Short-Term Hydro Generation Scheduling of the Three Gorges Hydropower Station Using Improver Binary-coded Whale Optimization Algorithm
The short-term hydropower generation scheduling (STHGS) is a complicated problem in the utilization of hydropower and water resources. An improved binary-coded whale optimization algorithm (IBWOA) is proposed in this paper to solve the complex nonlinear problem. The STHGS problem is divided into uni...
Saved in:
| Published in | Water resources management Vol. 35; no. 11; pp. 3771 - 3790 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.09.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-021-02917-0 |
Cover
| Abstract | The short-term hydropower generation scheduling (STHGS) is a complicated problem in the utilization of hydropower and water resources. An improved binary-coded whale optimization algorithm (IBWOA) is proposed in this paper to solve the complex nonlinear problem. The STHGS problem is divided into unit combination (UC) subproblem and economic load distribution (ELD) subproblem. For the UC subproblem, we use the sigmoid function (SF) to generate a binary array representing the start/stop state of the unit. The whale algorithm's search mechanism is optimized, and the inertia weight and perturbation variation strategy are introduced to improve the algorithm's optimization ability. Each generation solution is optimized by repairing the minimum uptime/downtime constraint and the spinning reserve capacity constraint. For ELD subproblem, the optimal stable load distribution table (OSLDT) is used to distribute the load quickly. The Mutation mechanism and the Locally balanced dynamic search mechanism compensate for the non-convex problems caused by start-stop constraints and stable optimal table methods. Finally, the proposal is applied to solve the STHGS of the Three Gorges Hydropower Station. When the water head is 75 m,88 m, and 107 m, the minimum water consumption calculated by the IBWOA algorithm is 1,058,323,464 m
3
, 892,524,696 m
3
, and 745,272,216 m
3
, respectively. Compared with the traditional whale optimization algorithm, the water consumption of the IBOWA algorithm corresponding to 75 m, 88 m, and 107 m water heads is reduced by 0.76%, 0.26%, and 0.05%, respectively. The comparison between the IBWOA algorithm and other heuristic algorithms shows that the IBWOA has good feasibility and high optimization accuracy. |
|---|---|
| AbstractList | The short-term hydropower generation scheduling (STHGS) is a complicated problem in the utilization of hydropower and water resources. An improved binary-coded whale optimization algorithm (IBWOA) is proposed in this paper to solve the complex nonlinear problem. The STHGS problem is divided into unit combination (UC) subproblem and economic load distribution (ELD) subproblem. For the UC subproblem, we use the sigmoid function (SF) to generate a binary array representing the start/stop state of the unit. The whale algorithm's search mechanism is optimized, and the inertia weight and perturbation variation strategy are introduced to improve the algorithm's optimization ability. Each generation solution is optimized by repairing the minimum uptime/downtime constraint and the spinning reserve capacity constraint. For ELD subproblem, the optimal stable load distribution table (OSLDT) is used to distribute the load quickly. The Mutation mechanism and the Locally balanced dynamic search mechanism compensate for the non-convex problems caused by start-stop constraints and stable optimal table methods. Finally, the proposal is applied to solve the STHGS of the Three Gorges Hydropower Station. When the water head is 75 m,88 m, and 107 m, the minimum water consumption calculated by the IBWOA algorithm is 1,058,323,464 m
3
, 892,524,696 m
3
, and 745,272,216 m
3
, respectively. Compared with the traditional whale optimization algorithm, the water consumption of the IBOWA algorithm corresponding to 75 m, 88 m, and 107 m water heads is reduced by 0.76%, 0.26%, and 0.05%, respectively. The comparison between the IBWOA algorithm and other heuristic algorithms shows that the IBWOA has good feasibility and high optimization accuracy. The short-term hydropower generation scheduling (STHGS) is a complicated problem in the utilization of hydropower and water resources. An improved binary-coded whale optimization algorithm (IBWOA) is proposed in this paper to solve the complex nonlinear problem. The STHGS problem is divided into unit combination (UC) subproblem and economic load distribution (ELD) subproblem. For the UC subproblem, we use the sigmoid function (SF) to generate a binary array representing the start/stop state of the unit. The whale algorithm's search mechanism is optimized, and the inertia weight and perturbation variation strategy are introduced to improve the algorithm's optimization ability. Each generation solution is optimized by repairing the minimum uptime/downtime constraint and the spinning reserve capacity constraint. For ELD subproblem, the optimal stable load distribution table (OSLDT) is used to distribute the load quickly. The Mutation mechanism and the Locally balanced dynamic search mechanism compensate for the non-convex problems caused by start-stop constraints and stable optimal table methods. Finally, the proposal is applied to solve the STHGS of the Three Gorges Hydropower Station. When the water head is 75 m,88 m, and 107 m, the minimum water consumption calculated by the IBWOA algorithm is 1,058,323,464 m³, 892,524,696 m³, and 745,272,216 m³, respectively. Compared with the traditional whale optimization algorithm, the water consumption of the IBOWA algorithm corresponding to 75 m, 88 m, and 107 m water heads is reduced by 0.76%, 0.26%, and 0.05%, respectively. The comparison between the IBWOA algorithm and other heuristic algorithms shows that the IBWOA has good feasibility and high optimization accuracy. The short-term hydropower generation scheduling (STHGS) is a complicated problem in the utilization of hydropower and water resources. An improved binary-coded whale optimization algorithm (IBWOA) is proposed in this paper to solve the complex nonlinear problem. The STHGS problem is divided into unit combination (UC) subproblem and economic load distribution (ELD) subproblem. For the UC subproblem, we use the sigmoid function (SF) to generate a binary array representing the start/stop state of the unit. The whale algorithm's search mechanism is optimized, and the inertia weight and perturbation variation strategy are introduced to improve the algorithm's optimization ability. Each generation solution is optimized by repairing the minimum uptime/downtime constraint and the spinning reserve capacity constraint. For ELD subproblem, the optimal stable load distribution table (OSLDT) is used to distribute the load quickly. The Mutation mechanism and the Locally balanced dynamic search mechanism compensate for the non-convex problems caused by start-stop constraints and stable optimal table methods. Finally, the proposal is applied to solve the STHGS of the Three Gorges Hydropower Station. When the water head is 75 m,88 m, and 107 m, the minimum water consumption calculated by the IBWOA algorithm is 1,058,323,464 m3, 892,524,696 m3, and 745,272,216 m3, respectively. Compared with the traditional whale optimization algorithm, the water consumption of the IBOWA algorithm corresponding to 75 m, 88 m, and 107 m water heads is reduced by 0.76%, 0.26%, and 0.05%, respectively. The comparison between the IBWOA algorithm and other heuristic algorithms shows that the IBWOA has good feasibility and high optimization accuracy. |
| Author | Yang, Kun Yang, Kan |
| Author_xml | – sequence: 1 givenname: Kun surname: Yang fullname: Yang, Kun organization: College of Hydrology and Water Resources, Gulou District, Hohai University – sequence: 2 givenname: Kan surname: Yang fullname: Yang, Kan email: kyang@hhu.edu.cn organization: College of Hydrology and Water Resources, Gulou District, Hohai University |
| BookMark | eNp9kcFq3DAURUVIIZO0P9CVoJtu1EiyJNvLNDSTQCCLmdClsOWnsYItTSVNQ_IB_e4qdaCQRRbigTjncXn3FB374AGhz4x-Y5TW54kxrlpCOSuvZTWhR2jFZF0RpiQ9RivackpELdgJOk3pgdKitXSF_mzGEDPZQpzx9dMQA16Dh9hlFzzemBGGw-T8DgeL8wh4O0YAvA5xB2nh9-ERIt7kxbhPL_DNvI_hd_n-7nwXn4gJAwz459hNgO_22c3uecEvpl2ILo_zR_TBdlOCT6_zDN1f_dheXpPbu_XN5cUtMZXkmaiBNZYPtBfCmp4Lw3hXsV4Oipumq2Xb97VkPeeyBm6ZsUoIzm2jwBanbaoz9HXZWwL-OkDKenbJwDR1HsIhaa4qJVpVt7KgX96gD-EQfUmny3pWVUoKVahmoUwMKUWw2rjlFjl2btKM6peC9FKQLgXpfwVpWlT-Rt1HN5d7vS9Vi5QK7HcQ_6d6x_oLpPqmTg |
| CitedBy_id | crossref_primary_10_3390_a16010020 crossref_primary_10_3390_app131810479 crossref_primary_10_1007_s11269_022_03302_1 crossref_primary_10_1016_j_renene_2024_121067 crossref_primary_10_3390_su17031018 |
| Cites_doi | 10.1007/s13369-020-04434-5 10.1061/(ASCE)WR.1943-5452.0000343 10.1016/j.asoc.2010.11.019 10.1080/02626667.2019.1625052 10.1007/s11269-018-2138-7 10.1007/s11269-019-02435-0 10.1016/j.enconman.2010.06.038 10.1007/s11269-021-02806-6 10.1109/59.867163 10.1016/j.ijepes.2017.07.015 10.3390/w11112373 10.1016/j.advengsoft.2016.01.008 10.1109/ACCESS.2020.2989445 10.1109/59.871715 10.3390/en11071718 10.1109/59.574921 10.1016/j.jestch.2016.11.004 10.1016/j.jher.2013.01.002 10.3906/elk-1409-53 10.1016/j.ijepes.2012.07.023 10.1016/j.enconman.2014.11.036 10.1016/j.ijepes.2015.06.030 10.1007/s00453-013-9747-6 10.1109/MPE.2014.2313803 10.1016/j.advwatres.2018.09.015 10.3390/en12224239 10.1016/j.advwatres.2019.07.003 10.1016/j.amc.2019.124820 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-021-02917-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database (via ProQuest SciTech Premium Collection) Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1573-1650 |
| EndPage | 3790 |
| ExternalDocumentID | 10_1007_s11269_021_02917_0 |
| GrantInformation_xml | – fundername: National Key Basic Research Program of China grantid: 2012CB417006 – fundername: National Science Support Plan Project of China grantid: 2009BAC56B03 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-6d18f2d0b44fcb24c12a31b5d62c8a759bb751b2257e2f1cf64422f86ef0b4983 |
| IEDL.DBID | U2A |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 14:24:22 EDT 2025 Fri Jul 25 19:02:26 EDT 2025 Wed Oct 01 01:45:00 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Fri Feb 21 02:47:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Whale optimization algorithm Perturbation mutation strategy Optimal stable load distribution table Adaptive inertia weight Short-term hydropower generation scheduling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-6d18f2d0b44fcb24c12a31b5d62c8a759bb751b2257e2f1cf64422f86ef0b4983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2571336546 |
| PQPubID | 54174 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2636496795 proquest_journals_2571336546 crossref_citationtrail_10_1007_s11269_021_02917_0 crossref_primary_10_1007_s11269_021_02917_0 springer_journals_10_1007_s11269_021_02917_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210900 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Nilsson, Sjelvgren (CR16) 1997; 12 Zhang, Wang (CR30) 2020; 8 Zhao, Zhao, Yang (CR31) 2012; 140 CR19 Yang, Yang, Su (CR27) 2020; 34 Vaisakh, Srinivas (CR24) 2011; 11 Mohanta, Chelliah, Allamsetty, Akula, Ghosh (CR15) 2017; 20 Amani, Alizadeh (CR1) 2021; 35 Cheng, Liu, Liu (CR3) 2000; 15 Jabr, Coonick, Cory (CR10) 2000; 15 Lu, Li, Zhang, Wang, Gu (CR13) 2013; 7 Finardi, Scuzziato (CR6) 2013; 44 Su, Yang, Hu, Yang (CR22) 2019; 11 Li, Jin, Zhao, Liu (CR12) 2018; 11 Bukhari, Ahmad, Raza, Siddique (CR2) 2016; 24 Mirjalili, Lewis (CR14) 2016; 95 Shang, Fan, Shang, Sun, Xiao (CR20) 2019; 64 Fakhar, Kashif, Saqib, Hassan (CR4) 2015; 73 Jukna (CR11) 2014; 69 Peng, Zhou, Wang, Qiao, Li (CR17) 2015; 91 CR29 Feng, Niu, Cheng, Wu (CR5) 2018; 94 CR28 CR9 CR26 CR25 CR21 Hu, Zhang, Yang (CR7) 2012; 30 Hu, Yang, Liu (CR8) 2019; 33 Pérez-Díaz, Wilhelmi, Arévalo (CR18) 2010; 51 Tian, Zhao, Zhen (CR23) 2020; 45 SBA Bukhari (2917_CR2) 2016; 24 2917_CR28 2917_CR25 2917_CR26 T Tian (2917_CR23) 2020; 45 A Amani (2917_CR1) 2021; 35 2917_CR21 EC Finardi (2917_CR6) 2013; 44 Y Shang (2917_CR20) 2019; 64 F Hu (2917_CR7) 2012; 30 JI Pérez-Díaz (2917_CR18) 2010; 51 Z Yang (2917_CR27) 2020; 34 2917_CR29 S Mirjalili (2917_CR14) 2016; 95 L Peng (2917_CR17) 2015; 91 ZK Feng (2917_CR5) 2018; 94 T Zhao (2917_CR31) 2012; 140 2917_CR9 B Lu (2917_CR13) 2013; 7 Z Li (2917_CR12) 2018; 11 MS Fakhar (2917_CR4) 2015; 73 RA Jabr (2917_CR10) 2000; 15 J Zhang (2917_CR30) 2020; 8 S Jukna (2917_CR11) 2014; 69 CP Cheng (2917_CR3) 2000; 15 O Nilsson (2917_CR16) 1997; 12 2917_CR19 RK Mohanta (2917_CR15) 2017; 20 LW Su (2917_CR22) 2019; 11 H Hu (2917_CR8) 2019; 33 K Vaisakh (2917_CR24) 2011; 11 |
| References_xml | – volume: 45 start-page: 9913 year: 2020 end-page: 9924 ident: CR23 article-title: Application of improved whale optimization algorithm in parameter identification of hydraulic turbine at no-load publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04434-5 – volume: 140 start-page: 365 issue: 3 year: 2012 end-page: 374 ident: CR31 article-title: Improved dynamic programming for hydropower reservoir operation publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000343 – volume: 11 start-page: 2863 year: 2011 end-page: 2870 ident: CR24 article-title: Evolving ant colony optimization based unit commitment publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.11.019 – volume: 64 start-page: 1129 issue: 9 year: 2019 end-page: 1139 ident: CR20 article-title: Modified genetic algorithm with simulated annealing applied to optimal load dispatch of the Three Gorges Hydropower Plant in China publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1625052 – volume: 33 start-page: 2357 year: 2019 end-page: 2379 ident: CR8 article-title: Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm publication-title: Water Resour Manag doi: 10.1007/s11269-018-2138-7 – ident: CR29 – volume: 34 start-page: 905 year: 2020 end-page: 927 ident: CR27 article-title: The Short-Term Economical Operation Problem for Hydropower Station Using Chaotic Normal Cloud Model Based Discrete Shuffled Frog Leaping Algorithm publication-title: Water Resour Manag doi: 10.1007/s11269-019-02435-0 – ident: CR25 – volume: 51 start-page: 2955 year: 2010 end-page: 2966 ident: CR18 article-title: Optimal short-term operation schedule of a hydropower plant in a competitive electricity market publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.038 – volume: 35 start-page: 1711 year: 2021 end-page: 1729 ident: CR1 article-title: Solving Hydropower Unit Commitment Problem Using a Novel Sequential Mixed Integer Linear Programming Approach publication-title: Water Resour Manag doi: 10.1007/s11269-021-02806-6 – volume: 15 start-page: 707 year: 2000 end-page: 714 ident: CR3 article-title: Unit commitment by Lagrangian relaxation and genetic algorithms publication-title: IEEE Trans Power Syst doi: 10.1109/59.867163 – volume: 94 start-page: 267 year: 2018 end-page: 275 ident: CR5 article-title: Peak operation of hydropower system with parallel technique and progressive optimality algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2017.07.015 – volume: 30 start-page: 123 issue: 12 year: 2012 end-page: 126 ident: CR7 article-title: Optimal load distribution and commitment of automatic generation control units in hydropower station based on ant colony algorithm publication-title: Water Resources and Power – ident: CR21 – ident: CR19 – volume: 11 start-page: 2373 year: 2019 ident: CR22 article-title: Long-term hydropower generation scheduling of large-scale cascade reservoirs using chaotic adaptive multi-objective bat algorithm publication-title: Water doi: 10.3390/w11112373 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR14 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 8 start-page: 77013 year: 2020 end-page: 77048 ident: CR30 article-title: Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989445 – volume: 15 start-page: 930 issue: 3 year: 2000 end-page: 936 ident: CR10 article-title: Homogeneous linear programming algorithm for the security constrained economic dispatch problem publication-title: IEEE Trans Power Syst doi: 10.1109/59.871715 – volume: 11 start-page: 1718 issue: 7 year: 2018 ident: CR12 article-title: Power system day-ahead unit commitment based on chance-constrained dependent chance goal programming publication-title: Energies doi: 10.3390/en11071718 – volume: 12 start-page: 38 year: 1997 end-page: 44 ident: CR16 article-title: Hydro unit start-up costs and their impact on the short term scheduling strategies of Swedish power producers publication-title: IEEE Trans Power Syst doi: 10.1109/59.574921 – ident: CR9 – volume: 20 start-page: 637 issue: 2 year: 2017 end-page: 648 ident: CR15 article-title: Sources of vibration and their treatment in hydro power stations-a review publication-title: Eng Sci Tech, an International Journal doi: 10.1016/j.jestch.2016.11.004 – volume: 7 start-page: 270 issue: 4 year: 2013 end-page: 278 ident: CR13 article-title: Study on the optimal hydropower generation of Zhelin reservoir publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2013.01.002 – volume: 24 start-page: 3862 issue: 5 year: 2016 end-page: 3876 ident: CR2 article-title: A ring crossover genetic algorithm for the unit commitment problem publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1409-53 – volume: 44 start-page: 7 issue: 1 year: 2013 end-page: 16 ident: CR6 article-title: Hydro unit commitment and loading problem for day-ahead operation planning problem publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.07.023 – volume: 91 start-page: 19 year: 2015 end-page: 31 ident: CR17 article-title: Short-term hydro generation scheduling of xiluodu and xiangjiaba cascade hydropower stations using improved binary-real coded bee colony optimization algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.11.036 – ident: CR28 – volume: 73 start-page: 983 year: 2015 end-page: 990 ident: CR4 article-title: Non cascaded short-term hydro-thermal scheduling using fully-informed particle swarm optimization publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.06.030 – ident: CR26 – volume: 69 start-page: 461 issue: 2 year: 2014 end-page: 492 ident: CR11 article-title: Limitations of incremental dynamic programming publication-title: Algorithmica doi: 10.1007/s00453-013-9747-6 – volume: 94 start-page: 267 year: 2018 ident: 2917_CR5 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2017.07.015 – ident: 2917_CR25 doi: 10.1109/MPE.2014.2313803 – volume: 95 start-page: 51 year: 2016 ident: 2917_CR14 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 44 start-page: 7 issue: 1 year: 2013 ident: 2917_CR6 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.07.023 – volume: 30 start-page: 123 issue: 12 year: 2012 ident: 2917_CR7 publication-title: Water Resources and Power – volume: 11 start-page: 1718 issue: 7 year: 2018 ident: 2917_CR12 publication-title: Energies doi: 10.3390/en11071718 – ident: 2917_CR28 doi: 10.1016/j.advwatres.2018.09.015 – volume: 73 start-page: 983 year: 2015 ident: 2917_CR4 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.06.030 – volume: 51 start-page: 2955 year: 2010 ident: 2917_CR18 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.038 – volume: 64 start-page: 1129 issue: 9 year: 2019 ident: 2917_CR20 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1625052 – ident: 2917_CR21 – volume: 45 start-page: 9913 year: 2020 ident: 2917_CR23 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04434-5 – volume: 34 start-page: 905 year: 2020 ident: 2917_CR27 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02435-0 – volume: 91 start-page: 19 year: 2015 ident: 2917_CR17 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.11.036 – volume: 35 start-page: 1711 year: 2021 ident: 2917_CR1 publication-title: Water Resour Manag doi: 10.1007/s11269-021-02806-6 – ident: 2917_CR9 doi: 10.3390/en12224239 – volume: 11 start-page: 2863 year: 2011 ident: 2917_CR24 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.11.019 – ident: 2917_CR29 doi: 10.1016/j.advwatres.2019.07.003 – volume: 8 start-page: 77013 year: 2020 ident: 2917_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989445 – volume: 140 start-page: 365 issue: 3 year: 2012 ident: 2917_CR31 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000343 – volume: 33 start-page: 2357 year: 2019 ident: 2917_CR8 publication-title: Water Resour Manag doi: 10.1007/s11269-018-2138-7 – volume: 12 start-page: 38 year: 1997 ident: 2917_CR16 publication-title: IEEE Trans Power Syst doi: 10.1109/59.574921 – volume: 15 start-page: 707 year: 2000 ident: 2917_CR3 publication-title: IEEE Trans Power Syst doi: 10.1109/59.867163 – ident: 2917_CR19 doi: 10.1016/j.amc.2019.124820 – ident: 2917_CR26 – volume: 15 start-page: 930 issue: 3 year: 2000 ident: 2917_CR10 publication-title: IEEE Trans Power Syst doi: 10.1109/59.871715 – volume: 69 start-page: 461 issue: 2 year: 2014 ident: 2917_CR11 publication-title: Algorithmica doi: 10.1007/s00453-013-9747-6 – volume: 7 start-page: 270 issue: 4 year: 2013 ident: 2917_CR13 publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2013.01.002 – volume: 20 start-page: 637 issue: 2 year: 2017 ident: 2917_CR15 publication-title: Eng Sci Tech, an International Journal doi: 10.1016/j.jestch.2016.11.004 – volume: 11 start-page: 2373 year: 2019 ident: 2917_CR22 publication-title: Water doi: 10.3390/w11112373 – volume: 24 start-page: 3862 issue: 5 year: 2016 ident: 2917_CR2 publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1409-53 |
| SSID | ssj0010090 |
| Score | 2.3593102 |
| Snippet | The short-term hydropower generation scheduling (STHGS) is a complicated problem in the utilization of hydropower and water resources. An improved binary-coded... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3771 |
| SubjectTerms | administrative management Algorithms Atmospheric Sciences Canyons Civil Engineering Distribution Downtime Earth and Environmental Science Earth Sciences Economics Environment Feasibility studies Geotechnical Engineering & Applied Earth Sciences Heuristic methods Hydroelectric power Hydroelectric power generation Hydroelectric power stations Hydrogeology Hydrology/Water Resources Inertia Load distribution Load distribution (forces) Mutation Optimization Optimization algorithms Perturbation Reserve capacity Scheduling water Water consumption water power Water resources whales |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QE4oFJALC3ISNzAInFsxz5UqK1aVkgsiN2K3qL4q3toN0t3e-gf4Hd37CS7gESviR1Lefb42TNvBuCd5KLMa8tpJjNPuXeSGqMVdaK0pdJS1Elf8XUsR2f8y7k434Jxr4WJYZW9TUyG2jU23pF_xKmFx6kovfm0-EVj1ajoXe1LaNRdaQV3kFKMPYBtFjNjDWD76GT8_cfar4CMIt26aDw0cdxMOxlNK6bLmdQ0hixkDA8xNPt7q9rwz39cpmknOt2BJx2FJIct5k9hy8934WGvMF7uwuM_kgw-g9-TGVJsOkUTTEa37rohbarpiAiZIGYuBqNfkCYQJINkiuB68jnelC_b9otYSI1MWp89STEGpL2LwMdHSc9LozLekZ8z3G7IN7RCV528kxxeXuBfXM2unsPZ6cn0eES76gvUIilbUelyFZjLDOfBGsZtzuoiN8JJZlVdCm1MKXKD9qD0LOQ2ILNiLCjpA_bRqngBg3kz9y-BZEEbXQSkWlnNvSlVYZTKhZFaeWRUYQh5_6Mr26UmjxUyLqtNUuUIToXgVAmcKhvC-3WfRZuY497W-z1-VbdIl9VmSg3h7fo1Lq_oM6nnvrnBNrKQXMtSiyF86HHffOL_I766f8Q9eMTSVIvRavswWF3f-NdIb1bmTTdn7wAcSvXb priority: 102 providerName: ProQuest |
| Title | Short-Term Hydro Generation Scheduling of the Three Gorges Hydropower Station Using Improver Binary-coded Whale Optimization Algorithm |
| URI | https://link.springer.com/article/10.1007/s11269-021-02917-0 https://www.proquest.com/docview/2571336546 https://www.proquest.com/docview/2636496795 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gIPE-NDdGyVkXgDS7FjO_Zjh_ohEAPRVoynKE7sddLWTG33wD-wv3tnJ2kBARJPkZJzEvls3-989zsDvFFCZqwoBU1U4qhwlaLWGk0rmZWZNkoWkV_x6UxN5uLDuTxvSWHrLtu9C0nGlXpHdmNcGRpSChKOTgZFR31fhnJeOIrnfLCNHSBqiDsrBh0jgQazpcr8-R2_mqMdxvwtLBqtzegJHLQwkQwavR7CA7d8Co9_Kh74DO6mC4TOdIZLK5n8qFY1aUpIh54mU9RFFZLML0jtCYI8MkOlOTIOO-DrRv4mHJBGpk0snsTcAdLsMeDt08jTpYHxXpFvCzQj5DOuLtctbZMMri7q1eVmcf0c5qPh7P2Etqcq0BLB1oaqimnPq8QK4UvLRcl4kTIrK8VLXWTSWJtJZnGeZ457VnpETJx7rZzHNkanL2BvWS_dSyCJN9akHiFUUghnM51arZm0ymiHSMn3gHWdm5dtyfFw8sVVviuWHBSSo0LyqJA86cHbbZubpuDGP6WPO53l7eRb5_jn6HkHllYPXm8f47QJsZBi6epblFGpEkZlRvbgXafr3Sv-_sWj_xN_BY94HG4hK-0Y9jarW3eCMGZj-_BQj8Z92B-Mv38c4vV0ePblaz-O5XvP1uyP |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BU9QwFH6DcEAPjqCOCyhxRk-asU3TNDkwDii4CKyOu4zcatMk7AG2K7uMwx_gZ_HbfEnbXXVGblzbpJ3p-_ryveR97wG8EjzN4qLkNBKRpdwaQbVWkpo0KzOpRFoEfcVRT3SP-eeT9GQBblotjE-rbH1icNSmKv0e-TuEFoZTXnrzfvyT-q5R_nS1baFRNK0VzFYoMdYIOw7s1S8M4SZb-x_R3q8Z29sdfOjSpssALZF8TKkwsXTMRJpzV2rGy5gVSaxTI1gpiyxVWmdprBH3mWUuLh0yCMacFNbhHCUTfO49WOIJVxj8Le3s9r5-m51jIIMJuzwKgzSOi3cj26nFezETivoUiYhh0ESjv5fGOd_954g2rHx7j-BhQ1nJdo2xFViwo1VYbhXNk1V48EdRw8dw3R8ipacDdPmke2UuKlKXtvYIIH3EiPHJ76ekcgTJJxkgmCz55HfmJ_X4sW_cRvp1jgAJOQ2k3vvAyztBP0y9Et-Q70Nc3sgX9HrnjZyUbJ-dotWmw_MncHwndngKi6NqZJ8BiZzSKnFI7aKCW53JREsZp1ooaZHBuQ7E7YfOy6YUuu_IcZbPizh74-RonDwYJ4868GY2Z1wXArl19EZrv7xxCpN8DuEOvJzdxt_Zn9EUI1td4hiRCK5EptIOvG3tPn_E_9-4dvsbN2G5Ozg6zA_3ewfrcJ8F2PlMuQ1YnF5c2udIrab6RYNfAj_u-pf5DU_yMpA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIkE5ICggthQwEpzAauL484BQoWy3FArSbkVvIU7s7qHdLN2tUP8AP4pfx9hJdgGJ3npNbEfKG4-f7XkzAM8lFyotSk4TmTjKXSWptUbTSqhSaSNFEfUVnw7k4JB_OBJHK_Cr08KEsMrOJ0ZHXdVlOCPfQtPC7VSQ3mz5Niziy07_zfQ7DRWkwk1rV06jMZF9d_EDt2-z13s7iPULxvrvR-8GtK0wQEskHnMqq1R7ViWWc19axsuUFVlqRSVZqQsljLVKpBZtXjnm09Ije2DMa-k89jE6w3GvwXUVsrgHlXp_d3GDgdwlnu8Y3J5xXLZbwU4j20uZNDQERyQMt0s0-XtRXDLdfy5n45rXvwO3W7JKthvrugsrbrIONzst82wdbv2RzvAe_ByOkczTETp7MriozmrSJLUO2JMhWkcVwt6PSe0J0k4yQjNyZDecyc-a9tNQso0Mm-gAEqMZSHPqgY_fRuUwDRr8inwd48JGPqO_O22FpGT75Bgxmo9P78PhlaDwAFYn9cQ9BJJ4Y03mkdQlBXdW6cxqnQorjXbI3XwP0u5H52WbBD3U4jjJl-mbAzg5gpNHcPKkBy8XfaZNCpBLW292-OWtO5jlS-PtwbPFa5zI4XammLj6HNvITHIjlRE9eNXhvhzi_1_cuPyLT-EGTpT8497B_iNYY9HqQojcJqzOz87dY-RUc_skGi-Bb1c9W34D4Q4wKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Hydro+Generation+Scheduling+of+the+Three+Gorges+Hydropower+Station+Using+Improver+Binary-coded+Whale+Optimization+Algorithm&rft.jtitle=Water+resources+management&rft.au=Yang%2C+Kun&rft.au=Yang%2C+Kan&rft.date=2021-09-01&rft.issn=0920-4741&rft.volume=35&rft.issue=11+p.3771-3790&rft.spage=3771&rft.epage=3790&rft_id=info:doi/10.1007%2Fs11269-021-02917-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |