Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool

Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are describ...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 35; no. 8; pp. 2553 - 2567
Main Authors Difonzo, Fabio V., Masciopinto, Costantino, Vurro, Michele, Berardi, Marco
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-021-02850-2

Cover

Abstract Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are described by the Richards’ equation with a sink term, and numerical treatment of this problem is still a challenge, together with its practical implementations in user-friendly softwares. In order to tackle this problem, in the present paper we propose a simple and computationally fast algorithm developed as a Python code, implementing a numerical approach based on the shooting method, a classical tool for handling boundary value problems (BVPs) arising here from a discretization recently introduced for Richards’ equation: such a method is applied to the linearized Richards’ equation with Gardner’s hydraulic functions. This method is implemented also in MATLAB, in order to accomplish comparisons with built-in MATLAB solver for parabolic partial differential equations. The Python code is made available to readers, and is intended to be an easy tool for handling this problem in the framework of Gardner’s constitutive relations, filling the gap of other commercial codes, which do not provide choice of Gardner functions. Many numerical simulations are performed: the results are promising, since the proposed method behaves efficiently and in some cases it is able to converge even when the MATLAB solver fails; mass balance properties and order of accuracy issues are also investigated.
AbstractList Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are described by the Richards’ equation with a sink term, and numerical treatment of this problem is still a challenge, together with its practical implementations in user-friendly softwares. In order to tackle this problem, in the present paper we propose a simple and computationally fast algorithm developed as a Python code, implementing a numerical approach based on the shooting method, a classical tool for handling boundary value problems (BVPs) arising here from a discretization recently introduced for Richards’ equation: such a method is applied to the linearized Richards’ equation with Gardner’s hydraulic functions. This method is implemented also in MATLAB, in order to accomplish comparisons with built-in MATLAB solver for parabolic partial differential equations. The Python code is made available to readers, and is intended to be an easy tool for handling this problem in the framework of Gardner’s constitutive relations, filling the gap of other commercial codes, which do not provide choice of Gardner functions. Many numerical simulations are performed: the results are promising, since the proposed method behaves efficiently and in some cases it is able to converge even when the MATLAB solver fails; mass balance properties and order of accuracy issues are also investigated.
Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are described by the Richards’ equation with a sink term, and numerical treatment of this problem is still a challenge, together with its practical implementations in user-friendly softwares. In order to tackle this problem, in the present paper we propose a simple and computationally fast algorithm developed as a Python code, implementing a numerical approach based on the shooting method, a classical tool for handling boundary value problems (BVPs) arising here from a discretization recently introduced for Richards’ equation: such a method is applied to the linearized Richards’ equation with Gardner’s hydraulic functions. This method is implemented also in MATLAB, in order to accomplish comparisons with built-in MATLAB solver for parabolic partial differential equations. The Python code is made available to readers, and is intended to be an easy tool for handling this problem in the framework of Gardner’s constitutive relations, filling the gap of other commercial codes, which do not provide choice of Gardner functions. Many numerical simulations are performed: the results are promising, since the proposed method behaves efficiently and in some cases it is able to converge even when the MATLAB solver fails; mass balance properties and order of accuracy issues are also investigated.
Author Masciopinto, Costantino
Vurro, Michele
Difonzo, Fabio V.
Berardi, Marco
Author_xml – sequence: 1
  givenname: Fabio V.
  surname: Difonzo
  fullname: Difonzo, Fabio V.
  organization: Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Code Architects Automation, Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro
– sequence: 2
  givenname: Costantino
  surname: Masciopinto
  fullname: Masciopinto, Costantino
  organization: Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche
– sequence: 3
  givenname: Michele
  surname: Vurro
  fullname: Vurro, Michele
  organization: Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche
– sequence: 4
  givenname: Marco
  orcidid: 0000-0001-8199-5772
  surname: Berardi
  fullname: Berardi, Marco
  email: marco.berardi@ba.irsa.cnr.it
  organization: Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche
BookMark eNp9kU1P3DAQhi1EpS6UP9CTpV64hM44iZNwQ4iPSrRFfIij5XUmrKk3XmxHiH-Pd7cSEgcOoznM84xm9O6x3dGPxNh3hCMEaH5GRCG7AgTmamsoxA6bYd2UBcoadtkMOgFF1VT4le3F-ASQtQ5mbLhdeJ_s-MjTgvifaUnBGu34rXdTsn7kfuC_vY1pCsTPnX_hZ8-T3kxebFrwm2zzB50o8PtV0v8o0z25eMxP-PVrWmTuznv3jX0ZtIt08L_vs_vzs7vTy-Lq78Wv05OrwpS1SIWcDwJB9DU2Qs57JOq0mNdgRKtF1cpuTlIjYE-gOwm9Mc0gykHQQAbbsi_32eF27yr454liUksbDTmnR_JTVEJKhAqrSmT0xwf0yU9hzNcpUVd1VbYo11S7pUzwMQYalLFp838K2jqFoNYBqG0AKgegNgGotSo-qKtglzq8fi6VWylmeHyk8H7VJ9YbRc-Z6A
CitedBy_id crossref_primary_10_3390_w13223169
crossref_primary_10_1007_s11242_021_01730_y
crossref_primary_10_1007_s10596_023_10250_1
crossref_primary_10_3390_sym14010004
crossref_primary_10_1007_s11269_021_03025_9
crossref_primary_10_3390_agronomy13020609
crossref_primary_10_3390_w14060892
crossref_primary_10_1016_j_camwa_2023_04_032
crossref_primary_10_3390_math9172019
crossref_primary_10_1016_j_camwa_2024_11_028
crossref_primary_10_3390_w13213039
crossref_primary_10_3934_jcd_2022001
crossref_primary_10_3390_s23052823
crossref_primary_10_3390_math9202545
crossref_primary_10_1016_j_jhydrol_2021_126952
crossref_primary_10_3390_f15040626
Cites_doi 10.1007/s11269-013-0399-8
10.1016/j.agwat.2020.106293
10.1016/j.jhydrol.2015.01.053
10.1002/2015WR018508
10.1007/s10652-019-09705-w
10.1002/eco.1594
10.1016/j.advwatres.2005.01.004
10.1016/j.cma.2008.06.005
10.1016/j.agwat.2006.06.008
10.1016/0309-1708(95)00022-B
10.1175/EI177.1
10.1007/s10596-020-09949-2
10.1007/s11242-006-9055-6
10.1016/j.ecolmodel.2008.11.004
10.1016/j.compag.2015.11.007
10.1016/j.advwatres.2017.08.004
10.1016/j.jhydrol.2019.124213
10.1007/s11269-017-1593-x
10.1016/j.compag.2013.08.009
10.1007/s40710-019-00402-w
10.2136/sssaj2016.07.0217
10.1007/BF02358510
10.1007/s11269-019-02312-w
10.1097/00010694-196002000-00001
10.2136/vzj2011.0106
10.1016/j.apnum.2018.08.013
10.1061/(ASCE)0733-9437(1999)125:3(159)
10.1016/j.apm.2014.11.042
10.1016/j.camwa.2019.07.026
10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G
10.1002/fld.4389
10.1016/j.jtbi.2003.12.012
10.1016/j.advwatres.2007.02.007
10.1002/2015WR017139
10.1016/j.jhydrol.2019.124481
10.1016/j.advwatres.2004.08.008
10.1007/978-3-642-22042-5
10.1016/j.compag.2018.05.013
10.1002/eco.208
10.1016/j.jhydrol.2017.05.053
10.1002/2017WR021097
10.1016/j.mcm.2012.01.013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-021-02850-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Collection (ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database (ProQuest)
Biological Science Database (ProQuest)
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 2567
ExternalDocumentID 10_1007_s11269_021_02850_2
GrantInformation_xml – fundername: Regione Puglia
  grantid: Smart Water - 5ABY6P0
  funderid: https://doi.org/10.13039/501100009886
– fundername: Czech Technical University - Research Center for Informatics
  grantid: CZ.02.1.01/0.0/0.0/16 019/0000765 - The Research 389 Center for Informatics
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-6bf2102d51726bd1ee9a2b50c28a24869be6a101de0a960dcc7f23f2efec183d3
IEDL.DBID AGYKE
ISSN 0920-4741
IngestDate Sun Aug 24 04:01:16 EDT 2025
Fri Jul 25 09:56:48 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Wed Oct 01 01:45:00 EDT 2025
Fri Feb 21 02:47:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Richards’ equation
Root water uptake models
Shooting method
MATLAB software
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-6bf2102d51726bd1ee9a2b50c28a24869be6a101de0a960dcc7f23f2efec183d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8199-5772
PQID 2545438162
PQPubID 54174
PageCount 15
ParticipantIDs proquest_miscellaneous_2661041442
proquest_journals_2545438162
crossref_citationtrail_10_1007_s11269_021_02850_2
crossref_primary_10_1007_s11269_021_02850_2
springer_journals_10_1007_s11269_021_02850_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Berardi, Difonzo, Lopez (CR7) 2020; 79
Casulli (CR14) 2017; 85
Utset, Ruiz, Garcia, Feddes (CR41) 2000; 43
Brunetti, Šimunek, Bautista (CR11) 2018; 150
Camporese, Daly, Paniconi (CR12) 2015; 51
Bergamaschi, Putti (CR8) 1999; 45
Coppola, Chaali, Dragonetti, Lamaddalena, Comegna (CR15) 2015; 8
Manoli, Huang, Bonetti, Domec, Marani, Katul (CR29) 2017; 108
Suk, Park (CR39) 2019; 579
Viola, Noto, Cannarozzo, La Loggia, Porporato (CR42) 2012; 5
Mathews, Fink (CR31) 2004
Raats (CR34) 2007; 68
Tseng, Sciortino, van Genuchten (CR40) 1995; 18
Broadbridge, Daly, Goard (CR10) 2017; 53
Roose, Fowler (CR35) 2004; 228
CR13
Friedman, Communar, Gamliel (CR18) 2016; 120
Berardi, Difonzo, Notarnicola, Vurro (CR6) 2019; 135
Manzini, Ferraris (CR30) 2004; 27
Lai, Ogden (CR24) 2015; 523
Li, Farthing, Miller (CR25) 2007; 30
Albrieu, Reginato, Tarzia (CR1) 2015; 39
Mathur, Rao (CR32) 1999; 125
Mohanadhas, Kumar (CR33) 2019; 6
Farthing, Ogden (CR17) 2017; 81
Berardi, Difonzo (CR5) 2020; 20
Elmaloglou, Soulis, Dercas (CR16) 2013; 27
Li, De Jong, Coe, Ramankutty (CR26) 2006; 10
Arbat, Puig-Bargués, Duran-Ros, Barragán, de Cartagena (CR2) 2013; 98
Iliano, Pop, Radu (CR22) 2021; 25
Rucker, Warrick, Ferré (CR36) 2005; 28
Kees, Farthing, Dawson (CR23) 2008; 197
Zha, Yang, Yin, Zhang, Zeng, Shi (CR45) 2017; 551
Simunek, Hopmans (CR38) 2009; 220
Wu, Zuo, Shi, Wang, Xue, Ben-Gal (CR43) 2020; 240
Banimahd, Khalili, Zand-Parsa (CR4) 2017; 81
Holzbecher (CR21) 2012
Bergamaschi, Bru, Martínez, Mas, Putti (CR9) 2013; 57
Liu, Yang, Xie, Qin, Li (CR28) 2020; 582
Babazadeh, Tabrizi, Homaee (CR3) 2017; 81
Li, Yue, Ren (CR27) 2016; 52
Shampine, Kierzenka (CR37) 2019
Green, Kirkham, Clothier (CR20) 2006; 86
Xu, Tian, Wang, Nie, Zhang (CR44) 2019; 33
Gardner (CR19) 1960; 89
V Casulli (2850_CR14) 2017; 85
H Li (2850_CR25) 2007; 30
C Kees (2850_CR23) 2008; 197
A Coppola (2850_CR15) 2015; 8
E Holzbecher (2850_CR21) 2012
G Manzini (2850_CR30) 2004; 27
S Banimahd (2850_CR4) 2017; 81
N Li (2850_CR27) 2016; 52
A Utset (2850_CR41) 2000; 43
B Mohanadhas (2850_CR33) 2019; 6
J Simunek (2850_CR38) 2009; 220
M Berardi (2850_CR6) 2019; 135
WR Gardner (2850_CR19) 1960; 89
M Berardi (2850_CR5) 2020; 20
S Mathur (2850_CR32) 1999; 125
JLB Albrieu (2850_CR1) 2015; 39
DF Rucker (2850_CR36) 2005; 28
G Arbat (2850_CR2) 2013; 98
L Bergamaschi (2850_CR8) 1999; 45
S Elmaloglou (2850_CR16) 2013; 27
M Camporese (2850_CR12) 2015; 51
2850_CR13
M Berardi (2850_CR7) 2020; 79
P Broadbridge (2850_CR10) 2017; 53
C Xu (2850_CR44) 2019; 33
G Brunetti (2850_CR11) 2018; 150
JH Mathews (2850_CR31) 2004
L Bergamaschi (2850_CR9) 2013; 57
T Roose (2850_CR35) 2004; 228
H Babazadeh (2850_CR3) 2017; 81
MW Farthing (2850_CR17) 2017; 81
G Manoli (2850_CR29) 2017; 108
PAC Raats (2850_CR34) 2007; 68
PH Tseng (2850_CR40) 1995; 18
F Viola (2850_CR42) 2012; 5
X Wu (2850_CR43) 2020; 240
D Iliano (2850_CR22) 2021; 25
KY Li (2850_CR26) 2006; 10
Y Liu (2850_CR28) 2020; 582
SP Friedman (2850_CR18) 2016; 120
W Lai (2850_CR24) 2015; 523
LF Shampine (2850_CR37) 2019
H Suk (2850_CR39) 2019; 579
Y Zha (2850_CR45) 2017; 551
SR Green (2850_CR20) 2006; 86
References_xml – volume: 551
  start-page: 56
  year: 2017
  end-page: 69
  ident: CR45
  article-title: A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil
  publication-title: J Hydrol
– volume: 20
  start-page: 165
  year: 2020
  end-page: 174
  ident: CR5
  article-title: Strong solutions for Richards’ equation with Cauchy conditions and constant pressure gradient
  publication-title: Environ Fluid Mech
– volume: 53
  start-page: 9679
  issue: 11
  year: 2017
  end-page: 9691
  ident: CR10
  article-title: Exact solutions of the Richards equation with nonlinear plant-root extraction
  publication-title: Water Resour Res
– volume: 51
  start-page: 5756
  issue: 7
  year: 2015
  end-page: 5771
  ident: CR12
  article-title: Catchment-scale Richards equation-based modeling of evapotranspiration via boundary condition switching and root water uptake schemes
  publication-title: Water Resour Res
– volume: 85
  start-page: 449
  issue: 8
  year: 2017
  end-page: 464
  ident: CR14
  article-title: A coupled surface-subsurface model for hydrostatic flows under saturated and variably saturated conditions
  publication-title: Int J Numer Methods Fluids
– volume: 150
  start-page: 312
  year: 2018
  end-page: 327
  ident: CR11
  article-title: A hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation
  publication-title: Comput Electron Agric
– volume: 43
  start-page: 19
  year: 2000
  end-page: 29
  ident: CR41
  article-title: A SWACROP-based potato root water-uptake function as determined under tropical conditions
  publication-title: Potato Res
– volume: 79
  start-page: 1990
  year: 2020
  end-page: 2001
  ident: CR7
  article-title: A mixed MoL-TMoL for the numerical solution of the 2D Richards’ equation in layered soils
  publication-title: Comput Math Appl
– volume: 81
  start-page: 10
  year: 2017
  end-page: 19
  ident: CR3
  article-title: Assessing and modifying macroscopic root water extraction basil (Ocimum basilicum) models under simultaneous water and salinity stresses
  publication-title: Soil Sci Soc Am J
– volume: 582
  start-page: 124481
  year: 2020
  ident: CR28
  article-title: Parallel simulation of variably saturated soil water flows by fully implicit domain decomposition methods
  publication-title: J Hydrol
– volume: 108
  start-page: 216
  year: 2017
  end-page: 230
  ident: CR29
  article-title: Competition for light and water in a coupled soil-plant system
  publication-title: Adv Water Resour
– volume: 135
  start-page: 264
  year: 2019
  end-page: 275
  ident: CR6
  article-title: A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone
  publication-title: Appl Numer Math
– volume: 57
  start-page: 1933
  issue: 7
  year: 2013
  end-page: 1941
  ident: CR9
  article-title: Low-rank update of preconditioners for the nonlinear Richards’ equation
  publication-title: Math Comput Model
– volume: 523
  start-page: 119
  year: 2015
  end-page: 127
  ident: CR24
  article-title: A mass-conservative finite volume predictor—corrector solution of the 1D Richards’ equation
  publication-title: J Hydrol
– volume: 220
  start-page: 505
  issue: 4
  year: 2009
  end-page: 521
  ident: CR38
  article-title: Modeling compensated root water and nutrient uptake
  publication-title: Ecol Model
– volume: 81
  start-page: 1535
  issue: 31
  year: 2017
  end-page: 1556
  ident: CR4
  article-title: Development of a simulation model for estimation of potential recharge in a semi-arid foothill region
  publication-title: Water Resour Manage
– volume: 18
  start-page: 335
  issue: 6
  year: 1995
  end-page: 343
  ident: CR40
  article-title: A partitioned solution procedure for simulating water flow in a variably saturated dual-porosity medium
  publication-title: Adv Water Resour
– volume: 52
  start-page: 8500
  issue: 11
  year: 2016
  end-page: 8525
  ident: CR27
  article-title: Numerical homogenization of the Richards equation for unsaturated water flow through heterogeneous soils
  publication-title: Water Resour Res
– volume: 240
  start-page: 106293
  year: 2020
  ident: CR43
  article-title: Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model
  publication-title: Agric Water Manag
– volume: 27
  start-page: 1199
  issue: 12
  year: 2004
  end-page: 1215
  ident: CR30
  article-title: Mass-conservative finite volume methods on 2-D unstructured grids for the Richards’ equation
  publication-title: Adv Water Resour
– volume: 125
  start-page: 159
  issue: 3
  year: 1999
  end-page: 165
  ident: CR32
  article-title: Modeling water uptake by plant roots
  publication-title: J Irrig Drain Eng
– volume: 45
  start-page: 1025
  year: 1999
  end-page: 1046
  ident: CR8
  article-title: Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation
  publication-title: Int J Numer Methods Eng
– volume: 8
  start-page: 1363
  issue: 7
  year: 2015
  end-page: 1379
  ident: CR15
  article-title: Root uptake under non-uniform root-zone salinity
  publication-title: Ecohydrology
– volume: 98
  start-page: 183
  year: 2013
  end-page: 192
  ident: CR2
  article-title: Drip-irriwater: computer software to simulate soil wetting patterns under surface drip irrigation
  publication-title: Comput Electron Agric
– year: 2019
  ident: CR37
  publication-title: MATLAB Version 9.7 (R2019a). The Mathworks Inc.
– volume: 89
  start-page: 63
  issue: 2
  year: 1960
  end-page: 73
  ident: CR19
  article-title: Dynamic aspects of water availability to plants
  publication-title: Soil Sci
– year: 2012
  ident: CR21
  publication-title: Environmental modeling using MATLAB
– volume: 68
  start-page: 5
  issue: 1
  year: 2007
  end-page: 28
  ident: CR34
  article-title: Uptake of water from soils by plant roots
  publication-title: Transp Porous Media
– volume: 28
  start-page: 689
  issue: 7
  year: 2005
  end-page: 699
  ident: CR36
  article-title: Parameter equivalence for the Gardner and van Genuchten soil hydraulic conductivity functions for steady vertical flow with inclusions
  publication-title: Adv Water Resour
– volume: 81
  start-page: 04017025
  issue: 8
  year: 2017
  ident: CR17
  article-title: Numerical solution of Richards’ equation: A review of advances and challenges
  publication-title: Soil Sci Soc Am J
– volume: 197
  start-page: 4610
  issue: 51
  year: 2008
  end-page: 4625
  ident: CR23
  article-title: Locally conservative, stabilized finite element methods for variably saturated flow
  publication-title: Comput Methods Appl Mech Eng
– volume: 579
  start-page: 124213
  year: 2019
  ident: CR39
  article-title: Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media
  publication-title: J Hydrol
– volume: 33
  start-page: 3499
  year: 2019
  end-page: 3512
  ident: CR44
  article-title: Dynamic simulation of soil salt transport in arid irrigation areas under the Hydrus-2D-based rotation irrigation mode
  publication-title: Water Resour Manage
– ident: CR13
– volume: 5
  start-page: 99
  issue: 1
  year: 2012
  end-page: 107
  ident: CR42
  article-title: Olive yield as a function of soil moisture dynamics
  publication-title: Ecohydrology
– volume: 27
  start-page: 4131
  year: 2013
  end-page: 4148
  ident: CR16
  article-title: Simulation of soil water dynamics under surface drip irrigation from equidistant line sources
  publication-title: Water Resour Manage
– volume: 86
  start-page: 165
  issue: 1
  year: 2006
  end-page: 176
  ident: CR20
  article-title: Root uptake and transpiration: from measurements and models to sustainable irrigation
  publication-title: Agric Water Manag
– volume: 228
  start-page: 155
  issue: 2
  year: 2004
  end-page: 171
  ident: CR35
  article-title: A model for water uptake by plant roots
  publication-title: J Theor Biol
– volume: 10
  start-page: 1
  issue: 14
  year: 2006
  end-page: 22
  ident: CR26
  article-title: Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function
  publication-title: Earth Interact
– volume: 25
  start-page: 805
  issue: 1
  year: 2021
  end-page: 822
  ident: CR22
  article-title: Iterative schemes for surfactant transport in porous media
  publication-title: Comput Geosci
– year: 2004
  ident: CR31
  publication-title: Numerical methods using Matlab
– volume: 6
  start-page: 841
  year: 2019
  end-page: 858
  ident: CR33
  article-title: Numerical experiments on fate and transport of benzene with biological clogging in vadoze zone
  publication-title: Environ Process
– volume: 120
  start-page: 36
  year: 2016
  end-page: 52
  ident: CR18
  article-title: DIDAS – user-friendly software package for assisting drip irrigation design and scheduling
  publication-title: Comput Electron Agric
– volume: 39
  start-page: 3434
  issue: 12
  year: 2015
  end-page: 3447
  ident: CR1
  article-title: Modeling water uptake by a root system growing in a fixed soil volume
  publication-title: Appl Math Model
– volume: 30
  start-page: 1883
  issue: 9
  year: 2007
  end-page: 1901
  ident: CR25
  article-title: Adaptive local discontinuous Galerkin approximation to Richards’ equation
  publication-title: Adv Water Resour
– volume: 27
  start-page: 4131
  year: 2013
  ident: 2850_CR16
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-013-0399-8
– volume: 240
  start-page: 106293
  year: 2020
  ident: 2850_CR43
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106293
– volume: 523
  start-page: 119
  year: 2015
  ident: 2850_CR24
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.01.053
– volume: 52
  start-page: 8500
  issue: 11
  year: 2016
  ident: 2850_CR27
  publication-title: Water Resour Res
  doi: 10.1002/2015WR018508
– volume-title: Numerical methods using Matlab
  year: 2004
  ident: 2850_CR31
– volume: 20
  start-page: 165
  year: 2020
  ident: 2850_CR5
  publication-title: Environ Fluid Mech
  doi: 10.1007/s10652-019-09705-w
– volume: 8
  start-page: 1363
  issue: 7
  year: 2015
  ident: 2850_CR15
  publication-title: Ecohydrology
  doi: 10.1002/eco.1594
– volume: 28
  start-page: 689
  issue: 7
  year: 2005
  ident: 2850_CR36
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2005.01.004
– volume: 197
  start-page: 4610
  issue: 51
  year: 2008
  ident: 2850_CR23
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.06.005
– volume: 86
  start-page: 165
  issue: 1
  year: 2006
  ident: 2850_CR20
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2006.06.008
– volume: 18
  start-page: 335
  issue: 6
  year: 1995
  ident: 2850_CR40
  publication-title: Adv Water Resour
  doi: 10.1016/0309-1708(95)00022-B
– volume: 10
  start-page: 1
  issue: 14
  year: 2006
  ident: 2850_CR26
  publication-title: Earth Interact
  doi: 10.1175/EI177.1
– volume: 25
  start-page: 805
  issue: 1
  year: 2021
  ident: 2850_CR22
  publication-title: Comput Geosci
  doi: 10.1007/s10596-020-09949-2
– volume: 68
  start-page: 5
  issue: 1
  year: 2007
  ident: 2850_CR34
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-006-9055-6
– volume: 220
  start-page: 505
  issue: 4
  year: 2009
  ident: 2850_CR38
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2008.11.004
– volume: 120
  start-page: 36
  year: 2016
  ident: 2850_CR18
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.11.007
– volume: 108
  start-page: 216
  year: 2017
  ident: 2850_CR29
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2017.08.004
– volume: 579
  start-page: 124213
  year: 2019
  ident: 2850_CR39
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124213
– volume: 81
  start-page: 1535
  issue: 31
  year: 2017
  ident: 2850_CR4
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1593-x
– volume: 98
  start-page: 183
  year: 2013
  ident: 2850_CR2
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2013.08.009
– volume: 6
  start-page: 841
  year: 2019
  ident: 2850_CR33
  publication-title: Environ Process
  doi: 10.1007/s40710-019-00402-w
– volume: 81
  start-page: 10
  year: 2017
  ident: 2850_CR3
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2016.07.0217
– volume: 43
  start-page: 19
  year: 2000
  ident: 2850_CR41
  publication-title: Potato Res
  doi: 10.1007/BF02358510
– volume: 33
  start-page: 3499
  year: 2019
  ident: 2850_CR44
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02312-w
– volume: 89
  start-page: 63
  issue: 2
  year: 1960
  ident: 2850_CR19
  publication-title: Soil Sci
  doi: 10.1097/00010694-196002000-00001
– ident: 2850_CR13
  doi: 10.2136/vzj2011.0106
– volume: 135
  start-page: 264
  year: 2019
  ident: 2850_CR6
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2018.08.013
– volume: 125
  start-page: 159
  issue: 3
  year: 1999
  ident: 2850_CR32
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(1999)125:3(159)
– volume: 39
  start-page: 3434
  issue: 12
  year: 2015
  ident: 2850_CR1
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.11.042
– volume: 79
  start-page: 1990
  year: 2020
  ident: 2850_CR7
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2019.07.026
– volume: 45
  start-page: 1025
  year: 1999
  ident: 2850_CR8
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G
– volume: 81
  start-page: 04017025
  issue: 8
  year: 2017
  ident: 2850_CR17
  publication-title: Soil Sci Soc Am J
– volume: 85
  start-page: 449
  issue: 8
  year: 2017
  ident: 2850_CR14
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.4389
– volume: 228
  start-page: 155
  issue: 2
  year: 2004
  ident: 2850_CR35
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2003.12.012
– volume: 30
  start-page: 1883
  issue: 9
  year: 2007
  ident: 2850_CR25
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2007.02.007
– volume: 51
  start-page: 5756
  issue: 7
  year: 2015
  ident: 2850_CR12
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017139
– volume: 582
  start-page: 124481
  year: 2020
  ident: 2850_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124481
– volume: 27
  start-page: 1199
  issue: 12
  year: 2004
  ident: 2850_CR30
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2004.08.008
– volume-title: MATLAB Version 9.7 (R2019a). The Mathworks Inc.
  year: 2019
  ident: 2850_CR37
– volume-title: Environmental modeling using MATLAB
  year: 2012
  ident: 2850_CR21
  doi: 10.1007/978-3-642-22042-5
– volume: 150
  start-page: 312
  year: 2018
  ident: 2850_CR11
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.05.013
– volume: 5
  start-page: 99
  issue: 1
  year: 2012
  ident: 2850_CR42
  publication-title: Ecohydrology
  doi: 10.1002/eco.208
– volume: 551
  start-page: 56
  year: 2017
  ident: 2850_CR45
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.05.053
– volume: 53
  start-page: 9679
  issue: 11
  year: 2017
  ident: 2850_CR10
  publication-title: Water Resour Res
  doi: 10.1002/2017WR021097
– volume: 57
  start-page: 1933
  issue: 7
  year: 2013
  ident: 2850_CR9
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2012.01.013
SSID ssj0010090
Score 2.386366
Snippet Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2553
SubjectTerms administrative management
Algorithms
Atmospheric Sciences
Boundary value problems
Civil Engineering
computer software
Constitutive relationships
Differential equations
Dynamics
Earth and Environmental Science
Earth Sciences
Environment
Flow equations
Geotechnical Engineering & Applied Earth Sciences
Handling
Hydrogeology
Hydrology/Water Resources
Mass balance
Mathematical models
Matlab
Moisture content
Parabolic differential equations
Partial differential equations
Plant roots
Python
Roots
Soil
Soil dynamics
Soil water
Soil water movement
Solvers
Uptake
water
Water management
Water resources
Water resources management
Water uptake
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB5c56V9KEkP6jYtU-hbu1Raa2UrEEoabEIhJqQ2zZtY7UGgwuv4IOTfZ0aH3QaSZ-0hZvb4ZmbnG4AvnHMQZ5kXdqCsSLLEiEyyO0wOpJfOEYTlfOfzSXo2S35dqasOTNpcGH5W2Z6J1UFtg2Ef-XcyZBTTUaXyx-JGcNUojq62JTR0U1rBHlcUY89gTzIzVhf2fo4mF5fbuAIhisrrQv8jErpMmzSaOpkulmkm-MkC3bkqEvL_q2qHPx-ETKubaLwPLxsIiSe1zg-g4-av4MU_xIKvwf--DoEfNCPhO5xs6rBMia0TDIPH80Aa3iwdjstwi6ObmvMb2TGLl9Qb_xAMXeJssdZ_HXLNtHJ1hCd4ccd0AzgNoXwDs_FoenommooKwhDQWou08GziWUWwJS1sTLrQslCRkUMtk2GaFS7VtEmtizSZNtaYgZd90pl3hva-7b-F7jzM3TtAF0mtbOQJELqETgUCGsr2Y6U9DdFPTQ_iVni5aejGuepFme-IklngOQk8rwSeyx583fZZ1GQbT7Y-bHWSNxtvle-WSQ8-bz_TluE4iJ67sKE2hEmihCxJavOt1eVuiMdnfP_0jB_guayWD_toDqG7Xm7cR4Is6-JTsw7vAQCN5XI
  priority: 102
  providerName: ProQuest
Title Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool
URI https://link.springer.com/article/10.1007/s11269-021-02850-2
https://www.proquest.com/docview/2545438162
https://www.proquest.com/docview/2661041442
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF60fdEHb_GoMoJvupJsk7TxrUqrKBZRg_oUkj0QGrraJoj-emdztCoq-BTIXsnOHt_M7HxLyL6JObB9X1HRcgV1fIdTnxlzGGsxxaRECGvina_63nngXDy4D2VQ2Lg67V65JPOVehrsZjPPp-ZIAe6JrkVx4a3nfFs1Uu-cPV52J94DxA25bQVbpQ5umWWwzM-1fN2Qpijzm2M03296iySovrQ4ZjI4ytL4iL9_I3H8768skYUSgEKnGDHLZEYOV8j8J1rCVaJun7Q2x6EB0SH0s8Kpk0BlQgOt4Erj-MhGEnqJfoXuS8EYDsasCzdYGu4RxI4geE6jgQRz41oyPoYOXL8ZsgK40zpZI0Gve3d6Tsv7GChHmJZSL1ZGQRTY6cyLhY2SjFjsWpy1I-a0PT-WXoRTXEgrQsVIcN5SrIkSV5LjyiGa66Q21EO5QUBaLHKFpRBOSgfXFIQprmjabqSwiqbHN4ldCSXkJVm5uTMjCac0y6YPQ-zDMO_DkG2Sg0mZ54Kq48_cjUrWYTltxyFqy67hPPMweW-SjBPOeFGiodQZ5kFEYzmoh2Kew0q80yp-b3Hrf9m3yRzLR4ix-DRILR1lcgcBUBrvktl272y3HPX4POn2r2_wbcA6HxDc_DM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEE8RKDBIcAKLXa-96SJVqECilDZRVRLR2-L1Q0is4jQPVf1z_DbG-0gAid56Xj_W47HnmxnPDMCrEHMQZ5ljpisNE5nQLOPBHMa73HFrCcKGeOfhKB1MxJczebYFv9pYmPCssr0Tq4vaeB1s5O9IkZEhHVXKP8zOWagaFbyrbQkN1ZRWMPtVirEmsOPIXl6QCrfYP_xM-_2a835v_GnAmioDTBP4WLK0cEHtMZJEeVqYmP5P8UJGmu8pLvbSrLCpIsY1NlIE943WXccTWoezms6DSWjcG7AjEpGR8rfzsTc6OV37MQjBVFYeWj8TJLybsJ06eC_macbCEwmS8TJi_G_RuMG7_7hoK8nXvwt3GsiKBzWP3YMtO70Pt_9IZPgA3Ncf3ocH1Eh4Eker2g1UYmt0Q-9w6ImjVnOL_dJfYO-8zjGOwRCMp9QbvxHsneNktlQ_LYYabeXiPR7gyWVIb4Bj78uHMLkW2j6C7amf2seANuJKmsgRALWCbiECNtIksVSOhkhS3YG4JV6um_TmocpGmW8SMweC50TwvCJ4zjvwZt1nVif3uLL1brsneXPQF_mGLTvwcv2Zjmjwu6ip9StqQxgoEqS5Upu37V5uhvj_jE-unvEF3ByMh8f58eHo6Cnc4hUrBfvQLmwv5yv7jODSsnje8CTC9-s-Br8B7yAjJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxRBEK4gJkQfjIrGRdQy0SfoMNM7PcuYGEOEAUQ2BNnI2zjTR0yYbC97hPDX_HVWzbGLJvDG8_QxXV3d9XWdAB845iBMEidMTxkRJZEWiWR1mOxJJ60lCMvxzsf9-GAQfTtX50vwp42FYbfK9k6sLmrjNevIt-ghozgdVSy3XOMWcbKbfhldCq4gxZbWtpxGzSJH9vqKnm-Tz4e7tNcfpUz3zr4eiKbCgNAEPKYiLhw_eYwiMR4XJqR_y2WhAi23cxltx0lh45yY1tggJ6hvtO452aU1OKvpLJgujfsAHvY4iztHqaf7cwsGYZdKv0MrFxGJ7SZgpw7bC2WcCHaOIOmuAiH_FYoLpPufcbaSeelTeNKAVdypuesZLNnhc3h8I4XhKrgfv71n12kkJIn9WW0AKrFVt6F3eOyJl2Zji2npr3Dvss4ujqwCxlPqjT8J8I5xMJrmFxa5Ols5-YQ7eHLNiQ3wzPvyBQzuhbIvYXnoh_YVoA1krkzgCHraiO4fgjTKdEOVOxqiG-sOhC3xMt0kNuf6GmW2SMnMBM-I4FlF8Ex2YGPeZ1Sn9biz9Xq7J1lzxCfZgiE78H7-mQ4nW1zyofUzakPoJ4jozUptNtu9XAxx-4xrd8_4DlaI-bPvh_2j1_BIVpzEiqF1WJ6OZ_YN4aRp8bZiSIRf930C_gLrqyDB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shooting+the+Numerical+Solution+of+Moisture+Flow+Equation+with+Root+Water+Uptake+Models%3A+A+Python+Tool&rft.jtitle=Water+resources+management&rft.au=Difonzo%2C+Fabio+V.&rft.au=Masciopinto%2C+Costantino&rft.au=Vurro%2C+Michele&rft.au=Berardi%2C+Marco&rft.date=2021-06-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=8&rft.spage=2553&rft.epage=2567&rft_id=info:doi/10.1007%2Fs11269-021-02850-2&rft.externalDocID=10_1007_s11269_021_02850_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon