Application of proximal sensing approach to predict cation exchange capacity of calcareous soils using linear and nonlinear data mining algorithms

Purpose The cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the conventional techniques employed for CEC measurements present challenges in terms of complexity, cost, and laboriousness. Hence, there is a demand for...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 24; no. 6; pp. 2248 - 2267
Main Authors Karami, Ali, Moosavi, Ali Akbar, Pourghasemi, Hamid Reza, Ronaghi, Abdolmajid, Ghasemi-Fasaei, Reza, Lado, Marcos
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1439-0108
1614-7480
DOI10.1007/s11368-024-03825-7

Cover

Abstract Purpose The cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the conventional techniques employed for CEC measurements present challenges in terms of complexity, cost, and laboriousness. Hence, there is a demand for expedited, cost-effective, streamlined alternative methodologies that can yield accurate outcomes. The objective of this study was to employ and compare various techniques, including Pedotransfer Functions (PTFs) based on fundamental soil properties, support vector regression (SVR), sequential orthogonalized partial least squares (SOPLS) as a multiblock data analysis method, and Spectrotransfer Function (SPTF) utilizing visible-near infrared (VNIR) and mid infrared (MIR) diagnostic wavelengths to estimate the CEC of calcareous soils with diverse land uses in the semi-arid region of Fars province, Iran. Materials and methods A total of 130 samples were gathered from the soils of the study region, CEC was measured using sodium acetate, and the spectral reflectance in the VNIR and transmission in the MIR regions were measured, and prediction models were created using linear support vector regression (L-SVR), radial basis function support vector regression (RBF-SVR), partial least squares regression (PLSR), and multiblock data analysis algorithms, after different spectral preprocessing methods. Results and discussion The results generally indicated that spectroscopy models performed better than PTFs in predicting CEC with the multiblock SOPLS showing the best results (R 2  = 0.92, RMSE = 1.67 cmol (+) kg −1 , and RPIQ = 4.34). The performance of the models followed the order: SOPLS > SPTF > L-SVR > RBF-SVR. Conclusion Our findings indicate that spectroscopy coupled with SOPLS analysis can be a robust, viable, fast, cheap, and efficient alternative assessment method with acceptable accuracy for estimating soil CEC in calcareous soils, instead of the difficult, costly, and cumbersome conventional measurement approaches or other estimation methods.
AbstractList Purpose The cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the conventional techniques employed for CEC measurements present challenges in terms of complexity, cost, and laboriousness. Hence, there is a demand for expedited, cost-effective, streamlined alternative methodologies that can yield accurate outcomes. The objective of this study was to employ and compare various techniques, including Pedotransfer Functions (PTFs) based on fundamental soil properties, support vector regression (SVR), sequential orthogonalized partial least squares (SOPLS) as a multiblock data analysis method, and Spectrotransfer Function (SPTF) utilizing visible-near infrared (VNIR) and mid infrared (MIR) diagnostic wavelengths to estimate the CEC of calcareous soils with diverse land uses in the semi-arid region of Fars province, Iran. Materials and methods A total of 130 samples were gathered from the soils of the study region, CEC was measured using sodium acetate, and the spectral reflectance in the VNIR and transmission in the MIR regions were measured, and prediction models were created using linear support vector regression (L-SVR), radial basis function support vector regression (RBF-SVR), partial least squares regression (PLSR), and multiblock data analysis algorithms, after different spectral preprocessing methods. Results and discussion The results generally indicated that spectroscopy models performed better than PTFs in predicting CEC with the multiblock SOPLS showing the best results (R 2  = 0.92, RMSE = 1.67 cmol (+) kg −1 , and RPIQ = 4.34). The performance of the models followed the order: SOPLS > SPTF > L-SVR > RBF-SVR. Conclusion Our findings indicate that spectroscopy coupled with SOPLS analysis can be a robust, viable, fast, cheap, and efficient alternative assessment method with acceptable accuracy for estimating soil CEC in calcareous soils, instead of the difficult, costly, and cumbersome conventional measurement approaches or other estimation methods.
PURPOSE: The cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the conventional techniques employed for CEC measurements present challenges in terms of complexity, cost, and laboriousness. Hence, there is a demand for expedited, cost-effective, streamlined alternative methodologies that can yield accurate outcomes. The objective of this study was to employ and compare various techniques, including Pedotransfer Functions (PTFs) based on fundamental soil properties, support vector regression (SVR), sequential orthogonalized partial least squares (SOPLS) as a multiblock data analysis method, and Spectrotransfer Function (SPTF) utilizing visible-near infrared (VNIR) and mid infrared (MIR) diagnostic wavelengths to estimate the CEC of calcareous soils with diverse land uses in the semi-arid region of Fars province, Iran. MATERIALS AND METHODS: A total of 130 samples were gathered from the soils of the study region, CEC was measured using sodium acetate, and the spectral reflectance in the VNIR and transmission in the MIR regions were measured, and prediction models were created using linear support vector regression (L-SVR), radial basis function support vector regression (RBF-SVR), partial least squares regression (PLSR), and multiblock data analysis algorithms, after different spectral preprocessing methods. RESULTS AND DISCUSSION: The results generally indicated that spectroscopy models performed better than PTFs in predicting CEC with the multiblock SOPLS showing the best results (R² = 0.92, RMSE = 1.67 cmol₍₊₎ kg⁻¹, and RPIQ = 4.34). The performance of the models followed the order: SOPLS > SPTF > L-SVR > RBF-SVR. CONCLUSION: Our findings indicate that spectroscopy coupled with SOPLS analysis can be a robust, viable, fast, cheap, and efficient alternative assessment method with acceptable accuracy for estimating soil CEC in calcareous soils, instead of the difficult, costly, and cumbersome conventional measurement approaches or other estimation methods.
PurposeThe cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the conventional techniques employed for CEC measurements present challenges in terms of complexity, cost, and laboriousness. Hence, there is a demand for expedited, cost-effective, streamlined alternative methodologies that can yield accurate outcomes. The objective of this study was to employ and compare various techniques, including Pedotransfer Functions (PTFs) based on fundamental soil properties, support vector regression (SVR), sequential orthogonalized partial least squares (SOPLS) as a multiblock data analysis method, and Spectrotransfer Function (SPTF) utilizing visible-near infrared (VNIR) and mid infrared (MIR) diagnostic wavelengths to estimate the CEC of calcareous soils with diverse land uses in the semi-arid region of Fars province, Iran.Materials and methodsA total of 130 samples were gathered from the soils of the study region, CEC was measured using sodium acetate, and the spectral reflectance in the VNIR and transmission in the MIR regions were measured, and prediction models were created using linear support vector regression (L-SVR), radial basis function support vector regression (RBF-SVR), partial least squares regression (PLSR), and multiblock data analysis algorithms, after different spectral preprocessing methods.Results and discussionThe results generally indicated that spectroscopy models performed better than PTFs in predicting CEC with the multiblock SOPLS showing the best results (R2 = 0.92, RMSE = 1.67 cmol(+) kg−1, and RPIQ = 4.34). The performance of the models followed the order: SOPLS > SPTF > L-SVR > RBF-SVR.ConclusionOur findings indicate that spectroscopy coupled with SOPLS analysis can be a robust, viable, fast, cheap, and efficient alternative assessment method with acceptable accuracy for estimating soil CEC in calcareous soils, instead of the difficult, costly, and cumbersome conventional measurement approaches or other estimation methods.
Author Lado, Marcos
Pourghasemi, Hamid Reza
Ghasemi-Fasaei, Reza
Ronaghi, Abdolmajid
Moosavi, Ali Akbar
Karami, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Karami
  fullname: Karami, Ali
  organization: Department of Soil Science, School of Agriculture, Shiraz University
– sequence: 2
  givenname: Ali Akbar
  surname: Moosavi
  fullname: Moosavi, Ali Akbar
  email: aamousavi@gmail.com, aamousavi@shirazu.ac.ir
  organization: Department of Soil Science, School of Agriculture, Shiraz University
– sequence: 3
  givenname: Hamid Reza
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  email: hr.pourghasemi@shirazu.ac.ir
  organization: Department of Soil Science, School of Agriculture, Shiraz University
– sequence: 4
  givenname: Abdolmajid
  surname: Ronaghi
  fullname: Ronaghi, Abdolmajid
  organization: Department of Soil Science, School of Agriculture, Shiraz University
– sequence: 5
  givenname: Reza
  surname: Ghasemi-Fasaei
  fullname: Ghasemi-Fasaei, Reza
  organization: Department of Soil Science, School of Agriculture, Shiraz University
– sequence: 6
  givenname: Marcos
  surname: Lado
  fullname: Lado, Marcos
  organization: Centro de Investigaciones Científicas Avanzadas, Facultad de Ciencias, Universidade da Coruña
BookMark eNp9UctuHCEQRJEjxXbyAzkh5ZLLJM3AzLBHy8pLsuSLc0a9wOxisTABVrJ_I1-c3ocUyQefoOmq7qLqil2knDxjHwV8EQDT1yqEHHUHvepA6n7opjfsUoxCdZPScEF3JVcdCNDv2FWtjwByovYl-3uzLDFYbCEnnme-lPwUdhh59amGtOG40BPaLW-Zmt4F2_gZ7p_sFtPGU72gDe35MMBitFh83ldec4iV749jYkgeC8fkOEk_Vw4b8l1Ixz1xk0to2119z97OGKv_cD6v2e_v3x5uf3Z39z9-3d7cdVYOfesmlG4lNVip_TyCddKt_QDKYS9Ra9fblbDzaFUvcL0eAS1opbSb1CQBhZTX7PNpLn3wz97XZnahWh8jpoN8I8VAnh6MIuinF9DHvC-J1BkJZCTJGBSh-hPKllxr8bNZCnlZno0Ac4jJnGIyFJM5xmQmIukXJHLy6G8rGOLrVHmiVtpDOZT_ql5h_QPCwqv3
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3541098
crossref_primary_10_1007_s12145_025_01768_2
Cites_doi 10.3390/s22093459
10.1071/SR02137
10.1080/09715010.2018.1439776
10.1016/j.catena.2022.106807
10.1097/00010694-193009000-00001
10.1016/j.trac.2010.05.006
10.1016/j.biosystemseng.2014.03.003
10.1080/03650340.2010.503956
10.1016/j.geoderma.2009.12.025
10.1071/SR9950637
10.1023/B:STCO.0000035301.49549.88
10.1007/s12665-023-10934-y
10.3390/rs9040293
10.1002/9781119600978
10.1002/ldr.3597
10.4141/CJSS09018
10.2136/sssaj2017.02.0066
10.1016/j.geodrs.2023.e00752
10.1016/j.geoderma.2017.09.013
10.1016/j.geoderma.2005.03.007
10.1016/S0016-7061(02)00139-8
10.1080/01431161.2015.1084438
10.1016/j.geodrs.2022.e00484
10.1016/S0065-2113(10)07005-7
10.1097/00010694-193401000-00003
10.1080/00103624.2019.1604728
10.2136/sssaj1939.036159950003000C0032x
10.1016/j.geoderma.2008.03.017
10.3390/rs9010028
10.1346/CCMN.1991.0390510
10.1016/bs.agron.2015.02.002
10.1002/cem.1357
10.1016/j.biosystemseng.2016.03.005
10.1111/ejss.13192
10.1016/j.geoderma.2021.115163
10.1007/s12665-021-10078-x
10.1016/j.geoderma.2022.116174
10.2136/sssaj1995.03615995005900020014x
10.1007/s12517-020-06405-4
10.5194/soil-7-525-2021
10.1080/00103624.2013.874029
10.3390/s21010148
10.1016/j.jaridenv.2009.08.011
10.1097/00010694-195204000-00001
10.1109/LGRS.2011.2156759
10.1080/03650340.2022.2047944
10.1255/jnirs.694
10.1016/j.clay.2005.12.006
10.1080/00103624.2015.1006367
10.1016/j.geoderma.2019.06.043
10.1016/j.geoderma.2021.115221
10.1016/j.geoderma.2018.04.019
10.1061/(ASCE)EM.1943-7889.0001220
10.1016/j.geoderma.2020.114793
10.1080/05704928.2013.811081
10.1016/j.catena.2022.106404
10.1016/j.catena.2022.106552
10.1021/ac00162a020
10.1071/SR07099
10.2136/sssaj2014.09.0355
10.1016/j.trac.2021.116206
10.1023/A:1022893520315
10.2136/vzj2018.10.0192
10.1016/j.geodrs.2021.e00436
10.1016/j.jhydrol.2022.128412
10.1016/j.geoderma.2016.10.022
10.1080/03650340.2019.1706169
10.18520/cs/v116/i12/2020-2027
10.1080/15324982.2022.2066582
10.1016/j.geoderma.2015.07.013
10.1080/00103629009368300
10.1021/ac60214a047
10.2478/intag-2014-0002
10.1016/S0341-8162(03)00040-7
10.1016/0003-2670(86)80028-9
10.1016/j.catena.2017.07.002
10.1016/j.infrared.2022.104371
10.1016/j.catena.2018.05.001
10.1016/j.geoderma.2019.114163
10.1016/j.ecolind.2020.106566
10.2136/sssaj1986.03615995005000010023x
10.1007/s11629-019-5789-9
10.1002/clen.201700670
10.2136/sssabookser5.3.c40
10.1201/b19322
10.2136/sssabookser5.1.2ed.c15
10.2136/sssabookser5.3
10.2136/sssabookser5.3.c34
10.2136/sssabookser5.3.c16
10.1016/j.saa.2022.121441
10.2136/sssabookser5.3.c14
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11368-024-03825-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
ProQuest Science Database (NC LIVE)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 2267
ExternalDocumentID 10_1007_s11368_024_03825_7
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: Shiraz University
  grantid: 98GCU1M148056
  funderid: http://dx.doi.org/10.13039/501100005071
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7Y
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7ST
7UA
7XB
8FK
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-7a3d9380c38ef60cd3dbe504da23a88d2c91cf6c421abb60ac08448d74730a133
IEDL.DBID BENPR
ISSN 1439-0108
IngestDate Thu Sep 04 19:44:20 EDT 2025
Fri Jul 25 09:36:38 EDT 2025
Wed Oct 01 02:20:51 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Spectrotransfer function
Stepwise multiple linear regression
Support vector regression
Soil spectroscopy
Multiblock analysis
Partial least squares regression
Pedotransfer functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-7a3d9380c38ef60cd3dbe504da23a88d2c91cf6c421abb60ac08448d74730a133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3071638054
PQPubID 54474
PageCount 20
ParticipantIDs proquest_miscellaneous_3153680371
proquest_journals_3071638054
crossref_primary_10_1007_s11368_024_03825_7
crossref_citationtrail_10_1007_s11368_024_03825_7
springer_journals_10_1007_s11368_024_03825_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ostovari, Moosavi, Mozaffari, Pourghasemi (CR59) 2021; 14
Smilde, Næs, Liland (CR78) 2022
Mozaffari, Moosavi, Cornelis (CR49) 2022; 69
Karami, Moosavi, Pourghasemi, Ronaghi, Ghasemi-Fasaei, Vidal, Lado (CR30) 2024; 36
Mozaffari, Moosavi, Ostovari, Nematollahi, Rezaei (CR50) 2022; 428
CR37
Zahedifar (CR96) 2023; 222
CR35
CR33
Khormali, Abtahi, Mahmoodi, Stoops (CR34) 2003; 53
(CR80) 2014
Sulieman, Saeed, Hassaballa, Rodrigo-Comino (CR83) 2018; 167
Rehman, Knadel, de Jonge, Moldrup, Greve, Arthur (CR63) 2019; 18
Bayat, Davatgar, Jalali (CR5) 2014; 28
Janik, Skjemstad (CR26) 1995; 33
Geladi, Kowalski (CR21) 1986; 185
Ghorbani, Kashi, Hafezi Moghadas, Emamgholizadeh (CR22) 2015; 46
Žížala, Zádorová, Kapička (CR98) 2017; 9
Kandpal, Munnaf, Cruz, Mouazen (CR29) 2022; 22
Kandpal, Mouazen, Masithoh, Mishra, Lohumi, Cho, Lee (CR28) 2022; 127
Stenberg, Rossel, Mouazen, Wetterlind (CR82) 2010; 107
Razzaghi, Arthur, Moosavi (CR62) 2021; 400
de Santana, Grunsky, Fitzsimons, Gallagher, Daly (CR16) 2022; 218
Sihag, Tiwari, Ranjan (CR77) 2020; 26
Mehlich (CR42) 1939; 3
CR56
Mozaffari, Moosavi, Ostovari, Cornelis (CR51) 2022
Naimi, Ayoubi, Di Raimo, Dematte (CR54) 2022; 28
Smola, Schölkopf (CR79) 2004; 14
McBratney, Minasny, Cattle, Vervoort (CR40) 2002; 109
Nduwamungu, Ziadi, Parent, Tremblay (CR55) 2009; 89
Waruru, Shepherd, Ndegwa, Kamoni, Sila (CR93) 2014; 121
Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Dor, Brown, Clairotte, Csorba (CR57) 2015; 132
Wan, Hu, Qu, Li, Zhang, Kang, Hong, Chen, Huang (CR92) 2020; 363
Martens, Naes (CR39) 1992
McBride (CR41) 2022; 73
Bormann, Klaassen (CR10) 2008; 145
Van Groenigen, Mutters, Horwath, Van Kessel (CR90) 2003; 250
Mishra, Sulieman, Kaya, Francaviglia, Keshavarzi, Bakhshandeh, Loum, Jangir, Ahmed, Elmobarak (CR45) 2022; 216
Ostovari, Moosavi, Pourghasemi (CR58) 2020; 31
Asgari, Ayoubi, Demattê, Dotto (CR2) 2020; 17
Rossel, Behrens (CR68) 2010; 158
Babaeian, Homaee, Vereecken, Montzka, Norouzi, van Genuchten (CR3) 2015; 79
CR66
Khorshidi, Lu (CR36) 2017; 143
Johnson, Vandamme, Senthilkumar, Sila, Shepherd, Saito (CR27) 2019; 354
Ulusoy, Tekin, Tümsavaş, Mouazen (CR89) 2016; 152
Bilgili, Van Es, Akbas, Durak, Hively (CR9) 2010; 74
Rezaee, Moosavi, Davatgar, Sepaskhah (CR64) 2020; 66
Xu, Zhao, Wang, Shi (CR95) 2018; 310
Kashi, Emamgholizadeh, Ghorbani (CR31) 2014; 45
Khaledian, Brevik, Pereira, Cerdà, Fattah, Tazikeh (CR32) 2017; 158
Hermansen, Knadel, Moldrup, Greve, Karup, de Jonge (CR24) 2017; 81
CR71
Soriano-Disla, Janik, Viscarra Rossel, Macdonald, McLaughlin (CR81) 2014; 49
Mozaffari, Moosavi, Sepaskhah, Cornelis (CR48) 2022; 36
Shuman, Duncan (CR75) 1990; 21
Baumann, Helfenstein, Gubler, Keller, Meuli, Wächter, Lee, Viscarra Rossel, Six (CR4) 2021; 7
Rossel (CR67) 2007; 15
CR8
Sun, Zhang, Sun, Sun, Cen (CR85) 2018; 327
Taghizadeh-Mehrjardi, Schmidt, Toomanian, Heung, Behrens, Mosavi, Band, Amirian-Chakan, Fathabadi, Scholten (CR86) 2021; 383
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (CR6) 2010; 29
Næs, Tomic, Mevik, Martens (CR53) 2011; 25
Savitzky, Golay (CR73) 1964; 36
CR88
Calzolari, Ungaro, Filippi, Guermandi, Malucelli, Marchi, Staffilani, Tarocco (CR12) 2016; 261
Haaland, Thomas (CR23) 1988; 60
Rossel, Walvoort, McBratney, Janik, Skjemstad (CR69) 2006; 131
CR84
Moosavi, Sepaskhah (CR47) 2012; 58
Pasolli, Notarnicola, Bruzzone (CR60) 2011; 8
Dalal, Henry (CR13) 1986; 50
Mishra, Das, Sulieman (CR46) 2019; 116
Ludwig, Vormstein, Niebuhr, Heinze, Marschner, Vohland (CR38) 2017; 288
Ben Dor, Banin (CR7) 1995; 59
CR19
CR17
CR14
Zahedifar (CR97) 2023; 82
Islam, Singh, McBratney (CR25) 2003; 41
CR94
Tavares, Molin, Javadi, Carvalho, Mouazen (CR87) 2020; 21
Asadzadeh, Maleki-Kakelar, Shabani (CR1) 2019; 50
Rytwo, Serban, Nir, Margulies (CR72) 1991; 39
de Santana, Otani, de Souza, Poppi (CR15) 2021; 27
Pinheiro, Ceddia, Clingensmith, Grunwald, Vasques (CR61) 2017; 9
Bower, Reitemeier, Fireman (CR11) 1952; 73
Mishra, Roger, Jouan-Rimbaud-Bouveresse, Biancolillo, Marini, Nordon, Rutledge (CR44) 2021; 137
Mozaffari, Moosavi, Sepaskhah (CR52) 2021; 80
Dohrmann (CR18) 2006; 34
Mina, Rezaei, Sameni, Moosavi, Ritsema (CR43) 2021; 401
Rossel, Jeon, Odeh, McBratney (CR70) 2008; 46
CR20
Walkley, Black (CR91) 1934; 37
Schollenberger, Dreibelbis (CR74) 1930; 30
Siegmann, Jarmer (CR76) 2015; 36
Rezaee, Moosavi, Davatgar, Sepaskhah (CR65) 2020; 117
S Naimi (3825_CR54) 2022; 28
C Calzolari (3825_CR12) 2016; 261
Soil Survey Staff (3825_CR80) 2014
H Mozaffari (3825_CR50) 2022; 428
MB McBride (3825_CR41) 2022; 73
AK Smilde (3825_CR78) 2022
M Sulieman (3825_CR83) 2018; 167
AB McBratney (3825_CR40) 2002; 109
N Asgari (3825_CR2) 2020; 17
B Stenberg (3825_CR82) 2010; 107
S Xu (3825_CR95) 2018; 310
3825_CR33
3825_CR37
3825_CR35
L Rezaee (3825_CR65) 2020; 117
RV Rossel (3825_CR69) 2006; 131
H Bormann (3825_CR10) 2008; 145
M Zahedifar (3825_CR96) 2023; 222
AA Moosavi (3825_CR47) 2012; 58
E Babaeian (3825_CR3) 2015; 79
3825_CR66
BK Waruru (3825_CR93) 2014; 121
L Rezaee (3825_CR64) 2020; 66
CA Bower (3825_CR11) 1952; 73
F Khormali (3825_CR34) 2003; 53
C Nduwamungu (3825_CR55) 2009; 89
A Karami (3825_CR30) 2024; 36
P Geladi (3825_CR21) 1986; 185
AV Bilgili (3825_CR9) 2010; 74
3825_CR56
R Taghizadeh-Mehrjardi (3825_CR86) 2021; 383
FB de Santana (3825_CR15) 2021; 27
P Mishra (3825_CR44) 2021; 137
J-M Johnson (3825_CR27) 2019; 354
P Baumann (3825_CR4) 2021; 7
RV Rossel (3825_CR67) 2007; 15
A Walkley (3825_CR91) 1934; 37
W Sun (3825_CR85) 2018; 327
V Bellon-Maurel (3825_CR6) 2010; 29
C Schollenberger (3825_CR74) 1930; 30
K Islam (3825_CR25) 2003; 41
H Kashi (3825_CR31) 2014; 45
B Siegmann (3825_CR76) 2015; 36
L Shuman (3825_CR75) 1990; 21
G Rytwo (3825_CR72) 1991; 39
F Asadzadeh (3825_CR1) 2019; 50
3825_CR88
M Wan (3825_CR92) 2020; 363
LJ Janik (3825_CR26) 1995; 33
DM Haaland (3825_CR23) 1988; 60
B Ludwig (3825_CR38) 2017; 288
H Mozaffari (3825_CR49) 2022; 69
3825_CR84
A Mehlich (3825_CR42) 1939; 3
AJ Smola (3825_CR79) 2004; 14
TR Tavares (3825_CR87) 2020; 21
P Sihag (3825_CR77) 2020; 26
RV Rossel (3825_CR68) 2010; 158
H Mozaffari (3825_CR51) 2022
C Hermansen (3825_CR24) 2017; 81
Y Ulusoy (3825_CR89) 2016; 152
3825_CR71
E Ben Dor (3825_CR7) 1995; 59
M Mina (3825_CR43) 2021; 401
JM Soriano-Disla (3825_CR81) 2014; 49
G Mishra (3825_CR45) 2022; 216
A Savitzky (3825_CR73) 1964; 36
H Ghorbani (3825_CR22) 2015; 46
3825_CR20
M Zahedifar (3825_CR97) 2023; 82
T Næs (3825_CR53) 2011; 25
FB de Santana (3825_CR16) 2022; 218
H Mozaffari (3825_CR48) 2022; 36
G Mishra (3825_CR46) 2019; 116
L Pasolli (3825_CR60) 2011; 8
F Razzaghi (3825_CR62) 2021; 400
RV Rossel (3825_CR70) 2008; 46
Y Ostovari (3825_CR58) 2020; 31
LM Kandpal (3825_CR29) 2022; 22
Y Ostovari (3825_CR59) 2021; 14
J Van Groenigen (3825_CR90) 2003; 250
M Khorshidi (3825_CR36) 2017; 143
R Dalal (3825_CR13) 1986; 50
Y Khaledian (3825_CR32) 2017; 158
ÉF Pinheiro (3825_CR61) 2017; 9
3825_CR94
3825_CR19
3825_CR17
HU Rehman (3825_CR63) 2019; 18
3825_CR14
D Žížala (3825_CR98) 2017; 9
3825_CR8
H Martens (3825_CR39) 1992
LM Kandpal (3825_CR28) 2022; 127
H Mozaffari (3825_CR52) 2021; 80
M Nocita (3825_CR57) 2015; 132
R Dohrmann (3825_CR18) 2006; 34
H Bayat (3825_CR5) 2014; 28
References_xml – volume: 22
  start-page: 3459
  year: 2022
  ident: CR29
  article-title: Spectra fusion of Mid-infrared (MIR) and X-ray fluorescence (XRF) spectroscopy for estimation of selected soil fertility attributes
  publication-title: Sensors
  doi: 10.3390/s22093459
– volume: 41
  start-page: 1101
  year: 2003
  end-page: 1114
  ident: CR25
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Soil Res
  doi: 10.1071/SR02137
– volume: 26
  start-page: 44
  year: 2020
  end-page: 50
  ident: CR77
  article-title: Support vector regression-based modeling of cumulative infiltration of sandy soil
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2018.1439776
– volume: 222
  start-page: 106807
  year: 2023
  ident: CR96
  article-title: Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106807
– volume: 30
  start-page: 161
  year: 1930
  end-page: 174
  ident: CR74
  article-title: Analytical methods in base exchange investigations on soils
  publication-title: Soil Sci
  doi: 10.1097/00010694-193009000-00001
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: CR6
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC, Trends Anal Chem
  doi: 10.1016/j.trac.2010.05.006
– volume: 121
  start-page: 177
  year: 2014
  end-page: 185
  ident: CR93
  article-title: Rapid estimation of soil engineering properties using diffuse reflectance near infrared spectroscopy
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2014.03.003
– volume: 58
  start-page: 11
  year: 2012
  end-page: 38
  ident: CR47
  article-title: Determination of unsaturated soil hydraulic properties at different applied tensions and water qualities
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2010.503956
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: CR68
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– ident: CR8
– volume: 33
  start-page: 637
  year: 1995
  end-page: 650
  ident: CR26
  article-title: Characterization and analysis of soils using mid-infrared partial least-squares. 2. Correlations with some laboratory data
  publication-title: Soil Res
  doi: 10.1071/SR9950637
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: CR79
  article-title: A tutorial on support vector regression
  publication-title: Statis Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: CR71
– ident: CR19
– volume: 82
  start-page: 1
  year: 2023
  end-page: 17
  ident: CR97
  article-title: Feasibility of fuzzy analytical hierarchy process (FAHP) and fuzzy TOPSIS methods to assess the most sensitive soil attributes against land use change
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-023-10934-y
– ident: CR88
– volume: 9
  start-page: 293
  year: 2017
  end-page: 315
  ident: CR61
  article-title: Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the central Amazon
  publication-title: Remote Sens
  doi: 10.3390/rs9040293
– year: 2022
  ident: CR78
  article-title: Multiblock data fusion in statistics and machine learning: applications in the natural and life sciences
  publication-title: John Wiley & Sons
  doi: 10.1002/9781119600978
– volume: 31
  start-page: 2156
  year: 2020
  end-page: 2167
  ident: CR58
  article-title: Soil loss tolerance in calcareous soils of a semiarid region: evaluation, prediction, and influential parameters
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.3597
– volume: 89
  start-page: 579
  year: 2009
  end-page: 587
  ident: CR55
  article-title: Mehlich 3 extractable nutrients as determined by near-infrared reflectance spectroscopy
  publication-title: Can J Soil Sci
  doi: 10.4141/CJSS09018
– volume: 81
  start-page: 758
  year: 2017
  end-page: 769
  ident: CR24
  article-title: Complete soil texture is accurately predicted by visible near-infrared spectroscopy
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2017.02.0066
– ident: CR66
– volume: 36
  year: 2024
  ident: CR30
  article-title: Proximal sensing approach for characterization of calcareous soils using multiblock data analysis
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2023.e00752
– volume: 310
  start-page: 29
  year: 2018
  end-page: 43
  ident: CR95
  article-title: Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.013
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: CR69
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 109
  start-page: 41
  year: 2002
  end-page: 73
  ident: CR40
  article-title: From pedotransfer functions to soil inference systems
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00139-8
– volume: 36
  start-page: 4519
  year: 2015
  end-page: 4534
  ident: CR76
  article-title: Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2015.1084438
– ident: CR33
– volume: 28
  year: 2022
  ident: CR54
  article-title: Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2022.e00484
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: CR82
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: CR91
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci
  doi: 10.1097/00010694-193401000-00003
– volume: 50
  start-page: 1106
  year: 2019
  end-page: 1116
  ident: CR1
  article-title: Predicting cationic exchange capacity in calcareous soils of East-Azerbaijan province, northwest Iran
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2019.1604728
– volume: 3
  start-page: 162
  year: 1939
  end-page: 166
  ident: CR42
  article-title: Use of triethanolamine acetate-barium hydroxide buffer for the determination of some base exchange properties and lime requirement of soil
  publication-title: Soil Sci Soc Am Proc
  doi: 10.2136/sssaj1939.036159950003000C0032x
– volume: 145
  start-page: 295
  issue: 3–4
  year: 2008
  end-page: 302
  ident: CR10
  article-title: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.03.017
– volume: 9
  start-page: 28
  year: 2017
  ident: CR98
  article-title: Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data
  publication-title: Czech Republic Remote Sens
  doi: 10.3390/rs9010028
– volume: 39
  start-page: 551
  year: 1991
  end-page: 555
  ident: CR72
  article-title: Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite
  publication-title: Clays Clay Miner
  doi: 10.1346/CCMN.1991.0390510
– ident: CR94
– volume: 132
  start-page: 139
  year: 2015
  end-page: 159
  ident: CR57
  article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2015.02.002
– volume: 25
  start-page: 28
  year: 2011
  end-page: 40
  ident: CR53
  article-title: Path modelling by sequential PLS regression
  publication-title: J Chemom
  doi: 10.1002/cem.1357
– volume: 152
  start-page: 79
  year: 2016
  end-page: 93
  ident: CR89
  article-title: Prediction of soil cation exchange capacity using visible and near infrared spectroscopy
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.03.005
– volume: 73
  year: 2022
  ident: CR41
  article-title: Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise versus reality
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.13192
– volume: 401
  year: 2021
  ident: CR43
  article-title: Vis-NIR spectroscopy predicts threshold velocity of wind erosion in calcareous soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115163
– volume: 80
  start-page: 769
  year: 2021
  ident: CR52
  article-title: Land use-dependent variation of near-saturated and saturated hydraulic properties in calcareous soils
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-10078-x
– volume: 428
  year: 2022
  ident: CR50
  article-title: Developing spectrotransfer functions (STFs) to predict basic physical and chemical properties of calcareous soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116174
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  ident: CR7
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1995.03615995005900020014x
– volume: 14
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR59
  article-title: RUSLE model coupled with RS-GIS for soil erosion evaluation compared with T value in Southwest Iran
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-06405-4
– volume: 7
  start-page: 525
  year: 2021
  end-page: 546
  ident: CR4
  article-title: Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
  publication-title: Soil
  doi: 10.5194/soil-7-525-2021
– volume: 45
  start-page: 1195
  year: 2014
  end-page: 1213
  ident: CR31
  article-title: Estimation of soil infiltration and cation exchange capacity based on multiple regression, ANN (RBF, MLP), and ANFIS models
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2013.874029
– volume: 21
  start-page: 148
  year: 2020
  ident: CR87
  article-title: Combined use of vis-NIR and XRF sensors for tropical soil fertility analysis: Assessing different data fusion approaches
  publication-title: Sens
  doi: 10.3390/s21010148
– volume: 74
  start-page: 229
  year: 2010
  end-page: 238
  ident: CR9
  article-title: Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2009.08.011
– volume: 73
  start-page: 251
  year: 1952
  end-page: 262
  ident: CR11
  article-title: Exchangeable cation analysis of saline and alkali soils
  publication-title: Soil Sci
  doi: 10.1097/00010694-195204000-00001
– volume: 8
  start-page: 1080
  year: 2011
  end-page: 1084
  ident: CR60
  article-title: Estimating soil moisture with the support vector regression technique
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2011.2156759
– volume: 69
  start-page: 962
  year: 2022
  end-page: 980
  ident: CR49
  article-title: Vis-NIR-spectroscopy-and loss-on-ignition-based functions to estimate organic matter content of calcareous soils
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2022.2047944
– volume: 15
  start-page: 39
  year: 2007
  end-page: 47
  ident: CR67
  article-title: Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”
  publication-title: J near Infrared Spectrosc
  doi: 10.1255/jnirs.694
– volume: 34
  start-page: 31
  year: 2006
  end-page: 37
  ident: CR18
  article-title: Cation exchange capacity methodology I: An efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2005.12.006
– volume: 46
  start-page: 763
  year: 2015
  end-page: 780
  ident: CR22
  article-title: Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in Golestan Province
  publication-title: Iran Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2015.1006367
– volume: 354
  year: 2019
  ident: CR27
  article-title: Near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.043
– volume: 400
  year: 2021
  ident: CR62
  article-title: Evaluating models to estimate cation exchange capacity of calcareous soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115221
– year: 2014
  ident: CR80
  publication-title: Keys to soil taxonomy
– volume: 327
  start-page: 25
  year: 2018
  end-page: 35
  ident: CR85
  article-title: Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.019
– volume: 143
  start-page: 04017023
  year: 2017
  ident: CR36
  article-title: Determination of cation exchange capacity from soil water retention curve
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001220
– ident: CR35
– volume: 383
  year: 2021
  ident: CR86
  article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114793
– volume: 49
  start-page: 139
  year: 2014
  end-page: 186
  ident: CR81
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2013.811081
– volume: 216
  start-page: 106404
  year: 2022
  ident: CR45
  article-title: Machine learning for cation exchange capacity prediction in different land uses
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106404
– ident: CR84
– volume: 218
  start-page: 106552
  year: 2022
  ident: CR16
  article-title: Diffuse reflectance mid infra-red spectroscopy combined with machine learning algorithms can differentiate spectral signatures in shallow and deeper soils for the prediction of pH and organic matter content
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106552
– volume: 60
  start-page: 1193
  year: 1988
  end-page: 1202
  ident: CR23
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal Chem
  doi: 10.1021/ac00162a020
– volume: 46
  start-page: 1
  year: 2008
  end-page: 16
  ident: CR70
  article-title: Using a legacy soil sample to develop a mid-IR spectral library
  publication-title: Soil Res
  doi: 10.1071/SR07099
– volume: 79
  start-page: 1043
  year: 2015
  end-page: 1058
  ident: CR3
  article-title: A comparative study of multiple approaches for predicting the soil–water retention curve: Hyperspectral information vs. basic soil properties
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2014.09.0355
– volume: 137
  year: 2021
  ident: CR44
  article-title: Recent trends in multi-block data analysis in chemometrics for multi-source data integration
  publication-title: TrAC, Trends Anal Chem
  doi: 10.1016/j.trac.2021.116206
– volume: 250
  start-page: 155
  year: 2003
  end-page: 165
  ident: CR90
  article-title: NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field
  publication-title: Plant Soil
  doi: 10.1023/A:1022893520315
– volume: 18
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR63
  article-title: Comparison of cation exchange capacity estimated from Vis–NIR spectral reflectance data and a pedotransfer function
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2018.10.0192
– volume: 27
  year: 2021
  ident: CR15
  article-title: Comparison of PLS and SVM models for soil organic matter and particle size using vis-NIR spectral libraries
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2021.e00436
– year: 2022
  ident: CR51
  article-title: Comparing visible-near-infrared spectroscopy with classical regression pedotransfer functions for predicting near-saturated and saturated hydraulic conductivity of calcareous soils
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128412
– volume: 288
  start-page: 37
  year: 2017
  end-page: 46
  ident: CR38
  article-title: Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.022
– volume: 66
  start-page: 2005
  year: 2020
  end-page: 2025
  ident: CR64
  article-title: Shrinkage-swelling characteristics and plasticity indices of paddy soils: spatial variability and their influential parameters
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2019.1706169
– volume: 116
  start-page: 2020
  year: 2019
  end-page: 2027
  ident: CR46
  article-title: Modelling soil cation exchange capacity in different land-use systems using artificial neural networks and multiple regression analysis
  publication-title: Curr Sci
  doi: 10.18520/cs/v116/i12/2020-2027
– volume: 36
  start-page: 371
  year: 2022
  end-page: 397
  ident: CR48
  article-title: Long-term effects of land use type and management on sorptivity, macroscopic capillary length and water-conducting porosity of calcareous soils
  publication-title: Arid Land Res Manage
  doi: 10.1080/15324982.2022.2066582
– volume: 261
  start-page: 190
  year: 2016
  end-page: 203
  ident: CR12
  article-title: A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.013
– volume: 21
  start-page: 1217
  year: 1990
  end-page: 1228
  ident: CR75
  article-title: Soil exchangeable cations and aluminum measured by ammonium chloride, potassium chloride, and ammonium acetate
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103629009368300
– ident: CR14
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: CR73
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– ident: CR37
– volume: 28
  start-page: 143
  year: 2014
  end-page: 152
  ident: CR5
  article-title: Prediction of CEC using fractal parameters by artificial neural networks
  publication-title: Int Agrophys
  doi: 10.2478/intag-2014-0002
– volume: 53
  start-page: 273
  year: 2003
  end-page: 301
  ident: CR34
  article-title: Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran
  publication-title: Catena
  doi: 10.1016/S0341-8162(03)00040-7
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: CR21
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal Chim Acta
  doi: 10.1016/0003-2670(86)80028-9
– ident: CR56
– volume: 158
  start-page: 194
  year: 2017
  end-page: 200
  ident: CR32
  article-title: Modeling soil cation exchange capacity in multiple countries
  publication-title: Catena
  doi: 10.1016/j.catena.2017.07.002
– volume: 127
  year: 2022
  ident: CR28
  article-title: Sequential data-fusion of near-infrared and mid-infrared spectroscopy data for improved prediction of quality traits in tuber flours
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2022.104371
– volume: 167
  start-page: 327
  year: 2018
  end-page: 339
  ident: CR83
  article-title: Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals
  publication-title: Catena
  doi: 10.1016/j.catena.2018.05.001
– volume: 363
  year: 2020
  ident: CR92
  article-title: Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114163
– year: 1992
  ident: CR39
  publication-title: Multivariate calibration
– volume: 117
  year: 2020
  ident: CR65
  article-title: Soil quality indices of paddy soils in Guilan province of northern Iran: Spatial variability and their influential parameters
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.106566
– ident: CR17
– volume: 50
  start-page: 120
  year: 1986
  end-page: 123
  ident: CR13
  article-title: Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1986.03615995005000010023x
– volume: 17
  start-page: 1636
  year: 2020
  end-page: 1651
  ident: CR2
  article-title: Carbonates and organic matter in soils characterized by reflected energy from 350–25000 nm wavelength
  publication-title: J Mt Sci
  doi: 10.1007/s11629-019-5789-9
– ident: CR20
– volume: 158
  start-page: 194
  year: 2017
  ident: 3825_CR32
  publication-title: Catena
  doi: 10.1016/j.catena.2017.07.002
– volume: 69
  start-page: 962
  year: 2022
  ident: 3825_CR49
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2022.2047944
– volume: 66
  start-page: 2005
  year: 2020
  ident: 3825_CR64
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2019.1706169
– ident: 3825_CR33
  doi: 10.1002/clen.201700670
– volume: 39
  start-page: 551
  year: 1991
  ident: 3825_CR72
  publication-title: Clays Clay Miner
  doi: 10.1346/CCMN.1991.0390510
– volume: 49
  start-page: 139
  year: 2014
  ident: 3825_CR81
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2013.811081
– volume: 137
  year: 2021
  ident: 3825_CR44
  publication-title: TrAC, Trends Anal Chem
  doi: 10.1016/j.trac.2021.116206
– volume: 428
  year: 2022
  ident: 3825_CR50
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116174
– ident: 3825_CR84
  doi: 10.2136/sssabookser5.3.c40
– volume: 28
  year: 2022
  ident: 3825_CR54
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2022.e00484
– volume: 18
  start-page: 1
  year: 2019
  ident: 3825_CR63
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2018.10.0192
– volume: 53
  start-page: 273
  year: 2003
  ident: 3825_CR34
  publication-title: Catena
  doi: 10.1016/S0341-8162(03)00040-7
– volume: 185
  start-page: 1
  year: 1986
  ident: 3825_CR21
  publication-title: Anal Chim Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 33
  start-page: 637
  year: 1995
  ident: 3825_CR26
  publication-title: Soil Res
  doi: 10.1071/SR9950637
– volume: 3
  start-page: 162
  year: 1939
  ident: 3825_CR42
  publication-title: Soil Sci Soc Am Proc
  doi: 10.2136/sssaj1939.036159950003000C0032x
– volume: 131
  start-page: 59
  year: 2006
  ident: 3825_CR69
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 109
  start-page: 41
  year: 2002
  ident: 3825_CR40
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00139-8
– volume: 401
  year: 2021
  ident: 3825_CR43
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115163
– volume: 45
  start-page: 1195
  year: 2014
  ident: 3825_CR31
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2013.874029
– ident: 3825_CR71
– volume: 28
  start-page: 143
  year: 2014
  ident: 3825_CR5
  publication-title: Int Agrophys
  doi: 10.2478/intag-2014-0002
– volume: 27
  year: 2021
  ident: 3825_CR15
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2021.e00436
– volume: 21
  start-page: 148
  year: 2020
  ident: 3825_CR87
  publication-title: Sens
  doi: 10.3390/s21010148
– volume: 15
  start-page: 39
  year: 2007
  ident: 3825_CR67
  publication-title: J near Infrared Spectrosc
  doi: 10.1255/jnirs.694
– volume: 37
  start-page: 29
  year: 1934
  ident: 3825_CR91
  publication-title: Soil Sci
  doi: 10.1097/00010694-193401000-00003
– volume: 127
  year: 2022
  ident: 3825_CR28
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2022.104371
– volume: 167
  start-page: 327
  year: 2018
  ident: 3825_CR83
  publication-title: Catena
  doi: 10.1016/j.catena.2018.05.001
– volume: 132
  start-page: 139
  year: 2015
  ident: 3825_CR57
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2015.02.002
– volume: 327
  start-page: 25
  year: 2018
  ident: 3825_CR85
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.019
– ident: 3825_CR8
– volume: 25
  start-page: 28
  year: 2011
  ident: 3825_CR53
  publication-title: J Chemom
  doi: 10.1002/cem.1357
– volume: 14
  start-page: 1
  year: 2021
  ident: 3825_CR59
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-06405-4
– volume: 400
  year: 2021
  ident: 3825_CR62
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115221
– volume: 73
  start-page: 251
  year: 1952
  ident: 3825_CR11
  publication-title: Soil Sci
  doi: 10.1097/00010694-195204000-00001
– ident: 3825_CR17
  doi: 10.1201/b19322
– volume: 41
  start-page: 1101
  year: 2003
  ident: 3825_CR25
  publication-title: Soil Res
  doi: 10.1071/SR02137
– volume: 31
  start-page: 2156
  year: 2020
  ident: 3825_CR58
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.3597
– year: 2022
  ident: 3825_CR51
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128412
– volume: 80
  start-page: 769
  year: 2021
  ident: 3825_CR52
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-10078-x
– volume: 158
  start-page: 46
  year: 2010
  ident: 3825_CR68
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: 354
  year: 2019
  ident: 3825_CR27
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.043
– year: 2022
  ident: 3825_CR78
  publication-title: John Wiley & Sons
  doi: 10.1002/9781119600978
– volume: 73
  year: 2022
  ident: 3825_CR41
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.13192
– volume: 36
  start-page: 4519
  year: 2015
  ident: 3825_CR76
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2015.1084438
– volume: 121
  start-page: 177
  year: 2014
  ident: 3825_CR93
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2014.03.003
– volume: 29
  start-page: 1073
  year: 2010
  ident: 3825_CR6
  publication-title: TrAC, Trends Anal Chem
  doi: 10.1016/j.trac.2010.05.006
– volume: 50
  start-page: 1106
  year: 2019
  ident: 3825_CR1
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2019.1604728
– volume: 261
  start-page: 190
  year: 2016
  ident: 3825_CR12
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.013
– volume: 82
  start-page: 1
  year: 2023
  ident: 3825_CR97
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-023-10934-y
– volume: 17
  start-page: 1636
  year: 2020
  ident: 3825_CR2
  publication-title: J Mt Sci
  doi: 10.1007/s11629-019-5789-9
– ident: 3825_CR19
– volume: 50
  start-page: 120
  year: 1986
  ident: 3825_CR13
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1986.03615995005000010023x
– volume: 152
  start-page: 79
  year: 2016
  ident: 3825_CR89
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.03.005
– volume: 59
  start-page: 364
  year: 1995
  ident: 3825_CR7
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1995.03615995005900020014x
– volume: 222
  start-page: 106807
  year: 2023
  ident: 3825_CR96
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106807
– volume: 36
  start-page: 371
  year: 2022
  ident: 3825_CR48
  publication-title: Arid Land Res Manage
  doi: 10.1080/15324982.2022.2066582
– volume: 46
  start-page: 763
  year: 2015
  ident: 3825_CR22
  publication-title: Iran Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2015.1006367
– ident: 3825_CR20
  doi: 10.2136/sssabookser5.1.2ed.c15
– volume: 58
  start-page: 11
  year: 2012
  ident: 3825_CR47
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2010.503956
– volume: 9
  start-page: 293
  year: 2017
  ident: 3825_CR61
  publication-title: Remote Sens
  doi: 10.3390/rs9040293
– volume-title: Multivariate calibration
  year: 1992
  ident: 3825_CR39
– volume: 8
  start-page: 1080
  year: 2011
  ident: 3825_CR60
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2011.2156759
– volume: 7
  start-page: 525
  year: 2021
  ident: 3825_CR4
  publication-title: Soil
  doi: 10.5194/soil-7-525-2021
– volume: 74
  start-page: 229
  year: 2010
  ident: 3825_CR9
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2009.08.011
– volume: 14
  start-page: 199
  year: 2004
  ident: 3825_CR79
  publication-title: Statis Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 60
  start-page: 1193
  year: 1988
  ident: 3825_CR23
  publication-title: Anal Chem
  doi: 10.1021/ac00162a020
– volume-title: Keys to soil taxonomy
  year: 2014
  ident: 3825_CR80
– volume: 288
  start-page: 37
  year: 2017
  ident: 3825_CR38
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.022
– volume: 107
  start-page: 163
  year: 2010
  ident: 3825_CR82
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 79
  start-page: 1043
  year: 2015
  ident: 3825_CR3
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2014.09.0355
– volume: 116
  start-page: 2020
  year: 2019
  ident: 3825_CR46
  publication-title: Curr Sci
  doi: 10.18520/cs/v116/i12/2020-2027
– ident: 3825_CR37
  doi: 10.2136/sssabookser5.3
– volume: 145
  start-page: 295
  issue: 3–4
  year: 2008
  ident: 3825_CR10
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.03.017
– volume: 36
  year: 2024
  ident: 3825_CR30
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2023.e00752
– volume: 117
  year: 2020
  ident: 3825_CR65
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.106566
– volume: 250
  start-page: 155
  year: 2003
  ident: 3825_CR90
  publication-title: Plant Soil
  doi: 10.1023/A:1022893520315
– volume: 30
  start-page: 161
  year: 1930
  ident: 3825_CR74
  publication-title: Soil Sci
  doi: 10.1097/00010694-193009000-00001
– volume: 46
  start-page: 1
  year: 2008
  ident: 3825_CR70
  publication-title: Soil Res
  doi: 10.1071/SR07099
– volume: 34
  start-page: 31
  year: 2006
  ident: 3825_CR18
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2005.12.006
– volume: 216
  start-page: 106404
  year: 2022
  ident: 3825_CR45
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106404
– volume: 9
  start-page: 28
  year: 2017
  ident: 3825_CR98
  publication-title: Czech Republic Remote Sens
  doi: 10.3390/rs9010028
– ident: 3825_CR56
  doi: 10.2136/sssabookser5.3.c34
– volume: 36
  start-page: 1627
  year: 1964
  ident: 3825_CR73
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– volume: 26
  start-page: 44
  year: 2020
  ident: 3825_CR77
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2018.1439776
– ident: 3825_CR88
  doi: 10.2136/sssabookser5.3.c16
– volume: 22
  start-page: 3459
  year: 2022
  ident: 3825_CR29
  publication-title: Sensors
  doi: 10.3390/s22093459
– ident: 3825_CR14
  doi: 10.1016/j.saa.2022.121441
– volume: 310
  start-page: 29
  year: 2018
  ident: 3825_CR95
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.013
– ident: 3825_CR66
  doi: 10.2136/sssabookser5.3.c14
– volume: 363
  year: 2020
  ident: 3825_CR92
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114163
– volume: 383
  year: 2021
  ident: 3825_CR86
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114793
– volume: 81
  start-page: 758
  year: 2017
  ident: 3825_CR24
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2017.02.0066
– volume: 143
  start-page: 04017023
  year: 2017
  ident: 3825_CR36
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001220
– ident: 3825_CR35
  doi: 10.1016/S0341-8162(03)00040-7
– ident: 3825_CR94
– volume: 89
  start-page: 579
  year: 2009
  ident: 3825_CR55
  publication-title: Can J Soil Sci
  doi: 10.4141/CJSS09018
– volume: 21
  start-page: 1217
  year: 1990
  ident: 3825_CR75
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103629009368300
– volume: 218
  start-page: 106552
  year: 2022
  ident: 3825_CR16
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106552
SSID ssj0037161
Score 2.389062
Snippet Purpose The cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the...
PurposeThe cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the...
PURPOSE: The cation exchange capacity (CEC) is a pivotal soil attribute that influences soil chemistry, fertility, and productivity. Nevertheless, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2248
SubjectTerms Acetates
Acetic acid
Algorithms
Arid zones
Calcareous soils
Cation exchange
cation exchange capacity
Cation exchanging
Cations
cost effectiveness
Data analysis
Data mining
Data processing
Earth and Environmental Science
Environment
Environmental Physics
Estimation
Exchange capacity
Infrared analysis
Iran
Land use
Least squares method
prediction
Prediction models
Radial basis function
Reflectance
Regression
regression analysis
Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
Semi arid areas
Semiarid zones
Sodium
Sodium acetate
Soil chemistry
Soil fertility
Soil properties
Soil Science & Conservation
Soils
Spectral reflectance
Spectroscopy
Support vector machines
Wavelengths
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-iOBNA9lmk6bHRRQR9OSCt5JX14XdVrZd8Hf4i53pthZFBY8lyQQyk5lvOo8QcpFIL03wGRNgXsBBMZJpEzImfRw7m1ilMqx3fnhUd6PB_bN8borCyjbbvQ1J1pq6K3brC6UZ2BTGgbBk8SpZl9jOC6R4FA1b_SvAA6jdLDC14Chz3ZTK_EzjqznqMOa3sGhtbW63yVYDE-lwydcdshLyXbI5HM-bVhlhj7wPu9gzLTKKCSmTGSwqMSc9H9O2XTitChjEgExFm-nhbVnwC9_gMwMQRwLALcwDKxYlLYvJtKSLmgziUDOnJvc0X_bVgC9MLKWz-nEJaqbjYj6pXmblPhnd3jxd37HmhQXmAHhVLDbCJ0JzJ3TIFHdeeBskH3gTCaO1j1zSd5lyg6hvrFXcOK7Bn_PggwhuwL09IGuwdTgkVGXWRRJMboKIYaBgUqIM8FoEa7nIeqTfHnTqmvbj-ArGNO0aJyNzUmBOWjMnjXvk8nPN67L5xp-zT1r-pc1FLFNQYYg4AZj2yPnnMFwhjIuYHM80FaD1lUbB6ZGrlu8did93PPrf9GOyEdWih_9wTshaNV-EU4A0lT2rJfgDu8HvxA
  priority: 102
  providerName: Springer Nature
Title Application of proximal sensing approach to predict cation exchange capacity of calcareous soils using linear and nonlinear data mining algorithms
URI https://link.springer.com/article/10.1007/s11368-024-03825-7
https://www.proquest.com/docview/3071638054
https://www.proquest.com/docview/3153680371
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037161
  issn: 1439-0108
  databaseCode: AFBBN
  dateStart: 20010301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7480
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0037161
  issn: 1439-0108
  databaseCode: BENPR
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037161
  issn: 1439-0108
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037161
  issn: 1439-0108
  databaseCode: U2A
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQUOFU8R2kaLxA1WON54bR9QZVBKBSJCiEjlZO3LoVJit7Ej9Xfwi5mx17VAokdrX9bO7M43Oy-A12lkI-VswQWKF1RQVMQT5Qoe2Tg2OtVSFhTv_HUpL1bzz5fR5QEs-1gYcqvs78T2oraVoTfyd8iLBB0QYZxd33CqGkXW1b6EhvKlFez7NsXYIYxDyow1gvGHxfLb9_5uFjhHq4KhGEYlOkh8GE0XTDcTMuEos3iAPx7x-G9RNeDPf0ymrSQ6fwRHHkKyrKP5Yzhw5RN4mK13Po2Gewq_s8EuzaqCkbPK1RYH1eSvXq5Zn0qcNRU2krGmYb67u-2CgfEb9WkE6TQBUpJ8xKp9zerqalOzfTsNYVS1Y6q0rOxybuAXOZ2ybVt4gqnNGjex-bWtn8HqfPHj4wX31Re4QVDW8FgJm-KGG5G4QgbGCqtdFMytCoVKEhuadGYKaebhTGktA2WCBHU9i_qJCBSqvs9hhEu7F8BkoU0YoThOCU3MJXZKpUI-EE7rQBQTmPUbnRufmpwqZGzyIakyESdH4uQtcfJ4Am_uxlx3iTnu7X3S0y_3h7TOB5aawKu7ZjxeZDNRJe1pLlAiyIQYZwJve7oPU_x_xZf3r3gMD8KW1eg95wRGzW7vThHeNHoK4-zTzy-LqefdKRyuwuwPiQz7yQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEOUhFgoYCU5gkcSJkxwqtIVWW9quEGql3oxf2VbaTcomK-jf6A_itzGTOI1AorceI78iz9jzjedFyJs8sYlytmAcxAsoKCphmXIFS2yaGp1rIQqMdz6aislJ_OU0OV0jv_tYGHSr7O_E9qK2lcE38g_AiwgdAGF8vPjBsGoUWlf7EhrKl1aw222KMR_YceAuf4IKV2_vfwZ6v42ivd3jTxPmqwwwA-CjYaniNoeJDc9cIQJjudUuCWKrIq6yzEYmD00hTByFSmsRKBNkoNNYwOE8UCE-iIII2Ih5nIPyt7GzO_36rZcFHP65VflA7IPSHmQ-bKcL3gu5yBjISBbARiUs_Vs0Dnj3HxNtK_n2HpD7HrLSccdjm2TNlQ_JvfFs6dN2uEfkajzYwWlVUHSOOV_AoBr948sZ7VOX06aCRjQONdR3d7-64GP4Bv0dlAKcADgHfdKqVU3r6nxe01U7DWJitaSqtLTscnzAFzq50kVb6IKq-QyI1pwt6sfk5Fbo8ISsw9LuKaGi0CZKQPzniF5iAZ1yoYDvuNM64MWIhP1GS-NToWNFjrkckjgjcSQQR7bEkemIvLsec9ElArmx91ZPP-kvhVoOLDwir6-b4TijjUaVuKeSgwQSGTLOiLzv6T5M8f8Vn9284ityZ3J8dCgP96cHz8ndqGU7fEvaIuvNcuVeALRq9EvPv5R8v-0j8wdwaDZD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJwQDzFQgEjwQmsJvHGSQ4VWmhXLYVVhajUm_FzW2k3KZusgL_Bz-JXMZM4jUCitx4jvyLP2PON50XIyyK1qXLWMw7iBRQUlbJcOc9Sm2VGF1oIj_HOn2bi4GT84TQ93SC_-1gYdKvs78T2oraVwTfyHeBFhA6AMHZ8cIs43pu-vfjGsIIUWlr7choqlFmwu226sRDkceR-fgd1rt493APav0qS6f6X9wcsVBxgBoBIwzLFbQGLGJ47LyJjudUujcZWJVzluU1MERsvzDiJldYiUibKQb-xgMl5pGJ8HAVxsIXGL7gktt7tz44_93KBw_-36h9AAFDgozyE8HSBfDEXOQN5ySLYtJRlf4vJAfv-Y65tpeD0Drkd4CuddPx2l2y48h65NZmvQgoPd5_8mgw2cVp5io4y50sYVKOvfDmnfRpz2lTQiIaihobu7kcXiAzfoMuDgoATABehf1q1rmldnS9qum6nQXysVlSVlpZdvg_4QodXumyLXlC1mAPRmrNl_YCcXAsdHpJNWNo9IlR4bZIUoECBSGYsoFMhFPAgd1pH3I9I3G-0NCEtOlbnWMghoTMSRwJxZEscmY3I68sxF11SkCt7b_f0k-GCqOXAziPy4rIZjjbaa1SJeyo5SCORI-OMyJue7sMU_1_x8dUrPic34OjIj4ezoyfkZtJyHT4rbZPNZrV2TwFlNfpZYF9Kvl73ifkDwxU6cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+proximal+sensing+approach+to+predict+cation+exchange+capacity+of+calcareous+soils+using+linear+and+nonlinear+data+mining+algorithms&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Karami%2C+Ali&rft.au=Moosavi%2C+Ali+Akbar&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Ronaghi%2C+Abdolmajid&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=24&rft.issue=6&rft.spage=2248&rft.epage=2267&rft_id=info:doi/10.1007%2Fs11368-024-03825-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon