A GIS-based Land Cover Classification Approach Suitable for Fine‐scale Urban Water Management
In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and ea...
Saved in:
| Published in | Water resources management Vol. 35; no. 4; pp. 1339 - 1352 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.03.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-021-02790-x |
Cover
| Abstract | In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and easily obtainable spatial databases describing land cover types are crucial. Accordingly, a methodology categorizing land covers that supplements these tools is proposed. Utilizing GIS imagery of high spatial accuracy that is easily obtainable from flyover techniques, radiometric and geometric data is generated to create a multi-functional classification of urban land cover, designed to be applicable to various urban planning tools serving different purposes, e.g. urban water management. The methodology develops 13 individual land cover categories based on the complete capabilities of the NDVI and nDSM imagery, which is then adapted to suit planning tool requirements. Validation via a case study application at Innsbruck (Austria), an overall classification accuracy of 89.3 % was achieved. The accuracy of the process was limited in differentiating certain categories (e.g. Dry Grass and Concrete, Trees and Irrigated Grass, etc.), which could yield limitations subject to intended model applications. Despite this, the classification results yielded high accuracy, demonstrating the methodology can be utilised by various software to improve urban water management analysis. |
|---|---|
| AbstractList | In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and easily obtainable spatial databases describing land cover types are crucial. Accordingly, a methodology categorizing land covers that supplements these tools is proposed. Utilizing GIS imagery of high spatial accuracy that is easily obtainable from flyover techniques, radiometric and geometric data is generated to create a multi-functional classification of urban land cover, designed to be applicable to various urban planning tools serving different purposes, e.g. urban water management. The methodology develops 13 individual land cover categories based on the complete capabilities of the NDVI and nDSM imagery, which is then adapted to suit planning tool requirements. Validation via a case study application at Innsbruck (Austria), an overall classification accuracy of 89.3 % was achieved. The accuracy of the process was limited in differentiating certain categories (e.g. Dry Grass and Concrete, Trees and Irrigated Grass, etc.), which could yield limitations subject to intended model applications. Despite this, the classification results yielded high accuracy, demonstrating the methodology can be utilised by various software to improve urban water management analysis. In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and easily obtainable spatial databases describing land cover types are crucial. Accordingly, a methodology categorizing land covers that supplements these tools is proposed. Utilizing GIS imagery of high spatial accuracy that is easily obtainable from flyover techniques, radiometric and geometric data is generated to create a multi-functional classification of urban land cover, designed to be applicable to various urban planning tools serving different purposes, e.g. urban water management. The methodology develops 13 individual land cover categories based on the complete capabilities of the NDVI and nDSM imagery, which is then adapted to suit planning tool requirements. Validation via a case study application at Innsbruck (Austria), an overall classification accuracy of 89.3 % was achieved. The accuracy of the process was limited in differentiating certain categories (e.g. Dry Grass and Concrete, Trees and Irrigated Grass, etc.), which could yield limitations subject to intended model applications. Despite this, the classification results yielded high accuracy, demonstrating the methodology can be utilised by various software to improve urban water management analysis. |
| Author | Hiscock, Oscar H. Back, Yannick Kleidorfer, Manfred Urich, Christian |
| Author_xml | – sequence: 1 givenname: Oscar H. orcidid: 0000-0003-0737-7516 surname: Hiscock fullname: Hiscock, Oscar H. email: oscarhiscock@gmail.com organization: Civil Engineering Department, Monash University – sequence: 2 givenname: Yannick surname: Back fullname: Back, Yannick organization: Institute of Infrastructure Engineering, University Innsbruck – sequence: 3 givenname: Manfred surname: Kleidorfer fullname: Kleidorfer, Manfred organization: Institute of Infrastructure Engineering, University Innsbruck – sequence: 4 givenname: Christian surname: Urich fullname: Urich, Christian organization: Civil Engineering Department, Monash University, CRC for Water Sensitive Cities |
| BookMark | eNp9kMFKAzEQhoMo2FZfwFPAi5fVSbLZ3RxLsVWoeKjFY5jNZnVlm63JVurNR_AZfRKjFQQPHsJA-L_hn29I9l3nLCEnDM4ZQH4RGOOZSoCz-HIFyXaPDJjMRcIyCftkAIpDkuYpOyTDEJ4AIqZgQPSYzq4XSYnBVnSOrqKT7sV6OmkxhKZuDPZN5-h4vfYdmke62DQ9lq2ldefptHH24-09GIwfS1-io_fYR_oGHT7YlXX9ETmosQ32-GeOyHJ6eTe5Sua3s-vJeJ4YIXmfYFaCqSsBlTG1KFUlZSl5zaBKeSZUyjlH5LmtWc6sLKQQRqQFYhExYFyJETnb7Y09nzc29HrVBGPbFp3tNkFzVUiZpjyiI3L6J_rUbbyL7TSXIHOlUpnFVLFLGd-F4G2tTbz8S0bvsWk1A_1lXu_M62hef5vX24jyP-jaNyv0r_9DYgeFGHYP1v-2-of6BMz7mEw |
| CitedBy_id | crossref_primary_10_1155_2022_1693706 crossref_primary_10_3390_f15030463 crossref_primary_10_3390_drones6030071 crossref_primary_10_1071_WR22007 crossref_primary_10_3390_f15091504 crossref_primary_10_1007_s12145_025_01841_w crossref_primary_10_1007_s00521_021_06335_6 crossref_primary_10_1016_j_scitotenv_2022_159729 crossref_primary_10_1155_2022_6700254 |
| Cites_doi | 10.1007/s00484-008-0147-6 10.2166/wst.2013.437 10.1007/s11270-014-2055-1 10.1016/j.landurbplan.2010.08.004 10.1117/12.2241768 10.1016/j.procs.2015.07.415 10.1080/02626667.2015.1128084 10.1016/j.landurbplan.2014.07.005 10.3390/rs8020151 10.1117/1.JRS.6.063567 10.11648/j.ajep.20150404.14 10.3390/ijgi7120453 10.3390/rs9090967 10.1080/01431160500306906 10.1016/j.landurbplan.2014.11.007 10.1007/978-981-10-4424-3_3 10.1007/s12518-009-0013-1 10.1021/es903749d 10.1016/j.landurbplan.2015.05.012 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-021-02790-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection (ProQuest) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Business Premium Collection (Proquest) Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database (ProQuest) Biological Science Database (ProQuest) Engineering Database (ProQuest) Environmental Science Database (ProQuest) Earth, Atmospheric & Aquatic Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 1352 |
| ExternalDocumentID | 10_1007_s11269_021_02790_x |
| GeographicLocations | Austria |
| GeographicLocations_xml | – name: Austria |
| GrantInformation_xml | – fundername: Klima- und Energiefonds grantid: KR16AC0K13143 funderid: http://dx.doi.org/10.13039/100008559 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-a6b0cfd30dccf3b9d55b52f10d426394222aa27ef171e58533c348aa8b0c01293 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-4741 |
| IngestDate | Sun Aug 24 03:58:48 EDT 2025 Fri Jul 25 19:01:52 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Wed Oct 01 01:44:59 EDT 2025 Fri Feb 21 02:49:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | GIS Land cover classification Multi‐functional Urban water Management NDVI |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-a6b0cfd30dccf3b9d55b52f10d426394222aa27ef171e58533c348aa8b0c01293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0737-7516 |
| PQID | 2505799456 |
| PQPubID | 54174 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2985544285 proquest_journals_2505799456 crossref_citationtrail_10_1007_s11269_021_02790_x crossref_primary_10_1007_s11269_021_02790_x springer_journals_10_1007_s11269_021_02790_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210300 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Land Tirol (2019) Open Data Österreich. Retrieved August 8, 2019, from https://www.data.gv.at StrahlerABoschettiLGilesMFFriedlMAHansenMCHeroldMWoodcockCEGlobal land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps2006LuxembourgOffice for Official Publications of the European Communities GuilingWWeimeiJMingWAn assessment of urban heat island effect using remote sensing dataMar Sci Bull200821425 Masek J (n.d.) Landsat 8 Overview. NASA Landsat Science. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview. Accessed 16 June 2021 GIS Geography (2019) GIS Geography. Retrieved 9 22, 2019, from https://gisgeography.com/dem-dsm-dtm-differences BachPMStaalesenSMcCarthyDTDeleticARevisiting land use classification and spatial aggregation for modelling integrated urban water systemsLandsc Urban Plan2015143435510.1016/j.landurbplan.2015.05.012 ESRIArcGIS desktop: release 102019RedlandsEnvironmental Systems Research Institute Austria S (2019) Statistics Austria. Retrieved 09 26, 2019, from https://www.statistik.at/web_en/statistics/PeopleSociety/population/index.html Jayasooriya VM, Ng AW (2014) Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water Air Soil Pollut 255. https://doi.org/10.1007/s11270-014-2055-1 ElshehabyATahaGA new expert system module for building detection in urban areas using spectral information and LIDAR dataAppl Geomatics200919711010.1007/s12518-009-0013-1 GuoGWuZXiaoRChenYLiuXZhangXImpacts of urban biophysical composition on land surface temperature in urban heat island clustersLandsc Urban Plan201513511010.1016/j.landurbplan.2014.11.007 BhandariAKKumarASinghGKFeature extraction using normalized difference vegetation index (bhan): a case study of Jabalpur CityProcedia Technol2012661262110.1117/12.2241768 IsmailMHJusoffKSatellite data classification accuracy assessment based from reference datasetInt J Geol Environ Eng200832329 Rossman L (2015) Storm water management model user’s manual version 5.1. United States Environmental Protection Agency (EPA), Washington, D.C. YuBLiuHWuJHuYLiZAutomated derivation of urban building density information using airborne LiDAR data and object-based methodLandsc Urban Plan20109821021910.1016/j.landurbplan.2010.08.004 LuZImJRheeJHodgsonMBuilding type classification using spatial and landscape attributes derived from LiDAR remote sensing dataLandsc Urban Plan201413013414810.1016/j.landurbplan.2014.07.005 BoyleCMuddGMihelcicJRAnastasPCollinsTCulliganPRiedyCDelivering sustainable infrastructure that supports the urban built environmentEnviron Sci Technol2010444836484010.1021/es903749d CRCWSC (2019) Scenario tool. Retrieved September 22, 2019, from https://www.wsc-scenario.org.au Gómez-MendozaLGaliciaLCuevas-FernándezMLMagañaVGómezGPalacio-PrietoJLAssessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationshipsInt J Biometeorol20085251152010.1007/s00484-008-0147-6 MacFadenSWO’Neil-DunneJPMRoyarARLuJWTRundleAGHigh-resolution tree canopy mapping for New York City using LIDAR and object-based image analysisJ Appl Remote Sens2012612310.1117/1.JRS.6.063567 Tilahun A, Teferie B (2015) Accuracy assessment of land use land cover classification using Google Earth. Am J Environ Protect 4:193–198. https://doi.org/10.11648/j.ajep.20150404.14 Sun B, Chen X, Zhou Q (2017) Analying the uncertanties of ground validation for remote sensing land cover mapping in the era of big geographic data. Adv Geogr Inf Sci 31–38. https://doi.org/10.1007/978-981-10-4424-3_3 PhiriDMorgenrothJDevelopments in landsat land cover classification methods: a reviewRemote Sens2017996799210.3390/rs9090967 BachPMMcCarthyDTUrichCSitzenfreiRKleidorferMRauchRDeleticRA planning algorithm for quantifying decentralised water management opportunities in urban environmentsWater Sci Technol2013681857186510.2166/wst.2013.437 MeeraGGParthibanSNagarajTChristyANDVI: Vegetation change detection using remote sensing and GIS - A case study of Vellore DistrictProcedia Comput Sci2015571199121010.1016/j.procs.2015.07.415 FaridatulMWuBAutomatic classification of major urban land covers based on novel spectral indicesInt J Geo Inf2018745347810.3390/ijgi7120453 HöhleJHöhleMGeneration and assessment of urban land cover maps using high-resolution multispectral aerial imagesInt J Adv Softw201363272282 HuTYangJXuecaoLGongPMapping urban land use by using landsat images and open social dataRemote Sens2016215110.3390/rs8020151 YueWXuJTanWXuLThe relationship between land surface temperature and NDVI with remot sensing: application to Shanghai Landsat 7 ETM + dataInt J Remote Sens2007153205322610.1080/01431160500306906 DefriesRSTownshendJRNDVI-derived land cover classifications at a global scaleInt J Remote Sens20071735673586 McGraneSImpacts of urbanisation on hydrological and water quality dynamics, and urban water management: a reviewHydrol Sci J2016612295231110.1080/02626667.2015.1128084 Yeh AG (1999) Urban Planning and GIS. Geographical Information Systems 2790_CR6 Z Lu (2790_CR20) 2014; 130 GG Meera (2790_CR24) 2015; 57 J Höhle (2790_CR15) 2013; 6 RS Defries (2790_CR7) 2007; 17 M Faridatul (2790_CR10) 2018; 7 PM Bach (2790_CR3) 2015; 143 S McGrane (2790_CR23) 2016; 61 2790_CR30 L Gómez-Mendoza (2790_CR12) 2008; 52 G Guo (2790_CR14) 2015; 135 C Boyle (2790_CR5) 2010; 44 2790_CR11 MH Ismail (2790_CR17) 2008; 3 AK Bhandari (2790_CR4) 2012; 6 2790_CR18 2790_CR19 ESRI (2790_CR9) 2019 B Yu (2790_CR31) 2010; 98 T Hu (2790_CR16) 2016; 2 A Elshehaby (2790_CR8) 2009; 1 PM Bach (2790_CR2) 2013; 68 A Strahler (2790_CR27) 2006 SW MacFaden (2790_CR21) 2012; 6 W Guiling (2790_CR13) 2008; 2 D Phiri (2790_CR25) 2017; 9 2790_CR26 2790_CR22 2790_CR1 2790_CR28 2790_CR29 W Yue (2790_CR32) 2007; 15 |
| References_xml | – reference: ElshehabyATahaGA new expert system module for building detection in urban areas using spectral information and LIDAR dataAppl Geomatics200919711010.1007/s12518-009-0013-1 – reference: MacFadenSWO’Neil-DunneJPMRoyarARLuJWTRundleAGHigh-resolution tree canopy mapping for New York City using LIDAR and object-based image analysisJ Appl Remote Sens2012612310.1117/1.JRS.6.063567 – reference: LuZImJRheeJHodgsonMBuilding type classification using spatial and landscape attributes derived from LiDAR remote sensing dataLandsc Urban Plan201413013414810.1016/j.landurbplan.2014.07.005 – reference: Austria S (2019) Statistics Austria. Retrieved 09 26, 2019, from https://www.statistik.at/web_en/statistics/PeopleSociety/population/index.html – reference: BachPMMcCarthyDTUrichCSitzenfreiRKleidorferMRauchRDeleticRA planning algorithm for quantifying decentralised water management opportunities in urban environmentsWater Sci Technol2013681857186510.2166/wst.2013.437 – reference: BachPMStaalesenSMcCarthyDTDeleticARevisiting land use classification and spatial aggregation for modelling integrated urban water systemsLandsc Urban Plan2015143435510.1016/j.landurbplan.2015.05.012 – reference: Rossman L (2015) Storm water management model user’s manual version 5.1. United States Environmental Protection Agency (EPA), Washington, D.C. – reference: Sun B, Chen X, Zhou Q (2017) Analying the uncertanties of ground validation for remote sensing land cover mapping in the era of big geographic data. Adv Geogr Inf Sci 31–38. https://doi.org/10.1007/978-981-10-4424-3_3 – reference: Gómez-MendozaLGaliciaLCuevas-FernándezMLMagañaVGómezGPalacio-PrietoJLAssessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationshipsInt J Biometeorol20085251152010.1007/s00484-008-0147-6 – reference: McGraneSImpacts of urbanisation on hydrological and water quality dynamics, and urban water management: a reviewHydrol Sci J2016612295231110.1080/02626667.2015.1128084 – reference: MeeraGGParthibanSNagarajTChristyANDVI: Vegetation change detection using remote sensing and GIS - A case study of Vellore DistrictProcedia Comput Sci2015571199121010.1016/j.procs.2015.07.415 – reference: HuTYangJXuecaoLGongPMapping urban land use by using landsat images and open social dataRemote Sens2016215110.3390/rs8020151 – reference: ESRIArcGIS desktop: release 102019RedlandsEnvironmental Systems Research Institute – reference: HöhleJHöhleMGeneration and assessment of urban land cover maps using high-resolution multispectral aerial imagesInt J Adv Softw201363272282 – reference: Jayasooriya VM, Ng AW (2014) Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water Air Soil Pollut 255. https://doi.org/10.1007/s11270-014-2055-1 – reference: BhandariAKKumarASinghGKFeature extraction using normalized difference vegetation index (bhan): a case study of Jabalpur CityProcedia Technol2012661262110.1117/12.2241768 – reference: GuoGWuZXiaoRChenYLiuXZhangXImpacts of urban biophysical composition on land surface temperature in urban heat island clustersLandsc Urban Plan201513511010.1016/j.landurbplan.2014.11.007 – reference: YueWXuJTanWXuLThe relationship between land surface temperature and NDVI with remot sensing: application to Shanghai Landsat 7 ETM + dataInt J Remote Sens2007153205322610.1080/01431160500306906 – reference: FaridatulMWuBAutomatic classification of major urban land covers based on novel spectral indicesInt J Geo Inf2018745347810.3390/ijgi7120453 – reference: PhiriDMorgenrothJDevelopments in landsat land cover classification methods: a reviewRemote Sens2017996799210.3390/rs9090967 – reference: GIS Geography (2019) GIS Geography. Retrieved 9 22, 2019, from https://gisgeography.com/dem-dsm-dtm-differences/ – reference: YuBLiuHWuJHuYLiZAutomated derivation of urban building density information using airborne LiDAR data and object-based methodLandsc Urban Plan20109821021910.1016/j.landurbplan.2010.08.004 – reference: Masek J (n.d.) Landsat 8 Overview. NASA Landsat Science. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview. Accessed 16 June 2021 – reference: GuilingWWeimeiJMingWAn assessment of urban heat island effect using remote sensing dataMar Sci Bull200821425 – reference: Land Tirol (2019) Open Data Österreich. Retrieved August 8, 2019, from https://www.data.gv.at/ – reference: CRCWSC (2019) Scenario tool. Retrieved September 22, 2019, from https://www.wsc-scenario.org.au/ – reference: Tilahun A, Teferie B (2015) Accuracy assessment of land use land cover classification using Google Earth. Am J Environ Protect 4:193–198. https://doi.org/10.11648/j.ajep.20150404.14 – reference: Yeh AG (1999) Urban Planning and GIS. Geographical Information Systems – reference: DefriesRSTownshendJRNDVI-derived land cover classifications at a global scaleInt J Remote Sens20071735673586 – reference: IsmailMHJusoffKSatellite data classification accuracy assessment based from reference datasetInt J Geol Environ Eng200832329 – reference: BoyleCMuddGMihelcicJRAnastasPCollinsTCulliganPRiedyCDelivering sustainable infrastructure that supports the urban built environmentEnviron Sci Technol2010444836484010.1021/es903749d – reference: StrahlerABoschettiLGilesMFFriedlMAHansenMCHeroldMWoodcockCEGlobal land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps2006LuxembourgOffice for Official Publications of the European Communities – volume: 52 start-page: 511 year: 2008 ident: 2790_CR12 publication-title: Int J Biometeorol doi: 10.1007/s00484-008-0147-6 – volume-title: Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps year: 2006 ident: 2790_CR27 – volume: 68 start-page: 1857 year: 2013 ident: 2790_CR2 publication-title: Water Sci Technol doi: 10.2166/wst.2013.437 – ident: 2790_CR18 doi: 10.1007/s11270-014-2055-1 – volume: 98 start-page: 210 year: 2010 ident: 2790_CR31 publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2010.08.004 – volume: 6 start-page: 612 year: 2012 ident: 2790_CR4 publication-title: Procedia Technol doi: 10.1117/12.2241768 – volume: 17 start-page: 3567 year: 2007 ident: 2790_CR7 publication-title: Int J Remote Sens – ident: 2790_CR19 – volume: 57 start-page: 1199 year: 2015 ident: 2790_CR24 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.07.415 – volume: 61 start-page: 2295 year: 2016 ident: 2790_CR23 publication-title: Hydrol Sci J doi: 10.1080/02626667.2015.1128084 – volume-title: ArcGIS desktop: release 10 year: 2019 ident: 2790_CR9 – volume: 130 start-page: 134 year: 2014 ident: 2790_CR20 publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2014.07.005 – volume: 2 start-page: 151 year: 2016 ident: 2790_CR16 publication-title: Remote Sens doi: 10.3390/rs8020151 – ident: 2790_CR22 – volume: 6 start-page: 1 year: 2012 ident: 2790_CR21 publication-title: J Appl Remote Sens doi: 10.1117/1.JRS.6.063567 – ident: 2790_CR1 – ident: 2790_CR29 doi: 10.11648/j.ajep.20150404.14 – ident: 2790_CR26 – volume: 7 start-page: 453 year: 2018 ident: 2790_CR10 publication-title: Int J Geo Inf doi: 10.3390/ijgi7120453 – volume: 6 start-page: 272 issue: 3 year: 2013 ident: 2790_CR15 publication-title: Int J Adv Softw – ident: 2790_CR30 – volume: 9 start-page: 967 year: 2017 ident: 2790_CR25 publication-title: Remote Sens doi: 10.3390/rs9090967 – volume: 2 start-page: 14 year: 2008 ident: 2790_CR13 publication-title: Mar Sci Bull – ident: 2790_CR11 – volume: 15 start-page: 3205 year: 2007 ident: 2790_CR32 publication-title: Int J Remote Sens doi: 10.1080/01431160500306906 – volume: 135 start-page: 1 year: 2015 ident: 2790_CR14 publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2014.11.007 – ident: 2790_CR28 doi: 10.1007/978-981-10-4424-3_3 – volume: 1 start-page: 97 year: 2009 ident: 2790_CR8 publication-title: Appl Geomatics doi: 10.1007/s12518-009-0013-1 – ident: 2790_CR6 – volume: 3 start-page: 23 year: 2008 ident: 2790_CR17 publication-title: Int J Geol Environ Eng – volume: 44 start-page: 4836 year: 2010 ident: 2790_CR5 publication-title: Environ Sci Technol doi: 10.1021/es903749d – volume: 143 start-page: 43 year: 2015 ident: 2790_CR3 publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2015.05.012 |
| SSID | ssj0010090 |
| Score | 2.3636234 |
| Snippet | In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1339 |
| SubjectTerms | Accuracy Atmospheric Sciences Austria Case studies Civil Engineering Classification climate computer software concrete Earth and Environmental Science Earth Sciences Environment Geographical information systems geometry Geotechnical Engineering & Applied Earth Sciences Grasses Hydrogeology Hydrology/Water Resources Imagery infrastructure irrigation Land cover Management analysis Methodology Population growth radiometry Urban areas Urban planning Urbanization water Water engineering Water management Water supply systems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V5AIHRAuIlLRyJW7UYh_ezfpQobRqmqI2qggRua38WqlStSl5SDnyE_ob-SXMOLtZQCLn9drSjO35ZjzzDcAHo21EFZ7cCGG5cEJzFaNCtHEIl7Mi1r5N5-0oHU7El2ky3YNRXQtDaZX1negvajszFCP_RKa6JyXa-8-PPzh1jaLX1bqFhqpaK9gzTzH2DNoRMWO1oH1-Obr7un1XQEThoy4SnSaBxrQqo9kU04VRKjmlLKCrJgO-_ttUNfjznydTb4kGr-BlBSFZf6Pzfdhz5QG8-INY8DXkfXZ1PeZkoiy7UaVlF5SqyXwLTEoO8vpg_YpQnI1X90uqoWIIYdkA5_n182mB2nNsMteqZN8Rkc5ZkyrzBiaDy28XQ161UuAGEdaSq1QHprBxYI1B-UubJDqJijCwRNguKQ6kVNRzRdgLHXoQcWxikSmV4W8UqorfQqucle4dsCxRQvdUYPBmojJcbVOlAuKYCYtYSN2BsJZabiqecWp38ZA3DMkk6RwlnXtJ5-sOfNz-87hh2dg5ulsrI69O3CJv9kcHTraf8azQA4gq3WyFYyQl5aHDlXTgtFZiM8X_VzzcveJ7eB75fUOpaV1oLecrd4RYZamPqw34G_-95I4 priority: 102 providerName: ProQuest |
| Title | A GIS-based Land Cover Classification Approach Suitable for Fine‐scale Urban Water Management |
| URI | https://link.springer.com/article/10.1007/s11269-021-02790-x https://www.proquest.com/docview/2505799456 https://www.proquest.com/docview/2985544285 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AKHAgVEoESL1FvZyo914j26UZJS2qpqsSgna1-WEMitEkdCnPgJ_EZ-SWc2dlwqQOrJkr27tnf28c3OzDcAu0bbiCI8uRHCcuGE5ipGgWjjEC6nZax9ms6T0-FhLo4uk8smKGzReru3Jkm_UnfBbmE0lJxcClCVkgFH5Ljp-bZ6sJnNPn-YrK0HiBv82YpE1UjgltkEy_y9lT83pA5l3jGM-v1m-hjy9ktXbiZf95e13jc_7pA43vdXnsBWA0BZthoxT2HDVdvw6BYt4TMoMjZ7f8Fpg7PsWFWWjcnRk_kEmuRa5KXJsoaOnF0sv9QUgcUQALMptvP7568Fyt6xfK5VxT4hnp2zztHmOeTTycfxIW8SMXCD-KzmaqgDU9o4sMag9KRNEp1EZRhYonuXdIqkVDRyZTgKHeofcWxikSqVYjU66IpfQK-6qtxLYGmihB6pwOC6RkG82g6VCoihJixjIXUfwlYahWlYyilZxrei41emziuw8wrfecX3Puyt61yvODr-W3qnFXLRzNdFQUBwJCWiyT68XT_GmUbmE1W5qyWWkeTSh-pa0od3rVy7Jv79xlf3K_4aHkZ-aJCj2w706vnSvUHkU-sBPEins0Ez3PF6MDk9O8e7eZTdAD7r_BI |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEE-RUsBIcAKLfXiT-FChUBoSmkaINqI349dKSNWm5CHKjZ_AL-LH8EuYcbxZQKK3nteP1czY843nBfDUGpdRhie3QjguvDBc58gQYz3C5W6Zm9Cm83DcHkzEu5PiZAN-1rkwFFZZ34nhonZTS2_kL0lVd6REff_q7AunrlHkXa1baOjYWsHthhJjMbHjwH_7iibcfHf4Bvn9LMv6-8d7Ax67DHCL4GPBddsktnR54qzFX5OuKEyRlWniqJa5pCcSrbOOL9NO6hFc57nNRVfrLk6jV5wc170CWyIXEo2_rdf74_cf1n4MRDDhlUeikSZQece0nVXyXpq1JacQCTQNZcLP_1aNDd79x0UbNF__JtyIkJX1VjJ2CzZ8dRuu_1HI8A6oHns7POKkEh0b6cqxPQoNZaHlJgUjBf6zXixgzo6WnxeUs8UQMrM-rvPr-485Sotnk5nRFfuICHjGmtCcuzC5FKLeg81qWvn7wLqFFqajE4s3IaX9GtfWOqGaNmmJNDctSGuqKRvrmlN7jVPVVGQmSiuktAqUVucteL6ec7aq6nHh6J2aGSqe8Llq5LEFT9af8WySw0VXfrrEMZKCANHAK1rwomZis8T_d9y-eMfHcHVwfDhSo-H44AFcy4IMUVjcDmwuZkv_EHHSwjyKwsjg02XL_29oMCEV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJEYPBnzEVYQ20ZN2mEfPzvbBmA0wsILEBDdya_s1iYmZxX1EuPET_D38HH4JVb0zO2giN87Tj0lVdddXXS-AN9a4hDI8uRXCceGF4TpFhhjrES73ytSENp2fj7r7Q_HpJDtZgssmF4bCKps7MVzUbmTpjXyLVHUuJer7rbIOi_iyU3w8_cWpgxR5Wpt2GnMROfDnv9F8m3wY7CCv3yZJsft1e5_XHQa4ReAx5bprIlu6NHLW4m9Jl2UmS8o4clTHXNLziNZJ7ss4jz0C6zS1qehp3cNp9IKT4rr3YCWnKu6UpV7sLTwYiF3C-45E80yg2q4TduZpe3HSlZyCI9AolBE_-1sptkj3H-ds0HnFKjyqwSrrz6VrDZZ89Rge3ihh-ARUn-0NjjkpQ8cOdeXYNgWFstBsk8KQAudZvy5dzo5nP6aUrcUQLLMC17m6-DNBOfFsODa6Yt8Q-45ZG5TzFIZ3QtJnsFyNKv8cWC_TwuQ6sngHUsKvcV2tI6pmE5epkKYDcUM1ZeuK5tRY46dqazETpRVSWgVKq7MOvFvMOZ3X87h19HrDDFWf7YlqJbEDrxef8VSSq0VXfjTDMZLC_9C0yzrwvmFiu8T_d3xx-46bcB-lXh0Ojg5ewoMkiBDFw63D8nQ8868QIE3NRpBEBt_vWvSvAW6bHq8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GIS-based+Land+Cover+Classification+Approach+Suitable+for+Fine%E2%80%90scale+Urban+Water+Management&rft.jtitle=Water+resources+management&rft.au=Hiscock%2C+Oscar+H.&rft.au=Back%2C+Yannick&rft.au=Kleidorfer%2C+Manfred&rft.au=Urich%2C+Christian&rft.date=2021-03-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=4&rft.spage=1339&rft.epage=1352&rft_id=info:doi/10.1007%2Fs11269-021-02790-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_021_02790_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |