Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States

Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artif...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 34; no. 13; pp. 4113 - 4131
Main Authors Parisouj, Peiman, Mohebzadeh, Hamid, Lee, Taesam
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-020-02659-5

Cover

Abstract Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables ( P , T max , and T min ) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales.
AbstractList Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables (P, Tmax, and Tmin) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales.
Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables (P, Tₘₐₓ, and Tₘᵢₙ) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales.
Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence, the current study examines the prediction capability of three well-known machine learning algorithms (Support Vector Regression (SVR), Artificial Neural Network with backpropagation (ANN-BP), and Extreme Learning Machine (ELM)) for the monthly and daily streamflows of four rivers in the United States. For model development, three main predictor variables ( P , T max , and T min ) and their antecedent values were considered. The SVM-RFE feature selection method was used to select the most appropriate predictor variable.The performance of the developed models was tested using four evaluation statistics. The results indicate that (1) except some improvements, the accuracy of all models decreases at the daily scale compared to that at the monthly scale; (2) the SVR has the best performance among the three models at the monthly and daily scales, while the ANN-BP model has the worse performance; (3) the ELM has better generalization performance than the ANN-BP for streamflow simulation at the monthly and daily scales; and (4) all models fail to predict the streamflow for the Carson River as a snowmelt-dominated basin. Generally, findings of the current study indicate that the SVR model produces better results than the ELM and ANN-BP for streamflow simulation at the monthly and daily scales.
Author Lee, Taesam
Mohebzadeh, Hamid
Parisouj, Peiman
Author_xml – sequence: 1
  givenname: Peiman
  surname: Parisouj
  fullname: Parisouj, Peiman
  organization: Department of Civil Engineering, ERI, Gyeongsang National University
– sequence: 2
  givenname: Hamid
  orcidid: 0000-0002-6564-3483
  surname: Mohebzadeh
  fullname: Mohebzadeh, Hamid
  email: hamidmohebzadeh@gnu.ac.kr
  organization: Department of Civil Engineering, ERI, Gyeongsang National University
– sequence: 3
  givenname: Taesam
  surname: Lee
  fullname: Lee, Taesam
  email: tae3lee@gnu.ac.kr
  organization: Department of Civil Engineering, ERI, Gyeongsang National University
BookMark eNp9UU1vEzEUtFCRSAt_gJMlLlwW7PXXmltIW0AKAgG9cLGM9zlxtWsH26HKD-H_4hAkpB56sC35zcx78-YcncUUAaHnlLyihKjXhdJe6o70pB0pdCceoQUVinVUCnKGFkS3ElecPkHnpdwS0miaLNDvq3k3pUOIG_zRum2IgNdgczx-LKdNyqFu54J9yvhrzWBnP6U7_DnDGFwNKb7BS7yyBVp1Px5w8vg67TP-En5Bxm9tCbHgu6aBL4P3kCFWvJrCbGtw-HvzUHCIuG4B38RQYWwytkJ5ih57OxV49u-9QDfXV99W77v1p3cfVst155joa6c9G7gmfPQgRwWCU8ocH0flJBukpFRZL6xQ2vbM_xjsIAjVSnhnpWoXYxfo5Ul3l9PPPZRq5lAcTJONkPbF9HqQjHPKZIO-uAe9bUZjm870XFHRKymOgv0J5XIqJYM3u9zc5oOhxByTMqekTEvK_E3KiEYa7pFcaGto263ZhulhKjtRS-sTN5D_T_UA6w8-_aq0
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130846
crossref_primary_10_1007_s11269_022_03275_1
crossref_primary_10_1080_15715124_2023_2196635
crossref_primary_10_1080_01431161_2021_1957513
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_2166_hydro_2024_202
crossref_primary_10_1016_j_rineng_2024_103319
crossref_primary_10_1016_j_compag_2024_109131
crossref_primary_10_1007_s11269_020_02719_w
crossref_primary_10_3390_w15061179
crossref_primary_10_1007_s12665_023_11222_5
crossref_primary_10_1016_j_srs_2025_100198
crossref_primary_10_1007_s11269_021_02920_5
crossref_primary_10_1007_s11269_022_03173_6
crossref_primary_10_1016_j_eswa_2024_124139
crossref_primary_10_1016_j_rineng_2024_102215
crossref_primary_10_3390_math10162971
crossref_primary_10_1007_s11269_023_03534_9
crossref_primary_10_1016_j_jhydrol_2025_132851
crossref_primary_10_2166_wpt_2023_081
crossref_primary_10_1007_s11269_022_03264_4
crossref_primary_10_1038_s41598_025_87187_1
crossref_primary_10_1007_s11269_022_03216_y
crossref_primary_10_1038_s41598_024_75361_w
crossref_primary_10_1016_j_envsoft_2023_105730
crossref_primary_10_1080_19942060_2023_2242445
crossref_primary_10_1007_s11269_020_02742_x
crossref_primary_10_1111_1752_1688_13098
crossref_primary_10_3390_hydrology11070097
crossref_primary_10_1016_j_jhydrol_2023_130421
crossref_primary_10_1007_s11831_022_09828_2
crossref_primary_10_1016_j_scs_2022_104277
crossref_primary_10_1016_j_pce_2024_103599
crossref_primary_10_2166_wcc_2024_420
crossref_primary_10_1016_j_jhydrol_2024_131235
crossref_primary_10_1038_s41598_025_91668_8
crossref_primary_10_1016_j_jhydrol_2024_132326
crossref_primary_10_21205_deufmd_2023257405
crossref_primary_10_24012_dumf_1158748
crossref_primary_10_2166_wst_2023_193
crossref_primary_10_1007_s11269_021_02770_1
crossref_primary_10_2166_wcc_2023_419
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_1155_2022_5171969
crossref_primary_10_1061_JHYEFF_HEENG_6118
crossref_primary_10_2166_ws_2024_063
crossref_primary_10_1016_j_jhydrol_2022_128431
crossref_primary_10_3390_rs13132630
crossref_primary_10_3390_w13030310
crossref_primary_10_1007_s40808_024_02040_0
crossref_primary_10_2166_wst_2023_330
crossref_primary_10_1007_s12145_024_01322_6
crossref_primary_10_1590_2318_0331_292420230105
crossref_primary_10_1061__ASCE_WR_1943_5452_0001549
crossref_primary_10_1021_acsomega_2c00536
crossref_primary_10_1007_s11269_021_02937_w
crossref_primary_10_2139_ssrn_4050027
crossref_primary_10_3390_w14030387
crossref_primary_10_5194_hess_26_4553_2022
crossref_primary_10_3390_w15020262
crossref_primary_10_1007_s00477_022_02254_7
crossref_primary_10_1016_j_ejrh_2023_101374
crossref_primary_10_3390_geosciences12120429
crossref_primary_10_1007_s00477_025_02906_4
crossref_primary_10_1016_j_ejrh_2023_101492
crossref_primary_10_1007_s00477_022_02228_9
crossref_primary_10_1155_2021_5172658
crossref_primary_10_3390_hydrology9070117
crossref_primary_10_1007_s00704_025_05352_y
crossref_primary_10_3390_su13168862
crossref_primary_10_3390_su14116612
crossref_primary_10_1007_s12145_024_01569_z
crossref_primary_10_1007_s11269_021_03014_y
crossref_primary_10_1007_s40808_025_02296_0
crossref_primary_10_1038_s41598_022_07693_4
crossref_primary_10_1080_02626667_2022_2141121
crossref_primary_10_3390_app12157464
crossref_primary_10_2112_JCOASTRES_D_21_00011_1
crossref_primary_10_1007_s00477_023_02489_y
crossref_primary_10_1016_j_geogeo_2022_100153
crossref_primary_10_3390_su141811149
crossref_primary_10_3390_w14182898
crossref_primary_10_1007_s11269_021_02763_0
crossref_primary_10_1016_j_jhydrol_2022_128618
crossref_primary_10_1007_s00477_022_02276_1
crossref_primary_10_2166_ws_2021_298
crossref_primary_10_1007_s11356_022_23990_x
crossref_primary_10_1016_j_jhydrol_2024_130907
crossref_primary_10_1080_02626667_2023_2173012
crossref_primary_10_2166_wcc_2025_709
crossref_primary_10_3389_fdata_2021_752406
crossref_primary_10_29109_gujsc_1555448
crossref_primary_10_1007_s12665_024_11498_1
crossref_primary_10_1016_j_envsoft_2022_105400
crossref_primary_10_1007_s10668_025_06092_9
crossref_primary_10_1029_2021WR031662
crossref_primary_10_1007_s13201_022_01846_6
crossref_primary_10_1016_j_jenvman_2024_121087
crossref_primary_10_1007_s11269_024_03953_2
crossref_primary_10_2166_hydro_2025_236
crossref_primary_10_3390_w12123532
crossref_primary_10_1007_s00521_022_07406_y
crossref_primary_10_1007_s12145_024_01526_w
crossref_primary_10_1016_j_jhydrol_2023_129460
crossref_primary_10_2166_hydro_2024_038
crossref_primary_10_1007_s40899_021_00584_y
crossref_primary_10_2166_wcc_2024_594
crossref_primary_10_2166_wpt_2024_292
crossref_primary_10_1080_02626667_2021_2012182
crossref_primary_10_1016_j_rsase_2021_100651
Cites_doi 10.1016/j.agrformet.2014.09.025
10.1007/s00477-016-1338-z
10.1016/j.atmosres.2014.10.016
10.1109/TSMCB.2011.2168604
10.1002/hyp.10055
10.1016/j.jhydrol.2018.10.064
10.1016/S0022-1694(98)00242-X
10.1111/j.1752-1688.2002.tb01544.x
10.1007/s10750-013-1634-2
10.1002/hyp.7535
10.1016/j.envsoft.2017.02.005
10.1061/(ASCE)1084-0699(2005)10:3(216)
10.1061/(ASCE)0733-9496(2007)133:4(339)
10.1016/j.catena.2015.11.013
10.1080/02626660109492867
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1016/j.jhydrol.2010.05.040
10.1016/j.jhydrol.2018.11.015
10.1016/j.jhydrol.2013.10.052
10.1623/hysj.51.4.599
10.1002/er.3030
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1016/j.patcog.2005.03.028
10.1007/s12559-014-9255-2
10.1016/j.jhydrol.2006.11.001
10.1016/j.jhydrol.2006.07.003
10.1016/j.jhydrol.2005.04.022
10.1016/j.jhydrol.2016.04.041
10.2166/hydro.2015.020
10.5194/hess-20-2611-2016
10.1623/hysj.48.3.381.45286
10.1007/s10462-013-9405-z
10.1016/j.jhydrol.2012.11.048
10.1016/j.jhydrol.2018.08.050
10.1016/j.jhydrol.2010.11.002
10.1007/s11269-014-0705-0
10.1023/B:CLIM.0000013683.13346.4f
10.1007/s12040-014-0423-2
10.2166/hydro.2013.042
10.1016/j.jhydrol.2019.123981
10.1002/2017WR020482
10.1111/j.1095-8649.2007.01503.x
10.3390/w9060406
10.1007/s10661-018-7012-9
10.1016/j.jhydrol.2017.06.020
10.1007/s11269-015-1123-7
10.1016/j.asoc.2019.105589
10.1016/j.jhydrol.2009.06.019
10.1016/j.advwatres.2012.11.003
10.1016/j.jhydrol.2018.07.004
10.1016/j.jhydrol.2019.03.101
10.1016/j.jhydrol.2015.11.050
10.1061/(ASCE)1084-0699(2000)5:2(115)
10.1111/j.1752-1688.2000.tb04276.x
10.1016/j.jhydrol.2015.10.038
10.1016/j.neucom.2005.12.126
10.1007/s11356-014-3046-x
10.1016/j.eswa.2014.02.047
10.1007/s11269-018-1998-1
10.1007/s11269-017-1711-9
10.3390/w9010009
10.1016/j.eswa.2011.04.114
10.1002/hyp.554
10.1016/j.patcog.2008.08.030
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-020-02659-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 4131
ExternalDocumentID 10_1007_s11269_020_02659_5
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2018R1A2B6001799
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-9f384904dfe6d7e54113c4dd7c63866117af5a579a23fb8a8501975fca67fca33
IEDL.DBID BENPR
ISSN 0920-4741
IngestDate Sun Aug 24 04:06:49 EDT 2025
Fri Jul 25 19:12:34 EDT 2025
Wed Oct 01 01:44:59 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Fri Feb 21 02:26:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Streamflow prediction
Support vector regression
Extreme learning machine
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-9f384904dfe6d7e54113c4dd7c63866117af5a579a23fb8a8501975fca67fca33
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6564-3483
PQID 2471527653
PQPubID 54174
PageCount 19
ParticipantIDs proquest_miscellaneous_2986344136
proquest_journals_2471527653
crossref_primary_10_1007_s11269_020_02659_5
crossref_citationtrail_10_1007_s11269_020_02659_5
springer_journals_10_1007_s11269_020_02659_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Ragettli, Cortés, McPhee, Pellicciotti (CR49) 2014; 28
Mauger, Lee, Bandaragoda, Serra, Won (CR43) 2016
Maity, Bhagwat, Bhatnagar (CR42) 2010; 24
Wu, Wang (CR62) 2009; 42
Yoon, Hyun, Lee (CR65) 2007; 335
Yaseen, El-Shafie, Jaafar, Afan, Sayl (CR64) 2015; 530
Guo, Zhou, Qin, Zou, Li (CR20) 2011; 38
CR34
Barzegar, Moghaddam, Adamowski, Fijani (CR3) 2017; 31
Deo, Şahin (CR10) 2015; 153
Govindaraju (CR17) 2000; 5
Shrestha, Shukla (CR54) 2015; 200
Zhang, Lin, Peng, Wang, Yang, Sorooshian, Liu, Zhuang (CR71) 2018; 565
Grantz, Rajagopalan, Zagona, Clark (CR19) 2007; 133
Benke, Cushing (CR5) 2011
Wang (CR59) 2006
Noori, Kalin (CR46) 2016; 533
Luo, Yuan, Zhu, Xu, Meng, Peng (CR41) 2019; 568
Zealand, Burn, Simonovic (CR70) 1999; 214
Huang, Zhu, Siew (CR27) 2004; 2
Wang, Chau, Cheng, Qiu (CR58) 2009; 374
Kang, Lee (CR32) 2014; 123
(CR29) 2000; 5
Wang, Li, Ma, Bai (CR57) 2019; 573
Genç, Dağ (CR14) 2016; 30
Wu, Chau, Fan (CR60) 2010; 389
Dettinger, Cayan, Meyer, Jeton (CR11) 2004; 62
Hadi, Tombul (CR21) 2018; 32
Jeton, Dettinger, Smith (CR30) 1996; 95
Hu, Lam, Ng (CR24) 2001; 46
Sapin, Rajagopalan, Saito, Caldwell (CR52) 2017; 91
Sudheer, Gosain, Ramasastri (CR55) 2002; 16
Yu, Liong (CR69) 2007; 332
Peng, Zhou, Zhang, Fu (CR48) 2017; 9
Bonada, Resh (CR6) 2013; 719
Huang, Zhou, Ding, Zhang (CR26) 2011; 42
Liu, Lu (CR39) 2014; 21
Yu, Chen, Chang (CR67) 2006; 328
Cheng, Zhao, Chau, Wu (CR8) 2006; 316
Karran, Morin, Adamowski (CR33) 2013; 16
Patel, Ramachandran (CR47) 2015; 29
Niu, Feng, Zeng, Feng, Min, Cheng (CR45) 2019; 82
Wu, Han, Annambhotla, Bryant (CR61) 2005; 10
Meng, Huang, Huang, Fang, Wu, Wang (CR44) 2019; 568
Şahin, Kaya, Uyar, Yıldırım (CR51) 2014; 38
Hay, Wilby, Leavesley (CR22) 2000; 36
Goyal, Bharti, Quilty, Adamowski, Pandey (CR18) 2014; 41
Yang, Asanjan, Welles, Gao, Sorooshian, Liu (CR63) 2017; 53
Atiquzzaman, Kandasamy (CR2) 2016; 18
Campolo, Soldati, Andreussi (CR7) 2003; 48
Tongal, Booij (CR56) 2018; 564
Yoon, Jun, Hyun, Bae, Lee (CR66) 2011; 396
Shortridge, Guikema, Zaitchik (CR53) 2016; 20
Ding, Zhao, Zhang, Xu, Nie (CR13) 2015; 44
Yu, Yang, Chen, Kuo, Tseng (CR68) 2017; 552
Lin, Cheng, Chau (CR37) 2006; 51
Ghumman, Ahmad, Hashmi (CR15) 2018; 190
Liu, Sang, Li, Hu, Liang (CR40) 2017; 9
Cortes, Vapnik (CR9) 1995; 20
Zhu, Qin, Suganthan, Huang (CR72) 2005; 38
Adnan, Liang, Trajkovic, Zounemat-Kermani, Li, Kisi (CR1) 2019; 577
Henning, Gresswell, Fleming (CR23) 2007; 71
Kumar, Pandey, Sharma, Flügel (CR35) 2016; 138
Belayneh, Adamowski, Khalil, Ozga-Zielinski (CR4) 2014; 508
Huang (CR25) 2014; 6
Lafdani, Nia, Ahmadi (CR36) 2013; 478
Dibike, Velickov, Solomatine, Abbott (CR12) 2001; 15
Gizaw, Gan (CR16) 2016; 538
Liong, Sivapragasam (CR38) 2002; 38
Huang, Zhu, Siew (CR28) 2006; 70
Kalra, Ahmad, Nayak (CR31) 2013; 53
Rezaie-Balf, Zahmatkesh, Kim (CR50) 2017; 31
C-T Cheng (2659_CR8) 2006; 316
G-B Huang (2659_CR28) 2006; 70
M Liu (2659_CR39) 2014; 21
W Wang (2659_CR59) 2006
K Grantz (2659_CR19) 2007; 133
JA Henning (2659_CR23) 2007; 71
A Belayneh (2659_CR4) 2014; 508
E Meng (2659_CR44) 2019; 568
MS Gizaw (2659_CR16) 2016; 538
ZM Yaseen (2659_CR64) 2015; 530
H Yoon (2659_CR65) 2007; 335
K Kang (2659_CR32) 2014; 123
L Wang (2659_CR57) 2019; 573
AC Benke (2659_CR5) 2011
P-S Yu (2659_CR68) 2017; 552
RC Deo (2659_CR10) 2015; 153
R Maity (2659_CR42) 2010; 24
MD Dettinger (2659_CR11) 2004; 62
D Zhang (2659_CR71) 2018; 565
T Hu (2659_CR24) 2001; 46
X Luo (2659_CR41) 2019; 568
O Genç (2659_CR14) 2016; 30
J Guo (2659_CR20) 2011; 38
2659_CR34
T Yang (2659_CR63) 2017; 53
DJ Karran (2659_CR33) 2013; 16
CM Zealand (2659_CR70) 1999; 214
Y Liu (2659_CR40) 2017; 9
J Sapin (2659_CR52) 2017; 91
M Şahin (2659_CR51) 2014; 38
K-P Wu (2659_CR62) 2009; 42
SS Patel (2659_CR47) 2015; 29
X Yu (2659_CR69) 2007; 332
R Barzegar (2659_CR3) 2017; 31
SY Liong (2659_CR38) 2002; 38
AE Jeton (2659_CR30) 1996; 95
M Atiquzzaman (2659_CR2) 2016; 18
G Mauger (2659_CR43) 2016
N Noori (2659_CR46) 2016; 533
P-S Yu (2659_CR67) 2006; 328
W-C Wang (2659_CR58) 2009; 374
M Campolo (2659_CR7) 2003; 48
S Ragettli (2659_CR49) 2014; 28
W-j Niu (2659_CR45) 2019; 82
JE Shortridge (2659_CR53) 2016; 20
LE Hay (2659_CR22) 2000; 36
RM Adnan (2659_CR1) 2019; 577
Q-Y Zhu (2659_CR72) 2005; 38
MK Goyal (2659_CR18) 2014; 41
YB Dibike (2659_CR12) 2001; 15
G-B Huang (2659_CR27) 2004; 2
D Kumar (2659_CR35) 2016; 138
H Yoon (2659_CR66) 2011; 396
JS Wu (2659_CR61) 2005; 10
N Shrestha (2659_CR54) 2015; 200
C Cortes (2659_CR9) 1995; 20
SJ Hadi (2659_CR21) 2018; 32
A Kalra (2659_CR31) 2013; 53
T Peng (2659_CR48) 2017; 9
H Tongal (2659_CR56) 2018; 564
K Sudheer (2659_CR55) 2002; 16
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2659_CR29) 2000; 5
G-B Huang (2659_CR26) 2011; 42
AR Ghumman (2659_CR15) 2018; 190
S Ding (2659_CR13) 2015; 44
G-B Huang (2659_CR25) 2014; 6
RS Govindaraju (2659_CR17) 2000; 5
M Rezaie-Balf (2659_CR50) 2017; 31
N Bonada (2659_CR6) 2013; 719
C Wu (2659_CR60) 2010; 389
EK Lafdani (2659_CR36) 2013; 478
J-Y Lin (2659_CR37) 2006; 51
References_xml – volume: 564
  start-page: 266
  year: 2018
  end-page: 282
  ident: CR56
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J Hydrol
– volume: 28
  start-page: 5674
  issue: 23
  year: 2014
  end-page: 5695
  ident: CR49
  article-title: An evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watersheds
  publication-title: Hydrol Process
– volume: 38
  start-page: 13073
  issue: 10
  year: 2011
  end-page: 13081
  ident: CR20
  article-title: Monthly streamflow forecasting based on improved support vector machine model
  publication-title: Expert Syst Appl
– volume: 332
  start-page: 290
  issue: 3–4
  year: 2007
  end-page: 302
  ident: CR69
  article-title: Forecasting of hydrologic time series with ridge regression in feature space
  publication-title: J Hydrol
– volume: 577
  start-page: 123981
  year: 2019
  ident: CR1
  article-title: Daily streamflow prediction using optimally pruned extreme learning machine
  publication-title: J Hydrol
– volume: 36
  start-page: 387
  issue: 2
  year: 2000
  end-page: 397
  ident: CR22
  article-title: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States 1
  publication-title: JAWRA J Am Water Res Assoc
– volume: 42
  start-page: 513
  issue: 2
  year: 2011
  end-page: 529
  ident: CR26
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cyber Part B (Cybernetics)
– volume: 82
  start-page: 105589
  year: 2019
  ident: CR45
  article-title: Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm
  publication-title: Appl Soft Comput
– volume: 396
  start-page: 128
  issue: 1–2
  year: 2011
  end-page: 138
  ident: CR66
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J Hydrol
– year: 2016
  ident: CR43
  publication-title: Effect of climate change on the Hydrology of the Chehalis Basin. Prepared for anchor QEA
– volume: 62
  start-page: 283
  issue: 1–3
  year: 2004
  end-page: 317
  ident: CR11
  article-title: Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099
  publication-title: Clim Chang
– volume: 18
  start-page: 345
  issue: 2
  year: 2016
  end-page: 353
  ident: CR2
  article-title: Prediction of hydrological time-series using extreme learning machine
  publication-title: J Hydroinf
– volume: 573
  start-page: 733
  year: 2019
  end-page: 745
  ident: CR57
  article-title: Improving the prediction accuracy of monthly streamflow using a data-driven model based on a double-processing strategy
  publication-title: J Hydrol
– volume: 16
  start-page: 671
  issue: 3
  year: 2013
  end-page: 689
  ident: CR33
  article-title: Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes
  publication-title: J Hydroinf
– volume: 41
  start-page: 5267
  issue: 11
  year: 2014
  end-page: 5276
  ident: CR18
  article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy logic, and ANFIS
  publication-title: Expert Syst Appl
– volume: 5
  start-page: 115
  issue: 2
  year: 2000
  end-page: 123
  ident: CR29
  article-title: Artificial neural networks in hydrology. I: preliminary concepts
  publication-title: J Hydrol Eng
– volume: 190
  start-page: 704
  issue: 12
  year: 2018
  ident: CR15
  article-title: Performance assessment of artificial neural networks and support vector regression models for stream flow predictions
  publication-title: Environ Monit Assess
– year: 2006
  ident: CR59
  publication-title: Stochasticity, nonlinearity and forecasting of streamflow processes
– volume: 538
  start-page: 387
  year: 2016
  end-page: 398
  ident: CR16
  article-title: Regional flood frequency analysis using support vector regression under historical and future climate
  publication-title: J Hydrol
– volume: 214
  start-page: 32
  issue: 1–4
  year: 1999
  end-page: 48
  ident: CR70
  article-title: Short term streamflow forecasting using artificial neural networks
  publication-title: J Hydrol
– volume: 24
  start-page: 917
  issue: 7
  year: 2010
  end-page: 923
  ident: CR42
  article-title: Potential of support vector regression for prediction of monthly streamflow using endogenous property
  publication-title: Hydrol Proc: Int J
– volume: 32
  start-page: 3405
  issue: 10
  year: 2018
  end-page: 3422
  ident: CR21
  article-title: Forecasting daily streamflow for basins with different physical characteristics through data-driven methods
  publication-title: Water Resour Manag
– volume: 20
  start-page: 2611
  issue: 7
  year: 2016
  end-page: 2628
  ident: CR53
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol Earth Syst Sci
– volume: 16
  start-page: 1325
  issue: 6
  year: 2002
  end-page: 1330
  ident: CR55
  article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models
  publication-title: Hydrol Process
– volume: 10
  start-page: 216
  issue: 3
  year: 2005
  end-page: 222
  ident: CR61
  article-title: Artificial neural networks for forecasting watershed runoff and stream flows
  publication-title: J Hydrol Eng
– volume: 42
  start-page: 710
  issue: 5
  year: 2009
  end-page: 717
  ident: CR62
  article-title: Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
  publication-title: Pattern Recogn
– volume: 53
  start-page: 2786
  issue: 4
  year: 2017
  end-page: 2812
  ident: CR63
  article-title: Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information
  publication-title: Water Resour Res
– volume: 568
  start-page: 462
  year: 2019
  end-page: 478
  ident: CR44
  article-title: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model
  publication-title: J Hydrol
– volume: 200
  start-page: 172
  year: 2015
  end-page: 184
  ident: CR54
  article-title: Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment
  publication-title: Agric For Meteorol
– volume: 2
  start-page: 985
  year: 2004
  end-page: 990
  ident: CR27
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: Neural Netw
– volume: 138
  start-page: 77
  year: 2016
  end-page: 90
  ident: CR35
  article-title: Daily suspended sediment simulation using machine learning approach
  publication-title: Catena
– volume: 123
  start-page: 705
  issue: 4
  year: 2014
  end-page: 713
  ident: CR32
  article-title: Hydrologic modelling of the effect of snowmelt and temperature on a mountainous watershed
  publication-title: J Earth Syst Sci
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  end-page: 137
  ident: CR17
  article-title: Artificial neural networks in hydrology. II: hydrologic applications
  publication-title: J Hydrol Eng
– volume: 565
  start-page: 720
  year: 2018
  end-page: 736
  ident: CR71
  article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
  publication-title: J Hydrol
– volume: 71
  start-page: 476
  issue: 2
  year: 2007
  end-page: 492
  ident: CR23
  article-title: Use of seasonal freshwater wetlands by fishes in a temperate river floodplain
  publication-title: J Fish Biol
– volume: 21
  start-page: 11036
  issue: 18
  year: 2014
  end-page: 11053
  ident: CR39
  article-title: Support vector machine―an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
  publication-title: Environ Sci Pollut Res
– year: 2011
  ident: CR5
  publication-title: Rivers of North America
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  end-page: 612
  ident: CR37
  article-title: Using support vector machines for long-term discharge prediction
  publication-title: Hydrol Sci J
– volume: 335
  start-page: 68
  issue: 1–2
  year: 2007
  end-page: 77
  ident: CR65
  article-title: Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks
  publication-title: J Hydrol
– volume: 48
  start-page: 381
  issue: 3
  year: 2003
  end-page: 398
  ident: CR7
  article-title: Artificial neural network approach to flood forecasting in the river Arno
  publication-title: Hydrol Sci J
– volume: 530
  start-page: 829
  year: 2015
  end-page: 844
  ident: CR64
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J Hydrol
– volume: 374
  start-page: 294
  issue: 3–4
  year: 2009
  end-page: 306
  ident: CR58
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J Hydrol
– volume: 533
  start-page: 141
  year: 2016
  end-page: 151
  ident: CR46
  article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction
  publication-title: J Hydrol
– volume: 46
  start-page: 729
  issue: 5
  year: 2001
  end-page: 745
  ident: CR24
  article-title: River flow time series prediction with a range-dependent neural network
  publication-title: Hydrol Sci J
– volume: 29
  start-page: 589
  issue: 2
  year: 2015
  end-page: 602
  ident: CR47
  article-title: A comparison of machine learning techniques for modeling river flow time series: the case of upper Cauvery river basin
  publication-title: Water Resour Manag
– volume: 9
  start-page: 406
  issue: 6
  year: 2017
  ident: CR48
  article-title: Streamflow forecasting using empirical wavelet transform and artificial neural networks
  publication-title: Water
– volume: 31
  start-page: 3843
  issue: 12
  year: 2017
  end-page: 3865
  ident: CR50
  article-title: Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods
  publication-title: Water Resour Manag
– volume: 568
  start-page: 184
  year: 2019
  end-page: 193
  ident: CR41
  article-title: A hybrid support vector regression framework for streamflow forecast
  publication-title: J Hydrol
– volume: 15
  start-page: 208
  issue: 3
  year: 2001
  end-page: 216
  ident: CR12
  article-title: Model induction with support vector machines: introduction and applications
  publication-title: J Comput Civ Eng
– volume: 95
  start-page: 4260
  year: 1996
  ident: CR30
  article-title: Potential effects of climate change on streamflow, eastern and western slopes of the Sierra Nevada, California and Nevada
  publication-title: Water Resourc Invest Rep
– volume: 9
  start-page: 9
  issue: 1
  year: 2017
  ident: CR40
  article-title: Long-term streamflow forecasting based on relevance vector machine model
  publication-title: Water
– volume: 508
  start-page: 418
  year: 2014
  end-page: 429
  ident: CR4
  article-title: Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models
  publication-title: J Hydrol
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR9
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 552
  start-page: 92
  year: 2017
  end-page: 104
  ident: CR68
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J Hydrol
– volume: 44
  start-page: 103
  issue: 1
  year: 2015
  end-page: 115
  ident: CR13
  article-title: Extreme learning machine: algorithm, theory and applications
  publication-title: Artif Intell Rev
– volume: 53
  start-page: 150
  year: 2013
  end-page: 162
  ident: CR31
  article-title: Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns
  publication-title: Adv Water Resour
– volume: 316
  start-page: 129
  issue: 1–4
  year: 2006
  end-page: 140
  ident: CR8
  article-title: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure
  publication-title: J Hydrol
– volume: 133
  start-page: 339
  issue: 4
  year: 2007
  end-page: 350
  ident: CR19
  article-title: Water management applications of climate-based hydrologic forecasts: case study of the Truckee-Carson River basin
  publication-title: J Water Resour Plan Manag
– ident: CR34
– volume: 91
  start-page: 87
  year: 2017
  end-page: 94
  ident: CR52
  article-title: A K-nearest neighbor based stochastic multisite flow and stream temperature generation technique
  publication-title: Environ Model Softw
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  end-page: 390
  ident: CR25
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn Comput
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  end-page: 1763
  ident: CR72
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn
– volume: 153
  start-page: 512
  year: 2015
  end-page: 525
  ident: CR10
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia
  publication-title: Atmos Res
– volume: 719
  start-page: 1
  issue: 1
  year: 2013
  end-page: 29
  ident: CR6
  article-title: Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems
  publication-title: Hydrobiologia
– volume: 478
  start-page: 50
  year: 2013
  end-page: 62
  ident: CR36
  article-title: Daily suspended sediment load prediction using artificial neural networks and support vector machines
  publication-title: J Hydrol
– volume: 389
  start-page: 146
  issue: 1–2
  year: 2010
  end-page: 167
  ident: CR60
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J Hydrol
– volume: 38
  start-page: 205
  issue: 2
  year: 2014
  end-page: 212
  ident: CR51
  article-title: Application of extreme learning machine for estimating solar radiation from satellite data
  publication-title: Int J Energy Res
– volume: 31
  start-page: 2705
  issue: 10
  year: 2017
  end-page: 2718
  ident: CR3
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch Env Res Risk A
– volume: 30
  start-page: 43
  issue: 1
  year: 2016
  end-page: 61
  ident: CR14
  article-title: A machine learning-based approach to predict the velocity profiles in small streams
  publication-title: Water Resour Manag
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR28
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 328
  start-page: 704
  issue: 3–4
  year: 2006
  end-page: 716
  ident: CR67
  article-title: Support vector regression for real-time flood stage forecasting
  publication-title: J Hydrol
– volume: 38
  start-page: 173
  issue: 1
  year: 2002
  end-page: 186
  ident: CR38
  article-title: Flood stage forecasting with support vector machines 1
  publication-title: JAWRA J Am Water Res Assoc
– volume: 200
  start-page: 172
  year: 2015
  ident: 2659_CR54
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2014.09.025
– volume: 31
  start-page: 2705
  issue: 10
  year: 2017
  ident: 2659_CR3
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-016-1338-z
– volume: 153
  start-page: 512
  year: 2015
  ident: 2659_CR10
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2014.10.016
– volume: 42
  start-page: 513
  issue: 2
  year: 2011
  ident: 2659_CR26
  publication-title: IEEE Trans Syst Man Cyber Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– ident: 2659_CR34
– volume: 28
  start-page: 5674
  issue: 23
  year: 2014
  ident: 2659_CR49
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10055
– volume: 568
  start-page: 184
  year: 2019
  ident: 2659_CR41
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.10.064
– volume: 328
  start-page: 704
  issue: 3–4
  year: 2006
  ident: 2659_CR67
  publication-title: J Hydrol
– volume: 214
  start-page: 32
  issue: 1–4
  year: 1999
  ident: 2659_CR70
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00242-X
– volume: 38
  start-page: 173
  issue: 1
  year: 2002
  ident: 2659_CR38
  publication-title: JAWRA J Am Water Res Assoc
  doi: 10.1111/j.1752-1688.2002.tb01544.x
– volume: 719
  start-page: 1
  issue: 1
  year: 2013
  ident: 2659_CR6
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-013-1634-2
– volume: 24
  start-page: 917
  issue: 7
  year: 2010
  ident: 2659_CR42
  publication-title: Hydrol Proc: Int J
  doi: 10.1002/hyp.7535
– volume: 91
  start-page: 87
  year: 2017
  ident: 2659_CR52
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.02.005
– volume: 2
  start-page: 985
  year: 2004
  ident: 2659_CR27
  publication-title: Neural Netw
– volume: 10
  start-page: 216
  issue: 3
  year: 2005
  ident: 2659_CR61
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2005)10:3(216)
– volume: 133
  start-page: 339
  issue: 4
  year: 2007
  ident: 2659_CR19
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2007)133:4(339)
– volume: 138
  start-page: 77
  year: 2016
  ident: 2659_CR35
  publication-title: Catena
  doi: 10.1016/j.catena.2015.11.013
– volume: 46
  start-page: 729
  issue: 5
  year: 2001
  ident: 2659_CR24
  publication-title: Hydrol Sci J
  doi: 10.1080/02626660109492867
– volume: 15
  start-page: 208
  issue: 3
  year: 2001
  ident: 2659_CR12
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
– volume: 389
  start-page: 146
  issue: 1–2
  year: 2010
  ident: 2659_CR60
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.05.040
– volume: 568
  start-page: 462
  year: 2019
  ident: 2659_CR44
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.015
– volume: 508
  start-page: 418
  year: 2014
  ident: 2659_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.10.052
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  ident: 2659_CR37
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.4.599
– volume: 95
  start-page: 4260
  year: 1996
  ident: 2659_CR30
  publication-title: Water Resourc Invest Rep
– volume: 38
  start-page: 205
  issue: 2
  year: 2014
  ident: 2659_CR51
  publication-title: Int J Energy Res
  doi: 10.1002/er.3030
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  ident: 2659_CR17
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  ident: 2659_CR72
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2005.03.028
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 2659_CR25
  publication-title: Cogn Comput
  doi: 10.1007/s12559-014-9255-2
– volume-title: Effect of climate change on the Hydrology of the Chehalis Basin. Prepared for anchor QEA
  year: 2016
  ident: 2659_CR43
– volume: 335
  start-page: 68
  issue: 1–2
  year: 2007
  ident: 2659_CR65
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.11.001
– volume: 332
  start-page: 290
  issue: 3–4
  year: 2007
  ident: 2659_CR69
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.07.003
– volume: 316
  start-page: 129
  issue: 1–4
  year: 2006
  ident: 2659_CR8
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.04.022
– volume: 538
  start-page: 387
  year: 2016
  ident: 2659_CR16
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.04.041
– volume-title: Rivers of North America
  year: 2011
  ident: 2659_CR5
– volume: 18
  start-page: 345
  issue: 2
  year: 2016
  ident: 2659_CR2
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2015.020
– volume: 20
  start-page: 2611
  issue: 7
  year: 2016
  ident: 2659_CR53
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-20-2611-2016
– volume: 48
  start-page: 381
  issue: 3
  year: 2003
  ident: 2659_CR7
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.48.3.381.45286
– volume: 44
  start-page: 103
  issue: 1
  year: 2015
  ident: 2659_CR13
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-013-9405-z
– volume: 478
  start-page: 50
  year: 2013
  ident: 2659_CR36
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.11.048
– volume: 565
  start-page: 720
  year: 2018
  ident: 2659_CR71
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.08.050
– volume: 396
  start-page: 128
  issue: 1–2
  year: 2011
  ident: 2659_CR66
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 29
  start-page: 589
  issue: 2
  year: 2015
  ident: 2659_CR47
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0705-0
– volume-title: Stochasticity, nonlinearity and forecasting of streamflow processes
  year: 2006
  ident: 2659_CR59
– volume: 62
  start-page: 283
  issue: 1–3
  year: 2004
  ident: 2659_CR11
  publication-title: Clim Chang
  doi: 10.1023/B:CLIM.0000013683.13346.4f
– volume: 123
  start-page: 705
  issue: 4
  year: 2014
  ident: 2659_CR32
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-014-0423-2
– volume: 16
  start-page: 671
  issue: 3
  year: 2013
  ident: 2659_CR33
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2013.042
– volume: 577
  start-page: 123981
  year: 2019
  ident: 2659_CR1
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123981
– volume: 53
  start-page: 2786
  issue: 4
  year: 2017
  ident: 2659_CR63
  publication-title: Water Resour Res
  doi: 10.1002/2017WR020482
– volume: 71
  start-page: 476
  issue: 2
  year: 2007
  ident: 2659_CR23
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.2007.01503.x
– volume: 9
  start-page: 406
  issue: 6
  year: 2017
  ident: 2659_CR48
  publication-title: Water
  doi: 10.3390/w9060406
– volume: 190
  start-page: 704
  issue: 12
  year: 2018
  ident: 2659_CR15
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-7012-9
– volume: 552
  start-page: 92
  year: 2017
  ident: 2659_CR68
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.06.020
– volume: 30
  start-page: 43
  issue: 1
  year: 2016
  ident: 2659_CR14
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1123-7
– volume: 82
  start-page: 105589
  year: 2019
  ident: 2659_CR45
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105589
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2659_CR9
  publication-title: Mach Learn
– volume: 374
  start-page: 294
  issue: 3–4
  year: 2009
  ident: 2659_CR58
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.019
– volume: 53
  start-page: 150
  year: 2013
  ident: 2659_CR31
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2012.11.003
– volume: 564
  start-page: 266
  year: 2018
  ident: 2659_CR56
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.07.004
– volume: 573
  start-page: 733
  year: 2019
  ident: 2659_CR57
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.03.101
– volume: 533
  start-page: 141
  year: 2016
  ident: 2659_CR46
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.11.050
– volume: 5
  start-page: 115
  issue: 2
  year: 2000
  ident: 2659_CR29
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– volume: 36
  start-page: 387
  issue: 2
  year: 2000
  ident: 2659_CR22
  publication-title: JAWRA J Am Water Res Assoc
  doi: 10.1111/j.1752-1688.2000.tb04276.x
– volume: 530
  start-page: 829
  year: 2015
  ident: 2659_CR64
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 2659_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 21
  start-page: 11036
  issue: 18
  year: 2014
  ident: 2659_CR39
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-3046-x
– volume: 41
  start-page: 5267
  issue: 11
  year: 2014
  ident: 2659_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.02.047
– volume: 32
  start-page: 3405
  issue: 10
  year: 2018
  ident: 2659_CR21
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1998-1
– volume: 31
  start-page: 3843
  issue: 12
  year: 2017
  ident: 2659_CR50
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1711-9
– volume: 9
  start-page: 9
  issue: 1
  year: 2017
  ident: 2659_CR40
  publication-title: Water
  doi: 10.3390/w9010009
– volume: 38
  start-page: 13073
  issue: 10
  year: 2011
  ident: 2659_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.114
– volume: 16
  start-page: 1325
  issue: 6
  year: 2002
  ident: 2659_CR55
  publication-title: Hydrol Process
  doi: 10.1002/hyp.554
– volume: 42
  start-page: 710
  issue: 5
  year: 2009
  ident: 2659_CR62
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.08.030
SSID ssj0010090
Score 2.5972657
Snippet Streamflow estimation plays a significant role in water resources management, especially for flood mitigation, drought warning, and reservoir operation. Hence,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4113
SubjectTerms administrative management
Algorithms
Artificial neural networks
Atmospheric Sciences
Back propagation networks
basins
case studies
Civil Engineering
Climatic zones
Computer simulation
Daily
Drought
Earth and Environmental Science
Earth Sciences
Environment
flood control
Flood management
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Learning algorithms
Learning theory
Machine learning
Mitigation
Model accuracy
Monthly
Neural networks
prediction
regression analysis
Reservoir operation
River basins
Rivers
Simulation
Snowmelt
Statistical analysis
Statistical methods
Stream discharge
Stream flow
Support vector machines
water
Water resources
Water resources management
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrG-GMGbBkz2lfVWq0WEiogF8RI2m40W2lSaivhD_L_O5tGqqOAlhGSyCzu7mW93Zr4h5DCUiZHWZ14qTegxHWpPhTECOcpjwdBEx9wlJ3evxWWPXd3z-yopLK-j3WuXZPGnniW7-YFQntvu4L6BK4_PkwXu6LxwFveC1tR3gKihOFlRKMnQYFapMj-38dUczTDmN7doYW06K2S5gonQKvW6SuZstkaWPpEHrpP3slgv3kO3iIi0UJGlPkJr8DjCXf_TMAcEpeBcz3qYDkavcDN2nhmnjVNoQRttGLhQwjcYpdDBXuHWBWrAmc77WQ7ulBbOqxoqE2gP-gXDKzw4hn_oZ4DwEUrYCiVs3SC9zsVd-9Kriix4BrHXxFMpDZk6YUlqRSItZ75PDUsSaXBlovH2pU655lLpgKZxqEOOoFDy1Ggh8ULpJmlk2OkWAc1U7JvEIAKzjBmtXElUS31h8UlCgybx67GOTMVA7gphDKIZd7LTT4T6iQr9RLxJjqbfPJf8G39K79YqjKq1mEcB2l8eSMFpkxxMX-Mqcq4RndnRC8qoUFBEhlQ0yXGt-lkTv_e4_T_xHbIYuNlXRAPuksZk_GL3ENVM4v1iEn8A0XLtlA
  priority: 102
  providerName: Springer Nature
Title Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States
URI https://link.springer.com/article/10.1007/s11269-020-02659-5
https://www.proquest.com/docview/2471527653
https://www.proquest.com/docview/2986344136
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7Qs8ID5FYVSHxBtEkNiO40kIZaXdBFo1TVQavESO44xKXbqtnRB_CP8vd_loAYm9RFHi5JSc7fvZd_c7gFeJLpz2oQxK7ZJA2sQGJskJyAmVx5JMdK44Ofl4Gh_N5KczdbYD0y4XhsMquzmxnqiLpeM98rcRzaIq0rESHy6vAq4axd7VroSGbUsrFO9rirFd6EfMjNWD_sF4enK68SsQoqh3XQwtmiQZ0zaNpkmmC6PYBLyconWJMoH621Rt8ec_LtPaEk3uw70WQmLa6PwB7PjqIdz9g1jwEfxqCvnSOR7X0ZIeWyLVc0wX5_Rd6-8XKyTAiuyWthflYvkDT67Za8Oa2scUR2TfkMMMf-KyxAlJxVMO4sADu5pXK-QdXPzY1ldZ42gxr9lf8Ruz_-O8QoKW2EBabCDtY5hNxl9GR0FbgCFwhMvWgSlFIs07WZQ-LrRXMgyFk0WhHY1aMuyhtqWyShsbiTJPbKIIMGpVOhtrOgjxBHoVCX0KaKXJQ1c4QmdeSmcNl0v1Iow9XSlENICw-9eZa9nJuUjGItvyKrN-MtJPVusnUwN4vXnmsuHmuLX1XqfCrB2nq2zbqwbwcnObRhi7TWzllzfUxiSxINQo4gG86VS_fcX_JT67XeJzuBNxb6sjA_egt76-8S8I4azzIewmk8Mh9NPDr5_Hw7YT09VZlP4Gnpb6jQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEE-xUGCQ4AQRJLbjGKlC221XW9pdVVUrVVxSx3HKSttsaVJV_SH8HX4bM4mzC0j01ksU5WXJM_F843l8jL1NVG6VC0VQKJsEwiQm0EmGQI7LLBZoojNJxcnjSTw6El-P5fEK-9XVwlBaZbcmNgt1Pre0R_4xwlVURiqW_Mv5j4BYoyi62lFoGE-tkG80LcZ8Yceuu75CF67a2NlCeb-LouH24WAUeJaBwCL4qANd8EToTyIvXJwrJ0UYcivyXFlUTbReoTKFNFJpE_EiS0wiERUpWVgTKzzQhiiagDXBhUbnb21ze7J_sIhjIIJpdnk0OmkCjbcv22mL98Io1gG5b-gHSR3Iv03jEu_-E6JtLN_wAbvvISv0Wx17yFZc-Yjd-6OR4WP2syUOxnMYN9mZDnzj1lPoz05xHuvvZxUgQAYKg5uzYja_gv0LihKRZnyGPgzQngKlNV7DvIAhjgoHlDQCm6aalhXQjjFseT6XGgazadNtFr4R2wBMS0AoCy2EhhZCP2FHtyKKp2y1xEGfMTBCZ6HNLaJBJ4Q1muhZHQ9jh1dyHvVY2M11an03dCLlmKXLPs4knxTlkzbySWWPvV-8c972Arnx6fVOhKlfF6p0qcU99mZxG_9oCtOY0s0v8RmdxBxRKo977EMn-uUn_j_i85tHfM3ujA7He-nezmT3BbsbkeY1WYnrbLW-uHQvEV3V2SuvwsBObvuv-Q0dwDPD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9KC6IPpX7h2aoj6JOGmuxXVhA574yttaWIheJL3Gw27cE11zYppX-I_4x_nTP5uFPBvvUlhGSThZ3Zmd_sfDH2Ita50z4UQaFdHAgb28DEGQI5LjMlUEVnkpKTd_fU1oH4fCgPl9ivPheGwip7mdgI6nzm6Ix8M0IpKiOtJN8surCI_XHy_vQsoA5S5Gnt22m0LLLjry7RfKvebY-R1i-jKPn4bbQVdB0GAofAow5MwWNh3oi88CrXXoow5E7kuXbIlqi5Qm0LaaU2NuJFFttYIiLSsnBWabzQYSiK_xVNVdwpSz35NPdgIHZpzncMmmcC1XaXsNOm7YWRMgEZbmgBSRPIv5XiAun-45xtdF6yxlY7sArDlrvusiVf3mN3_ihheJ_9bFsG4z3sNnGZHrqSrUcwnB7hqtXHJxUgNAZygNuTYjq7hP1z8g8RT7yFIYxQkwIFNF7BrIAEZ4WvFC4CH2w1KSugs2IYd51cahhNJ02dWfhOfQZgUgKCWGjBM7Tg-QE7uBFCPGTLJU76iIEVJgtd7hAHeiGcNdSY1fNQeXyS82jAwn6tU9fVQad2HNN0UcGZ6JMifdKGPqkcsFfzb07bKiDXjt7oSZh2EqFKF_w7YM_nr3Evk4PGln52gWNMrDjiU64G7HVP-sUv_j_j4-tnfMZu4V5Jv2zv7ayz2xExXhOOuMGW6_ML_wRhVZ09bfgX2I-b3jC_AaXsMV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+Machine+Learning+Algorithms+for+Streamflow+Prediction%3A+A+Case+Study+of+Four+River+Basins+with+Different+Climatic+Zones+in+the+United+States&rft.jtitle=Water+resources+management&rft.au=Parisouj%2C+Peiman&rft.au=Mohebzadeh%2C+Hamid&rft.au=Lee%2C+Taesam&rft.date=2020-10-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=34&rft.issue=13&rft.spage=4113&rft.epage=4131&rft_id=info:doi/10.1007%2Fs11269-020-02659-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_020_02659_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon