Set-Membership Constrained Particle Filter: Distributed Adaptation for Sensor Networks
Target tracking is investigated using particle filtering of data collected by distributed sensors. In lieu of a fusion center, local measurements must be disseminated across the network for each sensor to implement a centralized particle filter (PF). However, disseminating raw measurements incurs fo...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 59; no. 9; pp. 4122 - 4138 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2011.2159599 |
Cover
| Abstract | Target tracking is investigated using particle filtering of data collected by distributed sensors. In lieu of a fusion center, local measurements must be disseminated across the network for each sensor to implement a centralized particle filter (PF). However, disseminating raw measurements incurs formidable communication overhead as large volumes of data are collected by the sensors. To reduce this overhead and thus enable distributed PF implementation, the present paper develops a set-membership constrained (SMC) PF approach that i) exhibits performance comparable to the centralized PF; ii) requires only communication of particle weights among neighboring sensors; and iii) can afford both consensus-based and incremental averaging implementations. These attractive attributes are effected through a novel adaptation scheme, which is amenable to simple distributed implementation using min- and max-consensus iterations. The resultant SMC-PF exhibits high gain over the bootstrap PF when the likelihood is peaky, but not in the tail of the prior. Simulations corroborate that for a fixed number of particles, and subject to peaky likelihood conditions, SMC-PF outperforms the bootstrap PF, as well as recently developed distributed PF algorithms, by a wide margin. |
|---|---|
| AbstractList | Target tracking is investigated using particle filtering of data collected by distributed sensors. In lieu of a fusion center, local measurements must be disseminated across the network for each sensor to implement a centralized particle filter (PF). However, disseminating raw measurements incurs formidable communication overhead as large volumes of data are collected by the sensors. To reduce this overhead and thus enable distributed PF implementation, the present paper develops a set-membership constrained (SMC) PF approach that i) exhibits performance comparable to the centralized PF; ii) requires only communication of particle weights among neighboring sensors; and iii) can afford both consensus-based and incremental averaging implementations. These attractive attributes are effected through a novel adaptation scheme, which is amenable to simple distributed implementation using min- and max-consensus iterations. The resultant SMC-PF exhibits high gain over the bootstrap PF when the likelihood is peaky, but not in the tail of the prior. Simulations corroborate that for a fixed number of particles, and subject to peaky likelihood conditions, SMC-PF outperforms the bootstrap PF, as well as recently developed distributed PF algorithms, by a wide margin. |
| Author | Roumeliotis, S. I. Farahmand, S. Giannakis, G. B. |
| Author_xml | – sequence: 1 givenname: S. surname: Farahmand fullname: Farahmand, S. email: shahrokh@umn.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: S. I. surname: Roumeliotis fullname: Roumeliotis, S. I. email: stergios@cs.umn.edu organization: Dept. of Comput. Sci., Univ. of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: G. B. surname: Giannakis fullname: Giannakis, G. B. email: georgios@umn.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24592543$$DView record in Pascal Francis |
| BookMark | eNp9kU1rGzEQhkVIoUmae6GXpVB6Wnf0uVJvwW0-IG0CTktuQt6dpUrXkivJhPz7ytjkkENOI5jnnRHzHJPDEAMS8p7CjFIwX-4WtzMGlM4YlUYac0COqBG0BdGpw_oGyVupu_u35DjnBwAqhFFH5PcCS_sDV0tM-Y9fN_MYcknOBxyaW5eK7ydszv1UMH1tvvna88tNqc2zwa2LKz6GZoypWWDItfzE8hjT3_yOvBndlPF0X0_Ir_Pvd_PL9vrm4mp-dt32XLLSdrxnhhlhuo7rETQy4zjjWg5q5MxQBgJQaK1GcNq4gTsNCijXnA16uUR-Qj7v5q5T_LfBXOzK5x6nyQWMm2wNFUpAx3QlP74gH-Imhfo5qzUD0ILKCn3aQy73bhqTC73Pdp38yqUny4Q0TApeOdhxfYo5JxyfEQp2q8NWHXarw-511Ih6Een97n7bc0-vBT_sgh4Rn_dUlYpzxf8DtfWXjg |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_3390_s19183829 crossref_primary_10_3182_20140824_6_ZA_1003_00929 crossref_primary_10_1109_ACCESS_2019_2925009 crossref_primary_10_3390_app9050903 crossref_primary_10_1016_j_sigpro_2013_09_005 crossref_primary_10_1049_iet_cta_2014_1055 crossref_primary_10_1109_TSP_2012_2196697 crossref_primary_10_3390_s20030627 crossref_primary_10_1109_TSP_2014_2367468 crossref_primary_10_1016_j_sigpro_2016_08_003 crossref_primary_10_1109_ACCESS_2018_2830350 crossref_primary_10_3390_s16060786 crossref_primary_10_1109_JSAC_2015_2430519 crossref_primary_10_1002_acs_1288 crossref_primary_10_3390_s16091454 crossref_primary_10_1109_TSIPN_2017_2694318 crossref_primary_10_1109_LSP_2016_2518173 crossref_primary_10_1109_MSP_2012_2219652 crossref_primary_10_1109_TVT_2015_2508456 crossref_primary_10_1109_TSP_2014_2319777 crossref_primary_10_1109_LSP_2015_2407196 crossref_primary_10_1109_LSP_2015_2464154 crossref_primary_10_1109_JSEN_2018_2843389 crossref_primary_10_1109_TAES_2014_120821 crossref_primary_10_1109_TSIPN_2018_2881718 crossref_primary_10_1002_dac_3842 crossref_primary_10_1016_j_sigpro_2014_10_005 crossref_primary_10_1016_j_ijepes_2014_09_024 crossref_primary_10_1109_TSIPN_2015_2476916 crossref_primary_10_1109_JAS_2022_105989 crossref_primary_10_1109_TSIPN_2015_2471846 crossref_primary_10_1049_iet_spr_2013_0169 crossref_primary_10_1109_LCOMM_2016_2637889 crossref_primary_10_1109_JIOT_2020_2988307 crossref_primary_10_1007_s44291_024_00016_z crossref_primary_10_1109_TSP_2013_2245123 crossref_primary_10_1109_TSIPN_2022_3176113 crossref_primary_10_1007_s40747_016_0028_2 crossref_primary_10_1016_j_automatica_2012_05_070 crossref_primary_10_1109_ACCESS_2020_3011725 crossref_primary_10_1109_TSIPN_2015_2511920 crossref_primary_10_1109_OJVT_2020_2989534 crossref_primary_10_1109_TCST_2012_2234749 crossref_primary_10_1109_TSP_2014_2315163 crossref_primary_10_1016_j_ins_2020_10_022 crossref_primary_10_1016_j_cja_2024_08_026 crossref_primary_10_1109_TSIPN_2018_2890231 |
| Cites_doi | 10.1109/ICSPS.2009.25 10.1145/984622.984637 10.1023/A:1008935410038 10.1109/MLSP.2005.1532919 10.1109/TAC.1968.1098790 10.1007/978-1-4757-3437-9 10.1016/j.sigpro.2008.06.006 10.1117/12.587244 10.1109/9.855552 10.1007/BF00162521 10.1145/1582379.1582635 10.1109/AERO.2003.1235126 10.1016/j.automatica.2006.06.015 10.2528/PIERC09092905 10.1049/ip-f-2.1993.0015 10.1109/78.984773 10.1007/978-1-4757-3437-9_13 10.1109/ACSSC.2009.5470131 10.1109/78.978377 10.1109/ICASSP.2008.4518387 10.1007/978-1-4757-3437-9_7 10.1002/0471221279 10.1214/aos/1176347989 10.2307/1913710 10.1109/ICIF.2010.5712070 10.1109/TAC.2002.800742 10.4304/jmm.1.1.32-43 10.1109/ICASSP.2010.5496001 10.1109/JPROC.2007.893250 10.1109/TSP.2007.911295 10.1109/TSP.2007.916140 10.1109/TSP.2009.2014818 10.1109/CDC.2009.5400419 10.1016/j.sysconle.2004.02.022 10.1109/9.847726 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TSP.2011.2159599 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0476 |
| EndPage | 4138 |
| ExternalDocumentID | 2420914371 24592543 10_1109_TSP_2011_2159599 5876336 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c352t-73c2929497738f08e29a32385d6f32912040e4886f0a89ad3a806013832d8bbe3 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Sun Sep 28 09:03:10 EDT 2025 Mon Jun 30 10:15:41 EDT 2025 Mon Jul 21 09:15:29 EDT 2025 Wed Oct 01 03:34:04 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Tue Aug 26 17:18:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Performance evaluation Averaging method Target tracking set-membership Iterative method distributed Distributed system Implementation Bootstrapping Simulation sensor network Volume Distributed algorithm Minimax method Signal processing Sensor array Signal detection Particle filter Adaptation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-73c2929497738f08e29a32385d6f32912040e4886f0a89ad3a806013832d8bbe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 882008415 |
| PQPubID | 85478 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_882008415 crossref_primary_10_1109_TSP_2011_2159599 crossref_citationtrail_10_1109_TSP_2011_2159599 ieee_primary_5876336 proquest_miscellaneous_914640728 pascalfrancis_primary_24592543 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2011 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 kay (ref30) 1993 ref34 ref12 ref37 bouaynaya (ref4) 2005; 5685 sheng (ref42) 2005 ref36 rosencrantz (ref40) 2003 ref14 ref31 ref33 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 gu (ref24) 2008 van der merwe (ref35) 2000 bishop (ref3) 2006 daum (ref11) 2010 ref45 stoica (ref44) 2005 ref26 ref47 ref25 ref20 ref41 ref22 ref21 ref43 doucet (ref15) 2010 ref28 ref27 fox (ref18) 2001 ref29 ref8 ref7 ref9 wu (ref46) 2001; 3 ref6 ref5 gu (ref23) 2007 |
| References_xml | – ident: ref19 doi: 10.1109/ICSPS.2009.25 – ident: ref7 doi: 10.1145/984622.984637 – volume: 3 start-page: 6384 year: 2001 ident: ref46 article-title: A dominating-set-based routing scheme in ad hoc wireless networks publication-title: Telecommun Syst J – ident: ref14 doi: 10.1023/A:1008935410038 – ident: ref5 doi: 10.1109/MLSP.2005.1532919 – ident: ref41 doi: 10.1109/TAC.1968.1098790 – year: 1993 ident: ref30 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref13 doi: 10.1007/978-1-4757-3437-9 – year: 2003 ident: ref40 article-title: Decentralized sensor fusion with distributed particle filters publication-title: Conf Uncertainty in Artif Intell – ident: ref29 doi: 10.1016/j.sigpro.2008.06.006 – volume: 5685 start-page: 864 year: 2005 ident: ref4 article-title: Complete system with head tracking using motion-based particle filter and randomly perturbed active contour publication-title: Proc SPIE doi: 10.1117/12.587244 – year: 2000 ident: ref35 publication-title: The unscented particle filter – ident: ref27 doi: 10.1109/9.855552 – ident: ref33 doi: 10.1007/BF00162521 – ident: ref43 doi: 10.1145/1582379.1582635 – ident: ref10 doi: 10.1109/AERO.2003.1235126 – ident: ref8 doi: 10.1016/j.automatica.2006.06.015 – ident: ref34 doi: 10.2528/PIERC09092905 – ident: ref22 doi: 10.1049/ip-f-2.1993.0015 – year: 2005 ident: ref42 article-title: Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network publication-title: Proc Int Conf Inf Process Sensor Netw – ident: ref9 doi: 10.1109/78.984773 – ident: ref39 doi: 10.1007/978-1-4757-3437-9_13 – ident: ref25 doi: 10.1109/ACSSC.2009.5470131 – ident: ref37 doi: 10.1109/78.978377 – start-page: 405 year: 2001 ident: ref18 publication-title: Sequential Monte Carlo Methods in Practice – ident: ref1 doi: 10.1109/ICASSP.2008.4518387 – ident: ref21 doi: 10.1007/978-1-4757-3437-9_7 – ident: ref2 doi: 10.1002/0471221279 – year: 2008 ident: ref24 article-title: Consensus based distributed particle filter in sensor networks publication-title: Int Conf Inf Autom – ident: ref16 doi: 10.1214/aos/1176347989 – ident: ref20 doi: 10.2307/1913710 – ident: ref36 doi: 10.1109/ICIF.2010.5712070 – ident: ref31 doi: 10.1109/TAC.2002.800742 – year: 2010 ident: ref15 publication-title: The Oxford Handbook of Nonlinear Filtering – ident: ref45 doi: 10.4304/jmm.1.1.32-43 – ident: ref17 doi: 10.1109/ICASSP.2010.5496001 – ident: ref6 doi: 10.1109/JPROC.2007.893250 – ident: ref26 doi: 10.1109/TSP.2007.911295 – ident: ref12 doi: 10.1109/TSP.2007.916140 – ident: ref38 doi: 10.1109/TSP.2009.2014818 – ident: ref32 doi: 10.1109/CDC.2009.5400419 – year: 2010 ident: ref11 article-title: Nonlinear filters with generalized particle flow publication-title: Aerosp Conf – year: 2006 ident: ref3 publication-title: Pattern Recognition and Machine Learning – year: 2007 ident: ref23 article-title: Distributed particle filter for target tracking publication-title: Int Conf Robot Autom – ident: ref47 doi: 10.1016/j.sysconle.2004.02.022 – year: 2005 ident: ref44 publication-title: Spectral Analysis of Signals – ident: ref28 doi: 10.1109/9.847726 |
| SSID | ssj0014496 |
| Score | 2.3513474 |
| Snippet | Target tracking is investigated using particle filtering of data collected by distributed sensors. In lieu of a fusion center, local measurements must be... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4122 |
| SubjectTerms | Adaptation Applied sciences Approximation methods Atmospheric measurements Constraints Current measurement Detection, estimation, filtering, equalization, prediction distributed Exact sciences and technology Filtering High gain Information, signal and communications theory Monte Carlo methods Networks Noise particle filter Particle measurements Robot sensing systems sensor network Sensors set-membership Signal and communications theory Signal, noise Target tracking Telecommunications and information theory Weight reduction |
| Title | Set-Membership Constrained Particle Filter: Distributed Adaptation for Sensor Networks |
| URI | https://ieeexplore.ieee.org/document/5876336 https://www.proquest.com/docview/882008415 https://www.proquest.com/docview/914640728 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0GEQuUDFyS8m_UjiblVwKpC2qrStmhvke1MJATardjspb--M042PIU4JZIdJfZ4MjOe8fcBvFY2WGUxytAolKaMpQwUdUjtDJKQw8wkSpbFRXF-bT6t7OoA3o5nYRAxFZ_hhG9TLr_ZxB1vlU0tw6fp4hAOy6roz2qNGQNjEhcXuQtaUr_VPiWZu-nV8rLH6iTz5mxCef1hghKnCldE-i1NStuzWfzxY07WZv4QFvvv7ItMvk52XZjE298gHP93II_gweB2irN-nTyGA1w_gfs_gREew-cldnKBTBDCFVyCqTwTgQQ24nJYYGL-hbPr78QHxttlqixqPGv8TZ_QF-QBiyUFxnS56OvLt0_hev7x6v25HFgXZCRnrJOljop8JkOOoa7avELlvCbDbpui1crNFKk9ktoXbe4r5xvtK8Z0oUhXNVUIqJ_B0XqzxucgECm81MFan0djfONC671qyljMfBucymC6F0QdB0hyHti3OoUmuatJdDWLrh5El8Gb8YmbHo7jH32PeebHfsOkZ3D6i6zHdmWsY2iADE72wq8Hhd7WFIgw9cDMZiDGVtJETq_4NW5229qR0WG4uerF3198Avf6DWkuUHsJR933Hb4ij6YLp2kp3wEW-PGg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywH2wGtBGxaWHLgg4Tb1I425rYCqwLZaqV3UW2QnEwmB2hVNL_x6Zuw0PIU4JZIdJfZ4MjOe8fcBPJfGG2mwEr6WKPS4GgtPUYdQViMJ2Y90oGSZzfPplX6_MqsDeNmfhUHEUHyGA74Nufx6U-14q2xoGD5N5TfgptFam3haq88ZaB3YuMhhUIJ6rvZJycwOl4vLiNZJBs6agPP6wwgFVhWuiXRbmpYm8ln88WsO9mZyF2b7L41lJp8Hu9YPqm-_gTj-71DuwZ3O8UzP40q5Dwe4fgBHP8ERHsPHBbZihkwRwjVcKZN5BgoJrNPLbomlk0-cX3-VvmHEXSbLosbz2l3HlH5KPnC6oNCYLvNYYb59CFeTt8vXU9HxLoiK3LFWjFUlyWvS5BqqoskKlNYpMu2mzhsl7UiS4iMpft5krrCuVq5gVBeKdWVdeI_qERyuN2s8gRSRAkzljXFZpbWrrW-ck_W4ykeu8VYmMNwLoqw6UHIe2JcyBCeZLUl0JYuu7ESXwIv-iesIyPGPvsc8832_btITOPtF1n271MYyOEACp3vhl51Kb0sKRZh8YGQSSPtW0kVOsLg1bnbb0pLZYcC54vHfX_wMbk2Xs4vy4t38wyncjtvTXK72BA7brzt8Sv5N68_Csv4O4JT07Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Set-Membership+Constrained+Particle+Filter%3A+Distributed+Adaptation+for+Sensor+Networks&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Farahmand%2C+Shahrokh&rft.au=Roumeliotis%2C+Stergios+I&rft.au=Giannakis%2C+Georgios+B&rft.date=2011-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=59&rft.issue=9&rft.spage=4122&rft_id=info:doi/10.1109%2FTSP.2011.2159599&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2420914371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |