Covariance-Preconditioned Iterative Methods for Nonnegatively Constrained Astronomical Imaging
We consider the problem of solving ill-conditioned linear systems $A\bfx=\bfb$ subject to the nonnegativity constraint $\bfx\geq\bfzero$, and in which the vector $\bfb$ is a realization of a random vector $\hat{\bfb}$, i.e., $\bfb$ is noisy. We explore what the statistical literature tells us about...
        Saved in:
      
    
          | Published in | SIAM journal on matrix analysis and applications Vol. 27; no. 4; pp. 1184 - 1197 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia, PA
          Society for Industrial and Applied Mathematics
    
        01.01.2006
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0895-4798 1095-7162  | 
| DOI | 10.1137/040615043 | 
Cover
| Abstract | We consider the problem of solving ill-conditioned linear systems $A\bfx=\bfb$ subject to the nonnegativity constraint $\bfx\geq\bfzero$, and in which the vector $\bfb$ is a realization of a random vector $\hat{\bfb}$, i.e., $\bfb$ is noisy. We explore what the statistical literature tells us about solving noisy linear systems; we discuss the effect that a substantial black background in the astronomical object being viewed has on the underlying mathematical and statistical models; and, finally, we present several covariance-based preconditioned iterative methods that incorporate this information. Each of the methods presented can be viewed as an implementation of a preconditioned modified residual-norm steepest descent algorithm with a specific preconditioner, and we show that, in fact, the well-known and often used Richardson-Lucy algorithm is one such method. Ill-conditioning can inhibit the ability to take advantage of a priori statistical knowledge, in which case a more traditional preconditioning approach may be appropriate. We briefly discuss this traditional approach as well. Examples from astronomical imaging are used to illustrate concepts and to test and compare algorithms. | 
    
|---|---|
| AbstractList | We consider the problem of solving ill-conditioned linear systems $A\bfx=\bfb$ subject to the nonnegativity constraint $\bfx\geq\bfzero$, and in which the vector $\bfb$ is a realization of a random vector $\hat{\bfb}$, i.e., $\bfb$ is noisy. We explore what the statistical literature tells us about solving noisy linear systems; we discuss the effect that a substantial black background in the astronomical object being viewed has on the underlying mathematical and statistical models; and, finally, we present several covariance-based preconditioned iterative methods that incorporate this information. Each of the methods presented can be viewed as an implementation of a preconditioned modified residual-norm steepest descent algorithm with a specific preconditioner, and we show that, in fact, the well-known and often used Richardson-Lucy algorithm is one such method. Ill-conditioning can inhibit the ability to take advantage of a priori statistical knowledge, in which case a more traditional preconditioning approach may be appropriate. We briefly discuss this traditional approach as well. Examples from astronomical imaging are used to illustrate concepts and to test and compare algorithms. | 
    
| Author | Bardsley, Johnathan M. Nagy, James G.  | 
    
| Author_xml | – sequence: 1 givenname: Johnathan M. surname: Bardsley fullname: Bardsley, Johnathan M. – sequence: 2 givenname: James G. surname: Nagy fullname: Nagy, James G.  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18156754$$DView record in Pascal Francis | 
    
| BookMark | eNplkMtOwzAQRS1UJEphwR9ESCxYhHri2EmWVcWjUnksYIvl2E5xldrFTiv173Fo1QWs5mp05s7MPUcD66xG6ArwHQApxjjHDCjOyQkaAq5oWgDLBmiIy6jzoirP0HkIS4yB5RUM0efUbYU3wkqdvnktnVWmM9FTJbNOe9GZrU6edfflVEga55MXZ61e_PbbXTJ1NnRemJ6fROWsWxkp2mS2EgtjFxfotBFt0JeHOkIfD_fv06d0_vo4m07mqSQ061IGQkhdk4ZQLAghQAtVyoLpvIRMqkKpWkFs1lJnRVbppq4rEDTLZIlZzWoyQtd737V33xsdOr50G2_jSl5lhFWAMY3QzQESId7Y-Pi1CXztzUr4HYcSKCtoHrnxnpPeheB1w6XpRJ9K_2rLAfM-a37MOk7c_pk4mv5jfwDPTYCn | 
    
| CODEN | SJMAEL | 
    
| CitedBy_id | crossref_primary_10_2200_S00563ED1V01Y201401IVM015 crossref_primary_10_1002_gamm_202000017 crossref_primary_10_1016_j_amc_2011_07_026 crossref_primary_10_1088_0266_5611_27_12_125003 crossref_primary_10_1016_j_crma_2014_08_015 crossref_primary_10_1137_15M1048872 crossref_primary_10_1007_s11075_012_9602_x crossref_primary_10_1049_iet_spr_2018_5056 crossref_primary_10_1007_s11760_015_0775_3 crossref_primary_10_1016_j_jbiomech_2016_03_015 crossref_primary_10_1088_0266_5611_31_9_095008 crossref_primary_10_1137_14097642X crossref_primary_10_1016_j_dsp_2013_11_003 crossref_primary_10_1080_17415977_2015_1124428 crossref_primary_10_1088_0266_5611_25_4_045010 crossref_primary_10_1364_OE_21_025418 crossref_primary_10_1080_03610926_2018_1532006 crossref_primary_10_1016_j_csda_2021_107335 crossref_primary_10_1007_s10439_016_1654_y crossref_primary_10_1016_j_amc_2018_01_011 crossref_primary_10_1016_j_apnum_2013_07_006 crossref_primary_10_1080_17415970802231594 crossref_primary_10_1587_transinf_2017MVP0022 crossref_primary_10_1007_s10543_013_0464_y crossref_primary_10_1016_j_cam_2009_02_020 crossref_primary_10_1088_0266_5611_25_12_123006 crossref_primary_10_1088_0266_5611_25_1_015002 crossref_primary_10_1088_0266_5611_29_12_125013 crossref_primary_10_1007_s40305_014_0043_1 crossref_primary_10_1080_02331934_2018_1455833 crossref_primary_10_3934_ipi_2008_2_167 crossref_primary_10_1007_s11075_013_9693_z crossref_primary_10_1007_s10543_008_0196_6 crossref_primary_10_1287_moor_2016_0791 crossref_primary_10_1016_j_jmbbm_2016_07_004 crossref_primary_10_1016_j_jmva_2016_07_008 crossref_primary_10_1080_17415977_2013_840302 crossref_primary_10_1088_0266_5611_26_2_025004 crossref_primary_10_1088_0266_5611_26_8_085013 crossref_primary_10_1016_j_sigpro_2023_109260 crossref_primary_10_1007_s10898_021_01028_9 crossref_primary_10_1016_j_ins_2014_02_089 crossref_primary_10_1109_TSP_2016_2613067 crossref_primary_10_1109_TIP_2024_3411819 crossref_primary_10_1109_TIP_2007_912576 crossref_primary_10_1137_050636024 crossref_primary_10_1214_13_EJS868  | 
    
| Cites_doi | 10.1109/42.293921 10.1137/1.9780898718003 10.1137/1.9780898719697 10.1023/B:NUMA.0000027762.08431.64 10.1137/1.9781611970937 10.1109/42.232249 10.1088/0266-5611/12/2/004 10.1137/S0036144594276474 10.1364/JOSAA.10.001014 10.1137/1.9780898717570 10.1007/BF02149761 10.1137/S1064827502410451 10.1051/0004-6361:20041997 10.1887/0750304359 10.1007/978-94-009-1740-8 10.1364/JOSAA.12.000272  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2006 INIST-CNRS [Copyright] © 2006 Society for Industrial and Applied Mathematics  | 
    
| Copyright_xml | – notice: 2006 INIST-CNRS – notice: [Copyright] © 2006 Society for Industrial and Applied Mathematics  | 
    
| DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U  | 
    
| DOI | 10.1137/040615043 | 
    
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Agricultural Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Agricultural Science Database | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1095-7162 | 
    
| EndPage | 1197 | 
    
| ExternalDocumentID | 2596240671 18156754 10_1137_040615043  | 
    
| GroupedDBID | -~X .4S .DC 123 186 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 IQODW 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c352t-61aaceb3f350a333157d8c76e4812cd7ddbd1157bce2729efbb91a522c806b6b3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0895-4798 | 
    
| IngestDate | Fri Jul 25 11:11:09 EDT 2025 Mon Jul 21 09:16:56 EDT 2025 Wed Oct 01 02:10:00 EDT 2025 Thu Apr 24 22:49:46 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | weighted least squares Iterative method Random vector Image restoration linear models Linear model Statistical method Linear system Covariance Least squares method Imaging 65F30 65F20 Conditioning Preconditioning statistical methods  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-61aaceb3f350a333157d8c76e4812cd7ddbd1157bce2729efbb91a522c806b6b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14  | 
    
| PQID | 923691005 | 
    
| PQPubID | 666305 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_923691005 pascalfrancis_primary_18156754 crossref_citationtrail_10_1137_040615043 crossref_primary_10_1137_040615043  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2006-01-00 2006 20060101  | 
    
| PublicationDateYYYYMMDD | 2006-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-00  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Philadelphia, PA | 
    
| PublicationPlace_xml | – name: Philadelphia, PA – name: Philadelphia  | 
    
| PublicationTitle | SIAM journal on matrix analysis and applications | 
    
| PublicationYear | 2006 | 
    
| Publisher | Society for Industrial and Applied Mathematics | 
    
| Publisher_xml | – name: Society for Industrial and Applied Mathematics | 
    
| References | R2 Calvetti D. (R3) 2004; 18 R4 R5 R7 R9 Golub Gene (R8) 1996 R10 R21 Feller William (R6) 1971 R20 R12 R14 R13 R15 R18 R17 R19 R1  | 
    
| References_xml | – ident: R7 doi: 10.1109/42.293921 – ident: R17 doi: 10.1137/1.9780898718003 – volume-title: An introduction to probability theory and its applications. Vol. II. year: 1971 ident: R6 – ident: R12 doi: 10.1137/1.9780898719697 – ident: R15 doi: 10.1023/B:NUMA.0000027762.08431.64 – ident: R9 doi: 10.1137/1.9781611970937 – ident: R14 doi: 10.1109/42.232249 – ident: R10 doi: 10.1088/0266-5611/12/2/004 – ident: R4 doi: 10.1137/S0036144594276474 – volume-title: Matrix computations year: 1996 ident: R8 – ident: R18 doi: 10.1364/JOSAA.10.001014 – ident: R21 doi: 10.1137/1.9780898717570 – ident: R13 doi: 10.1007/BF02149761 – ident: R1 doi: 10.1137/S1064827502410451 – volume: 18 start-page: 153 year: 2004 ident: R3 publication-title: Electron. Trans. Numer. Anal. – ident: R20 doi: 10.1051/0004-6361:20041997 – ident: R2 doi: 10.1887/0750304359 – ident: R5 doi: 10.1007/978-94-009-1740-8 – ident: R19 doi: 10.1364/JOSAA.12.000272  | 
    
| SSID | ssj0016491 | 
    
| Score | 1.9711635 | 
    
| Snippet | We consider the problem of solving ill-conditioned linear systems $A\bfx=\bfb$ subject to the nonnegativity constraint $\bfx\geq\bfzero$, and in which the... | 
    
| SourceID | proquest pascalfrancis crossref  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 1184 | 
    
| SubjectTerms | Algorithms Applied mathematics Cameras Exact sciences and technology Iterative methods Mathematics Noise Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Random variables Sciences and techniques of general use Sensors Telescopes  | 
    
| Title | Covariance-Preconditioned Iterative Methods for Nonnegatively Constrained Astronomical Imaging | 
    
| URI | https://www.proquest.com/docview/923691005 | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1095-7162 dateEnd: 20110731 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-7162 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: BENPR dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1095-7162 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: 8FG dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vSgiPrFWSxAPXoJJdrNJDiK1WFuhRcSCJ8O-6qW21VTBf-_s5lGK4jWZwzKzmXe-D-BcssAXXFO0gE9cSgLuJmFEXS49SUKPCKbtguyQ9Ub0_jl8XoNB-S-MWassfaJ11GomTY_8EhMRhqHNC6_n764hjTLD1ZJBgxfMCurKIoytQz0wwFg1qN_cDh8eq7ECozmFXpyEpqUUF1BDvgH5oRYbnZKVALU15xnqapyTXPzy1zYIdXdgu8genXZu7l1Y09M92BxU0KvZPrx0Zl9Y_xpjug-23FU5HJFy-hZBGd2bM7C80ZmDGaszNKsur_b55NsxBJ6WNgLl25npk88soIDTf7N8Rgcw6t4-dXpuQaLgoq6DBZaGnEusmMeoeU4I8cNIxTJimmJolypSSigDuCOkDjDR1mMhEp9jViZjjwkmyCHUpnjII3B8ySXjiRgnWIVJJRIllZZeqMwsUWq_ARel5lJZIIybE09SW2mQKK2U3ICzSnSew2r8JdRaUf9S0kDcRCFtQLO0R1p8ellaXZTjf982YWPZTTmB2uLjU59ifrEQLViPu3et4u78ANJI0bI | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1cDioirjiujSh4CSbpTmdyEHFlRp1BRMGTsbfxMjqjGRU_zn-zurOIKN68JkUoqipdS3e_B7CpeBhIYRh6IKAeo6HwkihmnlC-opFPJTfugGybN67Z6U10MwQf5V0Ye6yyXBPdQq17ys7Id7AQ4Zja_Giv_-RZ0ii7uVoyaIiCWUHvOoSx4l7HmXl_ww4u220eobu3wvDk-Oqw4RUkAx7qEg6wdRJCYUfZQc0EpTSIYl1XMTcMU5_SsdZSW0AaqUyIhajpSJkEAqsWVfe55JLid4dhlFGWYO83enDcvristjE4yyn76klkR1j1AtoosKBCzGGxM_otIU72RYa-6eSkGj_yg0t6J9MwVVSrZD8PrxkYMo-zMNGqoF6zObg97L1iv22Dx7tw7bXO4Y80aTrEZlxOScvxVGcEK2TStkdr7t3z7juxhKGOpgLl9zM7l-85AAPSfHD8SfNw_S_2XICRR1RyEUighOIikZ0Euz6lZaKVNsqPtN27VCaowXZpuVQViOZW427qOhsap5WRa7BRifZzGI_fhNa-mf9L0kLqxBGrwXLpj7T41bO0CsylP9-uw1jjqnWenjfbZ8sw_jXJWYGRwfOLWcXaZiDXiggicPffQfsJq_MOjQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance-preconditioned+iterative+methods+for+nonnegatively+constrained+astronomical+imaging&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=BARDSLEY%2C+Johnathan+M&rft.au=NAGY%2C+James+G&rft.date=2006&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.volume=27&rft.issue=4&rft.spage=1184&rft.epage=1197&rft_id=info:doi/10.1137%2F040615043&rft.externalDBID=n%2Fa&rft.externalDocID=18156754 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |