Distributed Detection via Gaussian Running Consensus: Large Deviations Asymptotic Analysis
We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its...
Saved in:
Published in | IEEE transactions on signal processing Vol. 59; no. 9; pp. 4381 - 4396 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2011.2157147 |
Cover
Abstract | We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its decision variable with the neighbors' decision variables and accounts on-the-fly for its new observation. We show that: 1) when the rate of network information flow (the speed of averaging) is above a threshold, then Gaussian running consensus is asymptotically equivalent to the optimal centralized detector, i.e., the exponential decay rate of the error probability for running consensus equals the Chernoff information; and 2) when the rate of information flow is below a threshold, running consensus achieves only a fraction of the Chernoff information rate. We quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of running consensus detection over random networks. |
---|---|
AbstractList | We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its decision variable with the neighbors' decision variables and accounts on-the-fly for its new observation. We show that: 1) when the rate of network information flow (the speed of averaging) is above a threshold, then Gaussian running consensus is asymptotically equivalent to the optimal centralized detector, i.e., the exponential decay rate of the error probability for running consensus equals the Chernoff information; and 2) when the rate of information flow is below a threshold, running consensus achieves only a fraction of the Chernoff information rate. We quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of running consensus detection over random networks. |
Author | Xavier, J. Bajovic, D. Sinopoli, B. Jakovetic, D. Moura, J. M. F. |
Author_xml | – sequence: 1 givenname: D. surname: Bajovic fullname: Bajovic, D. email: dbajovic@an-drew.cmu.edu organization: Inst. for Syst. & Robot. (ISR), Tech. Univ. of Lisbon, Lisbon, Portugal – sequence: 2 givenname: D. surname: Jakovetic fullname: Jakovetic, D. email: djakovet@andrew.cmu.edu organization: Inst. for Syst. & Robot. (ISR), Tech. Univ. of Lisbon, Lisbon, Portugal – sequence: 3 givenname: J. surname: Xavier fullname: Xavier, J. email: jxavier@isr.ist.utl.pt organization: Inst. for Syst. & Robot. (ISR), Tech. Univ. of Lisbon, Lisbon, Portugal – sequence: 4 givenname: B. surname: Sinopoli fullname: Sinopoli, B. email: brunos@ece.cmu.edu organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 5 givenname: J. M. F. surname: Moura fullname: Moura, J. M. F. email: moura@ece.cmu.edu organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24592561$$DView record in Pascal Francis |
BookMark | eNp9kUFrGzEQhUVJoYnbe6GXpVB6WmeklbS7vRmnTQuGhDaF0ouQ5VFQWGtdjbbgf1-5NjnkkNPM4Xsz8-ZdsLM4RmTsLYc559Bf3v24nQvgfC64arlsX7Bz3kteg2z1WelBNbXq2l-v2AXRAwCXstfn7PdVoJzCesq4qa4wo8thjNXfYKtrOxEFG6vvU4wh3lfLMRJGmuhTtbLpHgtfuANP1YL2210ec3DVItphT4Fes5feDoRvTnXGfn75fLf8Wq9urr8tF6vaNUrk2voOfK83DjwIjWq9UaKHYgKLCyfbzku77qRo0Hpne8edAimk1l7JzjrXzNjH49xdGv9MSNlsAzkcBhtxnMj0XOpGScEL-f4J-TBOqZxLpusEQNeUL83YhxNkydnBJxtdILNLYWvT3gipeqH0YRgcOZdGooT-EeFgDpGYEok5RGJOkRSJfiJxIf9_YE42DM8J3x2FAREf96i25Rra5h-rJpqu |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1109_TIT_2023_3281647 crossref_primary_10_1109_TSP_2012_2210885 crossref_primary_10_1109_LSP_2016_2587327 crossref_primary_10_1109_JSTSP_2017_2676468 crossref_primary_10_1109_TIT_2022_3227587 crossref_primary_10_1109_TSP_2013_2248003 crossref_primary_10_1109_TIT_2014_2331272 crossref_primary_10_1109_TSP_2012_2222398 crossref_primary_10_1016_j_sigpro_2021_108426 crossref_primary_10_1109_TSP_2012_2237170 crossref_primary_10_1109_TIT_2023_3324866 crossref_primary_10_1109_LSP_2014_2334495 crossref_primary_10_1016_j_neunet_2012_07_004 crossref_primary_10_1109_TSP_2021_3077804 crossref_primary_10_1109_TSIPN_2016_2618318 crossref_primary_10_1109_TSP_2012_2197395 crossref_primary_10_1109_TSP_2023_3263254 crossref_primary_10_1109_TSP_2013_2291221 crossref_primary_10_1109_TSP_2017_2771731 crossref_primary_10_1109_TIT_2016_2580665 crossref_primary_10_1109_MAES_2016_140128 crossref_primary_10_1109_TIT_2019_2945033 crossref_primary_10_1109_TAES_2014_130328 crossref_primary_10_1109_TSIPN_2023_3341407 crossref_primary_10_1109_TAC_2017_2694611 crossref_primary_10_1115_1_4026173 crossref_primary_10_1109_TIT_2017_2686435 crossref_primary_10_1109_TIT_2012_2191450 crossref_primary_10_1109_TSP_2015_2478737 crossref_primary_10_1109_TAC_2023_3330405 crossref_primary_10_1109_TAES_2015_140665 crossref_primary_10_1016_j_sigpro_2018_07_020 crossref_primary_10_1109_JIOT_2018_2810825 crossref_primary_10_1049_iet_cta_2014_0163 crossref_primary_10_1049_iet_rsn_2017_0074 crossref_primary_10_1007_s43684_021_00003_1 crossref_primary_10_1109_TSIPN_2016_2613682 crossref_primary_10_1109_TSP_2024_3394659 crossref_primary_10_1109_TSP_2016_2543209 crossref_primary_10_1109_TAES_2017_2728998 crossref_primary_10_1049_iet_com_2016_0588 crossref_primary_10_1109_TSP_2023_3238273 crossref_primary_10_1109_OJSP_2020_3006436 crossref_primary_10_1109_OJSP_2022_3232284 crossref_primary_10_1137_22M1543197 crossref_primary_10_1109_TSIPN_2016_2607119 crossref_primary_10_1109_TIT_2019_2916845 crossref_primary_10_1109_TSIPN_2019_2936357 crossref_primary_10_1016_j_jnca_2014_01_010 crossref_primary_10_1109_TCNS_2014_2310271 crossref_primary_10_1137_22M1477015 crossref_primary_10_1109_OJSP_2022_3189315 crossref_primary_10_1109_MSP_2012_2235193 crossref_primary_10_1109_TSP_2013_2295055 crossref_primary_10_1137_120891010 crossref_primary_10_1109_TSP_2016_2613062 |
Cites_doi | 10.1109/TSP.2008.917855 10.1109/TSP.2008.917383 10.1109/ALLERTON.2010.5706921 10.1109/TIT.2006.874516 10.1109/TSP.2009.2016226 10.1109/5.554209 10.1109/SPAWC.2009.5161747 10.1109/TSP.2008.923536 10.1109/ACSSC.2009.5470136 10.1109/5.554208 10.1109/JPROC.2010.2052531 10.1109/TSP.2002.806982 10.1002/0471221082 10.1109/TSP.2011.2107902 10.1109/TSP.2009.2024278 10.1109/TSP.2006.882104 10.1109/TSP.2010.2046635 10.1109/TSP.2009.2030610 10.1002/0471200611 10.1109/TSP.2009.2033729 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2011.2157147 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1941-0476 |
EndPage | 4396 |
ExternalDocumentID | 2420914181 24592561 10_1109_TSP_2011_2157147 5771607 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c352t-af80f96dc0f026e5bd5290157e147c478f4ab8423eafca9c1c5042466f548acc3 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Sun Sep 28 11:50:56 EDT 2025 Mon Jun 30 10:18:24 EDT 2025 Mon Jul 21 09:15:35 EDT 2025 Tue Jul 01 02:52:53 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Tue Aug 26 17:18:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | large deviations Averaging method Error probability Network flow Asymptotic behavior random network Information rate Gaussian distribution Chernoff information Optimal detection Information transmission Large deviation distributed detection Simulation Information flow Signal processing running consensus |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-af80f96dc0f026e5bd5290157e147c478f4ab8423eafca9c1c5042466f548acc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 882008305 |
PQPubID | 85478 |
PageCount | 16 |
ParticipantIDs | proquest_journals_882008305 crossref_primary_10_1109_TSP_2011_2157147 ieee_primary_5771607 proquest_miscellaneous_914635421 pascalfrancis_primary_24592561 crossref_citationtrail_10_1109_TSP_2011_2157147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2011 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 kar (ref6) 2007 dembo (ref24) 1993 ref23 tsitsiklis (ref3) 1993; 2 ref25 ref22 ref21 kar (ref19) 2008 ref8 ref7 ref9 ref4 kassam (ref20) 1987 ref5 |
References_xml | – ident: ref7 doi: 10.1109/TSP.2008.917855 – ident: ref15 doi: 10.1109/TSP.2008.917383 – ident: ref21 doi: 10.1109/ALLERTON.2010.5706921 – ident: ref13 doi: 10.1109/TIT.2006.874516 – ident: ref17 doi: 10.1109/TSP.2009.2016226 – ident: ref4 doi: 10.1109/5.554209 – ident: ref11 doi: 10.1109/SPAWC.2009.5161747 – ident: ref5 doi: 10.1109/TSP.2008.923536 – ident: ref10 doi: 10.1109/ACSSC.2009.5470136 – ident: ref1 doi: 10.1109/5.554208 – ident: ref14 doi: 10.1109/JPROC.2010.2052531 – ident: ref2 doi: 10.1109/TSP.2002.806982 – ident: ref25 doi: 10.1002/0471221082 – ident: ref9 doi: 10.1109/TSP.2011.2107902 – year: 1993 ident: ref24 publication-title: Large Deviations Techniques and Applications – ident: ref18 doi: 10.1109/TSP.2009.2024278 – year: 2007 ident: ref6 article-title: Consensus based detection in sensor networks: Topology design under practical constraints publication-title: Proc Workshop Inf Theory in Sensor Networks – year: 1987 ident: ref20 publication-title: Signal Detection in Non-Gaussian Noise – volume: 2 start-page: 297 year: 1993 ident: ref3 article-title: Decentralized detection publication-title: Adv Statist Signal Process – start-page: 51 year: 2008 ident: ref19 publication-title: Distributed parameter estimation in sensor networks Nonlinear observation models and imperfect communication – ident: ref22 doi: 10.1109/TSP.2006.882104 – ident: ref12 doi: 10.1109/TSP.2010.2046635 – ident: ref8 doi: 10.1109/TSP.2009.2030610 – ident: ref23 doi: 10.1002/0471200611 – ident: ref16 doi: 10.1109/TSP.2009.2033729 |
SSID | ssj0014496 |
Score | 2.3746037 |
Snippet | We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4381 |
SubjectTerms | Applied sciences Asymptotic properties Chernoff information Decay rate Detection, estimation, filtering, equalization, prediction Detectors Deviation distributed detection Error detection Error probability Estimation Exact sciences and technology Gaussian Information flow Information, signal and communications theory large deviations Networks Noise random network Robot sensing systems Running running consensus Signal and communications theory Signal, noise Studies Telecommunications and information theory Testing |
Title | Distributed Detection via Gaussian Running Consensus: Large Deviations Asymptotic Analysis |
URI | https://ieeexplore.ieee.org/document/5771607 https://www.proquest.com/docview/882008305 https://www.proquest.com/docview/914635421 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnMqh0FLULbDyoZdKzZKHHwk3BKWoKlXV7korLpHj2BJqm0UkQWp_PTPOQ_Qh1FskO7IzM87MeB4fwGsXh8KkzgQShSng1mVB4WIdcCV1lLlSi4QKnC8_yYsl_7ASqwm8HWthrLU--czO6dHH8su1aemqDJ13Rf3QNmADxayr1RojBpx7LC40F5JApGo1hCTD7Gjx9XPXqxPVm4oISOWBCvKYKpQRqWskiuvQLP76MXttc74Nl8M-uySTb_O2Kebm1x8tHP_3Q3bgaW92spNOTp7BxFbPYetBM8JduDqjHroEf2VLdmYbn6NVsbtrzd7rtqZiS_al9QhHjGA-CSOjPmYfKZUc5991PK7ZSf3zx02zxoXY0PHkBSzP3y1OL4IeeSEwaJA1gXZp6DJZmtChj2ZFUQqKtwplkXyGq9RxXaRoiVntjM5MZASFUKV06ABpY5I92KzWlX0JLDWRjNGQKHSJnhcXukSPXCmrokjKIhFTOBqYkZu-LTmhY3zPvXsSZjmyLyf25T37pvBmfOOma8nxyNxdov44ryf8FGa_8Xscj7nI0AiMprA_CEDeH-o6R2eELNYQ98zGUTyNFGLRlV23dZ6h4kkEj6NX_154H550l9KUpHYAm81taw_RqmmKmRfne5D69AU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCgV29LiAxckss3Dj4Rb1QcL7FYIttKKS-Q4toSAbNUkleDXM-M8VB5C3CLZkZ2ZcWbG8_gAnrs4FCZ1JpAoTAG3LgsKF-uAK6mjzJVaJFTgvDiXswv-diVWG_ByrIWx1vrkMzulRx_LL9empasydN4V9UO7BbcFehVpV601xgw492hcaDAkgUjVaghKhtnh8uP7rlsnKjgVEZTKDSXkUVUoJ1LXSBbX4Vn88Wv2-uZsCxbDTrs0ky_Ttimm5sdvTRz_91MewP3e8GRHnaQ8hA1bPYJ7N9oRbsOnE-qiSwBYtmQntvFZWhW7_qzZa93WVG7JPrQe44gR0CehZNSv2JySyXH-dcflmh3V379dNmtciA09Tx7Dxdnp8ngW9NgLgUGTrAm0S0OXydKEDr00K4pSUMRVKIvkM1yljusiRVvMamd0ZiIjKIgqpUMXSBuT7MBmta7sE2CpiWSMpkShS_S9uNAl-uRKWRVFUhaJmMDhwIzc9I3JCR_ja-4dlDDLkX05sS_v2TeBF-Mbl11Tjn_M3Sbqj_N6wk_g4Bd-j-MxFxmagdEE9gYByPtjXefojpDNGuKe2TiK55GCLLqy67bOM1Q9ieBxtPv3hZ_BndlyMc_nb87f7cHd7oqaUtaewmZz1dp9tHGa4sCL9k-Lx_dY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Detection+via+Gaussian+Running+Consensus%3A+Large+Deviations+Asymptotic+Analysis&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Bajovic%2C+Dragana&rft.au=Jakovetic%2C+Dus%CB%98an&rft.au=Xavier%2C+Jo%C3%A3o&rft.au=Sinopoli%2C+Bruno&rft.date=2011-09-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=59&rft.issue=9&rft.spage=4381&rft.epage=4396&rft_id=info:doi/10.1109%2FTSP.2011.2157147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2011_2157147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |