Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall
One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vec...
Saved in:
| Published in | Water resources management Vol. 33; no. 15; pp. 5067 - 5087 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.12.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-019-02408-3 |
Cover
| Abstract | One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R
2
), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models. |
|---|---|
| AbstractList | One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models. One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R²), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models. One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of time-series. In this study, the potential of five different data-driven models including Multilayer Perceptron (MLP), Least Square Support Vector Machine (LSSVM), Neuro-fuzzy, Hammerstein-Weiner (HW) and Autoregressive Integrated Moving Average (ARIMA) were employed for multi-station (Hien, Thank My, Hoi Khanh, Ai Nghia and Cai Lau) prediction of daily rainfall in the Vu Gia-Thu Bon River basin in Central Vietnam. Subsequently, hybrid ARIMA-MLP, ARIMA-LSSVM, ARIMA-NF and ARIMA-HW models were also utilized to predict the daily rainfall at these stations. The results were evaluated in terms of widely used performance criteria, viz.: determination coefficient (R 2 ), root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (CC). Besides, the Taylor diagram is also used to examine and compare the similarity between the observed and predicted rainfall. The quantitative analysis indicated that the HW model increased the prediction accuracy by 5%, 3% and 2% at Hien, Ai Nghia and Cau Lau stations, respectively, compared to the other models. Likewise, the NF model increased the prediction accuracy at Thanh My and Hoi Khanh stations in contrast to the other models in terms of the mean absolute error. Also, the results of hybrid ARIMA-NF and ARIMA-HW models showed the best performance in terms of predictive skills and verified to increase the prediction accuracy in comparison to the single models. |
| Author | Abba, S. I. Costache, Romulus Vo, Ngoc Duong Malik, Anurag Linh, Nguyen Thi Thuy Usman, Abdullahi Garba Pham, Quoc Bao Gupta, Vivek Tri, Doan Quang |
| Author_xml | – sequence: 1 givenname: Quoc Bao surname: Pham fullname: Pham, Quoc Bao organization: Department of Hydraulic and Ocean Engineering, National Cheng-Kung University – sequence: 2 givenname: S. I. surname: Abba fullname: Abba, S. I. organization: Department of Physical Planning Development, Yusuf Maitama Sule University Kano – sequence: 3 givenname: Abdullahi Garba surname: Usman fullname: Usman, Abdullahi Garba organization: Faculty of Pharmacy, Department of Analytical Chemistry, Near East University – sequence: 4 givenname: Nguyen Thi Thuy surname: Linh fullname: Linh, Nguyen Thi Thuy organization: Department of Hydraulic and Ocean Engineering, National Cheng-Kung University, Thuyloi University – sequence: 5 givenname: Vivek surname: Gupta fullname: Gupta, Vivek organization: Department of Hydrology, Indian Institute of Technology Roorkee – sequence: 6 givenname: Anurag surname: Malik fullname: Malik, Anurag organization: Department of Soil and Water Conservation Engineering, College of Technology, G.B. Pant University of Agriculture and Technology – sequence: 7 givenname: Romulus surname: Costache fullname: Costache, Romulus organization: Research Institute of the University of Bucharest, National Institute of Hydrology and Water Management – sequence: 8 givenname: Ngoc Duong surname: Vo fullname: Vo, Ngoc Duong organization: University of Science and Technology, The University of Danang – sequence: 9 givenname: Doan Quang orcidid: 0000-0003-3990-5838 surname: Tri fullname: Tri, Doan Quang email: doanquangtri@tdtu.edu.vn organization: Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University |
| BookMark | eNp9kMtKAzEUhoNUsFVfwNWAGzfRXCZNZin1VmhRvIC7ECdJTZkmNUkXfXtTRxBcdBHOIt93-M8_AgMfvAHgDKNLjBC_ShiTcQMRLo_USEB6AIaYcQrxmKEBGKKGIFjzGh-BUUpLhIrWoCF4fwrZ-OxUVwVbPWw_otPVjcoKTn02XecWxremuu4WIbr8uUqVDbGab7rs4EtW2QVfzYPekX6xW_GsnLeq607AYRnJnP7OY_B2d_s6eYCzx_vp5HoGW8pIhkpwTTlvkcWNZZrUlimqEaFMsZobK4yyShuOieBK07Gq67EoHxhpwqjQ9Bhc9HvXMXxtTMpy5VJb8ihvwiZJQoXgrKk5Luj5P3QZNtGXdIWimApGKSmU6Kk2hpSisbJ1_aE5KtdJjOSuctlXLkvl8qdySYtK_qnr6FYqbvdLtJdSgf3CxL9Ue6xvzvSU7g |
| CitedBy_id | crossref_primary_10_1016_j_cherd_2023_09_027 crossref_primary_10_1021_acsmaterialslett_2c00734 crossref_primary_10_1016_j_cherd_2024_04_009 crossref_primary_10_1007_s40808_023_01835_x crossref_primary_10_1007_s10337_020_03912_0 crossref_primary_10_1007_s10666_023_09938_6 crossref_primary_10_1007_s10661_020_08659_7 crossref_primary_10_1016_j_ijhydene_2023_09_170 crossref_primary_10_3390_w14101617 crossref_primary_10_1007_s11356_021_13445_0 crossref_primary_10_1007_s12517_022_10801_3 crossref_primary_10_1007_s44268_024_00027_5 crossref_primary_10_1016_j_jhydrol_2020_125815 crossref_primary_10_3390_w15203611 crossref_primary_10_1007_s11269_024_04027_z crossref_primary_10_1007_s12145_024_01541_x crossref_primary_10_1007_s00500_021_05834_x crossref_primary_10_1186_s42269_022_00756_6 crossref_primary_10_3390_ai5040098 crossref_primary_10_1007_s13738_020_02124_5 crossref_primary_10_3390_s21041421 crossref_primary_10_3390_app10155160 crossref_primary_10_3390_ma16031277 crossref_primary_10_1007_s11356_020_08792_3 crossref_primary_10_3390_ma17164093 crossref_primary_10_1016_j_jhydrol_2024_131704 crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_3389_fenvs_2022_929707 crossref_primary_10_3390_w16091246 crossref_primary_10_1016_j_jclepro_2023_138193 crossref_primary_10_3390_life13010079 crossref_primary_10_1016_j_sjbs_2021_09_055 crossref_primary_10_3390_molecules27134220 crossref_primary_10_1080_02626667_2020_1842412 crossref_primary_10_3390_hydrology10070136 crossref_primary_10_52589_AJSTE_XKYBH2QI crossref_primary_10_1080_02626667_2022_2141121 crossref_primary_10_1016_j_fuel_2023_128623 crossref_primary_10_1016_j_scitotenv_2022_159697 crossref_primary_10_5004_dwt_2021_27049 crossref_primary_10_1080_02626667_2021_1937179 crossref_primary_10_1002_sscp_202200071 crossref_primary_10_1039_D4RA02385D crossref_primary_10_1007_s11269_022_03395_8 crossref_primary_10_1016_j_rineng_2021_100260 crossref_primary_10_1016_j_agwat_2023_108210 crossref_primary_10_1186_s43094_021_00183_w crossref_primary_10_1007_s11600_024_01399_z crossref_primary_10_3390_ijerph19020738 crossref_primary_10_1007_s11269_020_02554_z crossref_primary_10_3390_w16233465 crossref_primary_10_1186_s12302_024_00914_9 crossref_primary_10_1016_j_rineng_2021_100228 crossref_primary_10_2166_wpt_2024_079 crossref_primary_10_1007_s00477_024_02867_0 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1007_s13369_020_05093_2 crossref_primary_10_1016_j_ecolind_2020_106620 crossref_primary_10_1002_jssc_202000890 crossref_primary_10_1007_s11269_023_03629_3 crossref_primary_10_1007_s11356_022_23168_5 crossref_primary_10_1007_s42452_020_03690_2 crossref_primary_10_1186_s42269_021_00586_y crossref_primary_10_3390_su14042192 crossref_primary_10_1007_s12145_023_01041_4 crossref_primary_10_5004_dwt_2021_26983 crossref_primary_10_1016_j_psep_2024_02_041 crossref_primary_10_5004_dwt_2021_26903 crossref_primary_10_1051_e3sconf_202449702011 crossref_primary_10_3390_su12197877 crossref_primary_10_52589_AJSTE_XTWJGQQL crossref_primary_10_1016_j_apples_2023_100133 crossref_primary_10_3390_ph16060858 crossref_primary_10_3390_rs12010106 crossref_primary_10_1016_j_energy_2024_130503 crossref_primary_10_3390_rs14215515 crossref_primary_10_1016_j_suscom_2022_100721 crossref_primary_10_1016_j_asoc_2024_111411 crossref_primary_10_1016_j_envsoft_2020_104761 crossref_primary_10_3390_pr9071166 crossref_primary_10_1007_s11269_021_02937_w crossref_primary_10_1016_j_jssas_2023_06_001 crossref_primary_10_1007_s00477_020_01862_5 crossref_primary_10_1007_s00704_021_03574_4 crossref_primary_10_1016_j_asoc_2024_112624 crossref_primary_10_1016_j_jclepro_2022_130580 crossref_primary_10_1109_ACCESS_2020_3017743 crossref_primary_10_1007_s13201_022_01815_z crossref_primary_10_1016_j_asoc_2021_108036 crossref_primary_10_52589_AJEER_6AYXYF7E |
| Cites_doi | 10.1007/s11269-019-02333-5 10.1016/j.jhydrol.2014.12.009 10.11591/ijeecs.v5.i3.pp666-672 10.1016/j.jhydrol.2017.04.017 10.1007/s00704-017-2244-0 10.1016/j.procs.2017.11.212 10.1029/2000JD900719 10.1080/02626667.2017.1410891 10.1007/s11269-017-1797-0 10.1007/s13201-016-0515-z 10.1007/s11269-019-02350-4 10.1007/s12665-016-5435-6 10.1038/s41598-017-17765-5 10.5194/hess-13-1413-2009 10.1016/j.jhydrol.2019.123958 10.1016/j.gsf.2016.04.007 10.1080/02626667.2014.966721 10.1007/s00704-018-2666-3 10.1061/(ASCE)0733-9429(2006)132:12(1321) 10.1007/s11269-015-1021-z 10.1016/j.jhydrol.2019.123962 10.1016/S0925-2312(01)00702-0 10.1080/19942060.2018.1564702 10.1007/s13762-018-1674-2 10.1016/j.aej.2013.01.001 10.1007/s00704-013-1065-z 10.1515/jwld-2017-0012 10.1007/s11356-019-05553-9 10.1016/j.envsoft.2017.11.026 10.1016/j.eswa.2017.05.029 10.1007/s11269-014-0651-x 10.1016/j.jhydrol.2011.03.002 10.1007/s12517-019-4697-1 10.1007/s11269-018-1998-1 10.2166/wst.2018.477 10.1007/s11269-019-02265-0 10.1007/s12517-019-4781-6 10.1038/ngeo2911 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2019 Water Resources Management is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Water Resources Management is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-019-02408-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 5087 |
| ExternalDocumentID | 10_1007_s11269_019_02408_3 |
| GeographicLocations | Vietnam |
| GeographicLocations_xml | – name: Vietnam |
| GrantInformation_xml | – fundername: Research on scientific basis and solution of artificial intelligence application to identify, support forecasting and warning some dangerous hydrometeorological phenomena in the context of climate change in Vietnam grantid: BDKH.34/16-20 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-a87d377c0f19f5d24f5a3d0235a547ef8eafade71287ad36a446847e10d2538d3 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 09:18:28 EDT 2025 Fri Jul 25 19:13:45 EDT 2025 Wed Oct 01 01:44:57 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Fri Feb 21 02:26:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Rainfall Vu Gia-Thu Bon river Time series modelling Hammerstein-Weiner Artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-a87d377c0f19f5d24f5a3d0235a547ef8eafade71287ad36a446847e10d2538d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3990-5838 |
| PQID | 2331385332 |
| PQPubID | 54174 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_2388759471 proquest_journals_2331385332 crossref_citationtrail_10_1007_s11269_019_02408_3 crossref_primary_10_1007_s11269_019_02408_3 springer_journals_10_1007_s11269_019_02408_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191200 2019-12-00 20191201 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2019 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Malik, Kumar, Singh (CR30) 2019; 33 Lin, Jhong (CR28) 2015; 521 Taylor (CR40) 2001; 106 Box, Jenkins, Reinsel, Ljung (CR7) 2015 Elkiran, Nourani, Abba (CR15) 2019; 577 CR37 Ghorbani, Khatibi, Goel, FazeliFard, Azani (CR17) 2016; 75 Kumar, Kendra, Gramvidhyapith (CR27) 2015; 6 Hung, Babel, Weesakul, Tripathi (CR23) 2009; 13 Malik, Kumar, Kisi, Shiri (CR29) 2019; 26 Bartoletti, Casagli, Marsili-Libelli, Nardi, Palandri (CR6) 2018; 106 Tayfur, Singh (CR39) 2006; 132 Jahani, Mohammadi (CR24) 2019; 137 Cramer, Kampouridis, Freitas, Alexandridis (CR12) 2017; 85 Gaya, Zango, Yusuf, Mustapha, Muhammad, Sani, Tijjani, Wahab, Khairi (CR16) 2017; 5 Zhou, Wang, Yang (CR48) 2017; 9 Bustami, Bessaih, Bong, Suhaili (CR9) 2007; 34 Alizamir, Kisi, Zounemat-Kermani (CR4) 2018; 63 Yaseen, Ebtehaj, Kim, Sanikhani, Asadi, Ghareb, Bonakdari, Mohtar, Nadhir, Shahid (CR45) 2019; 11 Horton, Jaboyedoff, Obled (CR22) 2018; 556 Choubin, Khalighi-Sigaroodi, Malekian, Kişi (CR11) 2016; 61 Ghose, Panda, Swain (CR19) 2013; 52 Meshram, Ghorbani, Deo, Kashani, Meshram, Karimi (CR31) 2019; 33 Kim, Singh (CR26) 2014; 118 Solgi, Zarei, Nourani, Bahmani (CR38) 2017; 7 CR8 Kalteh (CR25) 2019; 33 Yaseen, Ghareb, Ebtehaj, Bonakdari, Siddique, Heddam, Yusif, Deo (CR44) 2018; 32 CR47 Adnan, Malik, Kumar, Parmar, Kisi (CR2) 2019; 12 Olyaie, Zare Abyaneh, Danandeh Mehr (CR35) 2017; 8 Qasem, Samadianfard, Kheshtgar, Jarhan, Kisi, Shamshirband, Chau (CR36) 2019; 13 Abba, Hadi, Abdullahi (CR1) 2017; 120 Ghorbani, Deo, Yaseen, Kashani, Mohammadi (CR18) 2018; 133 Hadi, Tombul (CR21) 2018; 32 CR20 Nourani, Kisi, Komasi (CR32) 2011; 402 Tikhamarine, Souag-Gamane, Kisi (CR41) 2019; 12 Al-Zahrani, Abo-Monasar (CR5) 2015; 29 Che, Purushotham, Cho, Sontag, Liu (CR10) 2018; 8 Nourani, Elkiran, Abba (CR33) 2018; 78 Akrami, Nourani, Hakim (CR3) 2014; 28 Yadav, Ch, Mathur, Adamowski (CR43) 2017; 32 Elkiran, Nourani, Abba, Abdullahi (CR14) 2018; 4 Tsioptsias, Tako, Robinson (CR42) 2016; 50 Nourani, Elkiran, Abdullahi (CR34) 2019; 577 Danandeh Mehr, Nourani, Karimi Khosrowshahi, Ghorbani (CR13) 2019; 16 Zhang (CR46) 2003; 50 S Kim (2408_CR26) 2014; 118 A Malik (2408_CR30) 2019; 33 2408_CR37 Sultan Noman Qasem (2408_CR36) 2019; 13 M Alizamir (2408_CR4) 2018; 63 Z Che (2408_CR10) 2018; 8 V Nourani (2408_CR33) 2018; 78 A Solgi (2408_CR38) 2017; 7 SA Akrami (2408_CR3) 2014; 28 N Bartoletti (2408_CR6) 2018; 106 Pascal Horton (2408_CR22) 2018; 556 G Elkiran (2408_CR15) 2019; 577 MA Ghorbani (2408_CR17) 2016; 75 GF Lin (2408_CR28) 2015; 521 SG Meshram (2408_CR31) 2019; 33 A Malik (2408_CR29) 2019; 26 E Olyaie (2408_CR35) 2017; 8 T Zhou (2408_CR48) 2017; 9 AM Kalteh (2408_CR25) 2019; 33 G Elkiran (2408_CR14) 2018; 4 B Jahani (2408_CR24) 2019; 137 2408_CR8 Vahid Nourani (2408_CR32) 2011; 402 PG Zhang (2408_CR46) 2003; 50 MA Ghorbani (2408_CR18) 2018; 133 Y Tikhamarine (2408_CR41) 2019; 12 MA Al-Zahrani (2408_CR5) 2015; 29 ZM Yaseen (2408_CR44) 2018; 32 S Cramer (2408_CR12) 2017; 85 SI Abba (2408_CR1) 2017; 120 RM Adnan (2408_CR2) 2019; 12 GE Box (2408_CR7) 2015 2408_CR47 R Bustami (2408_CR9) 2007; 34 B Yadav (2408_CR43) 2017; 32 2408_CR20 ZM Yaseen (2408_CR45) 2019; 11 SJ Hadi (2408_CR21) 2018; 32 NQ Hung (2408_CR23) 2009; 13 G Tayfur (2408_CR39) 2006; 132 KE Taylor (2408_CR40) 2001; 106 A Danandeh Mehr (2408_CR13) 2019; 16 MS Gaya (2408_CR16) 2017; 5 B Choubin (2408_CR11) 2016; 61 DK Ghose (2408_CR19) 2013; 52 P Kumar (2408_CR27) 2015; 6 Vahid Nourani (2408_CR34) 2019; 577 N Tsioptsias (2408_CR42) 2016; 50 |
| References_xml | – year: 2015 ident: CR7 publication-title: Time series analysis: forecasting and control – ident: CR47 – volume: 33 start-page: 3831 year: 2019 end-page: 3849 ident: CR25 article-title: Modular wavelet–extreme learning machine: a new approach for forecasting daily rainfall publication-title: Water Resour Manag doi: 10.1007/s11269-019-02333-5 – volume: 521 start-page: 302 year: 2015 end-page: 313 ident: CR28 article-title: A real-time forecasting model for the spatial distribution of typhoon rainfall publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.12.009 – ident: CR37 – volume: 5 start-page: 666 issue: 3 year: 2017 end-page: 672 ident: CR16 article-title: Estimation of turbidity in water treatment plant using hammerstein-wiener and neural network technique publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v5.i3.pp666-672 – volume: 50 start-page: 6.1 issue: 6 year: 2016 end-page: 6.11 ident: CR42 article-title: Model validation and testing in simulation: a literature review publication-title: OpenAccess Series in Informatics – volume: 556 start-page: 1220 year: 2018 end-page: 1231 ident: CR22 article-title: Using genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss Alps publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2017.04.017 – volume: 133 start-page: 1119 issue: 3–4 year: 2018 end-page: 1131 ident: CR18 article-title: Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran publication-title: Theor Appl Climatol doi: 10.1007/s00704-017-2244-0 – volume: 120 start-page: 75 year: 2017 end-page: 82 ident: CR1 article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.11.212 – volume: 106 start-page: 7183 issue: D7 year: 2001 end-page: 7192 ident: CR40 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J Geophys Res doi: 10.1029/2000JD900719 – ident: CR8 – volume: 34 start-page: 228 issue: 2 year: 2007 end-page: 233 ident: CR9 article-title: Artificial neural network for precipitation and water level predictions of Bedup River publication-title: IAENG Int J Comput Sci – volume: 63 start-page: 63 issue: 1 year: 2018 end-page: 73 ident: CR4 article-title: Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data publication-title: Hydrol Sci J doi: 10.1080/02626667.2017.1410891 – volume: 32 start-page: 105 issue: 1 year: 2018 end-page: 122 ident: CR44 article-title: Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA publication-title: Water Resour Manag doi: 10.1007/s11269-017-1797-0 – volume: 7 start-page: 16 issue: online year: 2017 ident: CR38 article-title: A new approach to flow simulation using hybrid models publication-title: Appl Water Sci doi: 10.1007/s13201-016-0515-z – volume: 11 start-page: 502 issue: 3 year: 2019 ident: CR45 article-title: Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis publication-title: Water (Switzerland) – volume: 33 start-page: 3985 year: 2019 end-page: 4006 ident: CR30 article-title: Application of heuristic approaches for prediction of hydrological drought using multi-scalar Streamflow drought index publication-title: Water Resour Manag doi: 10.1007/s11269-019-02350-4 – volume: 75 start-page: 1 issue: 8 year: 2016 end-page: 13 ident: CR17 article-title: Modeling river discharge time series using support vector machine and artificial neural networks publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5435-6 – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 12 ident: CR10 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Sci Rep doi: 10.1038/s41598-017-17765-5 – volume: 13 start-page: 1413 issue: 8 year: 2009 end-page: 1425 ident: CR23 article-title: An artificial neural network model for rainfall forecasting in Bangkok, Thailand publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-1413-2009 – volume: 577 start-page: 123958 year: 2019 ident: CR34 article-title: Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.123958 – volume: 8 start-page: 517 issue: 3 year: 2017 end-page: 527 ident: CR35 article-title: A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River publication-title: Geosci Front doi: 10.1016/j.gsf.2016.04.007 – volume: 61 start-page: 1001 issue: 6 year: 2016 end-page: 1009 ident: CR11 article-title: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals publication-title: Hydrol Sci J doi: 10.1080/02626667.2014.966721 – volume: 137 start-page: 1257 issue: 1–2 year: 2019 end-page: 1269 ident: CR24 article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran publication-title: Theor Appl Climatol doi: 10.1007/s00704-018-2666-3 – volume: 132 start-page: 1321 issue: 12 year: 2006 end-page: 1330 ident: CR39 article-title: ANN and fuzzy logic models for simulating event-based rainfall-runoff publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321) – volume: 29 start-page: 3651 issue: 10 year: 2015 end-page: 3662 ident: CR5 article-title: Urban residential water demand prediction based on artificial neural networks and time series models publication-title: Water Resour Manag doi: 10.1007/s11269-015-1021-z – volume: 577 start-page: 123962 year: 2019 ident: CR15 article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123962 – volume: 6 start-page: 382 issue: 3 year: 2015 end-page: 388 ident: CR27 article-title: Daily rainfall forecasting using adaptive neuro- fuzzy inference system ( Anfis ) MODELS publication-title: Int J Sci Nature – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: CR46 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 13 start-page: 177 issue: 1 year: 2019 end-page: 187 ident: CR36 article-title: Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2018.1564702 – volume: 16 start-page: 335 issue: 1 year: 2019 end-page: 346 ident: CR13 article-title: A hybrid support vector regression–firefly model for monthly rainfall forecasting publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-1674-2 – volume: 52 start-page: 209 issue: 2 year: 2013 end-page: 220 ident: CR19 article-title: Prediction and optimization of runoff via ANFIS and GA publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2013.01.001 – volume: 118 start-page: 465 issue: 3 year: 2014 end-page: 479 ident: CR26 article-title: Modeling daily soil temperature using data-driven models and spatial distribution publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-1065-z – volume: 32 start-page: 103 issue: 1 year: 2017 end-page: 112 ident: CR43 article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction publication-title: Journal of Water and Land Development doi: 10.1515/jwld-2017-0012 – volume: 26 start-page: 22670 year: 2019 end-page: 22687 ident: CR29 article-title: Evaluating the performance of four different heuristic approaches with gamma test for daily suspended sediment concentration modeling publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05553-9 – volume: 106 start-page: 35 year: 2018 end-page: 47 ident: CR6 article-title: Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.11.026 – volume: 85 start-page: 169 year: 2017 end-page: 181 ident: CR12 article-title: An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.029 – volume: 9 start-page: 781 issue: 10 year: 2017 ident: CR48 article-title: Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction publication-title: Water (Switzerland) – volume: 28 start-page: 2999 issue: 10 year: 2014 end-page: 3018 ident: CR3 article-title: Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang gates dam publication-title: Water Resour Manag doi: 10.1007/s11269-014-0651-x – volume: 402 start-page: 41 issue: 1-2 year: 2011 end-page: 59 ident: CR32 article-title: Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2011.03.002 – volume: 12 start-page: 1 year: 2019 end-page: 20 ident: CR41 article-title: A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO) publication-title: Arab J Geosci doi: 10.1007/s12517-019-4697-1 – volume: 4 start-page: 439 issue: 4 year: 2018 end-page: 450 ident: CR14 article-title: Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river publication-title: Global J Environ Sci Manage – volume: 32 start-page: 3405 issue: 10 year: 2018 end-page: 3422 ident: CR21 article-title: Forecasting daily streamflow for basins with different physical characteristics through data-driven methods publication-title: Water Resour Manag doi: 10.1007/s11269-018-1998-1 – volume: 78 start-page: 2064 issue: 10 year: 2018 end-page: 2076 ident: CR33 article-title: Wastewater treatment plant performance analysis using artificial intelligence – an ensemble approach publication-title: Water Sci Technol doi: 10.2166/wst.2018.477 – ident: CR20 – volume: 33 start-page: 2335 year: 2019 end-page: 2356 ident: CR31 article-title: New approach for sediment yield forecasting with a two-phase feedforward neuron network-particle swarm optimization model integrated with the gravitational search algorithm publication-title: Water Resour Manag doi: 10.1007/s11269-019-02265-0 – volume: 12 start-page: 606 year: 2019 end-page: 614 ident: CR2 article-title: Pan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputs publication-title: Arab J Geosci doi: 10.1007/s12517-019-4781-6 – volume: 61 start-page: 1001 issue: 6 year: 2016 ident: 2408_CR11 publication-title: Hydrol Sci J doi: 10.1080/02626667.2014.966721 – volume: 26 start-page: 22670 year: 2019 ident: 2408_CR29 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05553-9 – ident: 2408_CR37 – volume: 6 start-page: 382 issue: 3 year: 2015 ident: 2408_CR27 publication-title: Int J Sci Nature – volume: 85 start-page: 169 year: 2017 ident: 2408_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.029 – volume: 577 start-page: 123958 year: 2019 ident: 2408_CR34 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.123958 – volume: 8 start-page: 517 issue: 3 year: 2017 ident: 2408_CR35 publication-title: Geosci Front doi: 10.1016/j.gsf.2016.04.007 – volume: 75 start-page: 1 issue: 8 year: 2016 ident: 2408_CR17 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5435-6 – volume: 32 start-page: 105 issue: 1 year: 2018 ident: 2408_CR44 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1797-0 – ident: 2408_CR47 doi: 10.1038/ngeo2911 – volume: 120 start-page: 75 year: 2017 ident: 2408_CR1 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.11.212 – volume: 63 start-page: 63 issue: 1 year: 2018 ident: 2408_CR4 publication-title: Hydrol Sci J doi: 10.1080/02626667.2017.1410891 – ident: 2408_CR20 – volume: 34 start-page: 228 issue: 2 year: 2007 ident: 2408_CR9 publication-title: IAENG Int J Comput Sci – volume: 133 start-page: 1119 issue: 3–4 year: 2018 ident: 2408_CR18 publication-title: Theor Appl Climatol doi: 10.1007/s00704-017-2244-0 – volume: 12 start-page: 1 year: 2019 ident: 2408_CR41 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4697-1 – volume: 137 start-page: 1257 issue: 1–2 year: 2019 ident: 2408_CR24 publication-title: Theor Appl Climatol doi: 10.1007/s00704-018-2666-3 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 2408_CR10 publication-title: Sci Rep doi: 10.1038/s41598-017-17765-5 – volume: 5 start-page: 666 issue: 3 year: 2017 ident: 2408_CR16 publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v5.i3.pp666-672 – volume: 13 start-page: 177 issue: 1 year: 2019 ident: 2408_CR36 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2018.1564702 – volume: 33 start-page: 3985 year: 2019 ident: 2408_CR30 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02350-4 – volume: 29 start-page: 3651 issue: 10 year: 2015 ident: 2408_CR5 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1021-z – volume: 106 start-page: 7183 issue: D7 year: 2001 ident: 2408_CR40 publication-title: J Geophys Res doi: 10.1029/2000JD900719 – volume-title: Time series analysis: forecasting and control year: 2015 ident: 2408_CR7 – volume: 78 start-page: 2064 issue: 10 year: 2018 ident: 2408_CR33 publication-title: Water Sci Technol doi: 10.2166/wst.2018.477 – volume: 118 start-page: 465 issue: 3 year: 2014 ident: 2408_CR26 publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-1065-z – volume: 32 start-page: 103 issue: 1 year: 2017 ident: 2408_CR43 publication-title: Journal of Water and Land Development doi: 10.1515/jwld-2017-0012 – volume: 33 start-page: 3831 year: 2019 ident: 2408_CR25 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02333-5 – volume: 11 start-page: 502 issue: 3 year: 2019 ident: 2408_CR45 publication-title: Water (Switzerland) – ident: 2408_CR8 – volume: 12 start-page: 606 year: 2019 ident: 2408_CR2 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4781-6 – volume: 4 start-page: 439 issue: 4 year: 2018 ident: 2408_CR14 publication-title: Global J Environ Sci Manage – volume: 13 start-page: 1413 issue: 8 year: 2009 ident: 2408_CR23 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-1413-2009 – volume: 521 start-page: 302 year: 2015 ident: 2408_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.12.009 – volume: 9 start-page: 781 issue: 10 year: 2017 ident: 2408_CR48 publication-title: Water (Switzerland) – volume: 28 start-page: 2999 issue: 10 year: 2014 ident: 2408_CR3 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0651-x – volume: 50 start-page: 159 year: 2003 ident: 2408_CR46 publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 52 start-page: 209 issue: 2 year: 2013 ident: 2408_CR19 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2013.01.001 – volume: 402 start-page: 41 issue: 1-2 year: 2011 ident: 2408_CR32 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2011.03.002 – volume: 33 start-page: 2335 year: 2019 ident: 2408_CR31 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02265-0 – volume: 7 start-page: 16 issue: online year: 2017 ident: 2408_CR38 publication-title: Appl Water Sci doi: 10.1007/s13201-016-0515-z – volume: 577 start-page: 123962 year: 2019 ident: 2408_CR15 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123962 – volume: 106 start-page: 35 year: 2018 ident: 2408_CR6 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.11.026 – volume: 32 start-page: 3405 issue: 10 year: 2018 ident: 2408_CR21 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1998-1 – volume: 132 start-page: 1321 issue: 12 year: 2006 ident: 2408_CR39 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2006)132:12(1321) – volume: 16 start-page: 335 issue: 1 year: 2019 ident: 2408_CR13 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-1674-2 – volume: 556 start-page: 1220 year: 2018 ident: 2408_CR22 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2017.04.017 – volume: 50 start-page: 6.1 issue: 6 year: 2016 ident: 2408_CR42 publication-title: OpenAccess Series in Informatics |
| SSID | ssj0010090 |
| Score | 2.5580118 |
| Snippet | One of the most challenging tasks in rainfall prediction is designing a reliable computational methodology owing the random and stochastic characteristics of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5067 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Atmospheric Sciences Autoregressive models Civil Engineering computational methodology Correlation coefficient Correlation coefficients Earth and Environmental Science Earth Sciences Environment Fuzzy logic Geotechnical Engineering & Applied Earth Sciences Hybrid systems Hydrogeology Hydrology/Water Resources Intelligence Model accuracy Multilayer perceptrons neural networks prediction Predictions quantitative analysis Rain Rainfall River basins Rivers Root-mean-square errors Stations Support vector machines time series analysis Vietnam watersheds |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbGdoED4ikKAxWJG0SsTbusB4TGYxpITBMwabcqWVI4lHWw7sC_x-5jG0js0FPTRHWc-EtsfwY4E4pLBCIBcyIZMK-lBFMBLjxuuCeNMJwLykZ-6jW7A-9x6A8r0CtzYSisstwTs41aJyO6I790OXc42hbuXk8-GVWNIu9qWUJDFqUV9FVGMbYGNZeYsapQu7nv9Z_nfgVEFNmtS4CHJg-NaZFGkyfTOW6TYofwId4vxn-bqgX-_OMyzSxRZws2Cwhpt_M534aKGe_AxhKx4C4M-0lKYUDYLIns7jelZdl3MpXsYYmC027Hb_iL6fvH1EbsamfJuOwld87bVCUtI-ymLsgNFMk43oNB5_71tsuKGgpshNAqZbIlNBdi1IicIPK160W-5JpIbqTvCRO1jIykNgLNlJCaNyUeD9FgGaehXdwLNd-H6jgZmwOw0ZQrHQQaD9TGazlSNZSnlDaI4FARuGOBU4orHBUE41TnIg4X1Mgk4hBFHGYiDrkF5_NvJjm9xsrW9XIWwmKpTcOFYlhwOn-Ni4Q8H3Jskhm1wb3UD9AQW3BRzt6ii_9HPFw94hGsu6QwWXhLHarp18wcI0hJ1UmheT_7dOF4 priority: 102 providerName: ProQuest |
| Title | Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall |
| URI | https://link.springer.com/article/10.1007/s11269-019-02408-3 https://www.proquest.com/docview/2331385332 https://www.proquest.com/docview/2388759471 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8ovOiD38Ypkpn4piVs3ej2iMqHGglRSfBpaWmnRmQGxoP-9V7HBkjUhIdlyXZrt_ba-3V39yvAKROUIxDxiRVynzieYET4OPCoog5XTFHKdDbyXavS7Dg3XbebJoWNsmj3zCWZzNSzZDfLrujYHjw0Lxehq5BP-LZykK82nm5rU-8B4obk34qPSyMHTWaaLPN7KT8N0gxlLjhGE3tT34RO9qaTMJO30jgWpd7XAonjsp-yBRspADWrE43ZhhU12IH1OVrCXei2o1gHEaFYFJrNT53UZV7xmJPrOQJPs9p_joav8cv7yETkayapvORh4to39R5rCd23LkI7kULe7-9Bp157vGySdAcG0kNgFhPuMUkZ65VDyw9daTuhy6nUFDncdZgKPcVDLhVDI8e4pBWOi0s0d8oqSxtnUkn3ITeIBuoATAQCQvq-xOW4cjyLi7JwhJAK8R-qEbUMsLJuCHopPbneJaMfzIiVdasF2GpB0moBNeBs-szHhJzjX-lC1rtBOlBHgU2pRRGyUNuAk-ltHGLab8IHKhprGZyJXR_NuAHnWYfOivi7xsPlxI9gzdY6kQTLFCAXD8fqGCFPLIqw6tUbxVTP8XxRa7Xv8WrHrn4DAn74XA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOEAPVVuompbCVmpPZdXYs85mD6jiqaRAhHhIuZnd7Lo9pDEQI8Sf47d1xrETWqncOOSU9VqanZ35xjPzDcBn7dASEDEyyqyRqu20dIYuHgZUNuiAqLkb-bjX6lyoH_2kPwcPdS8Ml1XWNrE01D4f8DfybzFihORbMP5-dS15ahRnV-sRGrYareC3SoqxqrHjMNzfUQg33uru0Xl_ieOD_fPdjqymDMgBgY9C2rb2qPWgmUUmS3ysssSiZxoYmygdsnawmfVBkyHX1mPLUgBFJj1ETR-TtfBI-87DokJlKPhb3NnvnZxO8xiEYMqvPIaCNEXOu2rbmTTvRXGLa5XoxzxjEv92jTO8-0-KtvR8B6_gZQVZxfZEx17DXBi9gRePiAxXoH-SF1x2RMvyTHTuuQ1M7NnCyu4jyk-xPfxJIi1-_R4LwsqibP6VZ5NiAMFT2UqCcN6C006ZHQ5X4eJZpPkWFkb5KLwDQdDBeWM8BfBBtSPrmk455wMhRlI8jBoQ1eJKBxWhOc_VGKYzKmYWcUoiTksRp9iAr9NnriZ0Hk-uXqtPIa2u9jidKWIDPk3_pkvJmRY7CvktryHbnRhy_A3YrE9vtsX_3_j-6TduwFLn_PgoPer2Dj_AcszKU5bWrMFCcXMbPhJAKtx6pYUCLp9b8f8AYj4eUQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB2lQaraAyq0FSkUjERPrUV2vRtnDwgh0pAAjSKVSLlt7diGQ5pNySLEX-PXMbMfSYpEbhz2tF5bGo9nnndm3gAcSC0UApGIe05FPGhqyXWEB09YESgrrRCSqpF_9RqdQXA-DIcVeCxrYSitsrSJmaE2yYj-kR_6QngCfYvwD12RFtFvtY-n_zh1kKJIa9lOI1eRC_twj9e32VG3hXv9zffbP69OO7zoMMBHCDxSrprSCClHdedFLjR-4EIlDFHAqDCQ1jWtcspYiUZcKiMaCi9PaM6tVzc-WgojcN43sCaJxZ2q1Ntn8wgGYpfs_06E17MA3XZRsJOX7Xl-g7KU8CGGMS7-d4oLpPssOJv5vPYHWC_AKjvJtWsDKnayCe-XKAw_wrCfpJRwhMMSxzoPVADGWipVvLtE9slOxtcowPTm74whSmZZ2S__nacBMOrHllGD0xQUcHJqPP4Eg1eR5WeoTpKJ3QKGoEGbKDJ4dbdB01O6rgOtjUWsiConvBp4pbjiUUFlTh01xvGChJlEHKOI40zEsajB9_k305zIY-XonXIX4uJQz-KFCtZgf_4ajyPFWNTEJnc0Bq12GKHLr8GPcvcWU7y84pfVK-7BW1T3-LLbu9iGdz7pTpZTswPV9PbOfkVklOrdTAUZ_HltnX8CfRMb6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+of+Hybrid+Data-Intelligence+Algorithms+for+Multi-Station+Modelling+of+Rainfall&rft.jtitle=Water+resources+management&rft.au=Pham%2C+Quoc+Bao&rft.au=Abba%2C+S.+I.&rft.au=Usman%2C+Abdullahi+Garba&rft.au=Linh%2C+Nguyen+Thi+Thuy&rft.date=2019-12-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=33&rft.issue=15&rft.spage=5067&rft.epage=5087&rft_id=info:doi/10.1007%2Fs11269-019-02408-3&rft.externalDocID=10_1007_s11269_019_02408_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |