Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States
Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artif...
        Saved in:
      
    
          | Published in | Water resources management Vol. 34; no. 13; pp. 4113 - 4131 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.10.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-4741 1573-1650  | 
| DOI | 10.1007/s11269-020-02659-5 | 
Cover
| Abstract | Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables (
P
,
T
max
, and
T
min
) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales. | 
    
|---|---|
| AbstractList | Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables (P, Tmax, and Tmin) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales. Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables (P, Tₘₐₓ, and Tₘᵢₙ) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales. Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables ( P , T max , and T min ) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales.  | 
    
| Author | Lee, Taesam Mohebzadeh, Hamid Parisouj, Peiman  | 
    
| Author_xml | – sequence: 1 givenname: Peiman surname: Parisouj fullname: Parisouj, Peiman organization: Department of Civil Engineering, ERI, Gyeongsang National University – sequence: 2 givenname: Hamid orcidid: 0000-0002-6564-3483 surname: Mohebzadeh fullname: Mohebzadeh, Hamid email: hamidmohebzadeh@gnu.ac.kr organization: Department of Civil Engineering, ERI, Gyeongsang National University – sequence: 3 givenname: Taesam surname: Lee fullname: Lee, Taesam email: tae3lee@gnu.ac.kr organization: Department of Civil Engineering, ERI, Gyeongsang National University  | 
    
| BookMark | eNp9UU1vEzEUtFCRSAt_gJMlLlwW7PXXmltIW0AKAgG9cLGM9zlxtWsH26HKD-H_4hAkpB56sC35zcx78-YcncUUAaHnlLyihKjXhdJe6o70pB0pdCceoQUVinVUCnKGFkS3ElecPkHnpdwS0miaLNDvq3k3pUOIG_zRum2IgNdgczx-LKdNyqFu54J9yvhrzWBnP6U7_DnDGFwNKb7BS7yyBVp1Px5w8vg67TP-En5Bxm9tCbHgu6aBL4P3kCFWvJrCbGtw-HvzUHCIuG4B38RQYWwytkJ5ih57OxV49u-9QDfXV99W77v1p3cfVst155joa6c9G7gmfPQgRwWCU8ocH0flJBukpFRZL6xQ2vbM_xjsIAjVSnhnpWoXYxfo5Ul3l9PPPZRq5lAcTJONkPbF9HqQjHPKZIO-uAe9bUZjm870XFHRKymOgv0J5XIqJYM3u9zc5oOhxByTMqekTEvK_E3KiEYa7pFcaGto263ZhulhKjtRS-sTN5D_T_UA6w8-_aq0 | 
    
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130846 crossref_primary_10_1007_s11269_022_03275_1 crossref_primary_10_1080_15715124_2023_2196635 crossref_primary_10_1080_01431161_2021_1957513 crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_2166_hydro_2024_202 crossref_primary_10_1016_j_rineng_2024_103319 crossref_primary_10_1016_j_compag_2024_109131 crossref_primary_10_1007_s11269_020_02719_w crossref_primary_10_3390_w15061179 crossref_primary_10_1007_s12665_023_11222_5 crossref_primary_10_1016_j_srs_2025_100198 crossref_primary_10_1007_s11269_021_02920_5 crossref_primary_10_1007_s11269_022_03173_6 crossref_primary_10_1016_j_eswa_2024_124139 crossref_primary_10_1016_j_rineng_2024_102215 crossref_primary_10_3390_math10162971 crossref_primary_10_1007_s11269_023_03534_9 crossref_primary_10_1016_j_jhydrol_2025_132851 crossref_primary_10_2166_wpt_2023_081 crossref_primary_10_1007_s11269_022_03264_4 crossref_primary_10_1038_s41598_025_87187_1 crossref_primary_10_1007_s11269_022_03216_y crossref_primary_10_1038_s41598_024_75361_w crossref_primary_10_1016_j_envsoft_2023_105730 crossref_primary_10_1080_19942060_2023_2242445 crossref_primary_10_1007_s11269_020_02742_x crossref_primary_10_1111_1752_1688_13098 crossref_primary_10_3390_hydrology11070097 crossref_primary_10_1016_j_jhydrol_2023_130421 crossref_primary_10_1007_s11831_022_09828_2 crossref_primary_10_1016_j_scs_2022_104277 crossref_primary_10_1016_j_pce_2024_103599 crossref_primary_10_2166_wcc_2024_420 crossref_primary_10_1016_j_jhydrol_2024_131235 crossref_primary_10_1038_s41598_025_91668_8 crossref_primary_10_1016_j_jhydrol_2024_132326 crossref_primary_10_21205_deufmd_2023257405 crossref_primary_10_24012_dumf_1158748 crossref_primary_10_2166_wst_2023_193 crossref_primary_10_1007_s11269_021_02770_1 crossref_primary_10_2166_wcc_2023_419 crossref_primary_10_1016_j_jhydrol_2025_132883 crossref_primary_10_1155_2022_5171969 crossref_primary_10_1061_JHYEFF_HEENG_6118 crossref_primary_10_2166_ws_2024_063 crossref_primary_10_1016_j_jhydrol_2022_128431 crossref_primary_10_3390_rs13132630 crossref_primary_10_3390_w13030310 crossref_primary_10_1007_s40808_024_02040_0 crossref_primary_10_2166_wst_2023_330 crossref_primary_10_1007_s12145_024_01322_6 crossref_primary_10_1590_2318_0331_292420230105 crossref_primary_10_1061__ASCE_WR_1943_5452_0001549 crossref_primary_10_1021_acsomega_2c00536 crossref_primary_10_1007_s11269_021_02937_w crossref_primary_10_2139_ssrn_4050027 crossref_primary_10_3390_w14030387 crossref_primary_10_5194_hess_26_4553_2022 crossref_primary_10_3390_w15020262 crossref_primary_10_1007_s00477_022_02254_7 crossref_primary_10_1016_j_ejrh_2023_101374 crossref_primary_10_3390_geosciences12120429 crossref_primary_10_1007_s00477_025_02906_4 crossref_primary_10_1016_j_ejrh_2023_101492 crossref_primary_10_1007_s00477_022_02228_9 crossref_primary_10_1155_2021_5172658 crossref_primary_10_3390_hydrology9070117 crossref_primary_10_1007_s00704_025_05352_y crossref_primary_10_3390_su13168862 crossref_primary_10_3390_su14116612 crossref_primary_10_1007_s12145_024_01569_z crossref_primary_10_1007_s11269_021_03014_y crossref_primary_10_1007_s40808_025_02296_0 crossref_primary_10_1038_s41598_022_07693_4 crossref_primary_10_1080_02626667_2022_2141121 crossref_primary_10_3390_app12157464 crossref_primary_10_2112_JCOASTRES_D_21_00011_1 crossref_primary_10_1007_s00477_023_02489_y crossref_primary_10_1016_j_geogeo_2022_100153 crossref_primary_10_3390_su141811149 crossref_primary_10_3390_w14182898 crossref_primary_10_1007_s11269_021_02763_0 crossref_primary_10_1016_j_jhydrol_2022_128618 crossref_primary_10_1007_s00477_022_02276_1 crossref_primary_10_2166_ws_2021_298 crossref_primary_10_1007_s11356_022_23990_x crossref_primary_10_1016_j_jhydrol_2024_130907 crossref_primary_10_1080_02626667_2023_2173012 crossref_primary_10_2166_wcc_2025_709 crossref_primary_10_3389_fdata_2021_752406 crossref_primary_10_29109_gujsc_1555448 crossref_primary_10_1007_s12665_024_11498_1 crossref_primary_10_1016_j_envsoft_2022_105400 crossref_primary_10_1007_s10668_025_06092_9 crossref_primary_10_1029_2021WR031662 crossref_primary_10_1007_s13201_022_01846_6 crossref_primary_10_1016_j_jenvman_2024_121087 crossref_primary_10_1007_s11269_024_03953_2 crossref_primary_10_2166_hydro_2025_236 crossref_primary_10_3390_w12123532 crossref_primary_10_1007_s00521_022_07406_y crossref_primary_10_1007_s12145_024_01526_w crossref_primary_10_1016_j_jhydrol_2023_129460 crossref_primary_10_2166_hydro_2024_038 crossref_primary_10_1007_s40899_021_00584_y crossref_primary_10_2166_wcc_2024_594 crossref_primary_10_2166_wpt_2024_292 crossref_primary_10_1080_02626667_2021_2012182 crossref_primary_10_1016_j_rsase_2021_100651  | 
    
| Cites_doi | 10.1016/j.agrformet.2014.09.025 10.1007/s00477-016-1338-z 10.1016/j.atmosres.2014.10.016 10.1109/TSMCB.2011.2168604 10.1002/hyp.10055 10.1016/j.jhydrol.2018.10.064 10.1016/S0022-1694(98)00242-X 10.1111/j.1752-1688.2002.tb01544.x 10.1007/s10750-013-1634-2 10.1002/hyp.7535 10.1016/j.envsoft.2017.02.005 10.1061/(ASCE)1084-0699(2005)10:3(216) 10.1061/(ASCE)0733-9496(2007)133:4(339) 10.1016/j.catena.2015.11.013 10.1080/02626660109492867 10.1061/(ASCE)0887-3801(2001)15:3(208) 10.1016/j.jhydrol.2010.05.040 10.1016/j.jhydrol.2018.11.015 10.1016/j.jhydrol.2013.10.052 10.1623/hysj.51.4.599 10.1002/er.3030 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1016/j.patcog.2005.03.028 10.1007/s12559-014-9255-2 10.1016/j.jhydrol.2006.11.001 10.1016/j.jhydrol.2006.07.003 10.1016/j.jhydrol.2005.04.022 10.1016/j.jhydrol.2016.04.041 10.2166/hydro.2015.020 10.5194/hess-20-2611-2016 10.1623/hysj.48.3.381.45286 10.1007/s10462-013-9405-z 10.1016/j.jhydrol.2012.11.048 10.1016/j.jhydrol.2018.08.050 10.1016/j.jhydrol.2010.11.002 10.1007/s11269-014-0705-0 10.1023/B:CLIM.0000013683.13346.4f 10.1007/s12040-014-0423-2 10.2166/hydro.2013.042 10.1016/j.jhydrol.2019.123981 10.1002/2017WR020482 10.1111/j.1095-8649.2007.01503.x 10.3390/w9060406 10.1007/s10661-018-7012-9 10.1016/j.jhydrol.2017.06.020 10.1007/s11269-015-1123-7 10.1016/j.asoc.2019.105589 10.1016/j.jhydrol.2009.06.019 10.1016/j.advwatres.2012.11.003 10.1016/j.jhydrol.2018.07.004 10.1016/j.jhydrol.2019.03.101 10.1016/j.jhydrol.2015.11.050 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.1111/j.1752-1688.2000.tb04276.x 10.1016/j.jhydrol.2015.10.038 10.1016/j.neucom.2005.12.126 10.1007/s11356-014-3046-x 10.1016/j.eswa.2014.02.047 10.1007/s11269-018-1998-1 10.1007/s11269-017-1711-9 10.3390/w9010009 10.1016/j.eswa.2011.04.114 10.1002/hyp.554 10.1016/j.patcog.2008.08.030  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020.  | 
    
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020.  | 
    
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6  | 
    
| DOI | 10.1007/s11269-020-02659-5 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1573-1650 | 
    
| EndPage | 4131 | 
    
| ExternalDocumentID | 10_1007_s11269_020_02659_5 | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2018R1A2B6001799 funderid: http://dx.doi.org/10.13039/501100003725  | 
    
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c352t-9f384904dfe6d7e54113c4dd7c63866117af5a579a23fb8a8501975fca67fca33 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0920-4741 | 
    
| IngestDate | Sun Aug 24 04:06:49 EDT 2025 Fri Jul 25 19:12:34 EDT 2025 Wed Oct 01 01:44:59 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Feb 21 02:26:41 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Keywords | Streamflow prediction Support vector regression Extreme learning machine Artificial neural networks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-9f384904dfe6d7e54113c4dd7c63866117af5a579a23fb8a8501975fca67fca33 | 
    
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-6564-3483 | 
    
| PQID | 2471527653 | 
    
| PQPubID | 54174 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_miscellaneous_2986344136 proquest_journals_2471527653 crossref_primary_10_1007_s11269_020_02659_5 crossref_citationtrail_10_1007_s11269_020_02659_5 springer_journals_10_1007_s11269_020_02659_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201000 2020-10-00 20201001  | 
    
| PublicationDateYYYYMMDD | 2020-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2020 text: 20201000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) | 
    
| PublicationTitle | Water resources management | 
    
| PublicationTitleAbbrev | Water Resour Manage | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | Ragettli, Cortés, McPhee, Pellicciotti (CR49) 2014; 28 Mauger, Lee, Bandaragoda, Serra, Won (CR43) 2016 Maity, Bhagwat, Bhatnagar (CR42) 2010; 24 Wu, Wang (CR62) 2009; 42 Yoon, Hyun, Lee (CR65) 2007; 335 Yaseen, El-Shafie, Jaafar, Afan, Sayl (CR64) 2015; 530 Guo, Zhou, Qin, Zou, Li (CR20) 2011; 38 CR34 Barzegar, Moghaddam, Adamowski, Fijani (CR3) 2017; 31 Deo, Şahin (CR10) 2015; 153 Govindaraju (CR17) 2000; 5 Shrestha, Shukla (CR54) 2015; 200 Zhang, Lin, Peng, Wang, Yang, Sorooshian, Liu, Zhuang (CR71) 2018; 565 Grantz, Rajagopalan, Zagona, Clark (CR19) 2007; 133 Benke, Cushing (CR5) 2011 Wang (CR59) 2006 Noori, Kalin (CR46) 2016; 533 Luo, Yuan, Zhu, Xu, Meng, Peng (CR41) 2019; 568 Zealand, Burn, Simonovic (CR70) 1999; 214 Huang, Zhu, Siew (CR27) 2004; 2 Wang, Chau, Cheng, Qiu (CR58) 2009; 374 Kang, Lee (CR32) 2014; 123 (CR29) 2000; 5 Wang, Li, Ma, Bai (CR57) 2019; 573 Genç, Dağ (CR14) 2016; 30 Wu, Chau, Fan (CR60) 2010; 389 Dettinger, Cayan, Meyer, Jeton (CR11) 2004; 62 Hadi, Tombul (CR21) 2018; 32 Jeton, Dettinger, Smith (CR30) 1996; 95 Hu, Lam, Ng (CR24) 2001; 46 Sapin, Rajagopalan, Saito, Caldwell (CR52) 2017; 91 Sudheer, Gosain, Ramasastri (CR55) 2002; 16 Yu, Liong (CR69) 2007; 332 Peng, Zhou, Zhang, Fu (CR48) 2017; 9 Bonada, Resh (CR6) 2013; 719 Huang, Zhou, Ding, Zhang (CR26) 2011; 42 Liu, Lu (CR39) 2014; 21 Yu, Chen, Chang (CR67) 2006; 328 Cheng, Zhao, Chau, Wu (CR8) 2006; 316 Karran, Morin, Adamowski (CR33) 2013; 16 Patel, Ramachandran (CR47) 2015; 29 Niu, Feng, Zeng, Feng, Min, Cheng (CR45) 2019; 82 Wu, Han, Annambhotla, Bryant (CR61) 2005; 10 Meng, Huang, Huang, Fang, Wu, Wang (CR44) 2019; 568 Şahin, Kaya, Uyar, Yıldırım (CR51) 2014; 38 Hay, Wilby, Leavesley (CR22) 2000; 36 Goyal, Bharti, Quilty, Adamowski, Pandey (CR18) 2014; 41 Yang, Asanjan, Welles, Gao, Sorooshian, Liu (CR63) 2017; 53 Atiquzzaman, Kandasamy (CR2) 2016; 18 Campolo, Soldati, Andreussi (CR7) 2003; 48 Tongal, Booij (CR56) 2018; 564 Yoon, Jun, Hyun, Bae, Lee (CR66) 2011; 396 Shortridge, Guikema, Zaitchik (CR53) 2016; 20 Ding, Zhao, Zhang, Xu, Nie (CR13) 2015; 44 Yu, Yang, Chen, Kuo, Tseng (CR68) 2017; 552 Lin, Cheng, Chau (CR37) 2006; 51 Ghumman, Ahmad, Hashmi (CR15) 2018; 190 Liu, Sang, Li, Hu, Liang (CR40) 2017; 9 Cortes, Vapnik (CR9) 1995; 20 Zhu, Qin, Suganthan, Huang (CR72) 2005; 38 Adnan, Liang, Trajkovic, Zounemat-Kermani, Li, Kisi (CR1) 2019; 577 Henning, Gresswell, Fleming (CR23) 2007; 71 Kumar, Pandey, Sharma, Flügel (CR35) 2016; 138 Belayneh, Adamowski, Khalil, Ozga-Zielinski (CR4) 2014; 508 Huang (CR25) 2014; 6 Lafdani, Nia, Ahmadi (CR36) 2013; 478 Dibike, Velickov, Solomatine, Abbott (CR12) 2001; 15 Gizaw, Gan (CR16) 2016; 538 Liong, Sivapragasam (CR38) 2002; 38 Huang, Zhu, Siew (CR28) 2006; 70 Kalra, Ahmad, Nayak (CR31) 2013; 53 Rezaie-Balf, Zahmatkesh, Kim (CR50) 2017; 31 C-T Cheng (2659_CR8) 2006; 316 G-B Huang (2659_CR28) 2006; 70 M Liu (2659_CR39) 2014; 21 W Wang (2659_CR59) 2006 K Grantz (2659_CR19) 2007; 133 JA Henning (2659_CR23) 2007; 71 A Belayneh (2659_CR4) 2014; 508 E Meng (2659_CR44) 2019; 568 MS Gizaw (2659_CR16) 2016; 538 ZM Yaseen (2659_CR64) 2015; 530 H Yoon (2659_CR65) 2007; 335 K Kang (2659_CR32) 2014; 123 L Wang (2659_CR57) 2019; 573 AC Benke (2659_CR5) 2011 P-S Yu (2659_CR68) 2017; 552 RC Deo (2659_CR10) 2015; 153 R Maity (2659_CR42) 2010; 24 MD Dettinger (2659_CR11) 2004; 62 D Zhang (2659_CR71) 2018; 565 T Hu (2659_CR24) 2001; 46 X Luo (2659_CR41) 2019; 568 O Genç (2659_CR14) 2016; 30 J Guo (2659_CR20) 2011; 38 2659_CR34 T Yang (2659_CR63) 2017; 53 DJ Karran (2659_CR33) 2013; 16 CM Zealand (2659_CR70) 1999; 214 Y Liu (2659_CR40) 2017; 9 J Sapin (2659_CR52) 2017; 91 M Şahin (2659_CR51) 2014; 38 K-P Wu (2659_CR62) 2009; 42 SS Patel (2659_CR47) 2015; 29 X Yu (2659_CR69) 2007; 332 R Barzegar (2659_CR3) 2017; 31 SY Liong (2659_CR38) 2002; 38 AE Jeton (2659_CR30) 1996; 95 M Atiquzzaman (2659_CR2) 2016; 18 G Mauger (2659_CR43) 2016 N Noori (2659_CR46) 2016; 533 P-S Yu (2659_CR67) 2006; 328 W-C Wang (2659_CR58) 2009; 374 M Campolo (2659_CR7) 2003; 48 S Ragettli (2659_CR49) 2014; 28 W-j Niu (2659_CR45) 2019; 82 JE Shortridge (2659_CR53) 2016; 20 LE Hay (2659_CR22) 2000; 36 RM Adnan (2659_CR1) 2019; 577 Q-Y Zhu (2659_CR72) 2005; 38 MK Goyal (2659_CR18) 2014; 41 YB Dibike (2659_CR12) 2001; 15 G-B Huang (2659_CR27) 2004; 2 D Kumar (2659_CR35) 2016; 138 H Yoon (2659_CR66) 2011; 396 JS Wu (2659_CR61) 2005; 10 N Shrestha (2659_CR54) 2015; 200 C Cortes (2659_CR9) 1995; 20 SJ Hadi (2659_CR21) 2018; 32 A Kalra (2659_CR31) 2013; 53 T Peng (2659_CR48) 2017; 9 H Tongal (2659_CR56) 2018; 564 K Sudheer (2659_CR55) 2002; 16 ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2659_CR29) 2000; 5 G-B Huang (2659_CR26) 2011; 42 AR Ghumman (2659_CR15) 2018; 190 S Ding (2659_CR13) 2015; 44 G-B Huang (2659_CR25) 2014; 6 RS Govindaraju (2659_CR17) 2000; 5 M Rezaie-Balf (2659_CR50) 2017; 31 N Bonada (2659_CR6) 2013; 719 C Wu (2659_CR60) 2010; 389 EK Lafdani (2659_CR36) 2013; 478 J-Y Lin (2659_CR37) 2006; 51  | 
    
| References_xml | – volume: 564 start-page: 266 year: 2018 end-page: 282 ident: CR56 article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation publication-title: J Hydrol – volume: 28 start-page: 5674 issue: 23 year: 2014 end-page: 5695 ident: CR49 article-title: An evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watersheds publication-title: Hydrol Process – volume: 38 start-page: 13073 issue: 10 year: 2011 end-page: 13081 ident: CR20 article-title: Monthly streamflow forecasting based on improved support vector machine model publication-title: Expert Syst Appl – volume: 332 start-page: 290 issue: 3–4 year: 2007 end-page: 302 ident: CR69 article-title: Forecasting of hydrologic time series with ridge regression in feature space publication-title: J Hydrol – volume: 577 start-page: 123981 year: 2019 ident: CR1 article-title: Daily streamflow prediction using optimally pruned extreme learning machine publication-title: J Hydrol – volume: 36 start-page: 387 issue: 2 year: 2000 end-page: 397 ident: CR22 article-title: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States 1 publication-title: JAWRA J Am Water Res Assoc – volume: 42 start-page: 513 issue: 2 year: 2011 end-page: 529 ident: CR26 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans Syst Man Cyber Part B (Cybernetics) – volume: 82 start-page: 105589 year: 2019 ident: CR45 article-title: Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm publication-title: Appl Soft Comput – volume: 396 start-page: 128 issue: 1–2 year: 2011 end-page: 138 ident: CR66 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J Hydrol – year: 2016 ident: CR43 publication-title: Effect of climate change on the Hydrology of the Chehalis Basin. Prepared for anchor QEA – volume: 62 start-page: 283 issue: 1–3 year: 2004 end-page: 317 ident: CR11 article-title: Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099 publication-title: Clim Chang – volume: 18 start-page: 345 issue: 2 year: 2016 end-page: 353 ident: CR2 article-title: Prediction of hydrological time-series using extreme learning machine publication-title: J Hydroinf – volume: 573 start-page: 733 year: 2019 end-page: 745 ident: CR57 article-title: Improving the prediction accuracy of monthly streamflow using a data-driven model based on a double-processing strategy publication-title: J Hydrol – volume: 16 start-page: 671 issue: 3 year: 2013 end-page: 689 ident: CR33 article-title: Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes publication-title: J Hydroinf – volume: 41 start-page: 5267 issue: 11 year: 2014 end-page: 5276 ident: CR18 article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy logic, and ANFIS publication-title: Expert Syst Appl – volume: 5 start-page: 115 issue: 2 year: 2000 end-page: 123 ident: CR29 article-title: Artificial neural networks in hydrology. I: preliminary concepts publication-title: J Hydrol Eng – volume: 190 start-page: 704 issue: 12 year: 2018 ident: CR15 article-title: Performance assessment of artificial neural networks and support vector regression models for stream flow predictions publication-title: Environ Monit Assess – year: 2006 ident: CR59 publication-title: Stochasticity, nonlinearity and forecasting of streamflow processes – volume: 538 start-page: 387 year: 2016 end-page: 398 ident: CR16 article-title: Regional flood frequency analysis using support vector regression under historical and future climate publication-title: J Hydrol – volume: 214 start-page: 32 issue: 1–4 year: 1999 end-page: 48 ident: CR70 article-title: Short term streamflow forecasting using artificial neural networks publication-title: J Hydrol – volume: 24 start-page: 917 issue: 7 year: 2010 end-page: 923 ident: CR42 article-title: Potential of support vector regression for prediction of monthly streamflow using endogenous property publication-title: Hydrol Proc: Int J – volume: 32 start-page: 3405 issue: 10 year: 2018 end-page: 3422 ident: CR21 article-title: Forecasting daily streamflow for basins with different physical characteristics through data-driven methods publication-title: Water Resour Manag – volume: 20 start-page: 2611 issue: 7 year: 2016 end-page: 2628 ident: CR53 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol Earth Syst Sci – volume: 16 start-page: 1325 issue: 6 year: 2002 end-page: 1330 ident: CR55 article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models publication-title: Hydrol Process – volume: 10 start-page: 216 issue: 3 year: 2005 end-page: 222 ident: CR61 article-title: Artificial neural networks for forecasting watershed runoff and stream flows publication-title: J Hydrol Eng – volume: 42 start-page: 710 issue: 5 year: 2009 end-page: 717 ident: CR62 article-title: Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space publication-title: Pattern Recogn – volume: 53 start-page: 2786 issue: 4 year: 2017 end-page: 2812 ident: CR63 article-title: Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information publication-title: Water Resour Res – volume: 568 start-page: 462 year: 2019 end-page: 478 ident: CR44 article-title: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model publication-title: J Hydrol – volume: 200 start-page: 172 year: 2015 end-page: 184 ident: CR54 article-title: Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment publication-title: Agric For Meteorol – volume: 2 start-page: 985 year: 2004 end-page: 990 ident: CR27 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: Neural Netw – volume: 138 start-page: 77 year: 2016 end-page: 90 ident: CR35 article-title: Daily suspended sediment simulation using machine learning approach publication-title: Catena – volume: 123 start-page: 705 issue: 4 year: 2014 end-page: 713 ident: CR32 article-title: Hydrologic modelling of the effect of snowmelt and temperature on a mountainous watershed publication-title: J Earth Syst Sci – volume: 5 start-page: 124 issue: 2 year: 2000 end-page: 137 ident: CR17 article-title: Artificial neural networks in hydrology. II: hydrologic applications publication-title: J Hydrol Eng – volume: 565 start-page: 720 year: 2018 end-page: 736 ident: CR71 article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm publication-title: J Hydrol – volume: 71 start-page: 476 issue: 2 year: 2007 end-page: 492 ident: CR23 article-title: Use of seasonal freshwater wetlands by fishes in a temperate river floodplain publication-title: J Fish Biol – volume: 21 start-page: 11036 issue: 18 year: 2014 end-page: 11053 ident: CR39 article-title: Support vector machine―an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river? publication-title: Environ Sci Pollut Res – year: 2011 ident: CR5 publication-title: Rivers of North America – volume: 51 start-page: 599 issue: 4 year: 2006 end-page: 612 ident: CR37 article-title: Using support vector machines for long-term discharge prediction publication-title: Hydrol Sci J – volume: 335 start-page: 68 issue: 1–2 year: 2007 end-page: 77 ident: CR65 article-title: Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks publication-title: J Hydrol – volume: 48 start-page: 381 issue: 3 year: 2003 end-page: 398 ident: CR7 article-title: Artificial neural network approach to flood forecasting in the river Arno publication-title: Hydrol Sci J – volume: 530 start-page: 829 year: 2015 end-page: 844 ident: CR64 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J Hydrol – volume: 374 start-page: 294 issue: 3–4 year: 2009 end-page: 306 ident: CR58 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J Hydrol – volume: 533 start-page: 141 year: 2016 end-page: 151 ident: CR46 article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction publication-title: J Hydrol – volume: 46 start-page: 729 issue: 5 year: 2001 end-page: 745 ident: CR24 article-title: River flow time series prediction with a range-dependent neural network publication-title: Hydrol Sci J – volume: 29 start-page: 589 issue: 2 year: 2015 end-page: 602 ident: CR47 article-title: A comparison of machine learning techniques for modeling river flow time series: the case of upper Cauvery river basin publication-title: Water Resour Manag – volume: 9 start-page: 406 issue: 6 year: 2017 ident: CR48 article-title: Streamflow forecasting using empirical wavelet transform and artificial neural networks publication-title: Water – volume: 31 start-page: 3843 issue: 12 year: 2017 end-page: 3865 ident: CR50 article-title: Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods publication-title: Water Resour Manag – volume: 568 start-page: 184 year: 2019 end-page: 193 ident: CR41 article-title: A hybrid support vector regression framework for streamflow forecast publication-title: J Hydrol – volume: 15 start-page: 208 issue: 3 year: 2001 end-page: 216 ident: CR12 article-title: Model induction with support vector machines: introduction and applications publication-title: J Comput Civ Eng – volume: 95 start-page: 4260 year: 1996 ident: CR30 article-title: Potential effects of climate change on streamflow, eastern and western slopes of the Sierra Nevada, California and Nevada publication-title: Water Resourc Invest Rep – volume: 9 start-page: 9 issue: 1 year: 2017 ident: CR40 article-title: Long-term streamflow forecasting based on relevance vector machine model publication-title: Water – volume: 508 start-page: 418 year: 2014 end-page: 429 ident: CR4 article-title: Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models publication-title: J Hydrol – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR9 article-title: Support-vector networks publication-title: Mach Learn – volume: 552 start-page: 92 year: 2017 end-page: 104 ident: CR68 article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting publication-title: J Hydrol – volume: 44 start-page: 103 issue: 1 year: 2015 end-page: 115 ident: CR13 article-title: Extreme learning machine: algorithm, theory and applications publication-title: Artif Intell Rev – volume: 53 start-page: 150 year: 2013 end-page: 162 ident: CR31 article-title: Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns publication-title: Adv Water Resour – volume: 316 start-page: 129 issue: 1–4 year: 2006 end-page: 140 ident: CR8 article-title: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure publication-title: J Hydrol – volume: 133 start-page: 339 issue: 4 year: 2007 end-page: 350 ident: CR19 article-title: Water management applications of climate-based hydrologic forecasts: case study of the Truckee-Carson River basin publication-title: J Water Resour Plan Manag – ident: CR34 – volume: 91 start-page: 87 year: 2017 end-page: 94 ident: CR52 article-title: A K-nearest neighbor based stochastic multisite flow and stream temperature generation technique publication-title: Environ Model Softw – volume: 6 start-page: 376 issue: 3 year: 2014 end-page: 390 ident: CR25 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cogn Comput – volume: 38 start-page: 1759 issue: 10 year: 2005 end-page: 1763 ident: CR72 article-title: Evolutionary extreme learning machine publication-title: Pattern Recogn – volume: 153 start-page: 512 year: 2015 end-page: 525 ident: CR10 article-title: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia publication-title: Atmos Res – volume: 719 start-page: 1 issue: 1 year: 2013 end-page: 29 ident: CR6 article-title: Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems publication-title: Hydrobiologia – volume: 478 start-page: 50 year: 2013 end-page: 62 ident: CR36 article-title: Daily suspended sediment load prediction using artificial neural networks and support vector machines publication-title: J Hydrol – volume: 389 start-page: 146 issue: 1–2 year: 2010 end-page: 167 ident: CR60 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J Hydrol – volume: 38 start-page: 205 issue: 2 year: 2014 end-page: 212 ident: CR51 article-title: Application of extreme learning machine for estimating solar radiation from satellite data publication-title: Int J Energy Res – volume: 31 start-page: 2705 issue: 10 year: 2017 end-page: 2718 ident: CR3 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch Env Res Risk A – volume: 30 start-page: 43 issue: 1 year: 2016 end-page: 61 ident: CR14 article-title: A machine learning-based approach to predict the velocity profiles in small streams publication-title: Water Resour Manag – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR28 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 328 start-page: 704 issue: 3–4 year: 2006 end-page: 716 ident: CR67 article-title: Support vector regression for real-time flood stage forecasting publication-title: J Hydrol – volume: 38 start-page: 173 issue: 1 year: 2002 end-page: 186 ident: CR38 article-title: Flood stage forecasting with support vector machines 1 publication-title: JAWRA J Am Water Res Assoc – volume: 200 start-page: 172 year: 2015 ident: 2659_CR54 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2014.09.025 – volume: 31 start-page: 2705 issue: 10 year: 2017 ident: 2659_CR3 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-016-1338-z – volume: 153 start-page: 512 year: 2015 ident: 2659_CR10 publication-title: Atmos Res doi: 10.1016/j.atmosres.2014.10.016 – volume: 42 start-page: 513 issue: 2 year: 2011 ident: 2659_CR26 publication-title: IEEE Trans Syst Man Cyber Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – ident: 2659_CR34 – volume: 28 start-page: 5674 issue: 23 year: 2014 ident: 2659_CR49 publication-title: Hydrol Process doi: 10.1002/hyp.10055 – volume: 568 start-page: 184 year: 2019 ident: 2659_CR41 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.10.064 – volume: 328 start-page: 704 issue: 3–4 year: 2006 ident: 2659_CR67 publication-title: J Hydrol – volume: 214 start-page: 32 issue: 1–4 year: 1999 ident: 2659_CR70 publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00242-X – volume: 38 start-page: 173 issue: 1 year: 2002 ident: 2659_CR38 publication-title: JAWRA J Am Water Res Assoc doi: 10.1111/j.1752-1688.2002.tb01544.x – volume: 719 start-page: 1 issue: 1 year: 2013 ident: 2659_CR6 publication-title: Hydrobiologia doi: 10.1007/s10750-013-1634-2 – volume: 24 start-page: 917 issue: 7 year: 2010 ident: 2659_CR42 publication-title: Hydrol Proc: Int J doi: 10.1002/hyp.7535 – volume: 91 start-page: 87 year: 2017 ident: 2659_CR52 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.02.005 – volume: 2 start-page: 985 year: 2004 ident: 2659_CR27 publication-title: Neural Netw – volume: 10 start-page: 216 issue: 3 year: 2005 ident: 2659_CR61 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2005)10:3(216) – volume: 133 start-page: 339 issue: 4 year: 2007 ident: 2659_CR19 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2007)133:4(339) – volume: 138 start-page: 77 year: 2016 ident: 2659_CR35 publication-title: Catena doi: 10.1016/j.catena.2015.11.013 – volume: 46 start-page: 729 issue: 5 year: 2001 ident: 2659_CR24 publication-title: Hydrol Sci J doi: 10.1080/02626660109492867 – volume: 15 start-page: 208 issue: 3 year: 2001 ident: 2659_CR12 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2001)15:3(208) – volume: 389 start-page: 146 issue: 1–2 year: 2010 ident: 2659_CR60 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.05.040 – volume: 568 start-page: 462 year: 2019 ident: 2659_CR44 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.015 – volume: 508 start-page: 418 year: 2014 ident: 2659_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.10.052 – volume: 51 start-page: 599 issue: 4 year: 2006 ident: 2659_CR37 publication-title: Hydrol Sci J doi: 10.1623/hysj.51.4.599 – volume: 95 start-page: 4260 year: 1996 ident: 2659_CR30 publication-title: Water Resourc Invest Rep – volume: 38 start-page: 205 issue: 2 year: 2014 ident: 2659_CR51 publication-title: Int J Energy Res doi: 10.1002/er.3030 – volume: 5 start-page: 124 issue: 2 year: 2000 ident: 2659_CR17 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 38 start-page: 1759 issue: 10 year: 2005 ident: 2659_CR72 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2005.03.028 – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 2659_CR25 publication-title: Cogn Comput doi: 10.1007/s12559-014-9255-2 – volume-title: Effect of climate change on the Hydrology of the Chehalis Basin. Prepared for anchor QEA year: 2016 ident: 2659_CR43 – volume: 335 start-page: 68 issue: 1–2 year: 2007 ident: 2659_CR65 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.11.001 – volume: 332 start-page: 290 issue: 3–4 year: 2007 ident: 2659_CR69 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.07.003 – volume: 316 start-page: 129 issue: 1–4 year: 2006 ident: 2659_CR8 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.04.022 – volume: 538 start-page: 387 year: 2016 ident: 2659_CR16 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.04.041 – volume-title: Rivers of North America year: 2011 ident: 2659_CR5 – volume: 18 start-page: 345 issue: 2 year: 2016 ident: 2659_CR2 publication-title: J Hydroinf doi: 10.2166/hydro.2015.020 – volume: 20 start-page: 2611 issue: 7 year: 2016 ident: 2659_CR53 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-20-2611-2016 – volume: 48 start-page: 381 issue: 3 year: 2003 ident: 2659_CR7 publication-title: Hydrol Sci J doi: 10.1623/hysj.48.3.381.45286 – volume: 44 start-page: 103 issue: 1 year: 2015 ident: 2659_CR13 publication-title: Artif Intell Rev doi: 10.1007/s10462-013-9405-z – volume: 478 start-page: 50 year: 2013 ident: 2659_CR36 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.11.048 – volume: 565 start-page: 720 year: 2018 ident: 2659_CR71 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.08.050 – volume: 396 start-page: 128 issue: 1–2 year: 2011 ident: 2659_CR66 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 – volume: 29 start-page: 589 issue: 2 year: 2015 ident: 2659_CR47 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0705-0 – volume-title: Stochasticity, nonlinearity and forecasting of streamflow processes year: 2006 ident: 2659_CR59 – volume: 62 start-page: 283 issue: 1–3 year: 2004 ident: 2659_CR11 publication-title: Clim Chang doi: 10.1023/B:CLIM.0000013683.13346.4f – volume: 123 start-page: 705 issue: 4 year: 2014 ident: 2659_CR32 publication-title: J Earth Syst Sci doi: 10.1007/s12040-014-0423-2 – volume: 16 start-page: 671 issue: 3 year: 2013 ident: 2659_CR33 publication-title: J Hydroinf doi: 10.2166/hydro.2013.042 – volume: 577 start-page: 123981 year: 2019 ident: 2659_CR1 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123981 – volume: 53 start-page: 2786 issue: 4 year: 2017 ident: 2659_CR63 publication-title: Water Resour Res doi: 10.1002/2017WR020482 – volume: 71 start-page: 476 issue: 2 year: 2007 ident: 2659_CR23 publication-title: J Fish Biol doi: 10.1111/j.1095-8649.2007.01503.x – volume: 9 start-page: 406 issue: 6 year: 2017 ident: 2659_CR48 publication-title: Water doi: 10.3390/w9060406 – volume: 190 start-page: 704 issue: 12 year: 2018 ident: 2659_CR15 publication-title: Environ Monit Assess doi: 10.1007/s10661-018-7012-9 – volume: 552 start-page: 92 year: 2017 ident: 2659_CR68 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.06.020 – volume: 30 start-page: 43 issue: 1 year: 2016 ident: 2659_CR14 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1123-7 – volume: 82 start-page: 105589 year: 2019 ident: 2659_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105589 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2659_CR9 publication-title: Mach Learn – volume: 374 start-page: 294 issue: 3–4 year: 2009 ident: 2659_CR58 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.019 – volume: 53 start-page: 150 year: 2013 ident: 2659_CR31 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2012.11.003 – volume: 564 start-page: 266 year: 2018 ident: 2659_CR56 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.07.004 – volume: 573 start-page: 733 year: 2019 ident: 2659_CR57 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.03.101 – volume: 533 start-page: 141 year: 2016 ident: 2659_CR46 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.11.050 – volume: 5 start-page: 115 issue: 2 year: 2000 ident: 2659_CR29 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume: 36 start-page: 387 issue: 2 year: 2000 ident: 2659_CR22 publication-title: JAWRA J Am Water Res Assoc doi: 10.1111/j.1752-1688.2000.tb04276.x – volume: 530 start-page: 829 year: 2015 ident: 2659_CR64 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.038 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 2659_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 21 start-page: 11036 issue: 18 year: 2014 ident: 2659_CR39 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-014-3046-x – volume: 41 start-page: 5267 issue: 11 year: 2014 ident: 2659_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.02.047 – volume: 32 start-page: 3405 issue: 10 year: 2018 ident: 2659_CR21 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1998-1 – volume: 31 start-page: 3843 issue: 12 year: 2017 ident: 2659_CR50 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1711-9 – volume: 9 start-page: 9 issue: 1 year: 2017 ident: 2659_CR40 publication-title: Water doi: 10.3390/w9010009 – volume: 38 start-page: 13073 issue: 10 year: 2011 ident: 2659_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.114 – volume: 16 start-page: 1325 issue: 6 year: 2002 ident: 2659_CR55 publication-title: Hydrol Process doi: 10.1002/hyp.554 – volume: 42 start-page: 710 issue: 5 year: 2009 ident: 2659_CR62 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.08.030  | 
    
| SSID | ssj0010090 | 
    
| Score | 2.5972657 | 
    
| Snippet | Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence,... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4113 | 
    
| SubjectTerms | administrative management Algorithms Artificial neural networks Atmospheric Sciences Back propagation networks basins case studies Civil Engineering Climatic zones Computer simulation Daily Drought Earth and Environmental Science Earth Sciences Environment flood control Flood management Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Learning algorithms Learning theory Machine learning Mitigation Model accuracy Monthly Neural networks prediction regression analysis Reservoir operation River basins Rivers Simulation Snowmelt Statistical analysis Statistical methods Stream discharge Stream flow Support vector machines water Water resources Water resources management  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrG-GMGbBkz2lfVWq0WEiogF8RI2m40W2lSaivhD_L_O5tGqqOAlhGSyCzu7mW93Zr4h5DCUiZHWZ14qTegxHWpPhTECOcpjwdBEx9wlJ3evxWWPXd3z-yopLK-j3WuXZPGnniW7-YFQntvu4L6BK4_PkwXu6LxwFveC1tR3gKihOFlRKMnQYFapMj-38dUczTDmN7doYW06K2S5gonQKvW6SuZstkaWPpEHrpP3slgv3kO3iIi0UJGlPkJr8DjCXf_TMAcEpeBcz3qYDkavcDN2nhmnjVNoQRttGLhQwjcYpdDBXuHWBWrAmc77WQ7ulBbOqxoqE2gP-gXDKzw4hn_oZ4DwEUrYCiVs3SC9zsVd-9Kriix4BrHXxFMpDZk6YUlqRSItZ75PDUsSaXBlovH2pU655lLpgKZxqEOOoFDy1Ggh8ULpJmlk2OkWAc1U7JvEIAKzjBmtXElUS31h8UlCgybx67GOTMVA7gphDKIZd7LTT4T6iQr9RLxJjqbfPJf8G39K79YqjKq1mEcB2l8eSMFpkxxMX-Mqcq4RndnRC8qoUFBEhlQ0yXGt-lkTv_e4_T_xHbIYuNlXRAPuksZk_GL3ENVM4v1iEn8A0XLtlA priority: 102 providerName: Springer Nature  | 
    
| Title | Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States | 
    
| URI | https://link.springer.com/article/10.1007/s11269-020-02659-5 https://www.proquest.com/docview/2471527653 https://www.proquest.com/docview/2986344136  | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7Qs8ID5FYVSHxBtEkNiO40kIZaXdBFo1TVQavESO44xKXbqtnRB_CP8vd_loAYm9RFHi5JSc7fvZd_c7gFeJLpz2oQxK7ZJA2sQGJskJyAmVx5JMdK44Ofl4Gh_N5KczdbYD0y4XhsMquzmxnqiLpeM98rcRzaIq0rESHy6vAq4axd7VroSGbUsrFO9rirFd6EfMjNWD_sF4enK68SsQoqh3XQwtmiQZ0zaNpkmmC6PYBLyconWJMoH621Rt8ec_LtPaEk3uw70WQmLa6PwB7PjqIdz9g1jwEfxqCvnSOR7X0ZIeWyLVc0wX5_Rd6-8XKyTAiuyWthflYvkDT67Za8Oa2scUR2TfkMMMf-KyxAlJxVMO4sADu5pXK-QdXPzY1ldZ42gxr9lf8Ruz_-O8QoKW2EBabCDtY5hNxl9GR0FbgCFwhMvWgSlFIs07WZQ-LrRXMgyFk0WhHY1aMuyhtqWyShsbiTJPbKIIMGpVOhtrOgjxBHoVCX0KaKXJQ1c4QmdeSmcNl0v1Iow9XSlENICw-9eZa9nJuUjGItvyKrN-MtJPVusnUwN4vXnmsuHmuLX1XqfCrB2nq2zbqwbwcnObRhi7TWzllzfUxiSxINQo4gG86VS_fcX_JT67XeJzuBNxb6sjA_egt76-8S8I4azzIewmk8Mh9NPDr5_Hw7YT09VZlP4Gnpb6jQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEE-xUGCQ4AQRJLbjGKlC221XW9pdVVUrVVxSx3HKSttsaVJV_SH8HX4bM4mzC0j01ksU5WXJM_F843l8jL1NVG6VC0VQKJsEwiQm0EmGQI7LLBZoojNJxcnjSTw6El-P5fEK-9XVwlBaZbcmNgt1Pre0R_4xwlVURiqW_Mv5j4BYoyi62lFoGE-tkG80LcZ8Yceuu75CF67a2NlCeb-LouH24WAUeJaBwCL4qANd8EToTyIvXJwrJ0UYcivyXFlUTbReoTKFNFJpE_EiS0wiERUpWVgTKzzQhiiagDXBhUbnb21ze7J_sIhjIIJpdnk0OmkCjbcv22mL98Io1gG5b-gHSR3Iv03jEu_-E6JtLN_wAbvvISv0Wx17yFZc-Yjd-6OR4WP2syUOxnMYN9mZDnzj1lPoz05xHuvvZxUgQAYKg5uzYja_gv0LihKRZnyGPgzQngKlNV7DvIAhjgoHlDQCm6aalhXQjjFseT6XGgazadNtFr4R2wBMS0AoCy2EhhZCP2FHtyKKp2y1xEGfMTBCZ6HNLaJBJ4Q1muhZHQ9jh1dyHvVY2M11an03dCLlmKXLPs4knxTlkzbySWWPvV-8c972Arnx6fVOhKlfF6p0qcU99mZxG_9oCtOY0s0v8RmdxBxRKo977EMn-uUn_j_i85tHfM3ujA7He-nezmT3BbsbkeY1WYnrbLW-uHQvEV3V2SuvwsBObvuv-Q0dwDPD | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9KC6IPpX7h2aoj6JOGmuxXVhA574yttaWIheJL3Gw27cE11zYppX-I_4x_nTP5uFPBvvUlhGSThZ3Zmd_sfDH2Ita50z4UQaFdHAgb28DEGQI5LjMlUEVnkpKTd_fU1oH4fCgPl9ivPheGwip7mdgI6nzm6Ix8M0IpKiOtJN8surCI_XHy_vQsoA5S5Gnt22m0LLLjry7RfKvebY-R1i-jKPn4bbQVdB0GAofAow5MwWNh3oi88CrXXoow5E7kuXbIlqi5Qm0LaaU2NuJFFttYIiLSsnBWabzQYSiK_xVNVdwpSz35NPdgIHZpzncMmmcC1XaXsNOm7YWRMgEZbmgBSRPIv5XiAun-45xtdF6yxlY7sArDlrvusiVf3mN3_ihheJ_9bFsG4z3sNnGZHrqSrUcwnB7hqtXHJxUgNAZygNuTYjq7hP1z8g8RT7yFIYxQkwIFNF7BrIAEZ4WvFC4CH2w1KSugs2IYd51cahhNJ02dWfhOfQZgUgKCWGjBM7Tg-QE7uBFCPGTLJU76iIEVJgtd7hAHeiGcNdSY1fNQeXyS82jAwn6tU9fVQad2HNN0UcGZ6JMifdKGPqkcsFfzb07bKiDXjt7oSZh2EqFKF_w7YM_nr3Evk4PGln52gWNMrDjiU64G7HVP-sUv_j_j4-tnfMZu4V5Jv2zv7ayz2xExXhOOuMGW6_ML_wRhVZ09bfgX2I-b3jC_AaXsMV0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+Machine+Learning+Algorithms+for+Streamflow+Prediction%3A+A+Case+Study+of+Four+River+Basins+with+Different+Climatic+Zones+in+the+United+States&rft.jtitle=Water+resources+management&rft.au=Parisouj%2C+Peiman&rft.au=Mohebzadeh%2C+Hamid&rft.au=Lee%2C+Taesam&rft.date=2020-10-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=34&rft.issue=13&rft.spage=4113&rft.epage=4131&rft_id=info:doi/10.1007%2Fs11269-020-02659-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_020_02659_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |