Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method
Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to...
Saved in:
| Published in | Composite structures Vol. 280; p. 114862 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.01.2022
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-8223 1879-1085 |
| DOI | 10.1016/j.compstruct.2021.114862 |
Cover
| Abstract | Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature. |
|---|---|
| AbstractList | Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature. Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature |
| ArticleNumber | 114862 |
| Author | Montemurro, Marco Catapano, Anita Refai, Khalil |
| Author_xml | – sequence: 1 givenname: Marco orcidid: 0000-0001-5688-3664 surname: Montemurro fullname: Montemurro, Marco email: marco.montemurro@ensam.eu, marco.montemurro@u-bordeaux.fr organization: Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université, I2M UMR 5295, F-33405 Talence, France – sequence: 2 givenname: Khalil surname: Refai fullname: Refai, Khalil organization: Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université, I2M UMR 5295, F-33405 Talence, France – sequence: 3 givenname: Anita orcidid: 0000-0002-0504-1624 surname: Catapano fullname: Catapano, Anita organization: Bordeaux INP, Université de Bordeaux, Arts et Métiers Institute of Technology, CNRS, INRA, HESAM Université, I2M UMR 5295, F-33405 Talence, France |
| BackLink | https://hal.science/hal-03498784$$DView record in HAL |
| BookMark | eNqNkEGL2zAQhUVJYZO0_0HXHpxqJMeWLwvZtN0sBHpJz0KRxrGCbAVJCeTf12m6LPTSPc0wzHvz5puRyRAGJIQCWwCD6utxYUJ_SjmeTV5wxmEBUMqKfyBTkHVTAJPLCZkyXolCci4eyCylI2NMlgBT0u86jL321GJyh4GGlh6itmipjqZzGU0ee4Pen72OtNcZo9M-0dzFcD50VNP16ltxy6Cz23ukOZyCD4crDafsepfGcRhoj7kL9hP52I5i_Py3zsmvH993602x_fn8sl5tCyOWPBfa2CVWTNSmrFmLLfCai0Y3LVS6rPbCtqJGOX5vrLV7g2B5YwBLDk2NRmoxJ1_uvp326hRdr-NVBe3UZrVVtxkTZSNrWV5g3H2875oYUorYKuPyn9A5aucVMHUDrY7qDbS6gVZ30KOB_Mfg9eI7pE93KY4wLg6jSsbhYNC6OJJXNrj_m_wGEXCkEQ |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2022_123421 crossref_primary_10_1016_j_jcomc_2022_100316 crossref_primary_10_1002_smtd_202402089 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125863 crossref_primary_10_1002_eng2_12566 crossref_primary_10_1016_j_engstruct_2022_115009 crossref_primary_10_1016_j_ijsolstr_2023_112603 crossref_primary_10_1016_j_compstruct_2024_118824 crossref_primary_10_1007_s00158_023_03554_4 crossref_primary_10_1016_j_compstruct_2022_115773 crossref_primary_10_1016_j_ijmecsci_2022_107802 crossref_primary_10_1080_0305215X_2022_2139373 crossref_primary_10_1016_j_cherd_2024_07_053 crossref_primary_10_1016_j_finel_2022_103867 crossref_primary_10_1080_10106049_2022_2066203 crossref_primary_10_1002_nme_7424 crossref_primary_10_1016_j_ijmecsci_2022_107202 crossref_primary_10_1016_j_cma_2023_115974 crossref_primary_10_1080_0305215X_2022_2163239 crossref_primary_10_1016_j_cma_2024_117419 crossref_primary_10_1016_j_compstruc_2025_107646 crossref_primary_10_1016_j_matdes_2022_111078 crossref_primary_10_1016_j_cad_2024_103778 crossref_primary_10_1007_s12008_023_01606_z crossref_primary_10_1016_j_cad_2024_103835 crossref_primary_10_1016_j_compstruct_2025_119041 crossref_primary_10_1016_j_matdes_2023_111748 crossref_primary_10_1007_s00158_023_03642_5 crossref_primary_10_1080_15376494_2023_2205848 crossref_primary_10_1016_j_compstruct_2023_116922 crossref_primary_10_1016_j_compstruct_2025_118955 crossref_primary_10_1016_j_dt_2023_09_003 crossref_primary_10_1016_j_apm_2023_10_020 crossref_primary_10_1016_j_ijsolstr_2024_113159 crossref_primary_10_1016_j_ijmecsci_2022_107854 crossref_primary_10_3934_era_2023196 crossref_primary_10_3390_en15217994 crossref_primary_10_1016_j_ijmecsci_2023_108108 crossref_primary_10_1177_16878132221091661 crossref_primary_10_1007_s00366_022_01639_0 crossref_primary_10_1007_s11465_022_0710_6 crossref_primary_10_1016_j_mechmat_2023_104641 crossref_primary_10_1016_j_ijmecsci_2022_107595 |
| Cites_doi | 10.1007/s10999-017-9396-z 10.1016/j.ijheatmasstransfer.2006.03.042 10.1111/cgf.14269 10.1016/j.compstruct.2019.111171 10.4028/www.scientific.net/MSF.539-543.242 10.1002/aic.12490 10.1016/j.ijheatmasstransfer.2012.01.011 10.1177/0731684419846991 10.1016/j.msea.2020.139914 10.1080/15376494.2018.1536816 10.1016/j.ijheatmasstransfer.2008.06.002 10.1016/j.cma.2019.05.026 10.1016/j.ijfatigue.2020.105623 10.1007/s10910-014-0452-8 10.1016/j.compstruct.2021.113729 10.1115/1.4040546 10.1002/andp.18892741206 10.1108/13552540710824797 10.1137/S1052623499362822 10.1016/j.pmatsci.2005.03.001 10.1007/s00158-017-1652-1 10.1016/j.compstruct.2021.114224 10.1007/s00158-018-1905-7 10.1016/0020-7225(70)90066-2 10.3390/sym13050888 10.1016/j.applthermaleng.2015.10.002 10.1080/15376494.2019.1582826 10.1115/1.4037305 10.1016/j.compstruct.2020.113360 10.1177/002199836800200308 10.2514/6.2004-4558 10.1016/j.cma.2017.12.024 10.1115/1.2336251 10.1016/j.cirp.2019.04.048 10.3390/app10186374 10.1007/s12008-019-00580-9 10.1007/s00170-020-05741-9 10.2514/1.20184 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Attribution - NonCommercial |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Attribution - NonCommercial |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.compstruct.2021.114862 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1085 |
| ExternalDocumentID | oai:HAL:hal-03498784v1 10_1016_j_compstruct_2021_114862 S0263822321013015 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS WUQ ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c352t-acd5e6037c470fef127239a9f16a46b3df37e8016cdddbce1d29c1e42197ec8a3 |
| IEDL.DBID | .~1 |
| ISSN | 0263-8223 |
| IngestDate | Tue Oct 14 20:44:56 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Thu Oct 09 00:16:40 EDT 2025 Fri Feb 23 02:41:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Architected cellular materials Heat conduction Topology optimisation NURBS hyper-surfaces Additive manufacturing Homogenisation |
| Language | English |
| License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-acd5e6037c470fef127239a9f16a46b3df37e8016cdddbce1d29c1e42197ec8a3 |
| ORCID | 0000-0001-5688-3664 0000-0002-0504-1624 |
| OpenAccessLink | https://hal.science/hal-03498784 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03498784v1 crossref_citationtrail_10_1016_j_compstruct_2021_114862 crossref_primary_10_1016_j_compstruct_2021_114862 elsevier_sciencedirect_doi_10_1016_j_compstruct_2021_114862 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-15 |
| PublicationDateYYYYMMDD | 2022-01-15 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Composite structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Schapery (b23) 1968; 2 Tovar, Patel, Kaushik, Renaud (b34) 2007; 45 Lu, Valdevit, Evans (b16) 2005; 50 Catchpole-Smith, Sélo, Davis, Ashcroft, Tuck, Clare (b10) 2019; 30 Xu, Xia, Wang, Liu, Xie (b4) 2019; 225 Svanberg (b51) 2002; 12 Tovar, Patel, Niebur, Sen, Renaud (b33) 2006; 128 Tovar A, Patel N, Kaushik A, Letona G, Renaud J, Sanders B. Hybrid cellular automata: A biologically-inspired structural optimization technique. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference Chamberlain (b24) 1968 Barbero (b43) 2007 Pan, Han, Lu (b1) 2020; 10 Costa, Montemurro, Pailhès, Perry (b39) 2019; 68 Hu, Luo, Liu (b2) 2021; 272 Maloney, Fink, Schaedler, Kolodziejska, Jacobsen, Roper (b15) 2012; 55 Chamis CC. Simplified composite micromechanics equations for hygral, thermal and mechanical properties. In: 38th annual conference of the society of the plastics industry (SPI) reinforced plastics/composites institute, Houston, TX, 1983. Montemurro, Refai (b50) 2021; 13 Zienkiewicz, Taylor, Zhu (b48) 2005 Cheng, Liu, To (b30) 2018; 58 Piegl, Tiller (b47) 1997 Costa, Montemurro, Pailhès (b37) 2021; 28 Calvo-Jurado, Parnell (b46) 2015; 53 Montemurro, Bertolino, Roiné (b3) 2021; 258 , Han Y, Lu W. Optimization design of nonuniform cellular structures for additive manufacturing. In: Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference MSEC2018 College Station, V001T01A033, College Station, TX, USA, 18–22 June. . Li, Dai, Tang, Dong, Zhao (b27) 2019; 141 Alexandersen (b49) 2011 Behrou, Ghanem, Macnider, Verma, Alvey, Hong (b5) 2021; 266 Wong, Owen, Sutcliffe, Puri (b8) 2009; 52 Wong, Tsopanos, Sutcliffe, Owen (b7) 2017; 13 Reuss (b45) 1929; 9 Valdevit, Pantano, Stone, Evans (b17) 2006; 49 Bertolino, Montemurro, Pasquale (b22) 2019; 13 Huang, Dai, Cheng, Wang (b28) 2020; 109 Costa, Montemurro, Pailhès (b40) 2019; 354 URL Do, Geißelbrecht, Schwieger, Freund (b12) 2019; 148 Han, Lu (b14) 2018; 140 Fink, Kolodziejska, Jacobsen, Roper (b11) 2011; 57 Rosen, Hashin (b26) 1970; 8 Cheng, Wei, He, Pei, Fang (b19) 2016; 93 Tovar A, Niebur G, Sen M, Renaud J, Sanders B. Bone Structure Adaptation as a Cellular Automaton Optimization Process. Voigt (b44) 1889; 274 Refai, Montemurro, Brugger, Saintier (b21) 2020; 27 Wadley, Queheillalt (b9) 2007; 539 Dong, Tang, Zhao (b13) 2017; 139 Da, Chen, Cui, Li (b35) 2017; 56 Delucia, Catapano, Montemurro, Pailhès (b20) 2019; 38 Bertolino, Montemurro, Perry, Pourroy (b41) 2021; 40 Cheng, Liu, Liang, To (b29) 2018; 332 Refai, Brugger, Montemurro, Saintier (b42) 2020; 138 Bendsœ, Sigmund (b38) 2003 Borovinšek, Novak, Vesenjak, Ren, Ulbin (b6) 2020; 795 Costa, Montemurro, Pailhès (b36) 2018; 14 Da (10.1016/j.compstruct.2021.114862_b35) 2017; 56 Barbero (10.1016/j.compstruct.2021.114862_b43) 2007 Alexandersen (10.1016/j.compstruct.2021.114862_b49) 2011 Bertolino (10.1016/j.compstruct.2021.114862_b41) 2021; 40 Costa (10.1016/j.compstruct.2021.114862_b37) 2021; 28 10.1016/j.compstruct.2021.114862_b32 10.1016/j.compstruct.2021.114862_b31 Cheng (10.1016/j.compstruct.2021.114862_b19) 2016; 93 Piegl (10.1016/j.compstruct.2021.114862_b47) 1997 Cheng (10.1016/j.compstruct.2021.114862_b30) 2018; 58 Calvo-Jurado (10.1016/j.compstruct.2021.114862_b46) 2015; 53 Valdevit (10.1016/j.compstruct.2021.114862_b17) 2006; 49 Montemurro (10.1016/j.compstruct.2021.114862_b3) 2021; 258 Rosen (10.1016/j.compstruct.2021.114862_b26) 1970; 8 Wong (10.1016/j.compstruct.2021.114862_b7) 2017; 13 Xu (10.1016/j.compstruct.2021.114862_b4) 2019; 225 Borovinšek (10.1016/j.compstruct.2021.114862_b6) 2020; 795 Voigt (10.1016/j.compstruct.2021.114862_b44) 1889; 274 Pan (10.1016/j.compstruct.2021.114862_b1) 2020; 10 Lu (10.1016/j.compstruct.2021.114862_b16) 2005; 50 Svanberg (10.1016/j.compstruct.2021.114862_b51) 2002; 12 Wong (10.1016/j.compstruct.2021.114862_b8) 2009; 52 Hu (10.1016/j.compstruct.2021.114862_b2) 2021; 272 Tovar (10.1016/j.compstruct.2021.114862_b34) 2007; 45 Cheng (10.1016/j.compstruct.2021.114862_b29) 2018; 332 Han (10.1016/j.compstruct.2021.114862_b14) 2018; 140 Fink (10.1016/j.compstruct.2021.114862_b11) 2011; 57 Tovar (10.1016/j.compstruct.2021.114862_b33) 2006; 128 Huang (10.1016/j.compstruct.2021.114862_b28) 2020; 109 Wadley (10.1016/j.compstruct.2021.114862_b9) 2007; 539 Maloney (10.1016/j.compstruct.2021.114862_b15) 2012; 55 Costa (10.1016/j.compstruct.2021.114862_b36) 2018; 14 10.1016/j.compstruct.2021.114862_b18 Bertolino (10.1016/j.compstruct.2021.114862_b22) 2019; 13 Chamberlain (10.1016/j.compstruct.2021.114862_b24) 1968 Zienkiewicz (10.1016/j.compstruct.2021.114862_b48) 2005 Schapery (10.1016/j.compstruct.2021.114862_b23) 1968; 2 Bendsœ (10.1016/j.compstruct.2021.114862_b38) 2003 Catchpole-Smith (10.1016/j.compstruct.2021.114862_b10) 2019; 30 Refai (10.1016/j.compstruct.2021.114862_b42) 2020; 138 Costa (10.1016/j.compstruct.2021.114862_b39) 2019; 68 Do (10.1016/j.compstruct.2021.114862_b12) 2019; 148 Reuss (10.1016/j.compstruct.2021.114862_b45) 1929; 9 Montemurro (10.1016/j.compstruct.2021.114862_b50) 2021; 13 10.1016/j.compstruct.2021.114862_b25 Li (10.1016/j.compstruct.2021.114862_b27) 2019; 141 Behrou (10.1016/j.compstruct.2021.114862_b5) 2021; 266 Costa (10.1016/j.compstruct.2021.114862_b40) 2019; 354 Refai (10.1016/j.compstruct.2021.114862_b21) 2020; 27 Delucia (10.1016/j.compstruct.2021.114862_b20) 2019; 38 Dong (10.1016/j.compstruct.2021.114862_b13) 2017; 139 |
| References_xml | – year: 2011 ident: b49 article-title: Topology optimization for convection problems – volume: 30 year: 2019 ident: b10 article-title: Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion publication-title: Addit Manuf – volume: 225 year: 2019 ident: b4 article-title: An isogeometric approach to topology optimization of spatially graded hierarchical structures publication-title: Compos Struct – volume: 57 start-page: 2636 year: 2011 end-page: 2646 ident: b11 article-title: Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides publication-title: Aiche J – volume: 148 year: 2019 ident: b12 article-title: Additive manufacturing of interpenetrating periodic open cellular structures (interpocs) with in operando adjustable flow characteristics publication-title: Chem Eng Process – volume: 266 year: 2021 ident: b5 article-title: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties publication-title: Compos Struct – volume: 274 start-page: 573 year: 1889 end-page: 587 ident: b44 article-title: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper publication-title: Ann Phys – volume: 56 start-page: 131 year: 2017 end-page: 137 ident: b35 article-title: Design of materials using hybrid cellular automata publication-title: Struct Multidiscip Optim – volume: 109 start-page: 1841 year: 2020 end-page: 1851 ident: b28 article-title: Topology optimization of lattice support structures for heat conduction in selective laser melting publication-title: Int J Adv Manuf Technol – year: 1997 ident: b47 article-title: The – volume: 9 start-page: 49 year: 1929 end-page: 58 ident: b45 article-title: Berechnung der fließ grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle publication-title: J Appl Math Mech – volume: 139 year: 2017 ident: b13 article-title: A survey of modeling of lattice structures fabricated by additive manufacturing publication-title: J Mech Des Trans ASME – volume: 2 start-page: 380 year: 1968 end-page: 404 ident: b23 article-title: Thermal expansion coefficients of composite materials based on energy principles publication-title: J Compos Mater – volume: 128 start-page: 1205 year: 2006 end-page: 1216 ident: b33 article-title: Topology optimization using a hybrid cellular automaton method with local control rules publication-title: J Mech Des – year: 2003 ident: b38 article-title: Topology optimization - Theory, methods and applications – volume: 12 start-page: 555 year: 2002 end-page: 573 ident: b51 article-title: A class of globally convergent optimization methods based on conservative convex separable approximations publication-title: SIAM J Optim – volume: 38 start-page: 760 year: 2019 end-page: 776 ident: b20 article-title: Determination of the effective thermoelastic properties of cork-based agglomerates publication-title: J Reinf Plast Comp – volume: 13 start-page: 1565 year: 2019 end-page: 1578 ident: b22 article-title: Multi-scale shape optimisation of lattice structures : An evolutionary-based approach publication-title: Int J Interact Des Manuf – volume: 53 start-page: 828 year: 2015 end-page: 843 ident: b46 article-title: Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material publication-title: J Math Chem – volume: 138 year: 2020 ident: b42 article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM) publication-title: Int J Fatigue – volume: 68 start-page: 153 year: 2019 end-page: 156 ident: b39 article-title: Maximum length scale requirement in a topology optimisation method based on publication-title: CIRP Ann – year: 2007 ident: b43 article-title: Finite element analysis of composite materials – volume: 49 start-page: 3819 year: 2006 end-page: 3830 ident: b17 article-title: Optimal active cooling performance of metallic sandwich panels with prismatic cores publication-title: Int J Heat Mass Transfer – volume: 27 start-page: 1966 year: 2020 end-page: 1982 ident: b21 article-title: Determination of the effective elastic properties of titanium lattice structures publication-title: Mech Adv Mater Struct – reference: Han Y, Lu W. Optimization design of nonuniform cellular structures for additive manufacturing. In: Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference MSEC2018 College Station, V001T01A033, College Station, TX, USA, 18–22 June. – volume: 141 start-page: 1 year: 2019 end-page: 13 ident: b27 article-title: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes publication-title: J Mech Des – year: 2005 ident: b48 article-title: The finite element method: Its basis and fundamentals – volume: 272 year: 2021 ident: b2 article-title: Two-scale concurrent topology optimization method of hierarchical structures with self-connected multiple lattice-material domains publication-title: Compos Struct – volume: 58 start-page: 511 year: 2018 end-page: 535 ident: b30 article-title: Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design publication-title: Struct Multidiscip Optim – volume: 55 start-page: 2486 year: 2012 end-page: 2493 ident: b15 article-title: Multifunctional heat exchangers derived from three-dimensional micro-lattice structures publication-title: Int J Heat Mass Trans – volume: 93 start-page: 236 year: 2016 end-page: 243 ident: b19 article-title: The equivalent thermal conductivity of lattice core sandwich structure: A predictive model publication-title: Appl Therm Eng – reference: , – volume: 332 start-page: 408 year: 2018 end-page: 439 ident: b29 article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design publication-title: Comput Methods Appl Mech Engrg – reference: Chamis CC. Simplified composite micromechanics equations for hygral, thermal and mechanical properties. In: 38th annual conference of the society of the plastics industry (SPI) reinforced plastics/composites institute, Houston, TX, 1983. – volume: 13 start-page: 291 year: 2017 end-page: 297 ident: b7 article-title: Selective laser melting of heat transfer devices publication-title: Rapid Prototyp J – volume: 45 start-page: 673 year: 2007 end-page: 683 ident: b34 article-title: Optimality conditions of the hybrid cellular automata for structural optimization publication-title: AIAA J – volume: 50 start-page: 798 year: 2005 end-page: 815 ident: b16 article-title: Active cooling by metallic sandwich structures with periodic cores publication-title: Prog Mater Sci – volume: 795 year: 2020 ident: b6 article-title: Designing 2D auxetic structures using multi-objective topology optimization publication-title: Mater Sci Eng A – volume: 28 start-page: 665 year: 2021 end-page: 684 ident: b37 article-title: hypersurfaces for 3 publication-title: Mech Adv Mater Struct – volume: 14 start-page: 669 year: 2018 end-page: 696 ident: b36 article-title: A 2 publication-title: Int J Mech Mater Des – reference: , URL – year: 1968 ident: b24 article-title: Derivation of expansion coefficients for a fibre reinforced composites – volume: 10 start-page: 6374 year: 2020 ident: b1 article-title: Design and optimization of lattice structures: A review publication-title: Appl Sci – volume: 8 start-page: 157 year: 1970 end-page: 173 ident: b26 article-title: Effective thermal expansion coefficients and specific heats of composite materials publication-title: Int J Eng Sci – reference: Tovar A, Patel N, Kaushik A, Letona G, Renaud J, Sanders B. Hybrid cellular automata: A biologically-inspired structural optimization technique. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, – reference: . – volume: 52 start-page: 281 year: 2009 end-page: 288 ident: b8 article-title: Convective heat transfer and pressure losses across novel heat sinks fabricated by selective laser melting publication-title: Int J Heat Mass Transfer – volume: 539 start-page: 242 year: 2007 end-page: 247 ident: b9 article-title: Thermal applications of cellular lattice structures publication-title: Mater Sci Forum – volume: 40 start-page: 215 year: 2021 end-page: 241 ident: b41 article-title: An efficient hybrid optimisation strategy for surface reconstruction publication-title: Comput Graph Forum – volume: 354 start-page: 63 year: 2019 end-page: 989 ident: b40 article-title: Minimum length scale control in a publication-title: Comput Methods Appl Mech Engrg – volume: 13 start-page: 888 year: 2021 ident: b50 article-title: A topology optimization method based on non-uniform rational basis spline hyper-surfaces for heat conduction problems publication-title: Symmetry – volume: 140 year: 2018 ident: b14 article-title: A novel design method for nonuniform lattice structures based on topology optimization publication-title: J Mech Des Trans ASME – reference: Tovar A, Niebur G, Sen M, Renaud J, Sanders B. Bone Structure Adaptation as a Cellular Automaton Optimization Process. – volume: 258 year: 2021 ident: b3 article-title: A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology publication-title: Compos Struct – volume: 14 start-page: 669 issue: 4 year: 2018 ident: 10.1016/j.compstruct.2021.114862_b36 article-title: A 2d topology optimisation algorithm in NURBS framework with geometric constraints publication-title: Int J Mech Mater Des doi: 10.1007/s10999-017-9396-z – volume: 49 start-page: 3819 year: 2006 ident: 10.1016/j.compstruct.2021.114862_b17 article-title: Optimal active cooling performance of metallic sandwich panels with prismatic cores publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.03.042 – volume: 141 start-page: 1 issue: 071402 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b27 article-title: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes publication-title: J Mech Des – year: 2003 ident: 10.1016/j.compstruct.2021.114862_b38 – volume: 40 start-page: 215 issue: 6 year: 2021 ident: 10.1016/j.compstruct.2021.114862_b41 article-title: An efficient hybrid optimisation strategy for surface reconstruction publication-title: Comput Graph Forum doi: 10.1111/cgf.14269 – volume: 225 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b4 article-title: An isogeometric approach to topology optimization of spatially graded hierarchical structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111171 – volume: 539 start-page: 242 year: 2007 ident: 10.1016/j.compstruct.2021.114862_b9 article-title: Thermal applications of cellular lattice structures publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.539-543.242 – volume: 57 start-page: 2636 year: 2011 ident: 10.1016/j.compstruct.2021.114862_b11 article-title: Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides publication-title: Aiche J doi: 10.1002/aic.12490 – volume: 55 start-page: 2486 year: 2012 ident: 10.1016/j.compstruct.2021.114862_b15 article-title: Multifunctional heat exchangers derived from three-dimensional micro-lattice structures publication-title: Int J Heat Mass Trans doi: 10.1016/j.ijheatmasstransfer.2012.01.011 – volume: 38 start-page: 760 issue: 16 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b20 article-title: Determination of the effective thermoelastic properties of cork-based agglomerates publication-title: J Reinf Plast Comp doi: 10.1177/0731684419846991 – volume: 795 year: 2020 ident: 10.1016/j.compstruct.2021.114862_b6 article-title: Designing 2D auxetic structures using multi-objective topology optimization publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2020.139914 – volume: 27 start-page: 1966 year: 2020 ident: 10.1016/j.compstruct.2021.114862_b21 article-title: Determination of the effective elastic properties of titanium lattice structures publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2018.1536816 – volume: 52 start-page: 281 issue: 1–2 year: 2009 ident: 10.1016/j.compstruct.2021.114862_b8 article-title: Convective heat transfer and pressure losses across novel heat sinks fabricated by selective laser melting publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.06.002 – volume: 354 start-page: 63 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b40 article-title: Minimum length scale control in a NURBS-based SIMP method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.05.026 – year: 2011 ident: 10.1016/j.compstruct.2021.114862_b49 – volume: 138 year: 2020 ident: 10.1016/j.compstruct.2021.114862_b42 article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM) publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105623 – volume: 53 start-page: 828 year: 2015 ident: 10.1016/j.compstruct.2021.114862_b46 article-title: Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material publication-title: J Math Chem doi: 10.1007/s10910-014-0452-8 – volume: 266 year: 2021 ident: 10.1016/j.compstruct.2021.114862_b5 article-title: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.113729 – volume: 140 year: 2018 ident: 10.1016/j.compstruct.2021.114862_b14 article-title: A novel design method for nonuniform lattice structures based on topology optimization publication-title: J Mech Des Trans ASME doi: 10.1115/1.4040546 – volume: 274 start-page: 573 issue: 12 year: 1889 ident: 10.1016/j.compstruct.2021.114862_b44 article-title: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper publication-title: Ann Phys doi: 10.1002/andp.18892741206 – volume: 13 start-page: 291 issue: 5 year: 2017 ident: 10.1016/j.compstruct.2021.114862_b7 article-title: Selective laser melting of heat transfer devices publication-title: Rapid Prototyp J doi: 10.1108/13552540710824797 – volume: 12 start-page: 555 year: 2002 ident: 10.1016/j.compstruct.2021.114862_b51 article-title: A class of globally convergent optimization methods based on conservative convex separable approximations publication-title: SIAM J Optim doi: 10.1137/S1052623499362822 – volume: 50 start-page: 798 year: 2005 ident: 10.1016/j.compstruct.2021.114862_b16 article-title: Active cooling by metallic sandwich structures with periodic cores publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2005.03.001 – volume: 56 start-page: 131 year: 2017 ident: 10.1016/j.compstruct.2021.114862_b35 article-title: Design of materials using hybrid cellular automata publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1652-1 – year: 2005 ident: 10.1016/j.compstruct.2021.114862_b48 – volume: 272 year: 2021 ident: 10.1016/j.compstruct.2021.114862_b2 article-title: Two-scale concurrent topology optimization method of hierarchical structures with self-connected multiple lattice-material domains publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.114224 – volume: 9 start-page: 49 year: 1929 ident: 10.1016/j.compstruct.2021.114862_b45 article-title: Berechnung der fließ grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle publication-title: J Appl Math Mech – ident: 10.1016/j.compstruct.2021.114862_b25 – volume: 58 start-page: 511 year: 2018 ident: 10.1016/j.compstruct.2021.114862_b30 article-title: Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1905-7 – volume: 8 start-page: 157 year: 1970 ident: 10.1016/j.compstruct.2021.114862_b26 article-title: Effective thermal expansion coefficients and specific heats of composite materials publication-title: Int J Eng Sci doi: 10.1016/0020-7225(70)90066-2 – year: 1968 ident: 10.1016/j.compstruct.2021.114862_b24 – volume: 13 start-page: 888 issue: 5 year: 2021 ident: 10.1016/j.compstruct.2021.114862_b50 article-title: A topology optimization method based on non-uniform rational basis spline hyper-surfaces for heat conduction problems publication-title: Symmetry doi: 10.3390/sym13050888 – volume: 93 start-page: 236 year: 2016 ident: 10.1016/j.compstruct.2021.114862_b19 article-title: The equivalent thermal conductivity of lattice core sandwich structure: A predictive model publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.10.002 – volume: 28 start-page: 665 issue: 7 year: 2021 ident: 10.1016/j.compstruct.2021.114862_b37 article-title: NURBS hypersurfaces for 3d topology optimisation problems publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2019.1582826 – volume: 139 year: 2017 ident: 10.1016/j.compstruct.2021.114862_b13 article-title: A survey of modeling of lattice structures fabricated by additive manufacturing publication-title: J Mech Des Trans ASME doi: 10.1115/1.4037305 – volume: 258 year: 2021 ident: 10.1016/j.compstruct.2021.114862_b3 article-title: A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.113360 – volume: 2 start-page: 380 year: 1968 ident: 10.1016/j.compstruct.2021.114862_b23 article-title: Thermal expansion coefficients of composite materials based on energy principles publication-title: J Compos Mater doi: 10.1177/002199836800200308 – ident: 10.1016/j.compstruct.2021.114862_b31 doi: 10.2514/6.2004-4558 – volume: 332 start-page: 408 year: 2018 ident: 10.1016/j.compstruct.2021.114862_b29 article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.12.024 – volume: 128 start-page: 1205 issue: 6 year: 2006 ident: 10.1016/j.compstruct.2021.114862_b33 article-title: Topology optimization using a hybrid cellular automaton method with local control rules publication-title: J Mech Des doi: 10.1115/1.2336251 – volume: 30 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b10 article-title: Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion publication-title: Addit Manuf – volume: 68 start-page: 153 issue: 1 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b39 article-title: Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces publication-title: CIRP Ann doi: 10.1016/j.cirp.2019.04.048 – volume: 10 start-page: 6374 issue: 18 year: 2020 ident: 10.1016/j.compstruct.2021.114862_b1 article-title: Design and optimization of lattice structures: A review publication-title: Appl Sci doi: 10.3390/app10186374 – ident: 10.1016/j.compstruct.2021.114862_b18 – ident: 10.1016/j.compstruct.2021.114862_b32 – year: 1997 ident: 10.1016/j.compstruct.2021.114862_b47 – year: 2007 ident: 10.1016/j.compstruct.2021.114862_b43 – volume: 13 start-page: 1565 issue: 4 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b22 article-title: Multi-scale shape optimisation of lattice structures : An evolutionary-based approach publication-title: Int J Interact Des Manuf doi: 10.1007/s12008-019-00580-9 – volume: 109 start-page: 1841 year: 2020 ident: 10.1016/j.compstruct.2021.114862_b28 article-title: Topology optimization of lattice support structures for heat conduction in selective laser melting publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05741-9 – volume: 148 year: 2019 ident: 10.1016/j.compstruct.2021.114862_b12 article-title: Additive manufacturing of interpenetrating periodic open cellular structures (interpocs) with in operando adjustable flow characteristics publication-title: Chem Eng Process – volume: 45 start-page: 673 issue: 3 year: 2007 ident: 10.1016/j.compstruct.2021.114862_b34 article-title: Optimality conditions of the hybrid cellular automata for structural optimization publication-title: AIAA J doi: 10.2514/1.20184 |
| SSID | ssj0008411 |
| Score | 2.5572412 |
| Snippet | Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 114862 |
| SubjectTerms | Additive manufacturing Architected cellular materials Engineering Sciences Heat conduction Homogenisation Materials NURBS hyper-surfaces Topology optimisation |
| Title | Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method |
| URI | https://dx.doi.org/10.1016/j.compstruct.2021.114862 https://hal.science/hal-03498784 |
| Volume | 280 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1879-1085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-1085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-LnoQn_gsQbzGbjbZTRZPpSj1gRct9LZsXlqprUgRvPjbnWyyrR6EgrclJGSZCd9Mdr_5BqEzq7NKM5kQrdOMcKEkkZIZkhbKaaEl56pW-7zPe31-M8gGS6jb1MJ4WmXE_oDpNVrHkXa0ZvttOGw_wO2BQXjzRSgAxHWhOefCdzE4_5rTPCSve_D6ycTPjmyewPHytO2g0wo3xZR64VyZp3-FqOXn5mNrHXyuNtFGzBpxJ7zYFlqy4220_kNLcAe9gsMBZEfY1JwMPHH46b0y1uDZvwJ49t_pPfEUQ6Iazh6OnXpwhcErpOakT4dqZPE09E_4xBOAlddI-8Gh5fQu6l9dPnZ7JPZSIBpSrCmptMlsnjChuUicdTQVKSuqwtG84rlixjFhIVrl2hijtKUmLTS1HABNWC0rtodWxpOx3UcYLMoLpZmRhnIrEiUcz_PC8cQ4mhh5gERjvlJHoXHf72JUNoyyl3Ju-NIbvgyGP0B0tvItiG0ssOai8VD56-CUEBMWWH0KTp1t5rW2e5270o954R4pJP-gh__a4gitpb5kIqGEZsdoBSbYE0hkpqpVn9QWWu1c3_buvwH93fZE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFA-rPWgP0lqlWluD9Bp38jGTDJ5kUba6eqmCtzD50i37IWURvPi392WSWetBELwNISHDe-H3XmZ-7_cQ-ult2ViuCmItK4mQRhGluCOsNsFKq4QwrdrnZTW8Fmc35U0PDbpamEirzNifML1F6zzSz9bs34_H_d9we-AQ3mIRCgBxLDT_IEom4w3s8OmZ56FE24Q3ziZxeqbzJJJX5G0noVa4KjIalXNVxV6LUSt33dfWNvqcfkIbOW3Ex-nNPqOen22ij_-JCX5BU_A4oOwEu5aUgecB3_5tnHd4-bMAnuOH-sg8xZCppsOHc6se3GBwC2lJ6YuxmXi8SA0UHvEccGWaeT849ZzeQtenJ1eDIcnNFIiFHGtBGutKXxVcWiGL4ANlkvG6qQOtGlEZ7gKXHsJVZZ1zxnrqWG2pF4Bo0lvV8G20OpvP_FeEwaKiNpY75ajwsjAyiKqqgyhcoIVTO0h25tM2K43HhhcT3VHK_uhnw-toeJ0Mv4PocuV9Utt4w5qjzkP6xcnREBTesPoAnLrcLIptD49HOo5F5R4llXigu-_aYh-tDa8uRnr06_L8G1pnsX6ioISWe2gVJvvvkNUszI_21P4DrPH32Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+design+of+graded+architected+cellular+materials+through+a+CAD-compatible+topology+optimisation+method&rft.jtitle=Composite+structures&rft.au=Montemurro%2C+Marco&rft.au=Refai%2C+Khalil&rft.au=Catapano%2C+Anita&rft.date=2022-01-15&rft.pub=Elsevier&rft.issn=0263-8223&rft.volume=280&rft_id=info:doi/10.1016%2Fj.compstruct.2021.114862&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03498784v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |