Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool
Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are describ...
Saved in:
| Published in | Water resources management Vol. 35; no. 8; pp. 2553 - 2567 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.06.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-021-02850-2 |
Cover
| Abstract | Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are described by the Richards’ equation with a sink term, and numerical treatment of this problem is still a challenge, together with its practical implementations in user-friendly softwares. In order to tackle this problem, in the present paper we propose a simple and computationally fast algorithm developed as a Python code, implementing a numerical approach based on the
shooting
method, a classical tool for handling boundary value problems (BVPs) arising here from a discretization recently introduced for Richards’ equation: such a method is applied to the linearized Richards’ equation with Gardner’s hydraulic functions. This method is implemented also in MATLAB, in order to accomplish comparisons with built-in MATLAB solver for parabolic partial differential equations. The Python code is made available to readers, and is intended to be an easy tool for handling this problem in the framework of Gardner’s constitutive relations, filling the gap of other commercial codes, which do not provide choice of Gardner functions. Many numerical simulations are performed: the results are promising, since the proposed method behaves efficiently and in some cases it is able to converge even when the MATLAB solver fails; mass balance properties and order of accuracy issues are also investigated. |
|---|---|
| AbstractList | Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are described by the Richards’ equation with a sink term, and numerical treatment of this problem is still a challenge, together with its practical implementations in user-friendly softwares. In order to tackle this problem, in the present paper we propose a simple and computationally fast algorithm developed as a Python code, implementing a numerical approach based on the shooting method, a classical tool for handling boundary value problems (BVPs) arising here from a discretization recently introduced for Richards’ equation: such a method is applied to the linearized Richards’ equation with Gardner’s hydraulic functions. This method is implemented also in MATLAB, in order to accomplish comparisons with built-in MATLAB solver for parabolic partial differential equations. The Python code is made available to readers, and is intended to be an easy tool for handling this problem in the framework of Gardner’s constitutive relations, filling the gap of other commercial codes, which do not provide choice of Gardner functions. Many numerical simulations are performed: the results are promising, since the proposed method behaves efficiently and in some cases it is able to converge even when the MATLAB solver fails; mass balance properties and order of accuracy issues are also investigated. Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and forecast of such dynamics is a relevant issue in managing water resources. Typically, movement of water in soils and uptake by roots are described by the Richards’ equation with a sink term, and numerical treatment of this problem is still a challenge, together with its practical implementations in user-friendly softwares. In order to tackle this problem, in the present paper we propose a simple and computationally fast algorithm developed as a Python code, implementing a numerical approach based on the shooting method, a classical tool for handling boundary value problems (BVPs) arising here from a discretization recently introduced for Richards’ equation: such a method is applied to the linearized Richards’ equation with Gardner’s hydraulic functions. This method is implemented also in MATLAB, in order to accomplish comparisons with built-in MATLAB solver for parabolic partial differential equations. The Python code is made available to readers, and is intended to be an easy tool for handling this problem in the framework of Gardner’s constitutive relations, filling the gap of other commercial codes, which do not provide choice of Gardner functions. Many numerical simulations are performed: the results are promising, since the proposed method behaves efficiently and in some cases it is able to converge even when the MATLAB solver fails; mass balance properties and order of accuracy issues are also investigated. |
| Author | Masciopinto, Costantino Vurro, Michele Difonzo, Fabio V. Berardi, Marco |
| Author_xml | – sequence: 1 givenname: Fabio V. surname: Difonzo fullname: Difonzo, Fabio V. organization: Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Code Architects Automation, Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro – sequence: 2 givenname: Costantino surname: Masciopinto fullname: Masciopinto, Costantino organization: Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche – sequence: 3 givenname: Michele surname: Vurro fullname: Vurro, Michele organization: Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche – sequence: 4 givenname: Marco orcidid: 0000-0001-8199-5772 surname: Berardi fullname: Berardi, Marco email: marco.berardi@ba.irsa.cnr.it organization: Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche |
| BookMark | eNp9kU1P3DAQhi1EpS6UP9CTpV64hM44iZNwQ4iPSrRFfIij5XUmrKk3XmxHiH-Pd7cSEgcOoznM84xm9O6x3dGPxNh3hCMEaH5GRCG7AgTmamsoxA6bYd2UBcoadtkMOgFF1VT4le3F-ASQtQ5mbLhdeJ_s-MjTgvifaUnBGu34rXdTsn7kfuC_vY1pCsTPnX_hZ8-T3kxebFrwm2zzB50o8PtV0v8o0z25eMxP-PVrWmTuznv3jX0ZtIt08L_vs_vzs7vTy-Lq78Wv05OrwpS1SIWcDwJB9DU2Qs57JOq0mNdgRKtF1cpuTlIjYE-gOwm9Mc0gykHQQAbbsi_32eF27yr454liUksbDTmnR_JTVEJKhAqrSmT0xwf0yU9hzNcpUVd1VbYo11S7pUzwMQYalLFp838K2jqFoNYBqG0AKgegNgGotSo-qKtglzq8fi6VWylmeHyk8H7VJ9YbRc-Z6A |
| CitedBy_id | crossref_primary_10_3390_w13223169 crossref_primary_10_1007_s11242_021_01730_y crossref_primary_10_1007_s10596_023_10250_1 crossref_primary_10_3390_sym14010004 crossref_primary_10_1007_s11269_021_03025_9 crossref_primary_10_3390_agronomy13020609 crossref_primary_10_3390_w14060892 crossref_primary_10_1016_j_camwa_2023_04_032 crossref_primary_10_3390_math9172019 crossref_primary_10_1016_j_camwa_2024_11_028 crossref_primary_10_3390_w13213039 crossref_primary_10_3934_jcd_2022001 crossref_primary_10_3390_s23052823 crossref_primary_10_3390_math9202545 crossref_primary_10_1016_j_jhydrol_2021_126952 crossref_primary_10_3390_f15040626 |
| Cites_doi | 10.1007/s11269-013-0399-8 10.1016/j.agwat.2020.106293 10.1016/j.jhydrol.2015.01.053 10.1002/2015WR018508 10.1007/s10652-019-09705-w 10.1002/eco.1594 10.1016/j.advwatres.2005.01.004 10.1016/j.cma.2008.06.005 10.1016/j.agwat.2006.06.008 10.1016/0309-1708(95)00022-B 10.1175/EI177.1 10.1007/s10596-020-09949-2 10.1007/s11242-006-9055-6 10.1016/j.ecolmodel.2008.11.004 10.1016/j.compag.2015.11.007 10.1016/j.advwatres.2017.08.004 10.1016/j.jhydrol.2019.124213 10.1007/s11269-017-1593-x 10.1016/j.compag.2013.08.009 10.1007/s40710-019-00402-w 10.2136/sssaj2016.07.0217 10.1007/BF02358510 10.1007/s11269-019-02312-w 10.1097/00010694-196002000-00001 10.2136/vzj2011.0106 10.1016/j.apnum.2018.08.013 10.1061/(ASCE)0733-9437(1999)125:3(159) 10.1016/j.apm.2014.11.042 10.1016/j.camwa.2019.07.026 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G 10.1002/fld.4389 10.1016/j.jtbi.2003.12.012 10.1016/j.advwatres.2007.02.007 10.1002/2015WR017139 10.1016/j.jhydrol.2019.124481 10.1016/j.advwatres.2004.08.008 10.1007/978-3-642-22042-5 10.1016/j.compag.2018.05.013 10.1002/eco.208 10.1016/j.jhydrol.2017.05.053 10.1002/2017WR021097 10.1016/j.mcm.2012.01.013 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-021-02850-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Collection (ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database (ProQuest) Biological Science Database (ProQuest) Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 2567 |
| ExternalDocumentID | 10_1007_s11269_021_02850_2 |
| GrantInformation_xml | – fundername: Regione Puglia grantid: Smart Water - 5ABY6P0 funderid: https://doi.org/10.13039/501100009886 – fundername: Czech Technical University - Research Center for Informatics grantid: CZ.02.1.01/0.0/0.0/16 019/0000765 - The Research 389 Center for Informatics |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-6bf2102d51726bd1ee9a2b50c28a24869be6a101de0a960dcc7f23f2efec183d3 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-4741 |
| IngestDate | Sun Aug 24 04:01:16 EDT 2025 Fri Jul 25 09:56:48 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Wed Oct 01 01:45:00 EDT 2025 Fri Feb 21 02:47:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Richards’ equation Root water uptake models Shooting method MATLAB software Python |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-6bf2102d51726bd1ee9a2b50c28a24869be6a101de0a960dcc7f23f2efec183d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8199-5772 |
| PQID | 2545438162 |
| PQPubID | 54174 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2661041442 proquest_journals_2545438162 crossref_citationtrail_10_1007_s11269_021_02850_2 crossref_primary_10_1007_s11269_021_02850_2 springer_journals_10_1007_s11269_021_02850_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Berardi, Difonzo, Lopez (CR7) 2020; 79 Casulli (CR14) 2017; 85 Utset, Ruiz, Garcia, Feddes (CR41) 2000; 43 Brunetti, Šimunek, Bautista (CR11) 2018; 150 Camporese, Daly, Paniconi (CR12) 2015; 51 Bergamaschi, Putti (CR8) 1999; 45 Coppola, Chaali, Dragonetti, Lamaddalena, Comegna (CR15) 2015; 8 Manoli, Huang, Bonetti, Domec, Marani, Katul (CR29) 2017; 108 Suk, Park (CR39) 2019; 579 Viola, Noto, Cannarozzo, La Loggia, Porporato (CR42) 2012; 5 Mathews, Fink (CR31) 2004 Raats (CR34) 2007; 68 Tseng, Sciortino, van Genuchten (CR40) 1995; 18 Broadbridge, Daly, Goard (CR10) 2017; 53 Roose, Fowler (CR35) 2004; 228 CR13 Friedman, Communar, Gamliel (CR18) 2016; 120 Berardi, Difonzo, Notarnicola, Vurro (CR6) 2019; 135 Manzini, Ferraris (CR30) 2004; 27 Lai, Ogden (CR24) 2015; 523 Li, Farthing, Miller (CR25) 2007; 30 Albrieu, Reginato, Tarzia (CR1) 2015; 39 Mathur, Rao (CR32) 1999; 125 Mohanadhas, Kumar (CR33) 2019; 6 Farthing, Ogden (CR17) 2017; 81 Berardi, Difonzo (CR5) 2020; 20 Elmaloglou, Soulis, Dercas (CR16) 2013; 27 Li, De Jong, Coe, Ramankutty (CR26) 2006; 10 Arbat, Puig-Bargués, Duran-Ros, Barragán, de Cartagena (CR2) 2013; 98 Iliano, Pop, Radu (CR22) 2021; 25 Rucker, Warrick, Ferré (CR36) 2005; 28 Kees, Farthing, Dawson (CR23) 2008; 197 Zha, Yang, Yin, Zhang, Zeng, Shi (CR45) 2017; 551 Simunek, Hopmans (CR38) 2009; 220 Wu, Zuo, Shi, Wang, Xue, Ben-Gal (CR43) 2020; 240 Banimahd, Khalili, Zand-Parsa (CR4) 2017; 81 Holzbecher (CR21) 2012 Bergamaschi, Bru, Martínez, Mas, Putti (CR9) 2013; 57 Liu, Yang, Xie, Qin, Li (CR28) 2020; 582 Babazadeh, Tabrizi, Homaee (CR3) 2017; 81 Li, Yue, Ren (CR27) 2016; 52 Shampine, Kierzenka (CR37) 2019 Green, Kirkham, Clothier (CR20) 2006; 86 Xu, Tian, Wang, Nie, Zhang (CR44) 2019; 33 Gardner (CR19) 1960; 89 V Casulli (2850_CR14) 2017; 85 H Li (2850_CR25) 2007; 30 C Kees (2850_CR23) 2008; 197 A Coppola (2850_CR15) 2015; 8 E Holzbecher (2850_CR21) 2012 G Manzini (2850_CR30) 2004; 27 S Banimahd (2850_CR4) 2017; 81 N Li (2850_CR27) 2016; 52 A Utset (2850_CR41) 2000; 43 B Mohanadhas (2850_CR33) 2019; 6 J Simunek (2850_CR38) 2009; 220 M Berardi (2850_CR6) 2019; 135 WR Gardner (2850_CR19) 1960; 89 M Berardi (2850_CR5) 2020; 20 S Mathur (2850_CR32) 1999; 125 JLB Albrieu (2850_CR1) 2015; 39 DF Rucker (2850_CR36) 2005; 28 G Arbat (2850_CR2) 2013; 98 L Bergamaschi (2850_CR8) 1999; 45 S Elmaloglou (2850_CR16) 2013; 27 M Camporese (2850_CR12) 2015; 51 2850_CR13 M Berardi (2850_CR7) 2020; 79 P Broadbridge (2850_CR10) 2017; 53 C Xu (2850_CR44) 2019; 33 G Brunetti (2850_CR11) 2018; 150 JH Mathews (2850_CR31) 2004 L Bergamaschi (2850_CR9) 2013; 57 T Roose (2850_CR35) 2004; 228 H Babazadeh (2850_CR3) 2017; 81 MW Farthing (2850_CR17) 2017; 81 G Manoli (2850_CR29) 2017; 108 PAC Raats (2850_CR34) 2007; 68 PH Tseng (2850_CR40) 1995; 18 F Viola (2850_CR42) 2012; 5 X Wu (2850_CR43) 2020; 240 D Iliano (2850_CR22) 2021; 25 KY Li (2850_CR26) 2006; 10 Y Liu (2850_CR28) 2020; 582 SP Friedman (2850_CR18) 2016; 120 W Lai (2850_CR24) 2015; 523 LF Shampine (2850_CR37) 2019 H Suk (2850_CR39) 2019; 579 Y Zha (2850_CR45) 2017; 551 SR Green (2850_CR20) 2006; 86 |
| References_xml | – volume: 551 start-page: 56 year: 2017 end-page: 69 ident: CR45 article-title: A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil publication-title: J Hydrol – volume: 20 start-page: 165 year: 2020 end-page: 174 ident: CR5 article-title: Strong solutions for Richards’ equation with Cauchy conditions and constant pressure gradient publication-title: Environ Fluid Mech – volume: 53 start-page: 9679 issue: 11 year: 2017 end-page: 9691 ident: CR10 article-title: Exact solutions of the Richards equation with nonlinear plant-root extraction publication-title: Water Resour Res – volume: 51 start-page: 5756 issue: 7 year: 2015 end-page: 5771 ident: CR12 article-title: Catchment-scale Richards equation-based modeling of evapotranspiration via boundary condition switching and root water uptake schemes publication-title: Water Resour Res – volume: 85 start-page: 449 issue: 8 year: 2017 end-page: 464 ident: CR14 article-title: A coupled surface-subsurface model for hydrostatic flows under saturated and variably saturated conditions publication-title: Int J Numer Methods Fluids – volume: 150 start-page: 312 year: 2018 end-page: 327 ident: CR11 article-title: A hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation publication-title: Comput Electron Agric – volume: 43 start-page: 19 year: 2000 end-page: 29 ident: CR41 article-title: A SWACROP-based potato root water-uptake function as determined under tropical conditions publication-title: Potato Res – volume: 79 start-page: 1990 year: 2020 end-page: 2001 ident: CR7 article-title: A mixed MoL-TMoL for the numerical solution of the 2D Richards’ equation in layered soils publication-title: Comput Math Appl – volume: 81 start-page: 10 year: 2017 end-page: 19 ident: CR3 article-title: Assessing and modifying macroscopic root water extraction basil (Ocimum basilicum) models under simultaneous water and salinity stresses publication-title: Soil Sci Soc Am J – volume: 582 start-page: 124481 year: 2020 ident: CR28 article-title: Parallel simulation of variably saturated soil water flows by fully implicit domain decomposition methods publication-title: J Hydrol – volume: 108 start-page: 216 year: 2017 end-page: 230 ident: CR29 article-title: Competition for light and water in a coupled soil-plant system publication-title: Adv Water Resour – volume: 135 start-page: 264 year: 2019 end-page: 275 ident: CR6 article-title: A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone publication-title: Appl Numer Math – volume: 57 start-page: 1933 issue: 7 year: 2013 end-page: 1941 ident: CR9 article-title: Low-rank update of preconditioners for the nonlinear Richards’ equation publication-title: Math Comput Model – volume: 523 start-page: 119 year: 2015 end-page: 127 ident: CR24 article-title: A mass-conservative finite volume predictor—corrector solution of the 1D Richards’ equation publication-title: J Hydrol – volume: 220 start-page: 505 issue: 4 year: 2009 end-page: 521 ident: CR38 article-title: Modeling compensated root water and nutrient uptake publication-title: Ecol Model – volume: 81 start-page: 1535 issue: 31 year: 2017 end-page: 1556 ident: CR4 article-title: Development of a simulation model for estimation of potential recharge in a semi-arid foothill region publication-title: Water Resour Manage – volume: 18 start-page: 335 issue: 6 year: 1995 end-page: 343 ident: CR40 article-title: A partitioned solution procedure for simulating water flow in a variably saturated dual-porosity medium publication-title: Adv Water Resour – volume: 52 start-page: 8500 issue: 11 year: 2016 end-page: 8525 ident: CR27 article-title: Numerical homogenization of the Richards equation for unsaturated water flow through heterogeneous soils publication-title: Water Resour Res – volume: 240 start-page: 106293 year: 2020 ident: CR43 article-title: Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model publication-title: Agric Water Manag – volume: 27 start-page: 1199 issue: 12 year: 2004 end-page: 1215 ident: CR30 article-title: Mass-conservative finite volume methods on 2-D unstructured grids for the Richards’ equation publication-title: Adv Water Resour – volume: 125 start-page: 159 issue: 3 year: 1999 end-page: 165 ident: CR32 article-title: Modeling water uptake by plant roots publication-title: J Irrig Drain Eng – volume: 45 start-page: 1025 year: 1999 end-page: 1046 ident: CR8 article-title: Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation publication-title: Int J Numer Methods Eng – volume: 8 start-page: 1363 issue: 7 year: 2015 end-page: 1379 ident: CR15 article-title: Root uptake under non-uniform root-zone salinity publication-title: Ecohydrology – volume: 98 start-page: 183 year: 2013 end-page: 192 ident: CR2 article-title: Drip-irriwater: computer software to simulate soil wetting patterns under surface drip irrigation publication-title: Comput Electron Agric – year: 2019 ident: CR37 publication-title: MATLAB Version 9.7 (R2019a). The Mathworks Inc. – volume: 89 start-page: 63 issue: 2 year: 1960 end-page: 73 ident: CR19 article-title: Dynamic aspects of water availability to plants publication-title: Soil Sci – year: 2012 ident: CR21 publication-title: Environmental modeling using MATLAB – volume: 68 start-page: 5 issue: 1 year: 2007 end-page: 28 ident: CR34 article-title: Uptake of water from soils by plant roots publication-title: Transp Porous Media – volume: 28 start-page: 689 issue: 7 year: 2005 end-page: 699 ident: CR36 article-title: Parameter equivalence for the Gardner and van Genuchten soil hydraulic conductivity functions for steady vertical flow with inclusions publication-title: Adv Water Resour – volume: 81 start-page: 04017025 issue: 8 year: 2017 ident: CR17 article-title: Numerical solution of Richards’ equation: A review of advances and challenges publication-title: Soil Sci Soc Am J – volume: 197 start-page: 4610 issue: 51 year: 2008 end-page: 4625 ident: CR23 article-title: Locally conservative, stabilized finite element methods for variably saturated flow publication-title: Comput Methods Appl Mech Eng – volume: 579 start-page: 124213 year: 2019 ident: CR39 article-title: Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media publication-title: J Hydrol – volume: 33 start-page: 3499 year: 2019 end-page: 3512 ident: CR44 article-title: Dynamic simulation of soil salt transport in arid irrigation areas under the Hydrus-2D-based rotation irrigation mode publication-title: Water Resour Manage – ident: CR13 – volume: 5 start-page: 99 issue: 1 year: 2012 end-page: 107 ident: CR42 article-title: Olive yield as a function of soil moisture dynamics publication-title: Ecohydrology – volume: 27 start-page: 4131 year: 2013 end-page: 4148 ident: CR16 article-title: Simulation of soil water dynamics under surface drip irrigation from equidistant line sources publication-title: Water Resour Manage – volume: 86 start-page: 165 issue: 1 year: 2006 end-page: 176 ident: CR20 article-title: Root uptake and transpiration: from measurements and models to sustainable irrigation publication-title: Agric Water Manag – volume: 228 start-page: 155 issue: 2 year: 2004 end-page: 171 ident: CR35 article-title: A model for water uptake by plant roots publication-title: J Theor Biol – volume: 10 start-page: 1 issue: 14 year: 2006 end-page: 22 ident: CR26 article-title: Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function publication-title: Earth Interact – volume: 25 start-page: 805 issue: 1 year: 2021 end-page: 822 ident: CR22 article-title: Iterative schemes for surfactant transport in porous media publication-title: Comput Geosci – year: 2004 ident: CR31 publication-title: Numerical methods using Matlab – volume: 6 start-page: 841 year: 2019 end-page: 858 ident: CR33 article-title: Numerical experiments on fate and transport of benzene with biological clogging in vadoze zone publication-title: Environ Process – volume: 120 start-page: 36 year: 2016 end-page: 52 ident: CR18 article-title: DIDAS – user-friendly software package for assisting drip irrigation design and scheduling publication-title: Comput Electron Agric – volume: 39 start-page: 3434 issue: 12 year: 2015 end-page: 3447 ident: CR1 article-title: Modeling water uptake by a root system growing in a fixed soil volume publication-title: Appl Math Model – volume: 30 start-page: 1883 issue: 9 year: 2007 end-page: 1901 ident: CR25 article-title: Adaptive local discontinuous Galerkin approximation to Richards’ equation publication-title: Adv Water Resour – volume: 27 start-page: 4131 year: 2013 ident: 2850_CR16 publication-title: Water Resour Manage doi: 10.1007/s11269-013-0399-8 – volume: 240 start-page: 106293 year: 2020 ident: 2850_CR43 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106293 – volume: 523 start-page: 119 year: 2015 ident: 2850_CR24 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.01.053 – volume: 52 start-page: 8500 issue: 11 year: 2016 ident: 2850_CR27 publication-title: Water Resour Res doi: 10.1002/2015WR018508 – volume-title: Numerical methods using Matlab year: 2004 ident: 2850_CR31 – volume: 20 start-page: 165 year: 2020 ident: 2850_CR5 publication-title: Environ Fluid Mech doi: 10.1007/s10652-019-09705-w – volume: 8 start-page: 1363 issue: 7 year: 2015 ident: 2850_CR15 publication-title: Ecohydrology doi: 10.1002/eco.1594 – volume: 28 start-page: 689 issue: 7 year: 2005 ident: 2850_CR36 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2005.01.004 – volume: 197 start-page: 4610 issue: 51 year: 2008 ident: 2850_CR23 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.06.005 – volume: 86 start-page: 165 issue: 1 year: 2006 ident: 2850_CR20 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2006.06.008 – volume: 18 start-page: 335 issue: 6 year: 1995 ident: 2850_CR40 publication-title: Adv Water Resour doi: 10.1016/0309-1708(95)00022-B – volume: 10 start-page: 1 issue: 14 year: 2006 ident: 2850_CR26 publication-title: Earth Interact doi: 10.1175/EI177.1 – volume: 25 start-page: 805 issue: 1 year: 2021 ident: 2850_CR22 publication-title: Comput Geosci doi: 10.1007/s10596-020-09949-2 – volume: 68 start-page: 5 issue: 1 year: 2007 ident: 2850_CR34 publication-title: Transp Porous Media doi: 10.1007/s11242-006-9055-6 – volume: 220 start-page: 505 issue: 4 year: 2009 ident: 2850_CR38 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2008.11.004 – volume: 120 start-page: 36 year: 2016 ident: 2850_CR18 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.11.007 – volume: 108 start-page: 216 year: 2017 ident: 2850_CR29 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2017.08.004 – volume: 579 start-page: 124213 year: 2019 ident: 2850_CR39 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124213 – volume: 81 start-page: 1535 issue: 31 year: 2017 ident: 2850_CR4 publication-title: Water Resour Manage doi: 10.1007/s11269-017-1593-x – volume: 98 start-page: 183 year: 2013 ident: 2850_CR2 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2013.08.009 – volume: 6 start-page: 841 year: 2019 ident: 2850_CR33 publication-title: Environ Process doi: 10.1007/s40710-019-00402-w – volume: 81 start-page: 10 year: 2017 ident: 2850_CR3 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2016.07.0217 – volume: 43 start-page: 19 year: 2000 ident: 2850_CR41 publication-title: Potato Res doi: 10.1007/BF02358510 – volume: 33 start-page: 3499 year: 2019 ident: 2850_CR44 publication-title: Water Resour Manage doi: 10.1007/s11269-019-02312-w – volume: 89 start-page: 63 issue: 2 year: 1960 ident: 2850_CR19 publication-title: Soil Sci doi: 10.1097/00010694-196002000-00001 – ident: 2850_CR13 doi: 10.2136/vzj2011.0106 – volume: 135 start-page: 264 year: 2019 ident: 2850_CR6 publication-title: Appl Numer Math doi: 10.1016/j.apnum.2018.08.013 – volume: 125 start-page: 159 issue: 3 year: 1999 ident: 2850_CR32 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(1999)125:3(159) – volume: 39 start-page: 3434 issue: 12 year: 2015 ident: 2850_CR1 publication-title: Appl Math Model doi: 10.1016/j.apm.2014.11.042 – volume: 79 start-page: 1990 year: 2020 ident: 2850_CR7 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2019.07.026 – volume: 45 start-page: 1025 year: 1999 ident: 2850_CR8 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G – volume: 81 start-page: 04017025 issue: 8 year: 2017 ident: 2850_CR17 publication-title: Soil Sci Soc Am J – volume: 85 start-page: 449 issue: 8 year: 2017 ident: 2850_CR14 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.4389 – volume: 228 start-page: 155 issue: 2 year: 2004 ident: 2850_CR35 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2003.12.012 – volume: 30 start-page: 1883 issue: 9 year: 2007 ident: 2850_CR25 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2007.02.007 – volume: 51 start-page: 5756 issue: 7 year: 2015 ident: 2850_CR12 publication-title: Water Resour Res doi: 10.1002/2015WR017139 – volume: 582 start-page: 124481 year: 2020 ident: 2850_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124481 – volume: 27 start-page: 1199 issue: 12 year: 2004 ident: 2850_CR30 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2004.08.008 – volume-title: MATLAB Version 9.7 (R2019a). The Mathworks Inc. year: 2019 ident: 2850_CR37 – volume-title: Environmental modeling using MATLAB year: 2012 ident: 2850_CR21 doi: 10.1007/978-3-642-22042-5 – volume: 150 start-page: 312 year: 2018 ident: 2850_CR11 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.05.013 – volume: 5 start-page: 99 issue: 1 year: 2012 ident: 2850_CR42 publication-title: Ecohydrology doi: 10.1002/eco.208 – volume: 551 start-page: 56 year: 2017 ident: 2850_CR45 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.05.053 – volume: 53 start-page: 9679 issue: 11 year: 2017 ident: 2850_CR10 publication-title: Water Resour Res doi: 10.1002/2017WR021097 – volume: 57 start-page: 1933 issue: 7 year: 2013 ident: 2850_CR9 publication-title: Math Comput Model doi: 10.1016/j.mcm.2012.01.013 |
| SSID | ssj0010090 |
| Score | 2.386366 |
| Snippet | Modeling the water uptake by plant roots is a key issue in studying soil processes, which are governed by water dynamics: a comprehensive understanding and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2553 |
| SubjectTerms | administrative management Algorithms Atmospheric Sciences Boundary value problems Civil Engineering computer software Constitutive relationships Differential equations Dynamics Earth and Environmental Science Earth Sciences Environment Flow equations Geotechnical Engineering & Applied Earth Sciences Handling Hydrogeology Hydrology/Water Resources Mass balance Mathematical models Matlab Moisture content Parabolic differential equations Partial differential equations Plant roots Python Roots Soil Soil dynamics Soil water Soil water movement Solvers Uptake water Water management Water resources Water resources management Water uptake |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB5c56V9KEkP6jYtU-hbu1Raa2UrEEoabEIhJqQ2zZtY7UGgwuv4IOTfZ0aH3QaSZ-0hZvb4ZmbnG4AvnHMQZ5kXdqCsSLLEiEyyO0wOpJfOEYTlfOfzSXo2S35dqasOTNpcGH5W2Z6J1UFtg2Ef-XcyZBTTUaXyx-JGcNUojq62JTR0U1rBHlcUY89gTzIzVhf2fo4mF5fbuAIhisrrQv8jErpMmzSaOpkulmkm-MkC3bkqEvL_q2qHPx-ETKubaLwPLxsIiSe1zg-g4-av4MU_xIKvwf--DoEfNCPhO5xs6rBMia0TDIPH80Aa3iwdjstwi6ObmvMb2TGLl9Qb_xAMXeJssdZ_HXLNtHJ1hCd4ccd0AzgNoXwDs_FoenommooKwhDQWou08GziWUWwJS1sTLrQslCRkUMtk2GaFS7VtEmtizSZNtaYgZd90pl3hva-7b-F7jzM3TtAF0mtbOQJELqETgUCGsr2Y6U9DdFPTQ_iVni5aejGuepFme-IklngOQk8rwSeyx583fZZ1GQbT7Y-bHWSNxtvle-WSQ8-bz_TluE4iJ67sKE2hEmihCxJavOt1eVuiMdnfP_0jB_guayWD_toDqG7Xm7cR4Is6-JTsw7vAQCN5XI priority: 102 providerName: ProQuest |
| Title | Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool |
| URI | https://link.springer.com/article/10.1007/s11269-021-02850-2 https://www.proquest.com/docview/2545438162 https://www.proquest.com/docview/2661041442 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF60fdEHb_GoMoJvupJsk7TxrUqrKBZRg_oUkj0QGrraJoj-emdztCoq-BTIXsnOHt_M7HxLyL6JObB9X1HRcgV1fIdTnxlzGGsxxaRECGvina_63nngXDy4D2VQ2Lg67V65JPOVehrsZjPPp-ZIAe6JrkVx4a3nfFs1Uu-cPV52J94DxA25bQVbpQ5umWWwzM-1fN2Qpijzm2M03296iySovrQ4ZjI4ytL4iL9_I3H8768skYUSgEKnGDHLZEYOV8j8J1rCVaJun7Q2x6EB0SH0s8Kpk0BlQgOt4Erj-MhGEnqJfoXuS8EYDsasCzdYGu4RxI4geE6jgQRz41oyPoYOXL8ZsgK40zpZI0Gve3d6Tsv7GChHmJZSL1ZGQRTY6cyLhY2SjFjsWpy1I-a0PT-WXoRTXEgrQsVIcN5SrIkSV5LjyiGa66Q21EO5QUBaLHKFpRBOSgfXFIQprmjabqSwiqbHN4ldCSXkJVm5uTMjCac0y6YPQ-zDMO_DkG2Sg0mZ54Kq48_cjUrWYTltxyFqy67hPPMweW-SjBPOeFGiodQZ5kFEYzmoh2Kew0q80yp-b3Hrf9m3yRzLR4ix-DRILR1lcgcBUBrvktl272y3HPX4POn2r2_wbcA6HxDc_DM |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEE8RKDBIcAKLXa-96SJVqECilDZRVRLR2-L1Q0is4jQPVf1z_DbG-0gAid56Xj_W47HnmxnPDMCrEHMQZ5ljpisNE5nQLOPBHMa73HFrCcKGeOfhKB1MxJczebYFv9pYmPCssr0Tq4vaeB1s5O9IkZEhHVXKP8zOWagaFbyrbQkN1ZRWMPtVirEmsOPIXl6QCrfYP_xM-_2a835v_GnAmioDTBP4WLK0cEHtMZJEeVqYmP5P8UJGmu8pLvbSrLCpIsY1NlIE943WXccTWoezms6DSWjcG7AjEpGR8rfzsTc6OV37MQjBVFYeWj8TJLybsJ06eC_macbCEwmS8TJi_G_RuMG7_7hoK8nXvwt3GsiKBzWP3YMtO70Pt_9IZPgA3Ncf3ocH1Eh4Eker2g1UYmt0Q-9w6ImjVnOL_dJfYO-8zjGOwRCMp9QbvxHsneNktlQ_LYYabeXiPR7gyWVIb4Bj78uHMLkW2j6C7amf2seANuJKmsgRALWCbiECNtIksVSOhkhS3YG4JV6um_TmocpGmW8SMweC50TwvCJ4zjvwZt1nVif3uLL1brsneXPQF_mGLTvwcv2Zjmjwu6ip9StqQxgoEqS5Upu37V5uhvj_jE-unvEF3ByMh8f58eHo6Cnc4hUrBfvQLmwv5yv7jODSsnje8CTC9-s-Br8B7yAjJw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxRBEK4gJkQfjIrGRdQy0SfoMNM7PcuYGEOEAUQ2BNnI2zjTR0yYbC97hPDX_HVWzbGLJvDG8_QxXV3d9XWdAB845iBMEidMTxkRJZEWiWR1mOxJJ60lCMvxzsf9-GAQfTtX50vwp42FYbfK9k6sLmrjNevIt-ghozgdVSy3XOMWcbKbfhldCq4gxZbWtpxGzSJH9vqKnm-Tz4e7tNcfpUz3zr4eiKbCgNAEPKYiLhw_eYwiMR4XJqR_y2WhAi23cxltx0lh45yY1tggJ6hvtO452aU1OKvpLJgujfsAHvY4iztHqaf7cwsGYZdKv0MrFxGJ7SZgpw7bC2WcCHaOIOmuAiH_FYoLpPufcbaSeelTeNKAVdypuesZLNnhc3h8I4XhKrgfv71n12kkJIn9WW0AKrFVt6F3eOyJl2Zji2npr3Dvss4ujqwCxlPqjT8J8I5xMJrmFxa5Ols5-YQ7eHLNiQ3wzPvyBQzuhbIvYXnoh_YVoA1krkzgCHraiO4fgjTKdEOVOxqiG-sOhC3xMt0kNuf6GmW2SMnMBM-I4FlF8Ex2YGPeZ1Sn9biz9Xq7J1lzxCfZgiE78H7-mQ4nW1zyofUzakPoJ4jozUptNtu9XAxx-4xrd8_4DlaI-bPvh_2j1_BIVpzEiqF1WJ6OZ_YN4aRp8bZiSIRf930C_gLrqyDB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shooting+the+Numerical+Solution+of+Moisture+Flow+Equation+with+Root+Water+Uptake+Models%3A+A+Python+Tool&rft.jtitle=Water+resources+management&rft.au=Difonzo%2C+Fabio+V.&rft.au=Masciopinto%2C+Costantino&rft.au=Vurro%2C+Michele&rft.au=Berardi%2C+Marco&rft.date=2021-06-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=8&rft.spage=2553&rft.epage=2567&rft_id=info:doi/10.1007%2Fs11269-021-02850-2&rft.externalDocID=10_1007_s11269_021_02850_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |