Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method

Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 280; p. 114862
Main Authors Montemurro, Marco, Refai, Khalil, Catapano, Anita
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0263-8223
1879-1085
DOI10.1016/j.compstruct.2021.114862

Cover

Abstract Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature.
AbstractList Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature.
Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing (AM) technologies due to their high specific strength and stiffness. ACMs are also used in thermal applications, where their high surface-to-mass ratio can be conveniently exploited to enhance heat transfer. In this work, a numerical approach to predict the effective thermal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on a general numerical homogenisation scheme and an explicit description of the representative volume element (RVE) of the ACM. Numerical analyses have been conducted on 31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends on the relative density and the geometrical features of the RVE. Moreover, starting from the database of RVEs geometries, seven configurations are chosen to design graded ACMs through a computer-aided design-compatible topology optimisation method based on non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on the well-known solid isotropic material with penalisation (SIMP) approach. In particular, the penalisation law used in the SIMP method is replaced by a physically-based penalisation scheme obtained by interpolating the results of the homogenisation for each RVE topology and a suitable post-processing phase is developed to recover the distribution of the graded ACM over the structure from the results of the optimisation process. The effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken from the literature
ArticleNumber 114862
Author Montemurro, Marco
Catapano, Anita
Refai, Khalil
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0001-5688-3664
  surname: Montemurro
  fullname: Montemurro, Marco
  email: marco.montemurro@ensam.eu, marco.montemurro@u-bordeaux.fr
  organization: Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université, I2M UMR 5295, F-33405 Talence, France
– sequence: 2
  givenname: Khalil
  surname: Refai
  fullname: Refai, Khalil
  organization: Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université, I2M UMR 5295, F-33405 Talence, France
– sequence: 3
  givenname: Anita
  orcidid: 0000-0002-0504-1624
  surname: Catapano
  fullname: Catapano, Anita
  organization: Bordeaux INP, Université de Bordeaux, Arts et Métiers Institute of Technology, CNRS, INRA, HESAM Université, I2M UMR 5295, F-33405 Talence, France
BackLink https://hal.science/hal-03498784$$DView record in HAL
BookMark eNqNkEGL2zAQhUVJYZO0_0HXHpxqJMeWLwvZtN0sBHpJz0KRxrGCbAVJCeTf12m6LPTSPc0wzHvz5puRyRAGJIQCWwCD6utxYUJ_SjmeTV5wxmEBUMqKfyBTkHVTAJPLCZkyXolCci4eyCylI2NMlgBT0u86jL321GJyh4GGlh6itmipjqZzGU0ee4Pen72OtNcZo9M-0dzFcD50VNP16ltxy6Cz23ukOZyCD4crDafsepfGcRhoj7kL9hP52I5i_Py3zsmvH993602x_fn8sl5tCyOWPBfa2CVWTNSmrFmLLfCai0Y3LVS6rPbCtqJGOX5vrLV7g2B5YwBLDk2NRmoxJ1_uvp326hRdr-NVBe3UZrVVtxkTZSNrWV5g3H2875oYUorYKuPyn9A5aucVMHUDrY7qDbS6gVZ30KOB_Mfg9eI7pE93KY4wLg6jSsbhYNC6OJJXNrj_m_wGEXCkEQ
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2022_123421
crossref_primary_10_1016_j_jcomc_2022_100316
crossref_primary_10_1002_smtd_202402089
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125863
crossref_primary_10_1002_eng2_12566
crossref_primary_10_1016_j_engstruct_2022_115009
crossref_primary_10_1016_j_ijsolstr_2023_112603
crossref_primary_10_1016_j_compstruct_2024_118824
crossref_primary_10_1007_s00158_023_03554_4
crossref_primary_10_1016_j_compstruct_2022_115773
crossref_primary_10_1016_j_ijmecsci_2022_107802
crossref_primary_10_1080_0305215X_2022_2139373
crossref_primary_10_1016_j_cherd_2024_07_053
crossref_primary_10_1016_j_finel_2022_103867
crossref_primary_10_1080_10106049_2022_2066203
crossref_primary_10_1002_nme_7424
crossref_primary_10_1016_j_ijmecsci_2022_107202
crossref_primary_10_1016_j_cma_2023_115974
crossref_primary_10_1080_0305215X_2022_2163239
crossref_primary_10_1016_j_cma_2024_117419
crossref_primary_10_1016_j_compstruc_2025_107646
crossref_primary_10_1016_j_matdes_2022_111078
crossref_primary_10_1016_j_cad_2024_103778
crossref_primary_10_1007_s12008_023_01606_z
crossref_primary_10_1016_j_cad_2024_103835
crossref_primary_10_1016_j_compstruct_2025_119041
crossref_primary_10_1016_j_matdes_2023_111748
crossref_primary_10_1007_s00158_023_03642_5
crossref_primary_10_1080_15376494_2023_2205848
crossref_primary_10_1016_j_compstruct_2023_116922
crossref_primary_10_1016_j_compstruct_2025_118955
crossref_primary_10_1016_j_dt_2023_09_003
crossref_primary_10_1016_j_apm_2023_10_020
crossref_primary_10_1016_j_ijsolstr_2024_113159
crossref_primary_10_1016_j_ijmecsci_2022_107854
crossref_primary_10_3934_era_2023196
crossref_primary_10_3390_en15217994
crossref_primary_10_1016_j_ijmecsci_2023_108108
crossref_primary_10_1177_16878132221091661
crossref_primary_10_1007_s00366_022_01639_0
crossref_primary_10_1007_s11465_022_0710_6
crossref_primary_10_1016_j_mechmat_2023_104641
crossref_primary_10_1016_j_ijmecsci_2022_107595
Cites_doi 10.1007/s10999-017-9396-z
10.1016/j.ijheatmasstransfer.2006.03.042
10.1111/cgf.14269
10.1016/j.compstruct.2019.111171
10.4028/www.scientific.net/MSF.539-543.242
10.1002/aic.12490
10.1016/j.ijheatmasstransfer.2012.01.011
10.1177/0731684419846991
10.1016/j.msea.2020.139914
10.1080/15376494.2018.1536816
10.1016/j.ijheatmasstransfer.2008.06.002
10.1016/j.cma.2019.05.026
10.1016/j.ijfatigue.2020.105623
10.1007/s10910-014-0452-8
10.1016/j.compstruct.2021.113729
10.1115/1.4040546
10.1002/andp.18892741206
10.1108/13552540710824797
10.1137/S1052623499362822
10.1016/j.pmatsci.2005.03.001
10.1007/s00158-017-1652-1
10.1016/j.compstruct.2021.114224
10.1007/s00158-018-1905-7
10.1016/0020-7225(70)90066-2
10.3390/sym13050888
10.1016/j.applthermaleng.2015.10.002
10.1080/15376494.2019.1582826
10.1115/1.4037305
10.1016/j.compstruct.2020.113360
10.1177/002199836800200308
10.2514/6.2004-4558
10.1016/j.cma.2017.12.024
10.1115/1.2336251
10.1016/j.cirp.2019.04.048
10.3390/app10186374
10.1007/s12008-019-00580-9
10.1007/s00170-020-05741-9
10.2514/1.20184
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.compstruct.2021.114862
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID oai:HAL:hal-03498784v1
10_1016_j_compstruct_2021_114862
S0263822321013015
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
WUQ
~HD
1XC
VOOES
ID FETCH-LOGICAL-c352t-acd5e6037c470fef127239a9f16a46b3df37e8016cdddbce1d29c1e42197ec8a3
IEDL.DBID .~1
ISSN 0263-8223
IngestDate Tue Oct 14 20:44:56 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Thu Oct 09 00:16:40 EDT 2025
Fri Feb 23 02:41:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Architected cellular materials
Heat conduction
Topology optimisation
NURBS hyper-surfaces
Additive manufacturing
Homogenisation
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-acd5e6037c470fef127239a9f16a46b3df37e8016cdddbce1d29c1e42197ec8a3
ORCID 0000-0001-5688-3664
0000-0002-0504-1624
OpenAccessLink https://hal.science/hal-03498784
ParticipantIDs hal_primary_oai_HAL_hal_03498784v1
crossref_citationtrail_10_1016_j_compstruct_2021_114862
crossref_primary_10_1016_j_compstruct_2021_114862
elsevier_sciencedirect_doi_10_1016_j_compstruct_2021_114862
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Schapery (b23) 1968; 2
Tovar, Patel, Kaushik, Renaud (b34) 2007; 45
Lu, Valdevit, Evans (b16) 2005; 50
Catchpole-Smith, Sélo, Davis, Ashcroft, Tuck, Clare (b10) 2019; 30
Xu, Xia, Wang, Liu, Xie (b4) 2019; 225
Svanberg (b51) 2002; 12
Tovar, Patel, Niebur, Sen, Renaud (b33) 2006; 128
Tovar A, Patel N, Kaushik A, Letona G, Renaud J, Sanders B. Hybrid cellular automata: A biologically-inspired structural optimization technique. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference
Chamberlain (b24) 1968
Barbero (b43) 2007
Pan, Han, Lu (b1) 2020; 10
Costa, Montemurro, Pailhès, Perry (b39) 2019; 68
Hu, Luo, Liu (b2) 2021; 272
Maloney, Fink, Schaedler, Kolodziejska, Jacobsen, Roper (b15) 2012; 55
Chamis CC. Simplified composite micromechanics equations for hygral, thermal and mechanical properties. In: 38th annual conference of the society of the plastics industry (SPI) reinforced plastics/composites institute, Houston, TX, 1983.
Montemurro, Refai (b50) 2021; 13
Zienkiewicz, Taylor, Zhu (b48) 2005
Cheng, Liu, To (b30) 2018; 58
Piegl, Tiller (b47) 1997
Costa, Montemurro, Pailhès (b37) 2021; 28
Calvo-Jurado, Parnell (b46) 2015; 53
Montemurro, Bertolino, Roiné (b3) 2021; 258
,
Han Y, Lu W. Optimization design of nonuniform cellular structures for additive manufacturing. In: Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference MSEC2018 College Station, V001T01A033, College Station, TX, USA, 18–22 June.
.
Li, Dai, Tang, Dong, Zhao (b27) 2019; 141
Alexandersen (b49) 2011
Behrou, Ghanem, Macnider, Verma, Alvey, Hong (b5) 2021; 266
Wong, Owen, Sutcliffe, Puri (b8) 2009; 52
Wong, Tsopanos, Sutcliffe, Owen (b7) 2017; 13
Reuss (b45) 1929; 9
Valdevit, Pantano, Stone, Evans (b17) 2006; 49
Bertolino, Montemurro, Pasquale (b22) 2019; 13
Huang, Dai, Cheng, Wang (b28) 2020; 109
Costa, Montemurro, Pailhès (b40) 2019; 354
URL
Do, Geißelbrecht, Schwieger, Freund (b12) 2019; 148
Han, Lu (b14) 2018; 140
Fink, Kolodziejska, Jacobsen, Roper (b11) 2011; 57
Rosen, Hashin (b26) 1970; 8
Cheng, Wei, He, Pei, Fang (b19) 2016; 93
Tovar A, Niebur G, Sen M, Renaud J, Sanders B. Bone Structure Adaptation as a Cellular Automaton Optimization Process.
Voigt (b44) 1889; 274
Refai, Montemurro, Brugger, Saintier (b21) 2020; 27
Wadley, Queheillalt (b9) 2007; 539
Dong, Tang, Zhao (b13) 2017; 139
Da, Chen, Cui, Li (b35) 2017; 56
Delucia, Catapano, Montemurro, Pailhès (b20) 2019; 38
Bertolino, Montemurro, Perry, Pourroy (b41) 2021; 40
Cheng, Liu, Liang, To (b29) 2018; 332
Refai, Brugger, Montemurro, Saintier (b42) 2020; 138
Bendsœ, Sigmund (b38) 2003
Borovinšek, Novak, Vesenjak, Ren, Ulbin (b6) 2020; 795
Costa, Montemurro, Pailhès (b36) 2018; 14
Da (10.1016/j.compstruct.2021.114862_b35) 2017; 56
Barbero (10.1016/j.compstruct.2021.114862_b43) 2007
Alexandersen (10.1016/j.compstruct.2021.114862_b49) 2011
Bertolino (10.1016/j.compstruct.2021.114862_b41) 2021; 40
Costa (10.1016/j.compstruct.2021.114862_b37) 2021; 28
10.1016/j.compstruct.2021.114862_b32
10.1016/j.compstruct.2021.114862_b31
Cheng (10.1016/j.compstruct.2021.114862_b19) 2016; 93
Piegl (10.1016/j.compstruct.2021.114862_b47) 1997
Cheng (10.1016/j.compstruct.2021.114862_b30) 2018; 58
Calvo-Jurado (10.1016/j.compstruct.2021.114862_b46) 2015; 53
Valdevit (10.1016/j.compstruct.2021.114862_b17) 2006; 49
Montemurro (10.1016/j.compstruct.2021.114862_b3) 2021; 258
Rosen (10.1016/j.compstruct.2021.114862_b26) 1970; 8
Wong (10.1016/j.compstruct.2021.114862_b7) 2017; 13
Xu (10.1016/j.compstruct.2021.114862_b4) 2019; 225
Borovinšek (10.1016/j.compstruct.2021.114862_b6) 2020; 795
Voigt (10.1016/j.compstruct.2021.114862_b44) 1889; 274
Pan (10.1016/j.compstruct.2021.114862_b1) 2020; 10
Lu (10.1016/j.compstruct.2021.114862_b16) 2005; 50
Svanberg (10.1016/j.compstruct.2021.114862_b51) 2002; 12
Wong (10.1016/j.compstruct.2021.114862_b8) 2009; 52
Hu (10.1016/j.compstruct.2021.114862_b2) 2021; 272
Tovar (10.1016/j.compstruct.2021.114862_b34) 2007; 45
Cheng (10.1016/j.compstruct.2021.114862_b29) 2018; 332
Han (10.1016/j.compstruct.2021.114862_b14) 2018; 140
Fink (10.1016/j.compstruct.2021.114862_b11) 2011; 57
Tovar (10.1016/j.compstruct.2021.114862_b33) 2006; 128
Huang (10.1016/j.compstruct.2021.114862_b28) 2020; 109
Wadley (10.1016/j.compstruct.2021.114862_b9) 2007; 539
Maloney (10.1016/j.compstruct.2021.114862_b15) 2012; 55
Costa (10.1016/j.compstruct.2021.114862_b36) 2018; 14
10.1016/j.compstruct.2021.114862_b18
Bertolino (10.1016/j.compstruct.2021.114862_b22) 2019; 13
Chamberlain (10.1016/j.compstruct.2021.114862_b24) 1968
Zienkiewicz (10.1016/j.compstruct.2021.114862_b48) 2005
Schapery (10.1016/j.compstruct.2021.114862_b23) 1968; 2
Bendsœ (10.1016/j.compstruct.2021.114862_b38) 2003
Catchpole-Smith (10.1016/j.compstruct.2021.114862_b10) 2019; 30
Refai (10.1016/j.compstruct.2021.114862_b42) 2020; 138
Costa (10.1016/j.compstruct.2021.114862_b39) 2019; 68
Do (10.1016/j.compstruct.2021.114862_b12) 2019; 148
Reuss (10.1016/j.compstruct.2021.114862_b45) 1929; 9
Montemurro (10.1016/j.compstruct.2021.114862_b50) 2021; 13
10.1016/j.compstruct.2021.114862_b25
Li (10.1016/j.compstruct.2021.114862_b27) 2019; 141
Behrou (10.1016/j.compstruct.2021.114862_b5) 2021; 266
Costa (10.1016/j.compstruct.2021.114862_b40) 2019; 354
Refai (10.1016/j.compstruct.2021.114862_b21) 2020; 27
Delucia (10.1016/j.compstruct.2021.114862_b20) 2019; 38
Dong (10.1016/j.compstruct.2021.114862_b13) 2017; 139
References_xml – year: 2011
  ident: b49
  article-title: Topology optimization for convection problems
– volume: 30
  year: 2019
  ident: b10
  article-title: Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion
  publication-title: Addit Manuf
– volume: 225
  year: 2019
  ident: b4
  article-title: An isogeometric approach to topology optimization of spatially graded hierarchical structures
  publication-title: Compos Struct
– volume: 57
  start-page: 2636
  year: 2011
  end-page: 2646
  ident: b11
  article-title: Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides
  publication-title: Aiche J
– volume: 148
  year: 2019
  ident: b12
  article-title: Additive manufacturing of interpenetrating periodic open cellular structures (interpocs) with in operando adjustable flow characteristics
  publication-title: Chem Eng Process
– volume: 266
  year: 2021
  ident: b5
  article-title: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties
  publication-title: Compos Struct
– volume: 274
  start-page: 573
  year: 1889
  end-page: 587
  ident: b44
  article-title: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper
  publication-title: Ann Phys
– volume: 56
  start-page: 131
  year: 2017
  end-page: 137
  ident: b35
  article-title: Design of materials using hybrid cellular automata
  publication-title: Struct Multidiscip Optim
– volume: 109
  start-page: 1841
  year: 2020
  end-page: 1851
  ident: b28
  article-title: Topology optimization of lattice support structures for heat conduction in selective laser melting
  publication-title: Int J Adv Manuf Technol
– year: 1997
  ident: b47
  article-title: The
– volume: 9
  start-page: 49
  year: 1929
  end-page: 58
  ident: b45
  article-title: Berechnung der fließ grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle
  publication-title: J Appl Math Mech
– volume: 139
  year: 2017
  ident: b13
  article-title: A survey of modeling of lattice structures fabricated by additive manufacturing
  publication-title: J Mech Des Trans ASME
– volume: 2
  start-page: 380
  year: 1968
  end-page: 404
  ident: b23
  article-title: Thermal expansion coefficients of composite materials based on energy principles
  publication-title: J Compos Mater
– volume: 128
  start-page: 1205
  year: 2006
  end-page: 1216
  ident: b33
  article-title: Topology optimization using a hybrid cellular automaton method with local control rules
  publication-title: J Mech Des
– year: 2003
  ident: b38
  article-title: Topology optimization - Theory, methods and applications
– volume: 12
  start-page: 555
  year: 2002
  end-page: 573
  ident: b51
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J Optim
– volume: 38
  start-page: 760
  year: 2019
  end-page: 776
  ident: b20
  article-title: Determination of the effective thermoelastic properties of cork-based agglomerates
  publication-title: J Reinf Plast Comp
– volume: 13
  start-page: 1565
  year: 2019
  end-page: 1578
  ident: b22
  article-title: Multi-scale shape optimisation of lattice structures : An evolutionary-based approach
  publication-title: Int J Interact Des Manuf
– volume: 53
  start-page: 828
  year: 2015
  end-page: 843
  ident: b46
  article-title: Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material
  publication-title: J Math Chem
– volume: 138
  year: 2020
  ident: b42
  article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM)
  publication-title: Int J Fatigue
– volume: 68
  start-page: 153
  year: 2019
  end-page: 156
  ident: b39
  article-title: Maximum length scale requirement in a topology optimisation method based on
  publication-title: CIRP Ann
– year: 2007
  ident: b43
  article-title: Finite element analysis of composite materials
– volume: 49
  start-page: 3819
  year: 2006
  end-page: 3830
  ident: b17
  article-title: Optimal active cooling performance of metallic sandwich panels with prismatic cores
  publication-title: Int J Heat Mass Transfer
– volume: 27
  start-page: 1966
  year: 2020
  end-page: 1982
  ident: b21
  article-title: Determination of the effective elastic properties of titanium lattice structures
  publication-title: Mech Adv Mater Struct
– reference: Han Y, Lu W. Optimization design of nonuniform cellular structures for additive manufacturing. In: Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference MSEC2018 College Station, V001T01A033, College Station, TX, USA, 18–22 June.
– volume: 141
  start-page: 1
  year: 2019
  end-page: 13
  ident: b27
  article-title: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes
  publication-title: J Mech Des
– year: 2005
  ident: b48
  article-title: The finite element method: Its basis and fundamentals
– volume: 272
  year: 2021
  ident: b2
  article-title: Two-scale concurrent topology optimization method of hierarchical structures with self-connected multiple lattice-material domains
  publication-title: Compos Struct
– volume: 58
  start-page: 511
  year: 2018
  end-page: 535
  ident: b30
  article-title: Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design
  publication-title: Struct Multidiscip Optim
– volume: 55
  start-page: 2486
  year: 2012
  end-page: 2493
  ident: b15
  article-title: Multifunctional heat exchangers derived from three-dimensional micro-lattice structures
  publication-title: Int J Heat Mass Trans
– volume: 93
  start-page: 236
  year: 2016
  end-page: 243
  ident: b19
  article-title: The equivalent thermal conductivity of lattice core sandwich structure: A predictive model
  publication-title: Appl Therm Eng
– reference: ,
– volume: 332
  start-page: 408
  year: 2018
  end-page: 439
  ident: b29
  article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design
  publication-title: Comput Methods Appl Mech Engrg
– reference: Chamis CC. Simplified composite micromechanics equations for hygral, thermal and mechanical properties. In: 38th annual conference of the society of the plastics industry (SPI) reinforced plastics/composites institute, Houston, TX, 1983.
– volume: 13
  start-page: 291
  year: 2017
  end-page: 297
  ident: b7
  article-title: Selective laser melting of heat transfer devices
  publication-title: Rapid Prototyp J
– volume: 45
  start-page: 673
  year: 2007
  end-page: 683
  ident: b34
  article-title: Optimality conditions of the hybrid cellular automata for structural optimization
  publication-title: AIAA J
– volume: 50
  start-page: 798
  year: 2005
  end-page: 815
  ident: b16
  article-title: Active cooling by metallic sandwich structures with periodic cores
  publication-title: Prog Mater Sci
– volume: 795
  year: 2020
  ident: b6
  article-title: Designing 2D auxetic structures using multi-objective topology optimization
  publication-title: Mater Sci Eng A
– volume: 28
  start-page: 665
  year: 2021
  end-page: 684
  ident: b37
  article-title: hypersurfaces for 3
  publication-title: Mech Adv Mater Struct
– volume: 14
  start-page: 669
  year: 2018
  end-page: 696
  ident: b36
  article-title: A 2
  publication-title: Int J Mech Mater Des
– reference: , URL
– year: 1968
  ident: b24
  article-title: Derivation of expansion coefficients for a fibre reinforced composites
– volume: 10
  start-page: 6374
  year: 2020
  ident: b1
  article-title: Design and optimization of lattice structures: A review
  publication-title: Appl Sci
– volume: 8
  start-page: 157
  year: 1970
  end-page: 173
  ident: b26
  article-title: Effective thermal expansion coefficients and specific heats of composite materials
  publication-title: Int J Eng Sci
– reference: Tovar A, Patel N, Kaushik A, Letona G, Renaud J, Sanders B. Hybrid cellular automata: A biologically-inspired structural optimization technique. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference,
– reference: .
– volume: 52
  start-page: 281
  year: 2009
  end-page: 288
  ident: b8
  article-title: Convective heat transfer and pressure losses across novel heat sinks fabricated by selective laser melting
  publication-title: Int J Heat Mass Transfer
– volume: 539
  start-page: 242
  year: 2007
  end-page: 247
  ident: b9
  article-title: Thermal applications of cellular lattice structures
  publication-title: Mater Sci Forum
– volume: 40
  start-page: 215
  year: 2021
  end-page: 241
  ident: b41
  article-title: An efficient hybrid optimisation strategy for surface reconstruction
  publication-title: Comput Graph Forum
– volume: 354
  start-page: 63
  year: 2019
  end-page: 989
  ident: b40
  article-title: Minimum length scale control in a
  publication-title: Comput Methods Appl Mech Engrg
– volume: 13
  start-page: 888
  year: 2021
  ident: b50
  article-title: A topology optimization method based on non-uniform rational basis spline hyper-surfaces for heat conduction problems
  publication-title: Symmetry
– volume: 140
  year: 2018
  ident: b14
  article-title: A novel design method for nonuniform lattice structures based on topology optimization
  publication-title: J Mech Des Trans ASME
– reference: Tovar A, Niebur G, Sen M, Renaud J, Sanders B. Bone Structure Adaptation as a Cellular Automaton Optimization Process.
– volume: 258
  year: 2021
  ident: b3
  article-title: A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology
  publication-title: Compos Struct
– volume: 14
  start-page: 669
  issue: 4
  year: 2018
  ident: 10.1016/j.compstruct.2021.114862_b36
  article-title: A 2d topology optimisation algorithm in NURBS framework with geometric constraints
  publication-title: Int J Mech Mater Des
  doi: 10.1007/s10999-017-9396-z
– volume: 49
  start-page: 3819
  year: 2006
  ident: 10.1016/j.compstruct.2021.114862_b17
  article-title: Optimal active cooling performance of metallic sandwich panels with prismatic cores
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.03.042
– volume: 141
  start-page: 1
  issue: 071402
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b27
  article-title: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes
  publication-title: J Mech Des
– year: 2003
  ident: 10.1016/j.compstruct.2021.114862_b38
– volume: 40
  start-page: 215
  issue: 6
  year: 2021
  ident: 10.1016/j.compstruct.2021.114862_b41
  article-title: An efficient hybrid optimisation strategy for surface reconstruction
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.14269
– volume: 225
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b4
  article-title: An isogeometric approach to topology optimization of spatially graded hierarchical structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111171
– volume: 539
  start-page: 242
  year: 2007
  ident: 10.1016/j.compstruct.2021.114862_b9
  article-title: Thermal applications of cellular lattice structures
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.539-543.242
– volume: 57
  start-page: 2636
  year: 2011
  ident: 10.1016/j.compstruct.2021.114862_b11
  article-title: Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides
  publication-title: Aiche J
  doi: 10.1002/aic.12490
– volume: 55
  start-page: 2486
  year: 2012
  ident: 10.1016/j.compstruct.2021.114862_b15
  article-title: Multifunctional heat exchangers derived from three-dimensional micro-lattice structures
  publication-title: Int J Heat Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2012.01.011
– volume: 38
  start-page: 760
  issue: 16
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b20
  article-title: Determination of the effective thermoelastic properties of cork-based agglomerates
  publication-title: J Reinf Plast Comp
  doi: 10.1177/0731684419846991
– volume: 795
  year: 2020
  ident: 10.1016/j.compstruct.2021.114862_b6
  article-title: Designing 2D auxetic structures using multi-objective topology optimization
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2020.139914
– volume: 27
  start-page: 1966
  year: 2020
  ident: 10.1016/j.compstruct.2021.114862_b21
  article-title: Determination of the effective elastic properties of titanium lattice structures
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2018.1536816
– volume: 52
  start-page: 281
  issue: 1–2
  year: 2009
  ident: 10.1016/j.compstruct.2021.114862_b8
  article-title: Convective heat transfer and pressure losses across novel heat sinks fabricated by selective laser melting
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.06.002
– volume: 354
  start-page: 63
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b40
  article-title: Minimum length scale control in a NURBS-based SIMP method
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2019.05.026
– year: 2011
  ident: 10.1016/j.compstruct.2021.114862_b49
– volume: 138
  year: 2020
  ident: 10.1016/j.compstruct.2021.114862_b42
  article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM)
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.105623
– volume: 53
  start-page: 828
  year: 2015
  ident: 10.1016/j.compstruct.2021.114862_b46
  article-title: Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material
  publication-title: J Math Chem
  doi: 10.1007/s10910-014-0452-8
– volume: 266
  year: 2021
  ident: 10.1016/j.compstruct.2021.114862_b5
  article-title: Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.113729
– volume: 140
  year: 2018
  ident: 10.1016/j.compstruct.2021.114862_b14
  article-title: A novel design method for nonuniform lattice structures based on topology optimization
  publication-title: J Mech Des Trans ASME
  doi: 10.1115/1.4040546
– volume: 274
  start-page: 573
  issue: 12
  year: 1889
  ident: 10.1016/j.compstruct.2021.114862_b44
  article-title: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper
  publication-title: Ann Phys
  doi: 10.1002/andp.18892741206
– volume: 13
  start-page: 291
  issue: 5
  year: 2017
  ident: 10.1016/j.compstruct.2021.114862_b7
  article-title: Selective laser melting of heat transfer devices
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552540710824797
– volume: 12
  start-page: 555
  year: 2002
  ident: 10.1016/j.compstruct.2021.114862_b51
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623499362822
– volume: 50
  start-page: 798
  year: 2005
  ident: 10.1016/j.compstruct.2021.114862_b16
  article-title: Active cooling by metallic sandwich structures with periodic cores
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2005.03.001
– volume: 56
  start-page: 131
  year: 2017
  ident: 10.1016/j.compstruct.2021.114862_b35
  article-title: Design of materials using hybrid cellular automata
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1652-1
– year: 2005
  ident: 10.1016/j.compstruct.2021.114862_b48
– volume: 272
  year: 2021
  ident: 10.1016/j.compstruct.2021.114862_b2
  article-title: Two-scale concurrent topology optimization method of hierarchical structures with self-connected multiple lattice-material domains
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114224
– volume: 9
  start-page: 49
  year: 1929
  ident: 10.1016/j.compstruct.2021.114862_b45
  article-title: Berechnung der fließ grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle
  publication-title: J Appl Math Mech
– ident: 10.1016/j.compstruct.2021.114862_b25
– volume: 58
  start-page: 511
  year: 2018
  ident: 10.1016/j.compstruct.2021.114862_b30
  article-title: Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-1905-7
– volume: 8
  start-page: 157
  year: 1970
  ident: 10.1016/j.compstruct.2021.114862_b26
  article-title: Effective thermal expansion coefficients and specific heats of composite materials
  publication-title: Int J Eng Sci
  doi: 10.1016/0020-7225(70)90066-2
– year: 1968
  ident: 10.1016/j.compstruct.2021.114862_b24
– volume: 13
  start-page: 888
  issue: 5
  year: 2021
  ident: 10.1016/j.compstruct.2021.114862_b50
  article-title: A topology optimization method based on non-uniform rational basis spline hyper-surfaces for heat conduction problems
  publication-title: Symmetry
  doi: 10.3390/sym13050888
– volume: 93
  start-page: 236
  year: 2016
  ident: 10.1016/j.compstruct.2021.114862_b19
  article-title: The equivalent thermal conductivity of lattice core sandwich structure: A predictive model
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.10.002
– volume: 28
  start-page: 665
  issue: 7
  year: 2021
  ident: 10.1016/j.compstruct.2021.114862_b37
  article-title: NURBS hypersurfaces for 3d topology optimisation problems
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2019.1582826
– volume: 139
  year: 2017
  ident: 10.1016/j.compstruct.2021.114862_b13
  article-title: A survey of modeling of lattice structures fabricated by additive manufacturing
  publication-title: J Mech Des Trans ASME
  doi: 10.1115/1.4037305
– volume: 258
  year: 2021
  ident: 10.1016/j.compstruct.2021.114862_b3
  article-title: A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.113360
– volume: 2
  start-page: 380
  year: 1968
  ident: 10.1016/j.compstruct.2021.114862_b23
  article-title: Thermal expansion coefficients of composite materials based on energy principles
  publication-title: J Compos Mater
  doi: 10.1177/002199836800200308
– ident: 10.1016/j.compstruct.2021.114862_b31
  doi: 10.2514/6.2004-4558
– volume: 332
  start-page: 408
  year: 2018
  ident: 10.1016/j.compstruct.2021.114862_b29
  article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2017.12.024
– volume: 128
  start-page: 1205
  issue: 6
  year: 2006
  ident: 10.1016/j.compstruct.2021.114862_b33
  article-title: Topology optimization using a hybrid cellular automaton method with local control rules
  publication-title: J Mech Des
  doi: 10.1115/1.2336251
– volume: 30
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b10
  article-title: Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion
  publication-title: Addit Manuf
– volume: 68
  start-page: 153
  issue: 1
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b39
  article-title: Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2019.04.048
– volume: 10
  start-page: 6374
  issue: 18
  year: 2020
  ident: 10.1016/j.compstruct.2021.114862_b1
  article-title: Design and optimization of lattice structures: A review
  publication-title: Appl Sci
  doi: 10.3390/app10186374
– ident: 10.1016/j.compstruct.2021.114862_b18
– ident: 10.1016/j.compstruct.2021.114862_b32
– year: 1997
  ident: 10.1016/j.compstruct.2021.114862_b47
– year: 2007
  ident: 10.1016/j.compstruct.2021.114862_b43
– volume: 13
  start-page: 1565
  issue: 4
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b22
  article-title: Multi-scale shape optimisation of lattice structures : An evolutionary-based approach
  publication-title: Int J Interact Des Manuf
  doi: 10.1007/s12008-019-00580-9
– volume: 109
  start-page: 1841
  year: 2020
  ident: 10.1016/j.compstruct.2021.114862_b28
  article-title: Topology optimization of lattice support structures for heat conduction in selective laser melting
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05741-9
– volume: 148
  year: 2019
  ident: 10.1016/j.compstruct.2021.114862_b12
  article-title: Additive manufacturing of interpenetrating periodic open cellular structures (interpocs) with in operando adjustable flow characteristics
  publication-title: Chem Eng Process
– volume: 45
  start-page: 673
  issue: 3
  year: 2007
  ident: 10.1016/j.compstruct.2021.114862_b34
  article-title: Optimality conditions of the hybrid cellular automata for structural optimization
  publication-title: AIAA J
  doi: 10.2514/1.20184
SSID ssj0008411
Score 2.5572412
Snippet Architected cellular materials (ACMs) with a periodic micro-structure are often employed in high-performance components obtained through additive manufacturing...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 114862
SubjectTerms Additive manufacturing
Architected cellular materials
Engineering Sciences
Heat conduction
Homogenisation
Materials
NURBS hyper-surfaces
Topology optimisation
Title Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method
URI https://dx.doi.org/10.1016/j.compstruct.2021.114862
https://hal.science/hal-03498784
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-LnoQn_gsQbzGbjbZTRZPpSj1gRct9LZsXlqprUgRvPjbnWyyrR6EgrclJGSZCd9Mdr_5BqEzq7NKM5kQrdOMcKEkkZIZkhbKaaEl56pW-7zPe31-M8gGS6jb1MJ4WmXE_oDpNVrHkXa0ZvttOGw_wO2BQXjzRSgAxHWhOefCdzE4_5rTPCSve_D6ycTPjmyewPHytO2g0wo3xZR64VyZp3-FqOXn5mNrHXyuNtFGzBpxJ7zYFlqy4220_kNLcAe9gsMBZEfY1JwMPHH46b0y1uDZvwJ49t_pPfEUQ6Iazh6OnXpwhcErpOakT4dqZPE09E_4xBOAlddI-8Gh5fQu6l9dPnZ7JPZSIBpSrCmptMlsnjChuUicdTQVKSuqwtG84rlixjFhIVrl2hijtKUmLTS1HABNWC0rtodWxpOx3UcYLMoLpZmRhnIrEiUcz_PC8cQ4mhh5gERjvlJHoXHf72JUNoyyl3Ju-NIbvgyGP0B0tvItiG0ssOai8VD56-CUEBMWWH0KTp1t5rW2e5270o954R4pJP-gh__a4gitpb5kIqGEZsdoBSbYE0hkpqpVn9QWWu1c3_buvwH93fZE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFA-rPWgP0lqlWluD9Bp38jGTDJ5kUba6eqmCtzD50i37IWURvPi392WSWetBELwNISHDe-H3XmZ-7_cQ-ult2ViuCmItK4mQRhGluCOsNsFKq4QwrdrnZTW8Fmc35U0PDbpamEirzNifML1F6zzSz9bs34_H_d9we-AQ3mIRCgBxLDT_IEom4w3s8OmZ56FE24Q3ziZxeqbzJJJX5G0noVa4KjIalXNVxV6LUSt33dfWNvqcfkIbOW3Ex-nNPqOen22ij_-JCX5BU_A4oOwEu5aUgecB3_5tnHd4-bMAnuOH-sg8xZCppsOHc6se3GBwC2lJ6YuxmXi8SA0UHvEccGWaeT849ZzeQtenJ1eDIcnNFIiFHGtBGutKXxVcWiGL4ANlkvG6qQOtGlEZ7gKXHsJVZZ1zxnrqWG2pF4Bo0lvV8G20OpvP_FeEwaKiNpY75ajwsjAyiKqqgyhcoIVTO0h25tM2K43HhhcT3VHK_uhnw-toeJ0Mv4PocuV9Utt4w5qjzkP6xcnREBTesPoAnLrcLIptD49HOo5F5R4llXigu-_aYh-tDa8uRnr06_L8G1pnsX6ioISWe2gVJvvvkNUszI_21P4DrPH32Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+design+of+graded+architected+cellular+materials+through+a+CAD-compatible+topology+optimisation+method&rft.jtitle=Composite+structures&rft.au=Montemurro%2C+Marco&rft.au=Refai%2C+Khalil&rft.au=Catapano%2C+Anita&rft.date=2022-01-15&rft.pub=Elsevier&rft.issn=0263-8223&rft.volume=280&rft_id=info:doi/10.1016%2Fj.compstruct.2021.114862&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03498784v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon