A GIS-based Land Cover Classification Approach Suitable for Fine‐scale Urban Water Management

In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and ea...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 35; no. 4; pp. 1339 - 1352
Main Authors Hiscock, Oscar H., Back, Yannick, Kleidorfer, Manfred, Urich, Christian
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-021-02790-x

Cover

Abstract In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and easily obtainable spatial databases describing land cover types are crucial. Accordingly, a methodology categorizing land covers that supplements these tools is proposed. Utilizing GIS imagery of high spatial accuracy that is easily obtainable from flyover techniques, radiometric and geometric data is generated to create a multi-functional classification of urban land cover, designed to be applicable to various urban planning tools serving different purposes, e.g. urban water management. The methodology develops 13 individual land cover categories based on the complete capabilities of the NDVI and nDSM imagery, which is then adapted to suit planning tool requirements. Validation via a case study application at Innsbruck (Austria), an overall classification accuracy of 89.3 % was achieved. The accuracy of the process was limited in differentiating certain categories (e.g. Dry Grass and Concrete, Trees and Irrigated Grass, etc.), which could yield limitations subject to intended model applications. Despite this, the classification results yielded high accuracy, demonstrating the methodology can be utilised by various software to improve urban water management analysis.
AbstractList In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and easily obtainable spatial databases describing land cover types are crucial. Accordingly, a methodology categorizing land covers that supplements these tools is proposed. Utilizing GIS imagery of high spatial accuracy that is easily obtainable from flyover techniques, radiometric and geometric data is generated to create a multi-functional classification of urban land cover, designed to be applicable to various urban planning tools serving different purposes, e.g. urban water management. The methodology develops 13 individual land cover categories based on the complete capabilities of the NDVI and nDSM imagery, which is then adapted to suit planning tool requirements. Validation via a case study application at Innsbruck (Austria), an overall classification accuracy of 89.3 % was achieved. The accuracy of the process was limited in differentiating certain categories (e.g. Dry Grass and Concrete, Trees and Irrigated Grass, etc.), which could yield limitations subject to intended model applications. Despite this, the classification results yielded high accuracy, demonstrating the methodology can be utilised by various software to improve urban water management analysis.
In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural planning are becoming more common. In order to support the design of increasingly complex urban water infrastructure systems; accurate and easily obtainable spatial databases describing land cover types are crucial. Accordingly, a methodology categorizing land covers that supplements these tools is proposed. Utilizing GIS imagery of high spatial accuracy that is easily obtainable from flyover techniques, radiometric and geometric data is generated to create a multi-functional classification of urban land cover, designed to be applicable to various urban planning tools serving different purposes, e.g. urban water management. The methodology develops 13 individual land cover categories based on the complete capabilities of the NDVI and nDSM imagery, which is then adapted to suit planning tool requirements. Validation via a case study application at Innsbruck (Austria), an overall classification accuracy of 89.3 % was achieved. The accuracy of the process was limited in differentiating certain categories (e.g. Dry Grass and Concrete, Trees and Irrigated Grass, etc.), which could yield limitations subject to intended model applications. Despite this, the classification results yielded high accuracy, demonstrating the methodology can be utilised by various software to improve urban water management analysis.
Author Hiscock, Oscar H.
Back, Yannick
Kleidorfer, Manfred
Urich, Christian
Author_xml – sequence: 1
  givenname: Oscar H.
  orcidid: 0000-0003-0737-7516
  surname: Hiscock
  fullname: Hiscock, Oscar H.
  email: oscarhiscock@gmail.com
  organization: Civil Engineering Department, Monash University
– sequence: 2
  givenname: Yannick
  surname: Back
  fullname: Back, Yannick
  organization: Institute of Infrastructure Engineering, University Innsbruck
– sequence: 3
  givenname: Manfred
  surname: Kleidorfer
  fullname: Kleidorfer, Manfred
  organization: Institute of Infrastructure Engineering, University Innsbruck
– sequence: 4
  givenname: Christian
  surname: Urich
  fullname: Urich, Christian
  organization: Civil Engineering Department, Monash University, CRC for Water Sensitive Cities
BookMark eNp9kMFKAzEQhoMo2FZfwFPAi5fVSbLZ3RxLsVWoeKjFY5jNZnVlm63JVurNR_AZfRKjFQQPHsJA-L_hn29I9l3nLCEnDM4ZQH4RGOOZSoCz-HIFyXaPDJjMRcIyCftkAIpDkuYpOyTDEJ4AIqZgQPSYzq4XSYnBVnSOrqKT7sV6OmkxhKZuDPZN5-h4vfYdmke62DQ9lq2ldefptHH24-09GIwfS1-io_fYR_oGHT7YlXX9ETmosQ32-GeOyHJ6eTe5Sua3s-vJeJ4YIXmfYFaCqSsBlTG1KFUlZSl5zaBKeSZUyjlH5LmtWc6sLKQQRqQFYhExYFyJETnb7Y09nzc29HrVBGPbFp3tNkFzVUiZpjyiI3L6J_rUbbyL7TSXIHOlUpnFVLFLGd-F4G2tTbz8S0bvsWk1A_1lXu_M62hef5vX24jyP-jaNyv0r_9DYgeFGHYP1v-2-of6BMz7mEw
CitedBy_id crossref_primary_10_1155_2022_1693706
crossref_primary_10_3390_f15030463
crossref_primary_10_3390_drones6030071
crossref_primary_10_1071_WR22007
crossref_primary_10_3390_f15091504
crossref_primary_10_1007_s12145_025_01841_w
crossref_primary_10_1007_s00521_021_06335_6
crossref_primary_10_1016_j_scitotenv_2022_159729
crossref_primary_10_1155_2022_6700254
Cites_doi 10.1007/s00484-008-0147-6
10.2166/wst.2013.437
10.1007/s11270-014-2055-1
10.1016/j.landurbplan.2010.08.004
10.1117/12.2241768
10.1016/j.procs.2015.07.415
10.1080/02626667.2015.1128084
10.1016/j.landurbplan.2014.07.005
10.3390/rs8020151
10.1117/1.JRS.6.063567
10.11648/j.ajep.20150404.14
10.3390/ijgi7120453
10.3390/rs9090967
10.1080/01431160500306906
10.1016/j.landurbplan.2014.11.007
10.1007/978-981-10-4424-3_3
10.1007/s12518-009-0013-1
10.1021/es903749d
10.1016/j.landurbplan.2015.05.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-021-02790-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database (ProQuest)
Biological Science Database (ProQuest)
Engineering Database (ProQuest)
Environmental Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 1352
ExternalDocumentID 10_1007_s11269_021_02790_x
GeographicLocations Austria
GeographicLocations_xml – name: Austria
GrantInformation_xml – fundername: Klima- und Energiefonds
  grantid: KR16AC0K13143
  funderid: http://dx.doi.org/10.13039/100008559
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-a6b0cfd30dccf3b9d55b52f10d426394222aa27ef171e58533c348aa8b0c01293
IEDL.DBID AGYKE
ISSN 0920-4741
IngestDate Sun Aug 24 03:58:48 EDT 2025
Fri Jul 25 19:01:52 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Wed Oct 01 01:44:59 EDT 2025
Fri Feb 21 02:49:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords GIS
Land cover classification
Multi‐functional
Urban water Management
NDVI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a6b0cfd30dccf3b9d55b52f10d426394222aa27ef171e58533c348aa8b0c01293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0737-7516
PQID 2505799456
PQPubID 54174
PageCount 14
ParticipantIDs proquest_miscellaneous_2985544285
proquest_journals_2505799456
crossref_citationtrail_10_1007_s11269_021_02790_x
crossref_primary_10_1007_s11269_021_02790_x
springer_journals_10_1007_s11269_021_02790_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Land Tirol (2019) Open Data Österreich. Retrieved August 8, 2019, from https://www.data.gv.at
StrahlerABoschettiLGilesMFFriedlMAHansenMCHeroldMWoodcockCEGlobal land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps2006LuxembourgOffice for Official Publications of the European Communities
GuilingWWeimeiJMingWAn assessment of urban heat island effect using remote sensing dataMar Sci Bull200821425
Masek J (n.d.) Landsat 8 Overview. NASA Landsat Science. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview. Accessed 16 June 2021
GIS Geography (2019) GIS Geography. Retrieved 9 22, 2019, from https://gisgeography.com/dem-dsm-dtm-differences
BachPMStaalesenSMcCarthyDTDeleticARevisiting land use classification and spatial aggregation for modelling integrated urban water systemsLandsc Urban Plan2015143435510.1016/j.landurbplan.2015.05.012
ESRIArcGIS desktop: release 102019RedlandsEnvironmental Systems Research Institute
Austria S (2019) Statistics Austria. Retrieved 09 26, 2019, from https://www.statistik.at/web_en/statistics/PeopleSociety/population/index.html
Jayasooriya VM, Ng AW (2014) Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water Air Soil Pollut 255. https://doi.org/10.1007/s11270-014-2055-1
ElshehabyATahaGA new expert system module for building detection in urban areas using spectral information and LIDAR dataAppl Geomatics200919711010.1007/s12518-009-0013-1
GuoGWuZXiaoRChenYLiuXZhangXImpacts of urban biophysical composition on land surface temperature in urban heat island clustersLandsc Urban Plan201513511010.1016/j.landurbplan.2014.11.007
BhandariAKKumarASinghGKFeature extraction using normalized difference vegetation index (bhan): a case study of Jabalpur CityProcedia Technol2012661262110.1117/12.2241768
IsmailMHJusoffKSatellite data classification accuracy assessment based from reference datasetInt J Geol Environ Eng200832329
Rossman L (2015) Storm water management model user’s manual version 5.1. United States Environmental Protection Agency (EPA), Washington, D.C.
YuBLiuHWuJHuYLiZAutomated derivation of urban building density information using airborne LiDAR data and object-based methodLandsc Urban Plan20109821021910.1016/j.landurbplan.2010.08.004
LuZImJRheeJHodgsonMBuilding type classification using spatial and landscape attributes derived from LiDAR remote sensing dataLandsc Urban Plan201413013414810.1016/j.landurbplan.2014.07.005
BoyleCMuddGMihelcicJRAnastasPCollinsTCulliganPRiedyCDelivering sustainable infrastructure that supports the urban built environmentEnviron Sci Technol2010444836484010.1021/es903749d
CRCWSC (2019) Scenario tool. Retrieved September 22, 2019, from https://www.wsc-scenario.org.au
Gómez-MendozaLGaliciaLCuevas-FernándezMLMagañaVGómezGPalacio-PrietoJLAssessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationshipsInt J Biometeorol20085251152010.1007/s00484-008-0147-6
MacFadenSWO’Neil-DunneJPMRoyarARLuJWTRundleAGHigh-resolution tree canopy mapping for New York City using LIDAR and object-based image analysisJ Appl Remote Sens2012612310.1117/1.JRS.6.063567
Tilahun A, Teferie B (2015) Accuracy assessment of land use land cover classification using Google Earth. Am J Environ Protect 4:193–198. https://doi.org/10.11648/j.ajep.20150404.14
Sun B, Chen X, Zhou Q (2017) Analying the uncertanties of ground validation for remote sensing land cover mapping in the era of big geographic data. Adv Geogr Inf Sci 31–38. https://doi.org/10.1007/978-981-10-4424-3_3
PhiriDMorgenrothJDevelopments in landsat land cover classification methods: a reviewRemote Sens2017996799210.3390/rs9090967
BachPMMcCarthyDTUrichCSitzenfreiRKleidorferMRauchRDeleticRA planning algorithm for quantifying decentralised water management opportunities in urban environmentsWater Sci Technol2013681857186510.2166/wst.2013.437
MeeraGGParthibanSNagarajTChristyANDVI: Vegetation change detection using remote sensing and GIS - A case study of Vellore DistrictProcedia Comput Sci2015571199121010.1016/j.procs.2015.07.415
FaridatulMWuBAutomatic classification of major urban land covers based on novel spectral indicesInt J Geo Inf2018745347810.3390/ijgi7120453
HöhleJHöhleMGeneration and assessment of urban land cover maps using high-resolution multispectral aerial imagesInt J Adv Softw201363272282
HuTYangJXuecaoLGongPMapping urban land use by using landsat images and open social dataRemote Sens2016215110.3390/rs8020151
YueWXuJTanWXuLThe relationship between land surface temperature and NDVI with remot sensing: application to Shanghai Landsat 7 ETM + dataInt J Remote Sens2007153205322610.1080/01431160500306906
DefriesRSTownshendJRNDVI-derived land cover classifications at a global scaleInt J Remote Sens20071735673586
McGraneSImpacts of urbanisation on hydrological and water quality dynamics, and urban water management: a reviewHydrol Sci J2016612295231110.1080/02626667.2015.1128084
Yeh AG (1999) Urban Planning and GIS. Geographical Information Systems
2790_CR6
Z Lu (2790_CR20) 2014; 130
GG Meera (2790_CR24) 2015; 57
J Höhle (2790_CR15) 2013; 6
RS Defries (2790_CR7) 2007; 17
M Faridatul (2790_CR10) 2018; 7
PM Bach (2790_CR3) 2015; 143
S McGrane (2790_CR23) 2016; 61
2790_CR30
L Gómez-Mendoza (2790_CR12) 2008; 52
G Guo (2790_CR14) 2015; 135
C Boyle (2790_CR5) 2010; 44
2790_CR11
MH Ismail (2790_CR17) 2008; 3
AK Bhandari (2790_CR4) 2012; 6
2790_CR18
2790_CR19
ESRI (2790_CR9) 2019
B Yu (2790_CR31) 2010; 98
T Hu (2790_CR16) 2016; 2
A Elshehaby (2790_CR8) 2009; 1
PM Bach (2790_CR2) 2013; 68
A Strahler (2790_CR27) 2006
SW MacFaden (2790_CR21) 2012; 6
W Guiling (2790_CR13) 2008; 2
D Phiri (2790_CR25) 2017; 9
2790_CR26
2790_CR22
2790_CR1
2790_CR28
2790_CR29
W Yue (2790_CR32) 2007; 15
References_xml – reference: ElshehabyATahaGA new expert system module for building detection in urban areas using spectral information and LIDAR dataAppl Geomatics200919711010.1007/s12518-009-0013-1
– reference: MacFadenSWO’Neil-DunneJPMRoyarARLuJWTRundleAGHigh-resolution tree canopy mapping for New York City using LIDAR and object-based image analysisJ Appl Remote Sens2012612310.1117/1.JRS.6.063567
– reference: LuZImJRheeJHodgsonMBuilding type classification using spatial and landscape attributes derived from LiDAR remote sensing dataLandsc Urban Plan201413013414810.1016/j.landurbplan.2014.07.005
– reference: Austria S (2019) Statistics Austria. Retrieved 09 26, 2019, from https://www.statistik.at/web_en/statistics/PeopleSociety/population/index.html
– reference: BachPMMcCarthyDTUrichCSitzenfreiRKleidorferMRauchRDeleticRA planning algorithm for quantifying decentralised water management opportunities in urban environmentsWater Sci Technol2013681857186510.2166/wst.2013.437
– reference: BachPMStaalesenSMcCarthyDTDeleticARevisiting land use classification and spatial aggregation for modelling integrated urban water systemsLandsc Urban Plan2015143435510.1016/j.landurbplan.2015.05.012
– reference: Rossman L (2015) Storm water management model user’s manual version 5.1. United States Environmental Protection Agency (EPA), Washington, D.C.
– reference: Sun B, Chen X, Zhou Q (2017) Analying the uncertanties of ground validation for remote sensing land cover mapping in the era of big geographic data. Adv Geogr Inf Sci 31–38. https://doi.org/10.1007/978-981-10-4424-3_3
– reference: Gómez-MendozaLGaliciaLCuevas-FernándezMLMagañaVGómezGPalacio-PrietoJLAssessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationshipsInt J Biometeorol20085251152010.1007/s00484-008-0147-6
– reference: McGraneSImpacts of urbanisation on hydrological and water quality dynamics, and urban water management: a reviewHydrol Sci J2016612295231110.1080/02626667.2015.1128084
– reference: MeeraGGParthibanSNagarajTChristyANDVI: Vegetation change detection using remote sensing and GIS - A case study of Vellore DistrictProcedia Comput Sci2015571199121010.1016/j.procs.2015.07.415
– reference: HuTYangJXuecaoLGongPMapping urban land use by using landsat images and open social dataRemote Sens2016215110.3390/rs8020151
– reference: ESRIArcGIS desktop: release 102019RedlandsEnvironmental Systems Research Institute
– reference: HöhleJHöhleMGeneration and assessment of urban land cover maps using high-resolution multispectral aerial imagesInt J Adv Softw201363272282
– reference: Jayasooriya VM, Ng AW (2014) Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water Air Soil Pollut 255. https://doi.org/10.1007/s11270-014-2055-1
– reference: BhandariAKKumarASinghGKFeature extraction using normalized difference vegetation index (bhan): a case study of Jabalpur CityProcedia Technol2012661262110.1117/12.2241768
– reference: GuoGWuZXiaoRChenYLiuXZhangXImpacts of urban biophysical composition on land surface temperature in urban heat island clustersLandsc Urban Plan201513511010.1016/j.landurbplan.2014.11.007
– reference: YueWXuJTanWXuLThe relationship between land surface temperature and NDVI with remot sensing: application to Shanghai Landsat 7 ETM + dataInt J Remote Sens2007153205322610.1080/01431160500306906
– reference: FaridatulMWuBAutomatic classification of major urban land covers based on novel spectral indicesInt J Geo Inf2018745347810.3390/ijgi7120453
– reference: PhiriDMorgenrothJDevelopments in landsat land cover classification methods: a reviewRemote Sens2017996799210.3390/rs9090967
– reference: GIS Geography (2019) GIS Geography. Retrieved 9 22, 2019, from https://gisgeography.com/dem-dsm-dtm-differences/
– reference: YuBLiuHWuJHuYLiZAutomated derivation of urban building density information using airborne LiDAR data and object-based methodLandsc Urban Plan20109821021910.1016/j.landurbplan.2010.08.004
– reference: Masek J (n.d.) Landsat 8 Overview. NASA Landsat Science. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview. Accessed 16 June 2021
– reference: GuilingWWeimeiJMingWAn assessment of urban heat island effect using remote sensing dataMar Sci Bull200821425
– reference: Land Tirol (2019) Open Data Österreich. Retrieved August 8, 2019, from https://www.data.gv.at/
– reference: CRCWSC (2019) Scenario tool. Retrieved September 22, 2019, from https://www.wsc-scenario.org.au/
– reference: Tilahun A, Teferie B (2015) Accuracy assessment of land use land cover classification using Google Earth. Am J Environ Protect 4:193–198. https://doi.org/10.11648/j.ajep.20150404.14
– reference: Yeh AG (1999) Urban Planning and GIS. Geographical Information Systems
– reference: DefriesRSTownshendJRNDVI-derived land cover classifications at a global scaleInt J Remote Sens20071735673586
– reference: IsmailMHJusoffKSatellite data classification accuracy assessment based from reference datasetInt J Geol Environ Eng200832329
– reference: BoyleCMuddGMihelcicJRAnastasPCollinsTCulliganPRiedyCDelivering sustainable infrastructure that supports the urban built environmentEnviron Sci Technol2010444836484010.1021/es903749d
– reference: StrahlerABoschettiLGilesMFFriedlMAHansenMCHeroldMWoodcockCEGlobal land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps2006LuxembourgOffice for Official Publications of the European Communities
– volume: 52
  start-page: 511
  year: 2008
  ident: 2790_CR12
  publication-title: Int J Biometeorol
  doi: 10.1007/s00484-008-0147-6
– volume-title: Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps
  year: 2006
  ident: 2790_CR27
– volume: 68
  start-page: 1857
  year: 2013
  ident: 2790_CR2
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2013.437
– ident: 2790_CR18
  doi: 10.1007/s11270-014-2055-1
– volume: 98
  start-page: 210
  year: 2010
  ident: 2790_CR31
  publication-title: Landsc Urban Plan
  doi: 10.1016/j.landurbplan.2010.08.004
– volume: 6
  start-page: 612
  year: 2012
  ident: 2790_CR4
  publication-title: Procedia Technol
  doi: 10.1117/12.2241768
– volume: 17
  start-page: 3567
  year: 2007
  ident: 2790_CR7
  publication-title: Int J Remote Sens
– ident: 2790_CR19
– volume: 57
  start-page: 1199
  year: 2015
  ident: 2790_CR24
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.07.415
– volume: 61
  start-page: 2295
  year: 2016
  ident: 2790_CR23
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2015.1128084
– volume-title: ArcGIS desktop: release 10
  year: 2019
  ident: 2790_CR9
– volume: 130
  start-page: 134
  year: 2014
  ident: 2790_CR20
  publication-title: Landsc Urban Plan
  doi: 10.1016/j.landurbplan.2014.07.005
– volume: 2
  start-page: 151
  year: 2016
  ident: 2790_CR16
  publication-title: Remote Sens
  doi: 10.3390/rs8020151
– ident: 2790_CR22
– volume: 6
  start-page: 1
  year: 2012
  ident: 2790_CR21
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.JRS.6.063567
– ident: 2790_CR1
– ident: 2790_CR29
  doi: 10.11648/j.ajep.20150404.14
– ident: 2790_CR26
– volume: 7
  start-page: 453
  year: 2018
  ident: 2790_CR10
  publication-title: Int J Geo Inf
  doi: 10.3390/ijgi7120453
– volume: 6
  start-page: 272
  issue: 3
  year: 2013
  ident: 2790_CR15
  publication-title: Int J Adv Softw
– ident: 2790_CR30
– volume: 9
  start-page: 967
  year: 2017
  ident: 2790_CR25
  publication-title: Remote Sens
  doi: 10.3390/rs9090967
– volume: 2
  start-page: 14
  year: 2008
  ident: 2790_CR13
  publication-title: Mar Sci Bull
– ident: 2790_CR11
– volume: 15
  start-page: 3205
  year: 2007
  ident: 2790_CR32
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160500306906
– volume: 135
  start-page: 1
  year: 2015
  ident: 2790_CR14
  publication-title: Landsc Urban Plan
  doi: 10.1016/j.landurbplan.2014.11.007
– ident: 2790_CR28
  doi: 10.1007/978-981-10-4424-3_3
– volume: 1
  start-page: 97
  year: 2009
  ident: 2790_CR8
  publication-title: Appl Geomatics
  doi: 10.1007/s12518-009-0013-1
– ident: 2790_CR6
– volume: 3
  start-page: 23
  year: 2008
  ident: 2790_CR17
  publication-title: Int J Geol Environ Eng
– volume: 44
  start-page: 4836
  year: 2010
  ident: 2790_CR5
  publication-title: Environ Sci Technol
  doi: 10.1021/es903749d
– volume: 143
  start-page: 43
  year: 2015
  ident: 2790_CR3
  publication-title: Landsc Urban Plan
  doi: 10.1016/j.landurbplan.2015.05.012
SSID ssj0010090
Score 2.3636234
Snippet In the context of climate stress, urbanisation and population growth, design and planning tools that assist in decentralised and environmental infrastructural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1339
SubjectTerms Accuracy
Atmospheric Sciences
Austria
Case studies
Civil Engineering
Classification
climate
computer software
concrete
Earth and Environmental Science
Earth Sciences
Environment
Geographical information systems
geometry
Geotechnical Engineering & Applied Earth Sciences
Grasses
Hydrogeology
Hydrology/Water Resources
Imagery
infrastructure
irrigation
Land cover
Management analysis
Methodology
Population growth
radiometry
Urban areas
Urban planning
Urbanization
water
Water engineering
Water management
Water supply systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V5AIHRAuIlLRyJW7UYh_ezfpQobRqmqI2qggRua38WqlStSl5SDnyE_ob-SXMOLtZQCLn9drSjO35ZjzzDcAHo21EFZ7cCGG5cEJzFaNCtHEIl7Mi1r5N5-0oHU7El2ky3YNRXQtDaZX1negvajszFCP_RKa6JyXa-8-PPzh1jaLX1bqFhqpaK9gzTzH2DNoRMWO1oH1-Obr7un1XQEThoy4SnSaBxrQqo9kU04VRKjmlLKCrJgO-_ttUNfjznydTb4kGr-BlBSFZf6Pzfdhz5QG8-INY8DXkfXZ1PeZkoiy7UaVlF5SqyXwLTEoO8vpg_YpQnI1X90uqoWIIYdkA5_n182mB2nNsMteqZN8Rkc5ZkyrzBiaDy28XQ161UuAGEdaSq1QHprBxYI1B-UubJDqJijCwRNguKQ6kVNRzRdgLHXoQcWxikSmV4W8UqorfQqucle4dsCxRQvdUYPBmojJcbVOlAuKYCYtYSN2BsJZabiqecWp38ZA3DMkk6RwlnXtJ5-sOfNz-87hh2dg5ulsrI69O3CJv9kcHTraf8azQA4gq3WyFYyQl5aHDlXTgtFZiM8X_VzzcveJ7eB75fUOpaV1oLecrd4RYZamPqw34G_-95I4
  priority: 102
  providerName: ProQuest
Title A GIS-based Land Cover Classification Approach Suitable for Fine‐scale Urban Water Management
URI https://link.springer.com/article/10.1007/s11269-021-02790-x
https://www.proquest.com/docview/2505799456
https://www.proquest.com/docview/2985544285
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AKHAgVEoESL1FvZyo914j26UZJS2qpqsSgna1-WEMitEkdCnPgJ_EZ-SWc2dlwqQOrJkr27tnf28c3OzDcAu0bbiCI8uRHCcuGE5ipGgWjjEC6nZax9ms6T0-FhLo4uk8smKGzReru3Jkm_UnfBbmE0lJxcClCVkgFH5Ljp-bZ6sJnNPn-YrK0HiBv82YpE1UjgltkEy_y9lT83pA5l3jGM-v1m-hjy9ktXbiZf95e13jc_7pA43vdXnsBWA0BZthoxT2HDVdvw6BYt4TMoMjZ7f8Fpg7PsWFWWjcnRk_kEmuRa5KXJsoaOnF0sv9QUgcUQALMptvP7568Fyt6xfK5VxT4hnp2zztHmOeTTycfxIW8SMXCD-KzmaqgDU9o4sMag9KRNEp1EZRhYonuXdIqkVDRyZTgKHeofcWxikSqVYjU66IpfQK-6qtxLYGmihB6pwOC6RkG82g6VCoihJixjIXUfwlYahWlYyilZxrei41emziuw8wrfecX3Puyt61yvODr-W3qnFXLRzNdFQUBwJCWiyT68XT_GmUbmE1W5qyWWkeTSh-pa0od3rVy7Jv79xlf3K_4aHkZ-aJCj2w706vnSvUHkU-sBPEins0Ez3PF6MDk9O8e7eZTdAD7r_BI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEE-RUsBIcAKLfXiT-FChUBoSmkaINqI349dKSNWm5CHKjZ_AL-LH8EuYcbxZQKK3nteP1czY843nBfDUGpdRhie3QjguvDBc58gQYz3C5W6Zm9Cm83DcHkzEu5PiZAN-1rkwFFZZ34nhonZTS2_kL0lVd6REff_q7AunrlHkXa1baOjYWsHthhJjMbHjwH_7iibcfHf4Bvn9LMv6-8d7Ax67DHCL4GPBddsktnR54qzFX5OuKEyRlWniqJa5pCcSrbOOL9NO6hFc57nNRVfrLk6jV5wc170CWyIXEo2_rdf74_cf1n4MRDDhlUeikSZQece0nVXyXpq1JacQCTQNZcLP_1aNDd79x0UbNF__JtyIkJX1VjJ2CzZ8dRuu_1HI8A6oHns7POKkEh0b6cqxPQoNZaHlJgUjBf6zXixgzo6WnxeUs8UQMrM-rvPr-485Sotnk5nRFfuICHjGmtCcuzC5FKLeg81qWvn7wLqFFqajE4s3IaX9GtfWOqGaNmmJNDctSGuqKRvrmlN7jVPVVGQmSiuktAqUVucteL6ec7aq6nHh6J2aGSqe8Llq5LEFT9af8WySw0VXfrrEMZKCANHAK1rwomZis8T_d9y-eMfHcHVwfDhSo-H44AFcy4IMUVjcDmwuZkv_EHHSwjyKwsjg02XL_29oMCEV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJEYPBnzEVYQ20ZN2mEfPzvbBmA0wsILEBDdya_s1iYmZxX1EuPET_D38HH4JVb0zO2giN87Tj0lVdddXXS-AN9a4hDI8uRXCceGF4TpFhhjrES73ytSENp2fj7r7Q_HpJDtZgssmF4bCKps7MVzUbmTpjXyLVHUuJer7rbIOi_iyU3w8_cWpgxR5Wpt2GnMROfDnv9F8m3wY7CCv3yZJsft1e5_XHQa4ReAx5bprIlu6NHLW4m9Jl2UmS8o4clTHXNLziNZJ7ss4jz0C6zS1qehp3cNp9IKT4rr3YCWnKu6UpV7sLTwYiF3C-45E80yg2q4TduZpe3HSlZyCI9AolBE_-1sptkj3H-ds0HnFKjyqwSrrz6VrDZZ89Rge3ihh-ARUn-0NjjkpQ8cOdeXYNgWFstBsk8KQAudZvy5dzo5nP6aUrcUQLLMC17m6-DNBOfFsODa6Yt8Q-45ZG5TzFIZ3QtJnsFyNKv8cWC_TwuQ6sngHUsKvcV2tI6pmE5epkKYDcUM1ZeuK5tRY46dqazETpRVSWgVKq7MOvFvMOZ3X87h19HrDDFWf7YlqJbEDrxef8VSSq0VXfjTDMZLC_9C0yzrwvmFiu8T_d3xx-46bcB-lXh0Ojg5ewoMkiBDFw63D8nQ8868QIE3NRpBEBt_vWvSvAW6bHq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GIS-based+Land+Cover+Classification+Approach+Suitable+for+Fine%E2%80%90scale+Urban+Water+Management&rft.jtitle=Water+resources+management&rft.au=Hiscock%2C+Oscar+H.&rft.au=Back%2C+Yannick&rft.au=Kleidorfer%2C+Manfred&rft.au=Urich%2C+Christian&rft.date=2021-03-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=4&rft.spage=1339&rft.epage=1352&rft_id=info:doi/10.1007%2Fs11269-021-02790-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_021_02790_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon