Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall

One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vec...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 33; no. 15; pp. 5067 - 5087
Main Authors Pham, Quoc Bao, Abba, S. I., Usman, Abdullahi Garba, Linh, Nguyen Thi Thuy, Gupta, Vivek, Malik, Anurag, Costache, Romulus, Vo, Ngoc Duong, Tri, Doan Quang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-019-02408-3

Cover

Abstract One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R 2 ), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models.
AbstractList One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models.
One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R²), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models.
One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R 2 ), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models.
Author Abba, S. I.
Costache, Romulus
Vo, Ngoc Duong
Malik, Anurag
Linh, Nguyen Thi Thuy
Usman, Abdullahi Garba
Pham, Quoc Bao
Gupta, Vivek
Tri, Doan Quang
Author_xml – sequence: 1
  givenname: Quoc Bao
  surname: Pham
  fullname: Pham, Quoc Bao
  organization: Department of Hydraulic and Ocean Engineering, National Cheng-Kung University
– sequence: 2
  givenname: S. I.
  surname: Abba
  fullname: Abba, S. I.
  organization: Department of Physical Planning Development, Yusuf Maitama Sule University Kano
– sequence: 3
  givenname: Abdullahi Garba
  surname: Usman
  fullname: Usman, Abdullahi Garba
  organization: Faculty of Pharmacy, Department of Analytical Chemistry, Near East University
– sequence: 4
  givenname: Nguyen Thi Thuy
  surname: Linh
  fullname: Linh, Nguyen Thi Thuy
  organization: Department of Hydraulic and Ocean Engineering, National Cheng-Kung University, Thuyloi University
– sequence: 5
  givenname: Vivek
  surname: Gupta
  fullname: Gupta, Vivek
  organization: Department of Hydrology, Indian Institute of Technology Roorkee
– sequence: 6
  givenname: Anurag
  surname: Malik
  fullname: Malik, Anurag
  organization: Department of Soil and Water Conservation Engineering, College of Technology, G.B. Pant University of Agriculture and Technology
– sequence: 7
  givenname: Romulus
  surname: Costache
  fullname: Costache, Romulus
  organization: Research Institute of the University of Bucharest, National Institute of Hydrology and Water Management
– sequence: 8
  givenname: Ngoc Duong
  surname: Vo
  fullname: Vo, Ngoc Duong
  organization: University of Science and Technology, The University of Danang
– sequence: 9
  givenname: Doan Quang
  orcidid: 0000-0003-3990-5838
  surname: Tri
  fullname: Tri, Doan Quang
  email: doanquangtri@tdtu.edu.vn
  organization: Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University
BookMark eNp9kMtKAzEUhoNUsFVfwNWAGzfRXCZNZin1VmhRvIC7ECdJTZkmNUkXfXtTRxBcdBHOIt93-M8_AgMfvAHgDKNLjBC_ShiTcQMRLo_USEB6AIaYcQrxmKEBGKKGIFjzGh-BUUpLhIrWoCF4fwrZ-OxUVwVbPWw_otPVjcoKTn02XecWxremuu4WIbr8uUqVDbGab7rs4EtW2QVfzYPekX6xW_GsnLeq607AYRnJnP7OY_B2d_s6eYCzx_vp5HoGW8pIhkpwTTlvkcWNZZrUlimqEaFMsZobK4yyShuOieBK07Gq67EoHxhpwqjQ9Bhc9HvXMXxtTMpy5VJb8ihvwiZJQoXgrKk5Luj5P3QZNtGXdIWimApGKSmU6Kk2hpSisbJ1_aE5KtdJjOSuctlXLkvl8qdySYtK_qnr6FYqbvdLtJdSgf3CxL9Ue6xvzvSU7g
CitedBy_id crossref_primary_10_1016_j_cherd_2023_09_027
crossref_primary_10_1021_acsmaterialslett_2c00734
crossref_primary_10_1016_j_cherd_2024_04_009
crossref_primary_10_1007_s40808_023_01835_x
crossref_primary_10_1007_s10337_020_03912_0
crossref_primary_10_1007_s10666_023_09938_6
crossref_primary_10_1007_s10661_020_08659_7
crossref_primary_10_1016_j_ijhydene_2023_09_170
crossref_primary_10_3390_w14101617
crossref_primary_10_1007_s11356_021_13445_0
crossref_primary_10_1007_s12517_022_10801_3
crossref_primary_10_1007_s44268_024_00027_5
crossref_primary_10_1016_j_jhydrol_2020_125815
crossref_primary_10_3390_w15203611
crossref_primary_10_1007_s11269_024_04027_z
crossref_primary_10_1007_s12145_024_01541_x
crossref_primary_10_1007_s00500_021_05834_x
crossref_primary_10_1186_s42269_022_00756_6
crossref_primary_10_3390_ai5040098
crossref_primary_10_1007_s13738_020_02124_5
crossref_primary_10_3390_s21041421
crossref_primary_10_3390_app10155160
crossref_primary_10_3390_ma16031277
crossref_primary_10_1007_s11356_020_08792_3
crossref_primary_10_3390_ma17164093
crossref_primary_10_1016_j_jhydrol_2024_131704
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_3389_fenvs_2022_929707
crossref_primary_10_3390_w16091246
crossref_primary_10_1016_j_jclepro_2023_138193
crossref_primary_10_3390_life13010079
crossref_primary_10_1016_j_sjbs_2021_09_055
crossref_primary_10_3390_molecules27134220
crossref_primary_10_1080_02626667_2020_1842412
crossref_primary_10_3390_hydrology10070136
crossref_primary_10_52589_AJSTE_XKYBH2QI
crossref_primary_10_1080_02626667_2022_2141121
crossref_primary_10_1016_j_fuel_2023_128623
crossref_primary_10_1016_j_scitotenv_2022_159697
crossref_primary_10_5004_dwt_2021_27049
crossref_primary_10_1080_02626667_2021_1937179
crossref_primary_10_1002_sscp_202200071
crossref_primary_10_1039_D4RA02385D
crossref_primary_10_1007_s11269_022_03395_8
crossref_primary_10_1016_j_rineng_2021_100260
crossref_primary_10_1016_j_agwat_2023_108210
crossref_primary_10_1186_s43094_021_00183_w
crossref_primary_10_1007_s11600_024_01399_z
crossref_primary_10_3390_ijerph19020738
crossref_primary_10_1007_s11269_020_02554_z
crossref_primary_10_3390_w16233465
crossref_primary_10_1186_s12302_024_00914_9
crossref_primary_10_1016_j_rineng_2021_100228
crossref_primary_10_2166_wpt_2024_079
crossref_primary_10_1007_s00477_024_02867_0
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1007_s13369_020_05093_2
crossref_primary_10_1016_j_ecolind_2020_106620
crossref_primary_10_1002_jssc_202000890
crossref_primary_10_1007_s11269_023_03629_3
crossref_primary_10_1007_s11356_022_23168_5
crossref_primary_10_1007_s42452_020_03690_2
crossref_primary_10_1186_s42269_021_00586_y
crossref_primary_10_3390_su14042192
crossref_primary_10_1007_s12145_023_01041_4
crossref_primary_10_5004_dwt_2021_26983
crossref_primary_10_1016_j_psep_2024_02_041
crossref_primary_10_5004_dwt_2021_26903
crossref_primary_10_1051_e3sconf_202449702011
crossref_primary_10_3390_su12197877
crossref_primary_10_52589_AJSTE_XTWJGQQL
crossref_primary_10_1016_j_apples_2023_100133
crossref_primary_10_3390_ph16060858
crossref_primary_10_3390_rs12010106
crossref_primary_10_1016_j_energy_2024_130503
crossref_primary_10_3390_rs14215515
crossref_primary_10_1016_j_suscom_2022_100721
crossref_primary_10_1016_j_asoc_2024_111411
crossref_primary_10_1016_j_envsoft_2020_104761
crossref_primary_10_3390_pr9071166
crossref_primary_10_1007_s11269_021_02937_w
crossref_primary_10_1016_j_jssas_2023_06_001
crossref_primary_10_1007_s00477_020_01862_5
crossref_primary_10_1007_s00704_021_03574_4
crossref_primary_10_1016_j_asoc_2024_112624
crossref_primary_10_1016_j_jclepro_2022_130580
crossref_primary_10_1109_ACCESS_2020_3017743
crossref_primary_10_1007_s13201_022_01815_z
crossref_primary_10_1016_j_asoc_2021_108036
crossref_primary_10_52589_AJEER_6AYXYF7E
Cites_doi 10.1007/s11269-019-02333-5
10.1016/j.jhydrol.2014.12.009
10.11591/ijeecs.v5.i3.pp666-672
10.1016/j.jhydrol.2017.04.017
10.1007/s00704-017-2244-0
10.1016/j.procs.2017.11.212
10.1029/2000JD900719
10.1080/02626667.2017.1410891
10.1007/s11269-017-1797-0
10.1007/s13201-016-0515-z
10.1007/s11269-019-02350-4
10.1007/s12665-016-5435-6
10.1038/s41598-017-17765-5
10.5194/hess-13-1413-2009
10.1016/j.jhydrol.2019.123958
10.1016/j.gsf.2016.04.007
10.1080/02626667.2014.966721
10.1007/s00704-018-2666-3
10.1061/(ASCE)0733-9429(2006)132:12(1321)
10.1007/s11269-015-1021-z
10.1016/j.jhydrol.2019.123962
10.1016/S0925-2312(01)00702-0
10.1080/19942060.2018.1564702
10.1007/s13762-018-1674-2
10.1016/j.aej.2013.01.001
10.1007/s00704-013-1065-z
10.1515/jwld-2017-0012
10.1007/s11356-019-05553-9
10.1016/j.envsoft.2017.11.026
10.1016/j.eswa.2017.05.029
10.1007/s11269-014-0651-x
10.1016/j.jhydrol.2011.03.002
10.1007/s12517-019-4697-1
10.1007/s11269-018-1998-1
10.2166/wst.2018.477
10.1007/s11269-019-02265-0
10.1007/s12517-019-4781-6
10.1038/ngeo2911
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Water Resources Management is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Water Resources Management is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-019-02408-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 5087
ExternalDocumentID 10_1007_s11269_019_02408_3
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GrantInformation_xml – fundername: Research on scientific basis and solution of artificial intelligence application to identify, support forecasting and warning some dangerous hydrometeorological phenomena in the context of climate change in Vietnam
  grantid: BDKH.34/16-20
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-a87d377c0f19f5d24f5a3d0235a547ef8eafade71287ad36a446847e10d2538d3
IEDL.DBID AGYKE
ISSN 0920-4741
IngestDate Fri Sep 05 09:18:28 EDT 2025
Fri Jul 25 19:13:45 EDT 2025
Wed Oct 01 01:44:57 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Fri Feb 21 02:26:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Rainfall
Vu Gia-Thu Bon river
Time series modelling
Hammerstein-Weiner
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a87d377c0f19f5d24f5a3d0235a547ef8eafade71287ad36a446847e10d2538d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3990-5838
PQID 2331385332
PQPubID 54174
PageCount 21
ParticipantIDs proquest_miscellaneous_2388759471
proquest_journals_2331385332
crossref_citationtrail_10_1007_s11269_019_02408_3
crossref_primary_10_1007_s11269_019_02408_3
springer_journals_10_1007_s11269_019_02408_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Malik, Kumar, Singh (CR30) 2019; 33
Lin, Jhong (CR28) 2015; 521
Taylor (CR40) 2001; 106
Box, Jenkins, Reinsel, Ljung (CR7) 2015
Elkiran, Nourani, Abba (CR15) 2019; 577
CR37
Ghorbani, Khatibi, Goel, FazeliFard, Azani (CR17) 2016; 75
Kumar, Kendra, Gramvidhyapith (CR27) 2015; 6
Hung, Babel, Weesakul, Tripathi (CR23) 2009; 13
Malik, Kumar, Kisi, Shiri (CR29) 2019; 26
Bartoletti, Casagli, Marsili-Libelli, Nardi, Palandri (CR6) 2018; 106
Tayfur, Singh (CR39) 2006; 132
Jahani, Mohammadi (CR24) 2019; 137
Cramer, Kampouridis, Freitas, Alexandridis (CR12) 2017; 85
Gaya, Zango, Yusuf, Mustapha, Muhammad, Sani, Tijjani, Wahab, Khairi (CR16) 2017; 5
Zhou, Wang, Yang (CR48) 2017; 9
Bustami, Bessaih, Bong, Suhaili (CR9) 2007; 34
Alizamir, Kisi, Zounemat-Kermani (CR4) 2018; 63
Yaseen, Ebtehaj, Kim, Sanikhani, Asadi, Ghareb, Bonakdari, Mohtar, Nadhir, Shahid (CR45) 2019; 11
Horton, Jaboyedoff, Obled (CR22) 2018; 556
Choubin, Khalighi-Sigaroodi, Malekian, Kişi (CR11) 2016; 61
Ghose, Panda, Swain (CR19) 2013; 52
Meshram, Ghorbani, Deo, Kashani, Meshram, Karimi (CR31) 2019; 33
Kim, Singh (CR26) 2014; 118
Solgi, Zarei, Nourani, Bahmani (CR38) 2017; 7
CR8
Kalteh (CR25) 2019; 33
Yaseen, Ghareb, Ebtehaj, Bonakdari, Siddique, Heddam, Yusif, Deo (CR44) 2018; 32
CR47
Adnan, Malik, Kumar, Parmar, Kisi (CR2) 2019; 12
Olyaie, Zare Abyaneh, Danandeh Mehr (CR35) 2017; 8
Qasem, Samadianfard, Kheshtgar, Jarhan, Kisi, Shamshirband, Chau (CR36) 2019; 13
Abba, Hadi, Abdullahi (CR1) 2017; 120
Ghorbani, Deo, Yaseen, Kashani, Mohammadi (CR18) 2018; 133
Hadi, Tombul (CR21) 2018; 32
CR20
Nourani, Kisi, Komasi (CR32) 2011; 402
Tikhamarine, Souag-Gamane, Kisi (CR41) 2019; 12
Al-Zahrani, Abo-Monasar (CR5) 2015; 29
Che, Purushotham, Cho, Sontag, Liu (CR10) 2018; 8
Nourani, Elkiran, Abba (CR33) 2018; 78
Akrami, Nourani, Hakim (CR3) 2014; 28
Yadav, Ch, Mathur, Adamowski (CR43) 2017; 32
Elkiran, Nourani, Abba, Abdullahi (CR14) 2018; 4
Tsioptsias, Tako, Robinson (CR42) 2016; 50
Nourani, Elkiran, Abdullahi (CR34) 2019; 577
Danandeh Mehr, Nourani, Karimi Khosrowshahi, Ghorbani (CR13) 2019; 16
Zhang (CR46) 2003; 50
S Kim (2408_CR26) 2014; 118
A Malik (2408_CR30) 2019; 33
2408_CR37
Sultan Noman Qasem (2408_CR36) 2019; 13
M Alizamir (2408_CR4) 2018; 63
Z Che (2408_CR10) 2018; 8
V Nourani (2408_CR33) 2018; 78
A Solgi (2408_CR38) 2017; 7
SA Akrami (2408_CR3) 2014; 28
N Bartoletti (2408_CR6) 2018; 106
Pascal Horton (2408_CR22) 2018; 556
G Elkiran (2408_CR15) 2019; 577
MA Ghorbani (2408_CR17) 2016; 75
GF Lin (2408_CR28) 2015; 521
SG Meshram (2408_CR31) 2019; 33
A Malik (2408_CR29) 2019; 26
E Olyaie (2408_CR35) 2017; 8
T Zhou (2408_CR48) 2017; 9
AM Kalteh (2408_CR25) 2019; 33
G Elkiran (2408_CR14) 2018; 4
B Jahani (2408_CR24) 2019; 137
2408_CR8
Vahid Nourani (2408_CR32) 2011; 402
PG Zhang (2408_CR46) 2003; 50
MA Ghorbani (2408_CR18) 2018; 133
Y Tikhamarine (2408_CR41) 2019; 12
MA Al-Zahrani (2408_CR5) 2015; 29
ZM Yaseen (2408_CR44) 2018; 32
S Cramer (2408_CR12) 2017; 85
SI Abba (2408_CR1) 2017; 120
RM Adnan (2408_CR2) 2019; 12
GE Box (2408_CR7) 2015
2408_CR47
R Bustami (2408_CR9) 2007; 34
B Yadav (2408_CR43) 2017; 32
2408_CR20
ZM Yaseen (2408_CR45) 2019; 11
SJ Hadi (2408_CR21) 2018; 32
NQ Hung (2408_CR23) 2009; 13
G Tayfur (2408_CR39) 2006; 132
KE Taylor (2408_CR40) 2001; 106
A Danandeh Mehr (2408_CR13) 2019; 16
MS Gaya (2408_CR16) 2017; 5
B Choubin (2408_CR11) 2016; 61
DK Ghose (2408_CR19) 2013; 52
P Kumar (2408_CR27) 2015; 6
Vahid Nourani (2408_CR34) 2019; 577
N Tsioptsias (2408_CR42) 2016; 50
References_xml – year: 2015
  ident: CR7
  publication-title: Time series analysis: forecasting and control
– ident: CR47
– volume: 33
  start-page: 3831
  year: 2019
  end-page: 3849
  ident: CR25
  article-title: Modular wavelet–extreme learning machine: a new approach for forecasting daily rainfall
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02333-5
– volume: 521
  start-page: 302
  year: 2015
  end-page: 313
  ident: CR28
  article-title: A real-time forecasting model for the spatial distribution of typhoon rainfall
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.12.009
– ident: CR37
– volume: 5
  start-page: 666
  issue: 3
  year: 2017
  end-page: 672
  ident: CR16
  article-title: Estimation of turbidity in water treatment plant using hammerstein-wiener and neural network technique
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v5.i3.pp666-672
– volume: 50
  start-page: 6.1
  issue: 6
  year: 2016
  end-page: 6.11
  ident: CR42
  article-title: Model validation and testing in simulation: a literature review
  publication-title: OpenAccess Series in Informatics
– volume: 556
  start-page: 1220
  year: 2018
  end-page: 1231
  ident: CR22
  article-title: Using genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss Alps
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2017.04.017
– volume: 133
  start-page: 1119
  issue: 3–4
  year: 2018
  end-page: 1131
  ident: CR18
  article-title: Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-017-2244-0
– volume: 120
  start-page: 75
  year: 2017
  end-page: 82
  ident: CR1
  article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.11.212
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  end-page: 7192
  ident: CR40
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J Geophys Res
  doi: 10.1029/2000JD900719
– ident: CR8
– volume: 34
  start-page: 228
  issue: 2
  year: 2007
  end-page: 233
  ident: CR9
  article-title: Artificial neural network for precipitation and water level predictions of Bedup River
  publication-title: IAENG Int J Comput Sci
– volume: 63
  start-page: 63
  issue: 1
  year: 2018
  end-page: 73
  ident: CR4
  article-title: Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2017.1410891
– volume: 32
  start-page: 105
  issue: 1
  year: 2018
  end-page: 122
  ident: CR44
  article-title: Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1797-0
– volume: 7
  start-page: 16
  issue: online
  year: 2017
  ident: CR38
  article-title: A new approach to flow simulation using hybrid models
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-016-0515-z
– volume: 11
  start-page: 502
  issue: 3
  year: 2019
  ident: CR45
  article-title: Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis
  publication-title: Water (Switzerland)
– volume: 33
  start-page: 3985
  year: 2019
  end-page: 4006
  ident: CR30
  article-title: Application of heuristic approaches for prediction of hydrological drought using multi-scalar Streamflow drought index
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02350-4
– volume: 75
  start-page: 1
  issue: 8
  year: 2016
  end-page: 13
  ident: CR17
  article-title: Modeling river discharge time series using support vector machine and artificial neural networks
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5435-6
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  ident: CR10
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17765-5
– volume: 13
  start-page: 1413
  issue: 8
  year: 2009
  end-page: 1425
  ident: CR23
  article-title: An artificial neural network model for rainfall forecasting in Bangkok, Thailand
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-1413-2009
– volume: 577
  start-page: 123958
  year: 2019
  ident: CR34
  article-title: Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.123958
– volume: 8
  start-page: 517
  issue: 3
  year: 2017
  end-page: 527
  ident: CR35
  article-title: A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2016.04.007
– volume: 61
  start-page: 1001
  issue: 6
  year: 2016
  end-page: 1009
  ident: CR11
  article-title: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2014.966721
– volume: 137
  start-page: 1257
  issue: 1–2
  year: 2019
  end-page: 1269
  ident: CR24
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-018-2666-3
– volume: 132
  start-page: 1321
  issue: 12
  year: 2006
  end-page: 1330
  ident: CR39
  article-title: ANN and fuzzy logic models for simulating event-based rainfall-runoff
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321)
– volume: 29
  start-page: 3651
  issue: 10
  year: 2015
  end-page: 3662
  ident: CR5
  article-title: Urban residential water demand prediction based on artificial neural networks and time series models
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1021-z
– volume: 577
  start-page: 123962
  year: 2019
  ident: CR15
  article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 6
  start-page: 382
  issue: 3
  year: 2015
  end-page: 388
  ident: CR27
  article-title: Daily rainfall forecasting using adaptive neuro- fuzzy inference system ( Anfis ) MODELS
  publication-title: Int J Sci Nature
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: CR46
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 13
  start-page: 177
  issue: 1
  year: 2019
  end-page: 187
  ident: CR36
  article-title: Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2018.1564702
– volume: 16
  start-page: 335
  issue: 1
  year: 2019
  end-page: 346
  ident: CR13
  article-title: A hybrid support vector regression–firefly model for monthly rainfall forecasting
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-018-1674-2
– volume: 52
  start-page: 209
  issue: 2
  year: 2013
  end-page: 220
  ident: CR19
  article-title: Prediction and optimization of runoff via ANFIS and GA
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2013.01.001
– volume: 118
  start-page: 465
  issue: 3
  year: 2014
  end-page: 479
  ident: CR26
  article-title: Modeling daily soil temperature using data-driven models and spatial distribution
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-1065-z
– volume: 32
  start-page: 103
  issue: 1
  year: 2017
  end-page: 112
  ident: CR43
  article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
  publication-title: Journal of Water and Land Development
  doi: 10.1515/jwld-2017-0012
– volume: 26
  start-page: 22670
  year: 2019
  end-page: 22687
  ident: CR29
  article-title: Evaluating the performance of four different heuristic approaches with gamma test for daily suspended sediment concentration modeling
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05553-9
– volume: 106
  start-page: 35
  year: 2018
  end-page: 47
  ident: CR6
  article-title: Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.11.026
– volume: 85
  start-page: 169
  year: 2017
  end-page: 181
  ident: CR12
  article-title: An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.029
– volume: 9
  start-page: 781
  issue: 10
  year: 2017
  ident: CR48
  article-title: Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction
  publication-title: Water (Switzerland)
– volume: 28
  start-page: 2999
  issue: 10
  year: 2014
  end-page: 3018
  ident: CR3
  article-title: Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang gates dam
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0651-x
– volume: 402
  start-page: 41
  issue: 1-2
  year: 2011
  end-page: 59
  ident: CR32
  article-title: Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2011.03.002
– volume: 12
  start-page: 1
  year: 2019
  end-page: 20
  ident: CR41
  article-title: A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4697-1
– volume: 4
  start-page: 439
  issue: 4
  year: 2018
  end-page: 450
  ident: CR14
  article-title: Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
  publication-title: Global J Environ Sci Manage
– volume: 32
  start-page: 3405
  issue: 10
  year: 2018
  end-page: 3422
  ident: CR21
  article-title: Forecasting daily streamflow for basins with different physical characteristics through data-driven methods
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1998-1
– volume: 78
  start-page: 2064
  issue: 10
  year: 2018
  end-page: 2076
  ident: CR33
  article-title: Wastewater treatment plant performance analysis using artificial intelligence – an ensemble approach
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2018.477
– ident: CR20
– volume: 33
  start-page: 2335
  year: 2019
  end-page: 2356
  ident: CR31
  article-title: New approach for sediment yield forecasting with a two-phase feedforward neuron network-particle swarm optimization model integrated with the gravitational search algorithm
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02265-0
– volume: 12
  start-page: 606
  year: 2019
  end-page: 614
  ident: CR2
  article-title: Pan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputs
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4781-6
– volume: 61
  start-page: 1001
  issue: 6
  year: 2016
  ident: 2408_CR11
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2014.966721
– volume: 26
  start-page: 22670
  year: 2019
  ident: 2408_CR29
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05553-9
– ident: 2408_CR37
– volume: 6
  start-page: 382
  issue: 3
  year: 2015
  ident: 2408_CR27
  publication-title: Int J Sci Nature
– volume: 85
  start-page: 169
  year: 2017
  ident: 2408_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.029
– volume: 577
  start-page: 123958
  year: 2019
  ident: 2408_CR34
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.123958
– volume: 8
  start-page: 517
  issue: 3
  year: 2017
  ident: 2408_CR35
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2016.04.007
– volume: 75
  start-page: 1
  issue: 8
  year: 2016
  ident: 2408_CR17
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5435-6
– volume: 32
  start-page: 105
  issue: 1
  year: 2018
  ident: 2408_CR44
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1797-0
– ident: 2408_CR47
  doi: 10.1038/ngeo2911
– volume: 120
  start-page: 75
  year: 2017
  ident: 2408_CR1
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.11.212
– volume: 63
  start-page: 63
  issue: 1
  year: 2018
  ident: 2408_CR4
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2017.1410891
– ident: 2408_CR20
– volume: 34
  start-page: 228
  issue: 2
  year: 2007
  ident: 2408_CR9
  publication-title: IAENG Int J Comput Sci
– volume: 133
  start-page: 1119
  issue: 3–4
  year: 2018
  ident: 2408_CR18
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-017-2244-0
– volume: 12
  start-page: 1
  year: 2019
  ident: 2408_CR41
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4697-1
– volume: 137
  start-page: 1257
  issue: 1–2
  year: 2019
  ident: 2408_CR24
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-018-2666-3
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 2408_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17765-5
– volume: 5
  start-page: 666
  issue: 3
  year: 2017
  ident: 2408_CR16
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v5.i3.pp666-672
– volume: 13
  start-page: 177
  issue: 1
  year: 2019
  ident: 2408_CR36
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2018.1564702
– volume: 33
  start-page: 3985
  year: 2019
  ident: 2408_CR30
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02350-4
– volume: 29
  start-page: 3651
  issue: 10
  year: 2015
  ident: 2408_CR5
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1021-z
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 2408_CR40
  publication-title: J Geophys Res
  doi: 10.1029/2000JD900719
– volume-title: Time series analysis: forecasting and control
  year: 2015
  ident: 2408_CR7
– volume: 78
  start-page: 2064
  issue: 10
  year: 2018
  ident: 2408_CR33
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2018.477
– volume: 118
  start-page: 465
  issue: 3
  year: 2014
  ident: 2408_CR26
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-1065-z
– volume: 32
  start-page: 103
  issue: 1
  year: 2017
  ident: 2408_CR43
  publication-title: Journal of Water and Land Development
  doi: 10.1515/jwld-2017-0012
– volume: 33
  start-page: 3831
  year: 2019
  ident: 2408_CR25
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02333-5
– volume: 11
  start-page: 502
  issue: 3
  year: 2019
  ident: 2408_CR45
  publication-title: Water (Switzerland)
– ident: 2408_CR8
– volume: 12
  start-page: 606
  year: 2019
  ident: 2408_CR2
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4781-6
– volume: 4
  start-page: 439
  issue: 4
  year: 2018
  ident: 2408_CR14
  publication-title: Global J Environ Sci Manage
– volume: 13
  start-page: 1413
  issue: 8
  year: 2009
  ident: 2408_CR23
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-1413-2009
– volume: 521
  start-page: 302
  year: 2015
  ident: 2408_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.12.009
– volume: 9
  start-page: 781
  issue: 10
  year: 2017
  ident: 2408_CR48
  publication-title: Water (Switzerland)
– volume: 28
  start-page: 2999
  issue: 10
  year: 2014
  ident: 2408_CR3
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0651-x
– volume: 50
  start-page: 159
  year: 2003
  ident: 2408_CR46
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 52
  start-page: 209
  issue: 2
  year: 2013
  ident: 2408_CR19
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2013.01.001
– volume: 402
  start-page: 41
  issue: 1-2
  year: 2011
  ident: 2408_CR32
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2011.03.002
– volume: 33
  start-page: 2335
  year: 2019
  ident: 2408_CR31
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02265-0
– volume: 7
  start-page: 16
  issue: online
  year: 2017
  ident: 2408_CR38
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-016-0515-z
– volume: 577
  start-page: 123962
  year: 2019
  ident: 2408_CR15
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 106
  start-page: 35
  year: 2018
  ident: 2408_CR6
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.11.026
– volume: 32
  start-page: 3405
  issue: 10
  year: 2018
  ident: 2408_CR21
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1998-1
– volume: 132
  start-page: 1321
  issue: 12
  year: 2006
  ident: 2408_CR39
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321)
– volume: 16
  start-page: 335
  issue: 1
  year: 2019
  ident: 2408_CR13
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-018-1674-2
– volume: 556
  start-page: 1220
  year: 2018
  ident: 2408_CR22
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2017.04.017
– volume: 50
  start-page: 6.1
  issue: 6
  year: 2016
  ident: 2408_CR42
  publication-title: OpenAccess Series in Informatics
SSID ssj0010090
Score 2.5580118
Snippet One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5067
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Atmospheric Sciences
Autoregressive models
Civil Engineering
computational methodology
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
Environment
Fuzzy logic
Geotechnical Engineering & Applied Earth Sciences
Hybrid systems
Hydrogeology
Hydrology/Water Resources
Intelligence
Model accuracy
Multilayer perceptrons
neural networks
prediction
Predictions
quantitative analysis
Rain
Rainfall
River basins
Rivers
Root-mean-square errors
Stations
Support vector machines
time series analysis
Vietnam
watersheds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbGdoED4ikKAxWJG0SsTbusB4TGYxpITBMwabcqWVI4lHWw7sC_x-5jG0js0FPTRHWc-EtsfwY4E4pLBCIBcyIZMK-lBFMBLjxuuCeNMJwLykZ-6jW7A-9x6A8r0CtzYSisstwTs41aJyO6I790OXc42hbuXk8-GVWNIu9qWUJDFqUV9FVGMbYGNZeYsapQu7nv9Z_nfgVEFNmtS4CHJg-NaZFGkyfTOW6TYofwId4vxn-bqgX-_OMyzSxRZws2Cwhpt_M534aKGe_AxhKx4C4M-0lKYUDYLIns7jelZdl3MpXsYYmC027Hb_iL6fvH1EbsamfJuOwld87bVCUtI-ymLsgNFMk43oNB5_71tsuKGgpshNAqZbIlNBdi1IicIPK160W-5JpIbqTvCRO1jIykNgLNlJCaNyUeD9FgGaehXdwLNd-H6jgZmwOw0ZQrHQQaD9TGazlSNZSnlDaI4FARuGOBU4orHBUE41TnIg4X1Mgk4hBFHGYiDrkF5_NvJjm9xsrW9XIWwmKpTcOFYlhwOn-Ni4Q8H3Jskhm1wb3UD9AQW3BRzt6ii_9HPFw94hGsu6QwWXhLHarp18wcI0hJ1UmheT_7dOF4
  priority: 102
  providerName: ProQuest
Title Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall
URI https://link.springer.com/article/10.1007/s11269-019-02408-3
https://www.proquest.com/docview/2331385332
https://www.proquest.com/docview/2388759471
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8ovOiD38Ypkpn4piVs3ej2iMqHGglRSfBpaWmnRmQGxoP-9V7HBkjUhIdlyXZrt_ba-3V39yvAKROUIxDxiRVynzieYET4OPCoog5XTFHKdDbyXavS7Dg3XbebJoWNsmj3zCWZzNSzZDfLrujYHjw0Lxehq5BP-LZykK82nm5rU-8B4obk34qPSyMHTWaaLPN7KT8N0gxlLjhGE3tT34RO9qaTMJO30jgWpd7XAonjsp-yBRspADWrE43ZhhU12IH1OVrCXei2o1gHEaFYFJrNT53UZV7xmJPrOQJPs9p_joav8cv7yETkayapvORh4to39R5rCd23LkI7kULe7-9Bp157vGySdAcG0kNgFhPuMUkZ65VDyw9daTuhy6nUFDncdZgKPcVDLhVDI8e4pBWOi0s0d8oqSxtnUkn3ITeIBuoATAQCQvq-xOW4cjyLi7JwhJAK8R-qEbUMsLJuCHopPbneJaMfzIiVdasF2GpB0moBNeBs-szHhJzjX-lC1rtBOlBHgU2pRRGyUNuAk-ltHGLab8IHKhprGZyJXR_NuAHnWYfOivi7xsPlxI9gzdY6kQTLFCAXD8fqGCFPLIqw6tUbxVTP8XxRa7Xv8WrHrn4DAn74XA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOEAPVVuompbCVmpPZdXYs85mD6jiqaRAhHhIuZnd7Lo9pDEQI8Sf47d1xrETWqncOOSU9VqanZ35xjPzDcBn7dASEDEyyqyRqu20dIYuHgZUNuiAqLkb-bjX6lyoH_2kPwcPdS8Ml1XWNrE01D4f8DfybzFihORbMP5-dS15ahRnV-sRGrYareC3SoqxqrHjMNzfUQg33uru0Xl_ieOD_fPdjqymDMgBgY9C2rb2qPWgmUUmS3ysssSiZxoYmygdsnawmfVBkyHX1mPLUgBFJj1ETR-TtfBI-87DokJlKPhb3NnvnZxO8xiEYMqvPIaCNEXOu2rbmTTvRXGLa5XoxzxjEv92jTO8-0-KtvR8B6_gZQVZxfZEx17DXBi9gRePiAxXoH-SF1x2RMvyTHTuuQ1M7NnCyu4jyk-xPfxJIi1-_R4LwsqibP6VZ5NiAMFT2UqCcN6C006ZHQ5X4eJZpPkWFkb5KLwDQdDBeWM8BfBBtSPrmk455wMhRlI8jBoQ1eJKBxWhOc_VGKYzKmYWcUoiTksRp9iAr9NnriZ0Hk-uXqtPIa2u9jidKWIDPk3_pkvJmRY7CvktryHbnRhy_A3YrE9vtsX_3_j-6TduwFLn_PgoPer2Dj_AcszKU5bWrMFCcXMbPhJAKtx6pYUCLp9b8f8AYj4eUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB2lQaraAyq0FSkUjERPrUV2vRtnDwgh0pAAjSKVSLlt7diGQ5pNySLEX-PXMbMfSYpEbhz2tF5bGo9nnndm3gAcSC0UApGIe05FPGhqyXWEB09YESgrrRCSqpF_9RqdQXA-DIcVeCxrYSitsrSJmaE2yYj-kR_6QngCfYvwD12RFtFvtY-n_zh1kKJIa9lOI1eRC_twj9e32VG3hXv9zffbP69OO7zoMMBHCDxSrprSCClHdedFLjR-4EIlDFHAqDCQ1jWtcspYiUZcKiMaCi9PaM6tVzc-WgojcN43sCaJxZ2q1Ntn8wgGYpfs_06E17MA3XZRsJOX7Xl-g7KU8CGGMS7-d4oLpPssOJv5vPYHWC_AKjvJtWsDKnayCe-XKAw_wrCfpJRwhMMSxzoPVADGWipVvLtE9slOxtcowPTm74whSmZZ2S__nacBMOrHllGD0xQUcHJqPP4Eg1eR5WeoTpKJ3QKGoEGbKDJ4dbdB01O6rgOtjUWsiConvBp4pbjiUUFlTh01xvGChJlEHKOI40zEsajB9_k305zIY-XonXIX4uJQz-KFCtZgf_4ajyPFWNTEJnc0Bq12GKHLr8GPcvcWU7y84pfVK-7BW1T3-LLbu9iGdz7pTpZTswPV9PbOfkVklOrdTAUZ_HltnX8CfRMb6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+Hybrid+Data-Intelligence+Algorithms+for+Multi-Station+Modelling+of+Rainfall&rft.jtitle=Water+resources+management&rft.au=Pham%2C+Quoc+Bao&rft.au=Abba%2C+S.+I.&rft.au=Usman%2C+Abdullahi+Garba&rft.au=Linh%2C+Nguyen+Thi+Thuy&rft.date=2019-12-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=33&rft.issue=15&rft.spage=5067&rft.epage=5087&rft_id=info:doi/10.1007%2Fs11269-019-02408-3&rft.externalDocID=10_1007_s11269_019_02408_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon