Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method

A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. Howev...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 38; no. 11; pp. 4137 - 4159
Main Authors Moeini, Ramtin, Nasiri, Kamran, Hosseini, Seyed Hossein
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-024-03856-2

Cover

Abstract A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R 2 ), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set.
AbstractList A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R 2 ), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set.
A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R2), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set.
A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R²), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set.
Author Nasiri, Kamran
Hosseini, Seyed Hossein
Moeini, Ramtin
Author_xml – sequence: 1
  givenname: Ramtin
  surname: Moeini
  fullname: Moeini, Ramtin
  email: r.moeini@eng.ui.ac.ir
  organization: Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan
– sequence: 2
  givenname: Kamran
  surname: Nasiri
  fullname: Nasiri, Kamran
  organization: Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan
– sequence: 3
  givenname: Seyed Hossein
  surname: Hosseini
  fullname: Hosseini, Seyed Hossein
  organization: Department of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan
BookMark eNp9kElLQzEUhYMoWIc_4OqBGzfRjG9YFoda0CoOuAxp3n018ppokir996ZWEVy4uhC-7-RwdtCm8w4QOqDkmBJSnURKWdlgwgQmvJYlZhtoQGXFMS0l2UQD0jCCRSXoNtqJ8YWQrDVkgLrbAK01ybpZkZ6heNIJQjF2Xe8_8kn-6_VMz4s7iBDevQ3FY_yhL5fTYNsVB31vZ-BSMbrFw8kEF5P70RCPx8U1pGff7qGtTvcR9r_vLnq4OH84vcRXN6Px6fAKGy5Zwk1XVYYZJjmZGqkZiJaXhncVE7VpdCtpLYUgrDadZK2EqajBNMAE0FaWku-io3Xsa_BvC4hJzW00uZt24BdRcSp5VZc5IaOHf9AXvwgul1OcNDXhUnCeKbamTPAxBujUa7BzHZaKErVaXq2XV3l59bW8WkXXfyRjk07WuxS07f9X-VqN-R83g_Db6h_rE2B5l28
CitedBy_id crossref_primary_10_1007_s11269_024_03953_2
Cites_doi 10.1016/j.jhydrol.2018.04.036
10.1002/2013WR015181
10.1007/978-981-13-2044-6_17
10.1023/A:1008074223811
10.1007/978-0-387-75959-3
10.1007/s10710-010-9113-2
10.1007/s11269-023-03646-2
10.1007/s11269-022-03356-1
10.1016/j.jhydrol.2018.04.054
10.1061/(ASCE)1084-0699(2005)10:2(91)
10.1061/(ASCE)WR.1943-5452.0000713
10.1007/s11269-017-1782-7
10.1515/jwld-2017-0088
10.1061/(ASCE)1090-0241(2006)132:5(661)
10.1016/j.apm.2011.09.048
10.1016/S0022-1694(00)00214-6
10.1080/02626669509491401
10.1504/IJHST.2022.123643
10.1016/j.jhydrol.2015.11.011
10.1007/s11269-023-03541-w
10.1016/j.ecolmodel.2006.04.017
10.1007/s00477-021-02159-x
10.1007/s11269-023-03499-9
10.1007/s11269-015-1095-7
10.1007/s11269-019-02229-4
10.1002/hyp.6644
10.1007/s11269-012-0132-z
10.1109/ACCESS.2021.3070634
10.1016/j.jhydrol.2007.05.026
10.1089/ees.2009.0082
10.1016/j.jhydrol.2013.10.003
10.58496/MJBD/2021/006
10.1016/0022-1694(92)90046-X
10.1007/s11269-021-02879-3
10.1007/s11269-017-1612-y
10.1016/S0022-1694(01)00350-X
10.1061/(ASCE)0733-9496(1999)125:5(263)
10.1016/j.jhydrol.2011.05.042
10.1623/hysj.52.3.508
10.1016/j.eswa.2010.12.087
10.1007/s11269-019-02252-5
10.1016/j.jhydrol.2015.07.014
10.1061/(ASCE)HE.1943-5584.0000892
10.1016/j.cageo.2010.11.010
10.1016/j.jhydrol.2009.03.032
10.3390/w11020374
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-024-03856-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database (ProQuest)
Biological Science Database
Engineering Database (ProQuest)
Environmental Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 4159
ExternalDocumentID 10_1007_s11269_024_03856_2
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-9f77c2c2530bc5a2e4d36c3f7248c9ad518544028cf52d5eb48ec9e24e1d5653
IEDL.DBID AGYKE
ISSN 0920-4741
IngestDate Sun Sep 28 05:49:28 EDT 2025
Tue Sep 02 03:25:48 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Oct 01 01:10:55 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Water inflow prediction
NSGA-II algorithm
Artificial neural network
Zayandehroud dam
Genetic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-9f77c2c2530bc5a2e4d36c3f7248c9ad518544028cf52d5eb48ec9e24e1d5653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3098035433
PQPubID 54174
PageCount 23
ParticipantIDs proquest_miscellaneous_3153786402
proquest_journals_3098035433
crossref_primary_10_1007_s11269_024_03856_2
crossref_citationtrail_10_1007_s11269_024_03856_2
springer_journals_10_1007_s11269_024_03856_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Sattari, Yurekli, Pal (CR42) 2012; 36
Nayak, Sudheer (CR33) 2008; 22
Poorsepahy-Samian, Espanmanesh, Zahraie (CR37) 2016; 142
Sepahvand, Safavi, Rezaei (CR43) 2019; 33
Nasseri, Moeini, Tabesh (CR32) 2011; 38
Mijwel (CR30) 2021; 2021
Budu (CR7) 2014; 19
Safavi, Golmohammadi, Sandoval-Solis (CR41) 2015; 528
Kim, Shin, Kim, Kim, Heo (CR22) 2019; 11
Box, Jenkins, Reinsel, Ljung (CR6) 2015
Shiri, Kişi (CR45) 2011; 37
CR5
Wang, Du, Zhang (CR48) 2008
CR49
Jain, Das, Srivastava (CR19) 1999; 125
Danandeh Mehr, Kahya, Olyaie (CR13) 2013; 505
Li, Ma, Chen, Huang (CR25) 2021; 35
Ghorbani, Khatibi, Mehr, Asadi (CR16) 2018; 562
Abdollahi, Raeisi, Khalilianpour, Ahmadi, Kisi (CR1) 2017; 31
Ahmadi, Mehdizadeh, Nourani (CR2) 2022; 36
Mishra, Desai (CR29) 2006; 198
O’Neill, Vanneschi, Gustafson, Banzhaf (CR35) 2010; 11
Muluye, Coulibaly (CR31) 2007; 52
Saadat, Asghari (CR40) 2017; 31
Coulibaly, Anctil, Bobee (CR10) 2000; 230
Ni, Wang, Ye, Yang, Sivakumar (CR34) 2010; 27
Chang, Chen (CR8) 2001; 245
Chaplot, Birbal (CR9) 2022; 14
Livingstone, Manallack, Tetko (CR28) 1997; 11
Hadiyan, Moeini, Ehsanzadeh (CR18) 2020; 27
Khorram, Jehbez (CR21) 2023; 37
CR12
Tadesse, Dinka (CR46) 2017; 35
Hadi, Tombul (CR17) 2018; 561
Latif, Ahmed (CR24) 2023; 37
Shelke, Londhe, Dixit, Kolhe (CR44) 2023; 37
Bai, Chen, Xie, Li (CR4) 2016; 532
Fallah Mehdipour, Bozorg Haddad, Mariño (CR14) 2012; 26
Kumar, Tiwari, Chatterjee, Mishra (CR23) 2015; 29
Partal, Kişi (CR36) 2007; 342
Raman, Sunilkumar (CR39) 1995; 40
Coulibaly, Haché, Fortin, Bobee (CR11) 2005; 10
French, Krajewski, Cuykendall (CR15) 1992; 137
Rajesh, Anishka, Viksit, Arohi, Rehana (CR38) 2023; 37
Babaei, Moeini, Ehsanzadeh (CR3) 2019; 33
Xu, Zhang, Peng, Fu, Zhou (CR50) 2014; 50
Lin, Chen, Huang, Chou (CR26) 2009; 372
Verma, Pant, Snasel (CR47) 2021; 9
Johari, Habibagahi, Ghahramani (CR20) 2006; 132
Lin, Wu (CR27) 2011; 405
MA Ghorbani (3856_CR16) 2018; 562
M O’Neill (3856_CR35) 2010; 11
3856_CR49
PP Hadiyan (3856_CR18) 2020; 27
MT Sattari (3856_CR42) 2012; 36
F Li (3856_CR25) 2021; 35
HR Safavi (3856_CR41) 2015; 528
P Coulibaly (3856_CR11) 2005; 10
SJ Hadi (3856_CR17) 2018; 561
M Babaei (3856_CR3) 2019; 33
SD Latif (3856_CR24) 2023; 37
3856_CR12
KB Tadesse (3856_CR46) 2017; 35
Q Ni (3856_CR34) 2010; 27
GY Muluye (3856_CR31) 2007; 52
SK Jain (3856_CR19) 1999; 125
W Xu (3856_CR50) 2014; 50
GF Lin (3856_CR27) 2011; 405
A Johari (3856_CR20) 2006; 132
T Kim (3856_CR22) 2019; 11
S Kumar (3856_CR23) 2015; 29
B Chaplot (3856_CR9) 2022; 14
GF Lin (3856_CR26) 2009; 372
K Budu (3856_CR7) 2014; 19
M Nasseri (3856_CR32) 2011; 38
F Fallah Mehdipour (3856_CR14) 2012; 26
J Wang (3856_CR48) 2008
S Verma (3856_CR47) 2021; 9
A Danandeh Mehr (3856_CR13) 2013; 505
F Ahmadi (3856_CR2) 2022; 36
AK Mishra (3856_CR29) 2006; 198
FJ Chang (3856_CR8) 2001; 245
T Partal (3856_CR36) 2007; 342
M Rajesh (3856_CR38) 2023; 37
J Shiri (3856_CR45) 2011; 37
DJ Livingstone (3856_CR28) 1997; 11
3856_CR5
H Raman (3856_CR39) 1995; 40
M Saadat (3856_CR40) 2017; 31
MN French (3856_CR15) 1992; 137
S Abdollahi (3856_CR1) 2017; 31
R Sepahvand (3856_CR43) 2019; 33
P Coulibaly (3856_CR10) 2000; 230
H Poorsepahy-Samian (3856_CR37) 2016; 142
S Khorram (3856_CR21) 2023; 37
Y Bai (3856_CR4) 2016; 532
MM Mijwel (3856_CR30) 2021; 2021
PC Nayak (3856_CR33) 2008; 22
M Shelke (3856_CR44) 2023; 37
GE Box (3856_CR6) 2015
References_xml – volume: 50
  start-page: 9267
  issue: 12
  year: 2014
  end-page: 9286
  ident: CR50
  article-title: A two stage Bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts
  publication-title: Water Resour Res
– volume: 35
  start-page: 229
  issue: 1
  year: 2017
  ident: CR46
  article-title: Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa
  publication-title: J Water Land Dev
– ident: CR49
– volume: 532
  start-page: 193
  year: 2016
  end-page: 206
  ident: CR4
  article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
  publication-title: J Hydrol
– ident: CR12
– volume: 561
  start-page: 674
  year: 2018
  end-page: 687
  ident: CR17
  article-title: Monthly stream flow forecasting using continuous wavelet and multi-gene genetic programming combination
  publication-title: J Hydrol
– volume: 52
  start-page: 508
  issue: 3
  year: 2007
  end-page: 522
  ident: CR31
  article-title: Seasonal reservoir inflow forecasting with low-frequency climatic indices: A comparison of data-driven methods
  publication-title: Hydrol Sci J
– volume: 37
  start-page: 6127
  issue: 15
  year: 2023
  end-page: 6143
  ident: CR44
  article-title: Reservoir inflow prediction: a comparison between semi distributed numerical and artificial neural network modelling
  publication-title: Water Resour Manag
– volume: 142
  start-page: 04016065
  issue: 12
  year: 2016
  ident: CR37
  article-title: Improved inflow modeling in stochastic dual dynamic programming
  publication-title: J Water Resour Plan Manag
– volume: 125
  start-page: 263
  issue: 5
  year: 1999
  end-page: 271
  ident: CR19
  article-title: Application of ANN for reservoir inflow prediction and operation
  publication-title: J Water Resour Plan Manag
– year: 2008
  ident: CR48
  publication-title: Theory and application with seasonal time series
– volume: 31
  start-page: 4855
  issue: 15
  year: 2017
  end-page: 4874
  ident: CR1
  article-title: Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques
  publication-title: Water Resour Manag
– volume: 405
  start-page: 439
  issue: 3–4
  year: 2011
  end-page: 450
  ident: CR27
  article-title: An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model
  publication-title: J Hydrol
– volume: 37
  start-page: 75
  issue: 1
  year: 2023
  end-page: 90
  ident: CR38
  article-title: Improving short-range reservoir inflow forecasts with machine learning model combination
  publication-title: Water Resour Manag
– volume: 11
  start-page: 339
  year: 2010
  end-page: 363
  ident: CR35
  article-title: Open issues in genetic programming
  publication-title: Genet Program Evolvable Mach
– volume: 198
  start-page: 127
  issue: 1–2
  year: 2006
  end-page: 138
  ident: CR29
  article-title: Drought forecasting using feed-forward recursive neural network
  publication-title: Ecol Model
– volume: 372
  start-page: 17
  issue: 1–4
  year: 2009
  end-page: 29
  ident: CR26
  article-title: Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
  publication-title: J Hydrol
– volume: 27
  year: 2020
  ident: CR18
  article-title: Application of static and dynamic artificial neural networks for forecasting inflow discharges, case study: Sefidroud Dam reservoir
  publication-title: Sustain Comput: Inform Syst
– volume: 342
  start-page: 199
  issue: 1–2
  year: 2007
  end-page: 212
  ident: CR36
  article-title: Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
  publication-title: J Hydrol
– volume: 14
  start-page: 75
  issue: 1
  year: 2022
  end-page: 79
  ident: CR9
  article-title: Development of stage-discharge rating curve using ANN
  publication-title: Int J Hydrol Sci Technol
– volume: 40
  start-page: 145
  issue: 2
  year: 1995
  end-page: 163
  ident: CR39
  article-title: Multivariate modelling of water resources time series using artificial neural networks
  publication-title: Hydrol Sci J
– volume: 37
  start-page: 1692
  issue: 10
  year: 2011
  end-page: 1701
  ident: CR45
  article-title: Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuation
  publication-title: Comput Geosci
– volume: 11
  start-page: 135
  year: 1997
  end-page: 142
  ident: CR28
  article-title: Data modelling with neural networks: advantages and limitations
  publication-title: J Comput Aided Mol Des
– volume: 33
  start-page: 2203
  issue: 6
  year: 2019
  end-page: 2218
  ident: CR3
  article-title: Artificial neural network and support vector machine models for inflow prediction of dam reservoir (case study: Zayandehroud dam reservoir)
  publication-title: Water Resour Manag
– volume: 137
  start-page: 1
  issue: 1–4
  year: 1992
  end-page: 31
  ident: CR15
  article-title: Rainfall forecasting in space and time using a neural network
  publication-title: J Hydrol
– volume: 10
  start-page: 91
  issue: 2
  year: 2005
  end-page: 99
  ident: CR11
  article-title: Improving daily reservoir inflow forecasts with model combination
  publication-title: J Hydrol Eng
– ident: CR5
– volume: 22
  start-page: 827
  issue: 6
  year: 2008
  end-page: 841
  ident: CR33
  article-title: Fuzzy model identification based on cluster estimation for reservoir inflow forecasting
  publication-title: Hydrol Process: Int J
– volume: 2021
  start-page: 29
  year: 2021
  end-page: 31
  ident: CR30
  article-title: Artificial neural networks advantages and disadvantages
  publication-title: Mesop J Big Data
– volume: 27
  start-page: 377
  issue: 5
  year: 2010
  end-page: 385
  ident: CR34
  article-title: Evolutionary modeling for streamflow forecasting with minimal datasets: a case study in the West Malian River, China
  publication-title: Environ Eng Sci
– volume: 31
  start-page: 1795
  issue: 6
  year: 2017
  end-page: 1807
  ident: CR40
  article-title: Reliability improved stochastic dynamic programming for reservoir operation optimization
  publication-title: Water Resour Manag
– volume: 245
  start-page: 153
  issue: 1–4
  year: 2001
  end-page: 164
  ident: CR8
  article-title: A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction
  publication-title: J Hydrol
– volume: 230
  start-page: 244
  issue: 3–4
  year: 2000
  end-page: 257
  ident: CR10
  article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
  publication-title: J Hydrol
– volume: 29
  start-page: 4863
  issue: 13
  year: 2015
  end-page: 4883
  ident: CR23
  article-title: Reservoir inflow forecasting using ensemble models based on neural networks, wavelet analysis and bootstrap method article
  publication-title: Water Resour Manag
– volume: 132
  start-page: 664
  issue: 5
  year: 2006
  end-page: 665
  ident: CR20
  article-title: Prediction of soil–water characteristic curve using genetic programming
  publication-title: J Geotech Geoenviron Eng
– volume: 35
  start-page: 2941
  issue: 9
  year: 2021
  end-page: 2963
  ident: CR25
  article-title: An ensemble modeling approach to forecast daily reservoir inflow using bidirectional long- and short-term memory (Bi-LSTM), variational mode decomposition (VMD), and energy entropy method
  publication-title: Water Resour Manag
– volume: 11
  start-page: 374
  issue: 2
  year: 2019
  ident: CR22
  article-title: The use of large-scale climate indices in monthly reservoir inflow forecasting and its application on time series and artificial intelligence models
  publication-title: Water
– volume: 33
  start-page: 2123
  issue: 6
  year: 2019
  end-page: 2137
  ident: CR43
  article-title: Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming
  publication-title: Water Resour Manag
– volume: 505
  start-page: 240
  year: 2013
  end-page: 249
  ident: CR13
  article-title: Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique
  publication-title: J Hydrol
– volume: 528
  start-page: 773
  year: 2015
  end-page: 789
  ident: CR41
  article-title: Expert knowledgebased modeling for integrated water resources planning and management in the Zayandehrud River Basin
  publication-title: J Hydrol
– volume: 36
  start-page: 2649
  issue: 6
  year: 2012
  end-page: 2657
  ident: CR42
  article-title: Performance evaluation of artificial neural network approaches in forecasting reservoir inflow
  publication-title: Appl Math Model
– volume: 38
  start-page: 7387
  issue: 6
  year: 2011
  end-page: 7395
  ident: CR32
  article-title: Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming
  publication-title: Expert Syst Appl
– volume: 37
  start-page: 4097
  issue: 10
  year: 2023
  end-page: 4121
  ident: CR21
  article-title: A hybrid CNN-LSTM approach for monthly reservoir inflow forecasting
  publication-title: Water Resour Manag
– volume: 36
  start-page: 2753
  issue: 9
  year: 2022
  end-page: 2768
  ident: CR2
  article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis
  publication-title: Stoch Env Res Risk Assess
– volume: 562
  start-page: 455
  year: 2018
  end-page: 467
  ident: CR16
  article-title: Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting
  publication-title: J Hydrol
– volume: 9
  start-page: 57757
  year: 2021
  end-page: 57791
  ident: CR47
  article-title: A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems
  publication-title: IEEE Access
– year: 2015
  ident: CR6
  publication-title: Time series analysis: forecasting and control
– volume: 26
  start-page: 4091
  issue: 14
  year: 2012
  end-page: 4103
  ident: CR14
  article-title: Real-time operation of reservoir system by genetic programming
  publication-title: Water Resour Manag
– volume: 19
  start-page: 1385
  issue: 7
  year: 2014
  end-page: 1400
  ident: CR7
  article-title: Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting
  publication-title: J Hydrol Eng
– volume: 37
  start-page: 3227
  issue: 8
  year: 2023
  end-page: 3241
  ident: CR24
  article-title: Streamflow prediction utilizing deep learning and machine learning algorithms for sustainable water supply management
  publication-title: Water Resour Manage
– volume: 561
  start-page: 674
  year: 2018
  ident: 3856_CR17
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.04.036
– volume: 50
  start-page: 9267
  issue: 12
  year: 2014
  ident: 3856_CR50
  publication-title: Water Resour Res
  doi: 10.1002/2013WR015181
– ident: 3856_CR5
  doi: 10.1007/978-981-13-2044-6_17
– ident: 3856_CR49
– volume: 11
  start-page: 135
  year: 1997
  ident: 3856_CR28
  publication-title: J Comput Aided Mol Des
  doi: 10.1023/A:1008074223811
– ident: 3856_CR12
  doi: 10.1007/978-0-387-75959-3
– volume: 11
  start-page: 339
  year: 2010
  ident: 3856_CR35
  publication-title: Genet Program Evolvable Mach
  doi: 10.1007/s10710-010-9113-2
– volume: 37
  start-page: 6127
  issue: 15
  year: 2023
  ident: 3856_CR44
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03646-2
– volume: 37
  start-page: 75
  issue: 1
  year: 2023
  ident: 3856_CR38
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03356-1
– volume: 562
  start-page: 455
  year: 2018
  ident: 3856_CR16
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.04.054
– volume: 10
  start-page: 91
  issue: 2
  year: 2005
  ident: 3856_CR11
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2005)10:2(91)
– volume: 142
  start-page: 04016065
  issue: 12
  year: 2016
  ident: 3856_CR37
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000713
– volume: 31
  start-page: 4855
  issue: 15
  year: 2017
  ident: 3856_CR1
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1782-7
– volume: 35
  start-page: 229
  issue: 1
  year: 2017
  ident: 3856_CR46
  publication-title: J Water Land Dev
  doi: 10.1515/jwld-2017-0088
– volume: 27
  year: 2020
  ident: 3856_CR18
  publication-title: Sustain Comput: Inform Syst
– volume: 132
  start-page: 664
  issue: 5
  year: 2006
  ident: 3856_CR20
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2006)132:5(661)
– volume: 36
  start-page: 2649
  issue: 6
  year: 2012
  ident: 3856_CR42
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.09.048
– volume: 230
  start-page: 244
  issue: 3–4
  year: 2000
  ident: 3856_CR10
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00214-6
– volume-title: Theory and application with seasonal time series
  year: 2008
  ident: 3856_CR48
– volume: 40
  start-page: 145
  issue: 2
  year: 1995
  ident: 3856_CR39
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669509491401
– volume: 14
  start-page: 75
  issue: 1
  year: 2022
  ident: 3856_CR9
  publication-title: Int J Hydrol Sci Technol
  doi: 10.1504/IJHST.2022.123643
– volume: 532
  start-page: 193
  year: 2016
  ident: 3856_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.11.011
– volume: 37
  start-page: 4097
  issue: 10
  year: 2023
  ident: 3856_CR21
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03541-w
– volume: 198
  start-page: 127
  issue: 1–2
  year: 2006
  ident: 3856_CR29
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2006.04.017
– volume: 36
  start-page: 2753
  issue: 9
  year: 2022
  ident: 3856_CR2
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-021-02159-x
– volume: 37
  start-page: 3227
  issue: 8
  year: 2023
  ident: 3856_CR24
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-023-03499-9
– volume: 29
  start-page: 4863
  issue: 13
  year: 2015
  ident: 3856_CR23
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1095-7
– volume: 33
  start-page: 2123
  issue: 6
  year: 2019
  ident: 3856_CR43
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02229-4
– volume: 22
  start-page: 827
  issue: 6
  year: 2008
  ident: 3856_CR33
  publication-title: Hydrol Process: Int J
  doi: 10.1002/hyp.6644
– volume: 26
  start-page: 4091
  issue: 14
  year: 2012
  ident: 3856_CR14
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-012-0132-z
– volume: 9
  start-page: 57757
  year: 2021
  ident: 3856_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3070634
– volume: 342
  start-page: 199
  issue: 1–2
  year: 2007
  ident: 3856_CR36
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.05.026
– volume: 27
  start-page: 377
  issue: 5
  year: 2010
  ident: 3856_CR34
  publication-title: Environ Eng Sci
  doi: 10.1089/ees.2009.0082
– volume: 505
  start-page: 240
  year: 2013
  ident: 3856_CR13
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.10.003
– volume: 2021
  start-page: 29
  year: 2021
  ident: 3856_CR30
  publication-title: Mesop J Big Data
  doi: 10.58496/MJBD/2021/006
– volume: 137
  start-page: 1
  issue: 1–4
  year: 1992
  ident: 3856_CR15
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(92)90046-X
– volume: 35
  start-page: 2941
  issue: 9
  year: 2021
  ident: 3856_CR25
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-021-02879-3
– volume: 31
  start-page: 1795
  issue: 6
  year: 2017
  ident: 3856_CR40
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1612-y
– volume-title: Time series analysis: forecasting and control
  year: 2015
  ident: 3856_CR6
– volume: 245
  start-page: 153
  issue: 1–4
  year: 2001
  ident: 3856_CR8
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(01)00350-X
– volume: 125
  start-page: 263
  issue: 5
  year: 1999
  ident: 3856_CR19
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(1999)125:5(263)
– volume: 405
  start-page: 439
  issue: 3–4
  year: 2011
  ident: 3856_CR27
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.05.042
– volume: 52
  start-page: 508
  issue: 3
  year: 2007
  ident: 3856_CR31
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.52.3.508
– volume: 38
  start-page: 7387
  issue: 6
  year: 2011
  ident: 3856_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.087
– volume: 33
  start-page: 2203
  issue: 6
  year: 2019
  ident: 3856_CR3
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02252-5
– volume: 528
  start-page: 773
  year: 2015
  ident: 3856_CR41
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.07.014
– volume: 19
  start-page: 1385
  issue: 7
  year: 2014
  ident: 3856_CR7
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000892
– volume: 37
  start-page: 1692
  issue: 10
  year: 2011
  ident: 3856_CR45
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2010.11.010
– volume: 372
  start-page: 17
  issue: 1–4
  year: 2009
  ident: 3856_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.03.032
– volume: 11
  start-page: 374
  issue: 2
  year: 2019
  ident: 3856_CR22
  publication-title: Water
  doi: 10.3390/w11020374
SSID ssj0010090
Score 2.4263878
Snippet A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4137
SubjectTerms Algorithms
Atmospheric Sciences
Case studies
Civil Engineering
Correlation coefficient
Correlation coefficients
Dams
data collection
Datasets
Earth and Environmental Science
Earth Sciences
Environment
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
hybrids
Hydrogeology
Hydrology/Water Resources
Inflow
Methods
Neural networks
Reservoirs
Root-mean-square errors
Variables
water
Water inflow
Water resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dIeUKGtuhSQkbgVqxs_EudQoeW5i0S0olTlFiWOI1WiCU1Dq_57ZrzJLiDBKZJjx8p4bH_2zHwDsJebUCqlNbeoP3hAiS03eeg4rpbZyBpEEI6ikS-ScPJdnV_r6xVI-lgYcqvs10S_UBe1pTvyL3IUm5HUSsqD29-cskaRdbVPoZF1qRWKr55i7BWsCmLGGsDq4Ukyu1zYFRBR-FuXGA9NCjfTLoxmHkwXiDDmuGdxspaFXDzeqpb484nJ1O9Ep29hrYOQbDwf83VYcdUGvHlALPgOyllDBhhyaWaI8NgPRJQNm1blTf0PH23tS4-zX4w875q_9c-GeecBXz75T2FcbLpg62zZ2YyPk4Sz5NvZmE-n7MInnn4PV6cnV0cT3mVU4BaBVsvjMoqssELLUW51JpwqZGhlGQllbJwVKDqt8ERpbKlFoV2ujLOxE8oFBSI_-QEGVV25j8AICLkgMqUJiaAnyLF5FhQFse2TtXQIQS-71HZs45T04iZd8iSTvFOUd-rlnYohfF60uZ1zbbxYe6sfkrSbd3_SpZYMYXfxGmcMmUGyytV3WAcX-ciE-JtD2O-HcvmJ53vcfLnHT_BaeO0hB7QtGLTNndtGxNLmO50a3gMFX-KC
  priority: 102
  providerName: ProQuest
Title Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method
URI https://link.springer.com/article/10.1007/s11269-024-03856-2
https://www.proquest.com/docview/3098035433
https://www.proquest.com/docview/3153786402
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QUO0PJQlz5kJG7gauNH4hzTdl-gRivoinKKEseRECVBabYIfn3H3mS3rUqlniw5thPbY8_nzMxngPeZ8rkQUlKN8oMHlFBTlfmG4m6ZDrRCBGFsNPJp7E_m4tO5PG-Dwi47b_fOJOl26nWwm8f8kKJOodaa5VPceDcd31YPNqPx98_DlfUAcYP7txLi0UigymyDZe5v5bZCWqPMO4ZRp29GL2DefenSzeTn4aLJDvW_OySOj-3KFjxvASiJlhKzDRumfAnPbtASvoJiVlvzjXWIJogPyTfEozWZlsVF9QeTpnK5J-kvYv326qvqR02c64HLn_y1QWBkuuL6bMh4RqM4piT-Oo7odEpO3bXVr-FsNDw7ntD2PgaqEaY1NCyCQDPNJB9kWqbMiJz7mhcBE0qHaS5R9ws8jypdSJZLkwlldGiYMF6OuJG_gV5ZlWYHiIVRxgtUoXxL7-NlWD318txy9Vtbax-8bk4S3XKV2yszLpI1y7IdwgSHMHFDmLA-fFjV-b1k6niw9F431Um7ai8TPgjVgEvBeR_erR7jerNGlLQ01QLLoIoIlI_d7MPHbnbXTfz_jW8fV3wXnjInINadbQ96Tb0w-4h_muwAnqjR-KAVekyPhvHsC-bOWXQN4rH5ZQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE912wJGghNYbPxInEOFFvrY0G60gkX0ZiWOIyG1SZumVP1x_W8de5NdQKK3niI5tqOMx55vPC-At7kKuRBSUoP8gwpKbKjKQ0vxtMyGRiGCsC4aeZKG4x_i65E8WoHrPhbGuVX2Z6I_qIvauDvyj3wYqyGXgvNPp2fUVY1y1tW-hEbWlVYotn2KsS6w48BeXaIKd76d7OB6v2Nsb3f2ZUy7KgPUIPhoaVxGkWGGST7MjcyYFQUPDS8jJpSJswKnkwK1LGVKyQppc6GsiS0TNigQDXGc9h6sCS5i1P3WPu-m028LMwYCGH_JE6OOJlB2d1E789i9gIUxRRFJnXEupOxvybiEu_9YaL3g23sMjzrESkZzFnsCK7Z6Cg__yGP4DMpp4-w9zoOaIKAkPxHANiSpyuP6Eh9t7Vt3shPiHP2a3_WvhnhfBd8-vnJRYyRZJAdtyf6UjtKUkvT7_ogmCZn4OtfPYXYXpH0Bq1Vd2XUgDnfZIFKlCl0-oCDH4VlQFC65vzPODiDoaadNl9zc1dg41su0zI7eGumtPb01G8D7xZjTeWqPW3tv9Uuiu21-rpdMOYA3i9e4QZ3VJatsfYF9UKZEKsTfHMCHfimXU_z_ixu3f_E13B_PJof6MEkPNuEB85zkfN-2YLVtLuxLBEtt_qpjSQL6jjfBDaw2HpU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5iSwEjwQmsbvxInANCK5bdDaXRShTRW5Q4joRUkjZNqfrT-HfMeJNdQKK3niI5tqOMx55vPC-AV4UJpVJac4v8gwpKbLkpQsfxtMzH1iCCcBSNfJCGi6_q05E-2oJfQywMuVUOZ6I_qMvG0h35nhzHZiy1knKv6t0iltPZ-5NTThWkyNI6lNNYsci-u7xA9e3sXTLFtX4txOzj4YcF7ysMcIvAo-NxFUVWWKHluLA6F06VMrSyioQyNs5LjdJMoYZlbKVFqV2hjLOxE8oFJSIhidPegJsRJXGnIPXZfG3AQOjir3di1M4USu0-XmcVtReIMOYoHDmZ5UIu_paJG6D7j23Wi7zZPbjbY1U2WTHXfdhy9QO480cGw4dQLVuy9JDvNEMoyb4hdG1ZUlfHzQU-usa3TvMfjFz82p_N95Z5LwXfvrikeDGWrNOCdmy-5JM05Sz9Mp_wJGEHvsL1Izi8DsI-hu26qd0TYIS4XBCZyoSUCSgocHgelCWl9Sez7AiCgXaZ7dOaU3WN42yTkJnonSG9M0_vTIzgzXrMySqpx5W9d4clyfoNfpZt2HEEL9evcWuSvSWvXXOOfVCaRCbE3xzB22EpN1P8_4s7V3_xBdxC1s8-J-n-U7gtPCOR09subHftuXuGKKkrnnt-ZJBdM___BrmwHC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Water+Inflow+Into+the+Dam+Reservoir+Using+the+Hybrid+Intelligent+GP-ANN-+NSGA-II+Method&rft.jtitle=Water+resources+management&rft.au=Moeini%2C+Ramtin&rft.au=Nasiri%2C+Kamran&rft.au=Hosseini%2C+Seyed+Hossein&rft.date=2024-09-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=11&rft.spage=4137&rft.epage=4159&rft_id=info:doi/10.1007%2Fs11269-024-03856-2&rft.externalDocID=10_1007_s11269_024_03856_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon