Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method
A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. Howev...
Saved in:
| Published in | Water resources management Vol. 38; no. 11; pp. 4137 - 4159 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.09.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-024-03856-2 |
Cover
| Abstract | A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R
2
), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set. |
|---|---|
| AbstractList | A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R
2
), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set. A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R2), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set. A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R²), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set. |
| Author | Nasiri, Kamran Hosseini, Seyed Hossein Moeini, Ramtin |
| Author_xml | – sequence: 1 givenname: Ramtin surname: Moeini fullname: Moeini, Ramtin email: r.moeini@eng.ui.ac.ir organization: Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan – sequence: 2 givenname: Kamran surname: Nasiri fullname: Nasiri, Kamran organization: Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan – sequence: 3 givenname: Seyed Hossein surname: Hosseini fullname: Hosseini, Seyed Hossein organization: Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan |
| BookMark | eNp9kElLQzEUhYMoWIc_4OqBGzfRjG9YFoda0CoOuAxp3n018ppokir996ZWEVy4uhC-7-RwdtCm8w4QOqDkmBJSnURKWdlgwgQmvJYlZhtoQGXFMS0l2UQD0jCCRSXoNtqJ8YWQrDVkgLrbAK01ybpZkZ6heNIJQjF2Xe8_8kn-6_VMz4s7iBDevQ3FY_yhL5fTYNsVB31vZ-BSMbrFw8kEF5P70RCPx8U1pGff7qGtTvcR9r_vLnq4OH84vcRXN6Px6fAKGy5Zwk1XVYYZJjmZGqkZiJaXhncVE7VpdCtpLYUgrDadZK2EqajBNMAE0FaWku-io3Xsa_BvC4hJzW00uZt24BdRcSp5VZc5IaOHf9AXvwgul1OcNDXhUnCeKbamTPAxBujUa7BzHZaKErVaXq2XV3l59bW8WkXXfyRjk07WuxS07f9X-VqN-R83g_Db6h_rE2B5l28 |
| CitedBy_id | crossref_primary_10_1007_s11269_024_03953_2 |
| Cites_doi | 10.1016/j.jhydrol.2018.04.036 10.1002/2013WR015181 10.1007/978-981-13-2044-6_17 10.1023/A:1008074223811 10.1007/978-0-387-75959-3 10.1007/s10710-010-9113-2 10.1007/s11269-023-03646-2 10.1007/s11269-022-03356-1 10.1016/j.jhydrol.2018.04.054 10.1061/(ASCE)1084-0699(2005)10:2(91) 10.1061/(ASCE)WR.1943-5452.0000713 10.1007/s11269-017-1782-7 10.1515/jwld-2017-0088 10.1061/(ASCE)1090-0241(2006)132:5(661) 10.1016/j.apm.2011.09.048 10.1016/S0022-1694(00)00214-6 10.1080/02626669509491401 10.1504/IJHST.2022.123643 10.1016/j.jhydrol.2015.11.011 10.1007/s11269-023-03541-w 10.1016/j.ecolmodel.2006.04.017 10.1007/s00477-021-02159-x 10.1007/s11269-023-03499-9 10.1007/s11269-015-1095-7 10.1007/s11269-019-02229-4 10.1002/hyp.6644 10.1007/s11269-012-0132-z 10.1109/ACCESS.2021.3070634 10.1016/j.jhydrol.2007.05.026 10.1089/ees.2009.0082 10.1016/j.jhydrol.2013.10.003 10.58496/MJBD/2021/006 10.1016/0022-1694(92)90046-X 10.1007/s11269-021-02879-3 10.1007/s11269-017-1612-y 10.1016/S0022-1694(01)00350-X 10.1061/(ASCE)0733-9496(1999)125:5(263) 10.1016/j.jhydrol.2011.05.042 10.1623/hysj.52.3.508 10.1016/j.eswa.2010.12.087 10.1007/s11269-019-02252-5 10.1016/j.jhydrol.2015.07.014 10.1061/(ASCE)HE.1943-5584.0000892 10.1016/j.cageo.2010.11.010 10.1016/j.jhydrol.2009.03.032 10.3390/w11020374 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-024-03856-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database (ProQuest) Biological Science Database Engineering Database (ProQuest) Environmental Science Database (ProQuest) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 4159 |
| ExternalDocumentID | 10_1007_s11269_024_03856_2 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-9f77c2c2530bc5a2e4d36c3f7248c9ad518544028cf52d5eb48ec9e24e1d5653 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-4741 |
| IngestDate | Sun Sep 28 05:49:28 EDT 2025 Tue Sep 02 03:25:48 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Wed Oct 01 01:10:55 EDT 2025 Fri Feb 21 02:39:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Water inflow prediction NSGA-II algorithm Artificial neural network Zayandehroud dam Genetic programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-9f77c2c2530bc5a2e4d36c3f7248c9ad518544028cf52d5eb48ec9e24e1d5653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3098035433 |
| PQPubID | 54174 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_3153786402 proquest_journals_3098035433 crossref_primary_10_1007_s11269_024_03856_2 crossref_citationtrail_10_1007_s11269_024_03856_2 springer_journals_10_1007_s11269_024_03856_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Sattari, Yurekli, Pal (CR42) 2012; 36 Nayak, Sudheer (CR33) 2008; 22 Poorsepahy-Samian, Espanmanesh, Zahraie (CR37) 2016; 142 Sepahvand, Safavi, Rezaei (CR43) 2019; 33 Nasseri, Moeini, Tabesh (CR32) 2011; 38 Mijwel (CR30) 2021; 2021 Budu (CR7) 2014; 19 Safavi, Golmohammadi, Sandoval-Solis (CR41) 2015; 528 Kim, Shin, Kim, Kim, Heo (CR22) 2019; 11 Box, Jenkins, Reinsel, Ljung (CR6) 2015 Shiri, Kişi (CR45) 2011; 37 CR5 Wang, Du, Zhang (CR48) 2008 CR49 Jain, Das, Srivastava (CR19) 1999; 125 Danandeh Mehr, Kahya, Olyaie (CR13) 2013; 505 Li, Ma, Chen, Huang (CR25) 2021; 35 Ghorbani, Khatibi, Mehr, Asadi (CR16) 2018; 562 Abdollahi, Raeisi, Khalilianpour, Ahmadi, Kisi (CR1) 2017; 31 Ahmadi, Mehdizadeh, Nourani (CR2) 2022; 36 Mishra, Desai (CR29) 2006; 198 O’Neill, Vanneschi, Gustafson, Banzhaf (CR35) 2010; 11 Muluye, Coulibaly (CR31) 2007; 52 Saadat, Asghari (CR40) 2017; 31 Coulibaly, Anctil, Bobee (CR10) 2000; 230 Ni, Wang, Ye, Yang, Sivakumar (CR34) 2010; 27 Chang, Chen (CR8) 2001; 245 Chaplot, Birbal (CR9) 2022; 14 Livingstone, Manallack, Tetko (CR28) 1997; 11 Hadiyan, Moeini, Ehsanzadeh (CR18) 2020; 27 Khorram, Jehbez (CR21) 2023; 37 CR12 Tadesse, Dinka (CR46) 2017; 35 Hadi, Tombul (CR17) 2018; 561 Latif, Ahmed (CR24) 2023; 37 Shelke, Londhe, Dixit, Kolhe (CR44) 2023; 37 Bai, Chen, Xie, Li (CR4) 2016; 532 Fallah Mehdipour, Bozorg Haddad, Mariño (CR14) 2012; 26 Kumar, Tiwari, Chatterjee, Mishra (CR23) 2015; 29 Partal, Kişi (CR36) 2007; 342 Raman, Sunilkumar (CR39) 1995; 40 Coulibaly, Haché, Fortin, Bobee (CR11) 2005; 10 French, Krajewski, Cuykendall (CR15) 1992; 137 Rajesh, Anishka, Viksit, Arohi, Rehana (CR38) 2023; 37 Babaei, Moeini, Ehsanzadeh (CR3) 2019; 33 Xu, Zhang, Peng, Fu, Zhou (CR50) 2014; 50 Lin, Chen, Huang, Chou (CR26) 2009; 372 Verma, Pant, Snasel (CR47) 2021; 9 Johari, Habibagahi, Ghahramani (CR20) 2006; 132 Lin, Wu (CR27) 2011; 405 MA Ghorbani (3856_CR16) 2018; 562 M O’Neill (3856_CR35) 2010; 11 3856_CR49 PP Hadiyan (3856_CR18) 2020; 27 MT Sattari (3856_CR42) 2012; 36 F Li (3856_CR25) 2021; 35 HR Safavi (3856_CR41) 2015; 528 P Coulibaly (3856_CR11) 2005; 10 SJ Hadi (3856_CR17) 2018; 561 M Babaei (3856_CR3) 2019; 33 SD Latif (3856_CR24) 2023; 37 3856_CR12 KB Tadesse (3856_CR46) 2017; 35 Q Ni (3856_CR34) 2010; 27 GY Muluye (3856_CR31) 2007; 52 SK Jain (3856_CR19) 1999; 125 W Xu (3856_CR50) 2014; 50 GF Lin (3856_CR27) 2011; 405 A Johari (3856_CR20) 2006; 132 T Kim (3856_CR22) 2019; 11 S Kumar (3856_CR23) 2015; 29 B Chaplot (3856_CR9) 2022; 14 GF Lin (3856_CR26) 2009; 372 K Budu (3856_CR7) 2014; 19 M Nasseri (3856_CR32) 2011; 38 F Fallah Mehdipour (3856_CR14) 2012; 26 J Wang (3856_CR48) 2008 S Verma (3856_CR47) 2021; 9 A Danandeh Mehr (3856_CR13) 2013; 505 F Ahmadi (3856_CR2) 2022; 36 AK Mishra (3856_CR29) 2006; 198 FJ Chang (3856_CR8) 2001; 245 T Partal (3856_CR36) 2007; 342 M Rajesh (3856_CR38) 2023; 37 J Shiri (3856_CR45) 2011; 37 DJ Livingstone (3856_CR28) 1997; 11 3856_CR5 H Raman (3856_CR39) 1995; 40 M Saadat (3856_CR40) 2017; 31 MN French (3856_CR15) 1992; 137 S Abdollahi (3856_CR1) 2017; 31 R Sepahvand (3856_CR43) 2019; 33 P Coulibaly (3856_CR10) 2000; 230 H Poorsepahy-Samian (3856_CR37) 2016; 142 S Khorram (3856_CR21) 2023; 37 Y Bai (3856_CR4) 2016; 532 MM Mijwel (3856_CR30) 2021; 2021 PC Nayak (3856_CR33) 2008; 22 M Shelke (3856_CR44) 2023; 37 GE Box (3856_CR6) 2015 |
| References_xml | – volume: 50 start-page: 9267 issue: 12 year: 2014 end-page: 9286 ident: CR50 article-title: A two stage Bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts publication-title: Water Resour Res – volume: 35 start-page: 229 issue: 1 year: 2017 ident: CR46 article-title: Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa publication-title: J Water Land Dev – ident: CR49 – volume: 532 start-page: 193 year: 2016 end-page: 206 ident: CR4 article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models publication-title: J Hydrol – ident: CR12 – volume: 561 start-page: 674 year: 2018 end-page: 687 ident: CR17 article-title: Monthly stream flow forecasting using continuous wavelet and multi-gene genetic programming combination publication-title: J Hydrol – volume: 52 start-page: 508 issue: 3 year: 2007 end-page: 522 ident: CR31 article-title: Seasonal reservoir inflow forecasting with low-frequency climatic indices: A comparison of data-driven methods publication-title: Hydrol Sci J – volume: 37 start-page: 6127 issue: 15 year: 2023 end-page: 6143 ident: CR44 article-title: Reservoir inflow prediction: a comparison between semi distributed numerical and artificial neural network modelling publication-title: Water Resour Manag – volume: 142 start-page: 04016065 issue: 12 year: 2016 ident: CR37 article-title: Improved inflow modeling in stochastic dual dynamic programming publication-title: J Water Resour Plan Manag – volume: 125 start-page: 263 issue: 5 year: 1999 end-page: 271 ident: CR19 article-title: Application of ANN for reservoir inflow prediction and operation publication-title: J Water Resour Plan Manag – year: 2008 ident: CR48 publication-title: Theory and application with seasonal time series – volume: 31 start-page: 4855 issue: 15 year: 2017 end-page: 4874 ident: CR1 article-title: Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques publication-title: Water Resour Manag – volume: 405 start-page: 439 issue: 3–4 year: 2011 end-page: 450 ident: CR27 article-title: An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model publication-title: J Hydrol – volume: 37 start-page: 75 issue: 1 year: 2023 end-page: 90 ident: CR38 article-title: Improving short-range reservoir inflow forecasts with machine learning model combination publication-title: Water Resour Manag – volume: 11 start-page: 339 year: 2010 end-page: 363 ident: CR35 article-title: Open issues in genetic programming publication-title: Genet Program Evolvable Mach – volume: 198 start-page: 127 issue: 1–2 year: 2006 end-page: 138 ident: CR29 article-title: Drought forecasting using feed-forward recursive neural network publication-title: Ecol Model – volume: 372 start-page: 17 issue: 1–4 year: 2009 end-page: 29 ident: CR26 article-title: Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods publication-title: J Hydrol – volume: 27 year: 2020 ident: CR18 article-title: Application of static and dynamic artificial neural networks for forecasting inflow discharges, case study: Sefidroud Dam reservoir publication-title: Sustain Comput: Inform Syst – volume: 342 start-page: 199 issue: 1–2 year: 2007 end-page: 212 ident: CR36 article-title: Wavelet and neuro-fuzzy conjunction model for precipitation forecasting publication-title: J Hydrol – volume: 14 start-page: 75 issue: 1 year: 2022 end-page: 79 ident: CR9 article-title: Development of stage-discharge rating curve using ANN publication-title: Int J Hydrol Sci Technol – volume: 40 start-page: 145 issue: 2 year: 1995 end-page: 163 ident: CR39 article-title: Multivariate modelling of water resources time series using artificial neural networks publication-title: Hydrol Sci J – volume: 37 start-page: 1692 issue: 10 year: 2011 end-page: 1701 ident: CR45 article-title: Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuation publication-title: Comput Geosci – volume: 11 start-page: 135 year: 1997 end-page: 142 ident: CR28 article-title: Data modelling with neural networks: advantages and limitations publication-title: J Comput Aided Mol Des – volume: 33 start-page: 2203 issue: 6 year: 2019 end-page: 2218 ident: CR3 article-title: Artificial neural network and support vector machine models for inflow prediction of dam reservoir (case study: Zayandehroud dam reservoir) publication-title: Water Resour Manag – volume: 137 start-page: 1 issue: 1–4 year: 1992 end-page: 31 ident: CR15 article-title: Rainfall forecasting in space and time using a neural network publication-title: J Hydrol – volume: 10 start-page: 91 issue: 2 year: 2005 end-page: 99 ident: CR11 article-title: Improving daily reservoir inflow forecasts with model combination publication-title: J Hydrol Eng – ident: CR5 – volume: 22 start-page: 827 issue: 6 year: 2008 end-page: 841 ident: CR33 article-title: Fuzzy model identification based on cluster estimation for reservoir inflow forecasting publication-title: Hydrol Process: Int J – volume: 2021 start-page: 29 year: 2021 end-page: 31 ident: CR30 article-title: Artificial neural networks advantages and disadvantages publication-title: Mesop J Big Data – volume: 27 start-page: 377 issue: 5 year: 2010 end-page: 385 ident: CR34 article-title: Evolutionary modeling for streamflow forecasting with minimal datasets: a case study in the West Malian River, China publication-title: Environ Eng Sci – volume: 31 start-page: 1795 issue: 6 year: 2017 end-page: 1807 ident: CR40 article-title: Reliability improved stochastic dynamic programming for reservoir operation optimization publication-title: Water Resour Manag – volume: 245 start-page: 153 issue: 1–4 year: 2001 end-page: 164 ident: CR8 article-title: A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction publication-title: J Hydrol – volume: 230 start-page: 244 issue: 3–4 year: 2000 end-page: 257 ident: CR10 article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach publication-title: J Hydrol – volume: 29 start-page: 4863 issue: 13 year: 2015 end-page: 4883 ident: CR23 article-title: Reservoir inflow forecasting using ensemble models based on neural networks, wavelet analysis and bootstrap method article publication-title: Water Resour Manag – volume: 132 start-page: 664 issue: 5 year: 2006 end-page: 665 ident: CR20 article-title: Prediction of soil–water characteristic curve using genetic programming publication-title: J Geotech Geoenviron Eng – volume: 35 start-page: 2941 issue: 9 year: 2021 end-page: 2963 ident: CR25 article-title: An ensemble modeling approach to forecast daily reservoir inflow using bidirectional long- and short-term memory (Bi-LSTM), variational mode decomposition (VMD), and energy entropy method publication-title: Water Resour Manag – volume: 11 start-page: 374 issue: 2 year: 2019 ident: CR22 article-title: The use of large-scale climate indices in monthly reservoir inflow forecasting and its application on time series and artificial intelligence models publication-title: Water – volume: 33 start-page: 2123 issue: 6 year: 2019 end-page: 2137 ident: CR43 article-title: Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming publication-title: Water Resour Manag – volume: 505 start-page: 240 year: 2013 end-page: 249 ident: CR13 article-title: Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique publication-title: J Hydrol – volume: 528 start-page: 773 year: 2015 end-page: 789 ident: CR41 article-title: Expert knowledgebased modeling for integrated water resources planning and management in the Zayandehrud River Basin publication-title: J Hydrol – volume: 36 start-page: 2649 issue: 6 year: 2012 end-page: 2657 ident: CR42 article-title: Performance evaluation of artificial neural network approaches in forecasting reservoir inflow publication-title: Appl Math Model – volume: 38 start-page: 7387 issue: 6 year: 2011 end-page: 7395 ident: CR32 article-title: Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming publication-title: Expert Syst Appl – volume: 37 start-page: 4097 issue: 10 year: 2023 end-page: 4121 ident: CR21 article-title: A hybrid CNN-LSTM approach for monthly reservoir inflow forecasting publication-title: Water Resour Manag – volume: 36 start-page: 2753 issue: 9 year: 2022 end-page: 2768 ident: CR2 article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis publication-title: Stoch Env Res Risk Assess – volume: 562 start-page: 455 year: 2018 end-page: 467 ident: CR16 article-title: Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting publication-title: J Hydrol – volume: 9 start-page: 57757 year: 2021 end-page: 57791 ident: CR47 article-title: A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems publication-title: IEEE Access – year: 2015 ident: CR6 publication-title: Time series analysis: forecasting and control – volume: 26 start-page: 4091 issue: 14 year: 2012 end-page: 4103 ident: CR14 article-title: Real-time operation of reservoir system by genetic programming publication-title: Water Resour Manag – volume: 19 start-page: 1385 issue: 7 year: 2014 end-page: 1400 ident: CR7 article-title: Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting publication-title: J Hydrol Eng – volume: 37 start-page: 3227 issue: 8 year: 2023 end-page: 3241 ident: CR24 article-title: Streamflow prediction utilizing deep learning and machine learning algorithms for sustainable water supply management publication-title: Water Resour Manage – volume: 561 start-page: 674 year: 2018 ident: 3856_CR17 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.04.036 – volume: 50 start-page: 9267 issue: 12 year: 2014 ident: 3856_CR50 publication-title: Water Resour Res doi: 10.1002/2013WR015181 – ident: 3856_CR5 doi: 10.1007/978-981-13-2044-6_17 – ident: 3856_CR49 – volume: 11 start-page: 135 year: 1997 ident: 3856_CR28 publication-title: J Comput Aided Mol Des doi: 10.1023/A:1008074223811 – ident: 3856_CR12 doi: 10.1007/978-0-387-75959-3 – volume: 11 start-page: 339 year: 2010 ident: 3856_CR35 publication-title: Genet Program Evolvable Mach doi: 10.1007/s10710-010-9113-2 – volume: 37 start-page: 6127 issue: 15 year: 2023 ident: 3856_CR44 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03646-2 – volume: 37 start-page: 75 issue: 1 year: 2023 ident: 3856_CR38 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03356-1 – volume: 562 start-page: 455 year: 2018 ident: 3856_CR16 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.04.054 – volume: 10 start-page: 91 issue: 2 year: 2005 ident: 3856_CR11 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2005)10:2(91) – volume: 142 start-page: 04016065 issue: 12 year: 2016 ident: 3856_CR37 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000713 – volume: 31 start-page: 4855 issue: 15 year: 2017 ident: 3856_CR1 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1782-7 – volume: 35 start-page: 229 issue: 1 year: 2017 ident: 3856_CR46 publication-title: J Water Land Dev doi: 10.1515/jwld-2017-0088 – volume: 27 year: 2020 ident: 3856_CR18 publication-title: Sustain Comput: Inform Syst – volume: 132 start-page: 664 issue: 5 year: 2006 ident: 3856_CR20 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2006)132:5(661) – volume: 36 start-page: 2649 issue: 6 year: 2012 ident: 3856_CR42 publication-title: Appl Math Model doi: 10.1016/j.apm.2011.09.048 – volume: 230 start-page: 244 issue: 3–4 year: 2000 ident: 3856_CR10 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00214-6 – volume-title: Theory and application with seasonal time series year: 2008 ident: 3856_CR48 – volume: 40 start-page: 145 issue: 2 year: 1995 ident: 3856_CR39 publication-title: Hydrol Sci J doi: 10.1080/02626669509491401 – volume: 14 start-page: 75 issue: 1 year: 2022 ident: 3856_CR9 publication-title: Int J Hydrol Sci Technol doi: 10.1504/IJHST.2022.123643 – volume: 532 start-page: 193 year: 2016 ident: 3856_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.11.011 – volume: 37 start-page: 4097 issue: 10 year: 2023 ident: 3856_CR21 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03541-w – volume: 198 start-page: 127 issue: 1–2 year: 2006 ident: 3856_CR29 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2006.04.017 – volume: 36 start-page: 2753 issue: 9 year: 2022 ident: 3856_CR2 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-021-02159-x – volume: 37 start-page: 3227 issue: 8 year: 2023 ident: 3856_CR24 publication-title: Water Resour Manage doi: 10.1007/s11269-023-03499-9 – volume: 29 start-page: 4863 issue: 13 year: 2015 ident: 3856_CR23 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1095-7 – volume: 33 start-page: 2123 issue: 6 year: 2019 ident: 3856_CR43 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02229-4 – volume: 22 start-page: 827 issue: 6 year: 2008 ident: 3856_CR33 publication-title: Hydrol Process: Int J doi: 10.1002/hyp.6644 – volume: 26 start-page: 4091 issue: 14 year: 2012 ident: 3856_CR14 publication-title: Water Resour Manag doi: 10.1007/s11269-012-0132-z – volume: 9 start-page: 57757 year: 2021 ident: 3856_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070634 – volume: 342 start-page: 199 issue: 1–2 year: 2007 ident: 3856_CR36 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.05.026 – volume: 27 start-page: 377 issue: 5 year: 2010 ident: 3856_CR34 publication-title: Environ Eng Sci doi: 10.1089/ees.2009.0082 – volume: 505 start-page: 240 year: 2013 ident: 3856_CR13 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.10.003 – volume: 2021 start-page: 29 year: 2021 ident: 3856_CR30 publication-title: Mesop J Big Data doi: 10.58496/MJBD/2021/006 – volume: 137 start-page: 1 issue: 1–4 year: 1992 ident: 3856_CR15 publication-title: J Hydrol doi: 10.1016/0022-1694(92)90046-X – volume: 35 start-page: 2941 issue: 9 year: 2021 ident: 3856_CR25 publication-title: Water Resour Manag doi: 10.1007/s11269-021-02879-3 – volume: 31 start-page: 1795 issue: 6 year: 2017 ident: 3856_CR40 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1612-y – volume-title: Time series analysis: forecasting and control year: 2015 ident: 3856_CR6 – volume: 245 start-page: 153 issue: 1–4 year: 2001 ident: 3856_CR8 publication-title: J Hydrol doi: 10.1016/S0022-1694(01)00350-X – volume: 125 start-page: 263 issue: 5 year: 1999 ident: 3856_CR19 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(1999)125:5(263) – volume: 405 start-page: 439 issue: 3–4 year: 2011 ident: 3856_CR27 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.05.042 – volume: 52 start-page: 508 issue: 3 year: 2007 ident: 3856_CR31 publication-title: Hydrol Sci J doi: 10.1623/hysj.52.3.508 – volume: 38 start-page: 7387 issue: 6 year: 2011 ident: 3856_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.12.087 – volume: 33 start-page: 2203 issue: 6 year: 2019 ident: 3856_CR3 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02252-5 – volume: 528 start-page: 773 year: 2015 ident: 3856_CR41 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.07.014 – volume: 19 start-page: 1385 issue: 7 year: 2014 ident: 3856_CR7 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000892 – volume: 37 start-page: 1692 issue: 10 year: 2011 ident: 3856_CR45 publication-title: Comput Geosci doi: 10.1016/j.cageo.2010.11.010 – volume: 372 start-page: 17 issue: 1–4 year: 2009 ident: 3856_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.03.032 – volume: 11 start-page: 374 issue: 2 year: 2019 ident: 3856_CR22 publication-title: Water doi: 10.3390/w11020374 |
| SSID | ssj0010090 |
| Score | 2.4263878 |
| Snippet | A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4137 |
| SubjectTerms | Algorithms Atmospheric Sciences Case studies Civil Engineering Correlation coefficient Correlation coefficients Dams data collection Datasets Earth and Environmental Science Earth Sciences Environment Genetic algorithms Geotechnical Engineering & Applied Earth Sciences hybrids Hydrogeology Hydrology/Water Resources Inflow Methods Neural networks Reservoirs Root-mean-square errors Variables water Water inflow Water resources |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dIeUKGtuhSQkbgVqxs_EudQoeW5i0S0olTlFiWOI1WiCU1Dq_57ZrzJLiDBKZJjx8p4bH_2zHwDsJebUCqlNbeoP3hAiS03eeg4rpbZyBpEEI6ikS-ScPJdnV_r6xVI-lgYcqvs10S_UBe1pTvyL3IUm5HUSsqD29-cskaRdbVPoZF1qRWKr55i7BWsCmLGGsDq4Ukyu1zYFRBR-FuXGA9NCjfTLoxmHkwXiDDmuGdxspaFXDzeqpb484nJ1O9Ep29hrYOQbDwf83VYcdUGvHlALPgOyllDBhhyaWaI8NgPRJQNm1blTf0PH23tS4-zX4w875q_9c-GeecBXz75T2FcbLpg62zZ2YyPk4Sz5NvZmE-n7MInnn4PV6cnV0cT3mVU4BaBVsvjMoqssELLUW51JpwqZGhlGQllbJwVKDqt8ERpbKlFoV2ujLOxE8oFBSI_-QEGVV25j8AICLkgMqUJiaAnyLF5FhQFse2TtXQIQS-71HZs45T04iZd8iSTvFOUd-rlnYohfF60uZ1zbbxYe6sfkrSbd3_SpZYMYXfxGmcMmUGyytV3WAcX-ciE-JtD2O-HcvmJ53vcfLnHT_BaeO0hB7QtGLTNndtGxNLmO50a3gMFX-KC priority: 102 providerName: ProQuest |
| Title | Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method |
| URI | https://link.springer.com/article/10.1007/s11269-024-03856-2 https://www.proquest.com/docview/3098035433 https://www.proquest.com/docview/3153786402 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QUO0PJQlz5kJG7gauNH4hzTdl-gRivoinKKEseRECVBabYIfn3H3mS3rUqlniw5thPbY8_nzMxngPeZ8rkQUlKN8oMHlFBTlfmG4m6ZDrRCBGFsNPJp7E_m4tO5PG-Dwi47b_fOJOl26nWwm8f8kKJOodaa5VPceDcd31YPNqPx98_DlfUAcYP7txLi0UigymyDZe5v5bZCWqPMO4ZRp29GL2DefenSzeTn4aLJDvW_OySOj-3KFjxvASiJlhKzDRumfAnPbtASvoJiVlvzjXWIJogPyTfEozWZlsVF9QeTpnK5J-kvYv326qvqR02c64HLn_y1QWBkuuL6bMh4RqM4piT-Oo7odEpO3bXVr-FsNDw7ntD2PgaqEaY1NCyCQDPNJB9kWqbMiJz7mhcBE0qHaS5R9ws8jypdSJZLkwlldGiYMF6OuJG_gV5ZlWYHiIVRxgtUoXxL7-NlWD318txy9Vtbax-8bk4S3XKV2yszLpI1y7IdwgSHMHFDmLA-fFjV-b1k6niw9F431Um7ai8TPgjVgEvBeR_erR7jerNGlLQ01QLLoIoIlI_d7MPHbnbXTfz_jW8fV3wXnjInINadbQ96Tb0w-4h_muwAnqjR-KAVekyPhvHsC-bOWXQN4rH5ZQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE912wJGghNYbPxInEOFFvrY0G60gkX0ZiWOIyG1SZumVP1x_W8de5NdQKK3niI5tqOMx55vPC-At7kKuRBSUoP8gwpKbKjKQ0vxtMyGRiGCsC4aeZKG4x_i65E8WoHrPhbGuVX2Z6I_qIvauDvyj3wYqyGXgvNPp2fUVY1y1tW-hEbWlVYotn2KsS6w48BeXaIKd76d7OB6v2Nsb3f2ZUy7KgPUIPhoaVxGkWGGST7MjcyYFQUPDS8jJpSJswKnkwK1LGVKyQppc6GsiS0TNigQDXGc9h6sCS5i1P3WPu-m028LMwYCGH_JE6OOJlB2d1E789i9gIUxRRFJnXEupOxvybiEu_9YaL3g23sMjzrESkZzFnsCK7Z6Cg__yGP4DMpp4-w9zoOaIKAkPxHANiSpyuP6Eh9t7Vt3shPiHP2a3_WvhnhfBd8-vnJRYyRZJAdtyf6UjtKUkvT7_ogmCZn4OtfPYXYXpH0Bq1Vd2XUgDnfZIFKlCl0-oCDH4VlQFC65vzPODiDoaadNl9zc1dg41su0zI7eGumtPb01G8D7xZjTeWqPW3tv9Uuiu21-rpdMOYA3i9e4QZ3VJatsfYF9UKZEKsTfHMCHfimXU_z_ixu3f_E13B_PJof6MEkPNuEB85zkfN-2YLVtLuxLBEtt_qpjSQL6jjfBDaw2HpU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5iSwEjwQmsbvxInANCK5bdDaXRShTRW5Q4joRUkjZNqfrT-HfMeJNdQKK3niI5tqOMx55vPC-AV4UJpVJac4v8gwpKbLkpQsfxtMzH1iCCcBSNfJCGi6_q05E-2oJfQywMuVUOZ6I_qMvG0h35nhzHZiy1knKv6t0iltPZ-5NTThWkyNI6lNNYsci-u7xA9e3sXTLFtX4txOzj4YcF7ysMcIvAo-NxFUVWWKHluLA6F06VMrSyioQyNs5LjdJMoYZlbKVFqV2hjLOxE8oFJSIhidPegJsRJXGnIPXZfG3AQOjir3di1M4USu0-XmcVtReIMOYoHDmZ5UIu_paJG6D7j23Wi7zZPbjbY1U2WTHXfdhy9QO480cGw4dQLVuy9JDvNEMoyb4hdG1ZUlfHzQU-usa3TvMfjFz82p_N95Z5LwXfvrikeDGWrNOCdmy-5JM05Sz9Mp_wJGEHvsL1Izi8DsI-hu26qd0TYIS4XBCZyoSUCSgocHgelCWl9Sez7AiCgXaZ7dOaU3WN42yTkJnonSG9M0_vTIzgzXrMySqpx5W9d4clyfoNfpZt2HEEL9evcWuSvSWvXXOOfVCaRCbE3xzB22EpN1P8_4s7V3_xBdxC1s8-J-n-U7gtPCOR09subHftuXuGKKkrnnt-ZJBdM___BrmwHC8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Water+Inflow+Into+the+Dam+Reservoir+Using+the+Hybrid+Intelligent+GP-ANN-+NSGA-II+Method&rft.jtitle=Water+resources+management&rft.au=Moeini%2C+Ramtin&rft.au=Nasiri%2C+Kamran&rft.au=Hosseini%2C+Seyed+Hossein&rft.date=2024-09-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=11&rft.spage=4137&rft.epage=4159&rft_id=info:doi/10.1007%2Fs11269-024-03856-2&rft.externalDocID=10_1007_s11269_024_03856_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |