crossref_primary_10_1109_TSP_2012_2237170
crossref_primary_10_1109_TIT_2023_3324866
crossref_primary_10_1109_LSP_2014_2334495
crossref_primary_10_1016_j_neunet_2012_07_004
crossref_primary_10_1109_TSP_2021_3077804
crossref_primary_10_1109_TSIPN_2016_2618318
crossref_primary_10_1109_TSP_2012_2197395
crossref_primary_10_1109_TSP_2023_3263254
crossref_primary_10_1109_TSP_2013_2291221
crossref_primary_10_1109_TSP_2017_2771731
crossref_primary_10_1109_TIT_2016_2580665
crossref_primary_10_1109_MAES_2016_140128
crossref_primary_10_1109_TIT_2019_2945033
crossref_primary_10_1109_TAES_2014_130328
crossref_primary_10_1109_TSIPN_2023_3341407
crossref_primary_10_1109_TAC_2017_2694611
crossref_primary_10_1115_1_4026173
crossref_primary_10_1109_TIT_2017_2686435
crossref_primary_10_1109_TIT_2012_2191450
crossref_primary_10_1109_TSP_2015_2478737
crossref_primary_10_1109_TAC_2023_3330405
crossref_primary_10_1109_TAES_2015_140665
crossref_primary_10_1016_j_sigpro_2018_07_020
crossref_primary_10_1109_JIOT_2018_2810825
crossref_primary_10_1049_iet_cta_2014_0163
crossref_primary_10_1049_iet_rsn_2017_0074
crossref_primary_10_1007_s43684_021_00003_1
crossref_primary_10_1109_TSIPN_2016_2613682
crossref_primary_10_1109_TSP_2024_3394659
crossref_primary_10_1109_TSP_2016_2543209
crossref_primary_10_1109_TAES_2017_2728998
crossref_primary_10_1049_iet_com_2016_0588
crossref_primary_10_1109_TSP_2023_3238273
crossref_primary_10_1109_OJSP_2020_3006436
crossref_primary_10_1109_OJSP_2022_3232284
crossref_primary_10_1137_22M1543197
crossref_primary_10_1109_TSIPN_2016_2607119
crossref_primary_10_1109_TIT_2019_2916845
crossref_primary_10_1109_TSIPN_2019_2936357
crossref_primary_10_1016_j_jnca_2014_01_010
crossref_primary_10_1109_TCNS_2014_2310271
crossref_primary_10_1137_22M1477015
crossref_primary_10_1109_OJSP_2022_3189315
crossref_primary_10_1109_MSP_2012_2235193
crossref_primary_10_1109_TSP_2013_2295055
crossref_primary_10_1137_120891010
crossref_primary_10_1109_TSP_2016_2613062
Cites_doi 10.1109/TSP.2008.917855
10.1109/TSP.2008.917383
10.1109/ALLERTON.2010.5706921
10.1109/TIT.2006.874516
10.1109/TSP.2009.2016226
10.1109/5.554209
10.1109/SPAWC.2009.5161747
10.1109/TSP.2008.923536
10.1109/ACSSC.2009.5470136
10.1109/5.554208
10.1109/JPROC.2010.2052531
10.1109/TSP.2002.806982
10.1002/0471221082
10.1109/TSP.2011.2107902
10.1109/TSP.2009.2024278
10.1109/TSP.2006.882104
10.1109/TSP.2010.2046635
10.1109/TSP.2009.2030610
10.1002/0471200611
10.1109/TSP.2009.2033729
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2011.2157147
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 4396
ExternalDocumentID 2420914181
24592561
10_1109_TSP_2011_2157147
5771607
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c352t-af80f96dc0f026e5bd5290157e147c478f4ab8423eafca9c1c5042466f548acc3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 28 11:50:56 EDT 2025
Mon Jun 30 10:18:24 EDT 2025
Mon Jul 21 09:15:35 EDT 2025
Tue Jul 01 02:52:53 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Tue Aug 26 17:18:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords large deviations
Averaging method
Error probability
Network flow
Asymptotic behavior
random network
Information rate
Gaussian distribution
Chernoff information
Optimal detection
Information transmission
Large deviation
distributed detection
Simulation
Information flow
Signal processing
running consensus
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-af80f96dc0f026e5bd5290157e147c478f4ab8423eafca9c1c5042466f548acc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 882008305
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_882008305
crossref_primary_10_1109_TSP_2011_2157147
ieee_primary_5771607
proquest_miscellaneous_914635421
pascalfrancis_primary_24592561
crossref_citationtrail_10_1109_TSP_2011_2157147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
kar (ref6) 2007
dembo (ref24) 1993
ref23
tsitsiklis (ref3) 1993; 2
ref25
ref22
ref21
kar (ref19) 2008
ref8
ref7
ref9
ref4
kassam (ref20) 1987
ref5
References_xml – ident: ref7
  doi: 10.1109/TSP.2008.917855
– ident: ref15
  doi: 10.1109/TSP.2008.917383
– ident: ref21
  doi: 10.1109/ALLERTON.2010.5706921
– ident: ref13
  doi: 10.1109/TIT.2006.874516
– ident: ref17
  doi: 10.1109/TSP.2009.2016226
– ident: ref4
  doi: 10.1109/5.554209
– ident: ref11
  doi: 10.1109/SPAWC.2009.5161747
– ident: ref5
  doi: 10.1109/TSP.2008.923536
– ident: ref10
  doi: 10.1109/ACSSC.2009.5470136
– ident: ref1
  doi: 10.1109/5.554208
– ident: ref14
  doi: 10.1109/JPROC.2010.2052531
– ident: ref2
  doi: 10.1109/TSP.2002.806982
– ident: ref25
  doi: 10.1002/0471221082
– ident: ref9
  doi: 10.1109/TSP.2011.2107902
– year: 1993
  ident: ref24
  publication-title: Large Deviations Techniques and Applications
– ident: ref18
  doi: 10.1109/TSP.2009.2024278
– year: 2007
  ident: ref6
  article-title: Consensus based detection in sensor networks: Topology design under practical constraints
  publication-title: Proc Workshop Inf Theory in Sensor Networks
– year: 1987
  ident: ref20
  publication-title: Signal Detection in Non-Gaussian Noise
– volume: 2
  start-page: 297
  year: 1993
  ident: ref3
  article-title: Decentralized detection
  publication-title: Adv Statist Signal Process
– start-page: 51
  year: 2008
  ident: ref19
  publication-title: Distributed parameter estimation in sensor networks Nonlinear observation models and imperfect communication
– ident: ref22
  doi: 10.1109/TSP.2006.882104
– ident: ref12
  doi: 10.1109/TSP.2010.2046635
– ident: ref8
  doi: 10.1109/TSP.2009.2030610
– ident: ref23
  doi: 10.1002/0471200611
– ident: ref16
  doi: 10.1109/TSP.2009.2033729
SSID ssj0014496
Score 2.3746037
Snippet We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4381
SubjectTerms Applied sciences
Asymptotic properties
Chernoff information
Decay rate
Detection, estimation, filtering, equalization, prediction
Detectors
Deviation
distributed detection
Error detection
Error probability
Estimation
Exact sciences and technology
Gaussian
Information flow
Information, signal and communications theory
large deviations
Networks
Noise
random network
Robot sensing systems
Running
running consensus
Signal and communications theory
Signal, noise
Studies
Telecommunications and information theory
Testing
Title Distributed Detection via Gaussian Running Consensus: Large Deviations Asymptotic Analysis
URI https://ieeexplore.ieee.org/document/5771607
https://www.proquest.com/docview/882008305
https://www.proquest.com/docview/914635421
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnMqh0FLULbDyoZdKzZKHHwk3BKWoKlXV7korLpHj2BJqm0UkQWp_PTPOQ_Qh1FskO7IzM87MeB4fwGsXh8KkzgQShSng1mVB4WIdcCV1lLlSi4QKnC8_yYsl_7ASqwm8HWthrLU--czO6dHH8su1aemqDJ13Rf3QNmADxayr1RojBpx7LC40F5JApGo1hCTD7Gjx9XPXqxPVm4oISOWBCvKYKpQRqWskiuvQLP76MXttc74Nl8M-uySTb_O2Kebm1x8tHP_3Q3bgaW92spNOTp7BxFbPYetBM8JduDqjHroEf2VLdmYbn6NVsbtrzd7rtqZiS_al9QhHjGA-CSOjPmYfKZUc5991PK7ZSf3zx02zxoXY0PHkBSzP3y1OL4IeeSEwaJA1gXZp6DJZmtChj2ZFUQqKtwplkXyGq9RxXaRoiVntjM5MZASFUKV06ABpY5I92KzWlX0JLDWRjNGQKHSJnhcXukSPXCmrokjKIhFTOBqYkZu-LTmhY3zPvXsSZjmyLyf25T37pvBmfOOma8nxyNxdov44ryf8FGa_8Xscj7nI0AiMprA_CEDeH-o6R2eELNYQ98zGUTyNFGLRlV23dZ6h4kkEj6NX_154H550l9KUpHYAm81taw_RqmmKmRfne5D69AU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCgV29LiAxckss3Dj4Rb1QcL7FYIttKKS-Q4toSAbNUkleDXM-M8VB5C3CLZkZ2ZcWbG8_gAnrs4FCZ1JpAoTAG3LgsKF-uAK6mjzJVaJFTgvDiXswv-diVWG_ByrIWx1vrkMzulRx_LL9empasydN4V9UO7BbcFehVpV601xgw492hcaDAkgUjVaghKhtnh8uP7rlsnKjgVEZTKDSXkUVUoJ1LXSBbX4Vn88Wv2-uZsCxbDTrs0ky_Ttimm5sdvTRz_91MewP3e8GRHnaQ8hA1bPYJ7N9oRbsOnE-qiSwBYtmQntvFZWhW7_qzZa93WVG7JPrQe44gR0CehZNSv2JySyXH-dcflmh3V379dNmtciA09Tx7Dxdnp8ngW9NgLgUGTrAm0S0OXydKEDr00K4pSUMRVKIvkM1yljusiRVvMamd0ZiIjKIgqpUMXSBuT7MBmta7sE2CpiWSMpkShS_S9uNAl-uRKWRVFUhaJmMDhwIzc9I3JCR_ja-4dlDDLkX05sS_v2TeBF-Mbl11Tjn_M3Sbqj_N6wk_g4Bd-j-MxFxmagdEE9gYByPtjXefojpDNGuKe2TiK55GCLLqy67bOM1Q9ieBxtPv3hZ_BndlyMc_nb87f7cHd7oqaUtaewmZz1dp9tHGa4sCL9k-Lx_dY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Detection+via+Gaussian+Running+Consensus%3A+Large+Deviations+Asymptotic+Analysis&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Bajovic%2C+Dragana&rft.au=Jakovetic%2C+Dus%CB%98an&rft.au=Xavier%2C+Jo%C3%A3o&rft.au=Sinopoli%2C+Bruno&rft.date=2011-09-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=59&rft.issue=9&rft.spage=4381&rft.epage=4396&rft_id=info:doi/10.1109%2FTSP.2011.2157147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2011_2157147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon