Growth monitoring of field-grown onion and garlic by CIE Lab color space and region-based crop segmentation of UAV RGB images
Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variati...
Saved in:
| Published in | Precision agriculture Vol. 24; no. 5; pp. 1982 - 2001 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1385-2256 1573-1618 |
| DOI | 10.1007/s11119-023-10026-8 |
Cover
| Abstract | Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R
2
) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R
2
> 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season. |
|---|---|
| AbstractList | Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R²) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R² > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season. Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R 2 ) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R 2 > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season. Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R2) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R2 > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season. |
| Author | Lee, Won Suk Kim, Dong-Wook Kwon, Young-Seok Jeong, Sang Jin Kim, Hak-Jin Yun, Heesup Chung, Yong Suk |
| Author_xml | – sequence: 1 givenname: Dong-Wook surname: Kim fullname: Kim, Dong-Wook organization: Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Research Institute of Agriculture and Life Sciences, Seoul National University – sequence: 2 givenname: Sang Jin surname: Jeong fullname: Jeong, Sang Jin organization: Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University – sequence: 3 givenname: Won Suk surname: Lee fullname: Lee, Won Suk organization: Department of Agricultural and Biological Engineering, University of Florida – sequence: 4 givenname: Heesup surname: Yun fullname: Yun, Heesup organization: Department of Biological and Agricultural Engineering, University of California Davis – sequence: 5 givenname: Yong Suk surname: Chung fullname: Chung, Yong Suk organization: Department of Plant Resources and Environment, Jeju National University – sequence: 6 givenname: Young-Seok surname: Kwon fullname: Kwon, Young-Seok organization: Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science – sequence: 7 givenname: Hak-Jin surname: Kim fullname: Kim, Hak-Jin email: kimhj69@snu.ac.kr organization: Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Research Institute of Agriculture and Life Sciences, Seoul National University, Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University |
| BookMark | eNp9kU1r3DAQhkVJoUnaP9CToJde1OpjJUvHdEk3gYVCaXoVsjx2HbySK3kpOfS_dzYOFHKIEGiGed5hRu8FOUs5ASHvBf8kOG8-V4HHMS4Vw1waZl-Rc6EbTI2wZxgrq5mU2rwhF7Xec47YRp6Tv7uS_yy_6CGnccllTAPNPe1HmDo2YClRLOREQ-roEMo0Rto-0O3tNd2HlsY85ULrHCI8EgUGhFkbKnQ0ljzTCsMB0hKWUxPsfHf1k37ffaHjIQxQ35LXfZgqvHt6L8nd1-sf2xu2_7a73V7tWVRaLkzrRnfOATeiN6JrW-esabQI_Ya70MYYOOfK2RYaI7GoHehWNkr1xgVujLokH9e-c8m_j1AXfxhrhGkKCfKxeiU0XiQ1oh-eoff5WBJO56XVUriNVQopuVK4ZK0Fej8XXKk8eMH9yRG_OuLREf_oiLcoss9EcVx_ZilhnF6WqlVa55NHUP5P9YLqH0RnoF4 |
| CitedBy_id | crossref_primary_10_1016_j_jag_2024_103668 crossref_primary_10_1109_ACCESS_2025_3527502 crossref_primary_10_3390_agriculture14050754 crossref_primary_10_1016_j_compag_2025_110273 crossref_primary_10_1016_j_atech_2024_100396 crossref_primary_10_1016_j_atech_2025_100808 crossref_primary_10_1016_j_atech_2024_100488 crossref_primary_10_1016_j_solener_2024_112598 crossref_primary_10_1016_j_atech_2024_100513 |
| Cites_doi | 10.1016/j.agee.2015.05.008 10.1016/j.compag.2015.03.019 10.1007/s11119-012-9274-5 10.1016/j.biosystemseng.2013.07.014 10.13031/2013.27838 10.1016/j.compag.2016.01.020 10.1007/s11119-022-09899-y 10.13031/2013.42582 10.1016/j.compag.2019.105201 10.1016/j.compag.2008.08.002 10.1007/s11119-021-09852-5 10.1007/s11119-022-09907-1 10.1007/s11355-010-0132-1 10.1007/s11119-005-2324-5 10.1016/j.biosystemseng.2014.06.015 10.1016/j.agwat.2014.10.012 10.1016/j.rse.2012.05.013 10.3390/rs8121031 10.1007/s11119-020-09777-5 10.1007/s11119-019-09695-1 10.3390/rs10040563 10.3390/rs2010290 10.1016/j.compag.2016.11.021 10.1109/34.400568 10.1109/TSMC.1979.4310076 10.3390/rs12030515 10.1631/jzus.2004.0764 10.1111/j.1744-7348.1991.tb04895.x 10.1016/j.compag.2014.02.009 10.3390/rs4051392 10.1007/s11119-020-09709-3 10.1007/s11119-008-9088-7 10.1007/s11119-020-09725-3 10.1007/s11119-022-09884-5 10.1111/aab.12312 10.3390/rs61111051 10.3390/rs9040312 10.1109/ICISCON.2013.6524164 10.1007/978-3-319-01622-1_7 10.1007/s11119-022-09938-8 10.1117/12.336896 10.1007/s11119-021-09842-7 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7ST 7WY 7WZ 7X2 7XB 87Z 88I 8FE 8FH 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ K60 K6~ L.- M0C M0K M2P PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11119-023-10026-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest ABI/INFORM Global Agriculture Science Database Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Agricultural Science Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Physics Computer Science |
| EISSN | 1573-1618 |
| EndPage | 2001 |
| ExternalDocumentID | 10_1007_s11119_023_10026_8 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 7WY 7X2 7XC 88I 8FE 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAK LLZTM M0C M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7R Z7U Z7V Z7W Z7Y Z83 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PUEGO 7ST 7XB 8FK C1K L.- PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-5575d99e061f61dbb9986751af409abcca000398be762b9959e5b2733f69a0663 |
| IEDL.DBID | BENPR |
| ISSN | 1385-2256 |
| IngestDate | Sun Sep 28 00:49:21 EDT 2025 Sat Jul 26 01:04:14 EDT 2025 Wed Oct 01 01:21:22 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Fri Feb 21 02:43:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | CIE Lab color space Crop segmentation Growth monitoring Unmanned aerial vehicle Remote sensing Crop with long narrow leaves |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-5575d99e061f61dbb9986751af409abcca000398be762b9959e5b2733f69a0663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2852194833 |
| PQPubID | 54630 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_3153150665 proquest_journals_2852194833 crossref_primary_10_1007_s11119_023_10026_8 crossref_citationtrail_10_1007_s11119_023_10026_8 springer_journals_10_1007_s11119_023_10026_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal on Advances in Precision Agriculture |
| PublicationTitle | Precision agriculture |
| PublicationTitleAbbrev | Precision Agric |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Liu, Yin, Feng, Li, Xu, Shi, Jin (CR22) 2022; 23 Hernández-Hernández, García-Mateos, González-Esquiva, Escarabajal-Henarejos, Ruiz-Canales, Molina-Martínez (CR14) 2016; 122 Dammer, Thöle, Volk, Hau (CR9) 2009; 10 Lopez-Bellido, Lopez-Bellido, Muñoz-Romero, Fernandez-Garcia, Lopez-Bellido (CR23) 2016; 169 Woebbecke, Meyer, Von Bargen, Mortensen (CR39) 1995; 38 Costa, McBreen, Ampatzidis, Guo, Gahrooei, Babar (CR8) 2022 Kim, Yun, Jeong, Kwon, Kim, Lee, Kim (CR19) 2018; 10 Tu, Pang, Liu, Zhuang, Chen, Zheng, Wan, Xue (CR36) 2020; 21 Riehle, Reiser, Griepentrog (CR29) 2020; 169 CR11 Zheng, Zhang, Wang (CR43) 2009; 65 CR32 CR31 Otsu (CR28) 1979; 9 Yan, Guan, Cao, Yu, Li, Lu (CR41) 2020; 12 Lancashire, Bleiholder, Boom, Langelüddeke, Stauss, Weber, Witzenberger (CR21) 1991; 119 Borchard, Schirrmann, von Hebel, Schmidt, Baatz, Firbank, Vereecken, Herbst (CR4) 2015; 211 Hong, Chen, Li, Chi, Zhang (CR16) 2004; 5 Bai, Cao, Wang, Yu, Hu, Zhang, Li (CR2) 2014; 125 Hunt, Cavigelli, Daughtry, Mcmurtrey, Walthall (CR17) 2005; 6 Valente, Sari, Kooistra, Kramer, Mücher (CR38) 2020; 21 Xu, Zhou, Meng, Zhao, Lv, Xu, Zeng, Yu, Peng (CR40) 2022; 23 Ammour, Alhichri, Bazi, Benjdira, Alajlan, Zuair (CR1) 2017; 9 Cheng (CR7) 1995; 17 Bu, Xiong, Chen, Zheng, Guo, Yang, Lin (CR5) 2020; 21 Kim, Sudduth, Hummel, Drummond (CR20) 2013; 56 Torres-Sánchez, López-Granados, Pena (CR34) 2015; 114 Bai, Nie, Wang, Cheng, Liu, Yu, Shao, Wang, Tuohuti (CR3) 2022; 23 Zhang, Kovacs (CR42) 2012; 13 Torres-Sánchez, Pena, de Castro, López-Granados (CR35) 2014; 103 CR26 Salamí, Barrado, Pastor (CR30) 2014; 6 CR25 Turner, Lucieer, Watson (CR37) 2012; 4 Escarabajal-Henarejos, Molina-Martínez, Fernández-Pacheco, García-Mateos (CR10) 2015; 151 Osco, Nogueira, Marques Ramos, Faita Pinheiro, Furuya, Gonçalves, de Castro Jorge, Marcato Junior, dos Santos (CR27) 2021; 22 Hamuda, Mc Ginley, Glavin, Jones (CR13) 2017; 133 Thorp, Wang, West, Moran, Bronson, White, Mon (CR33) 2012; 124 Chang, Eo, Kim, Kim, Kim (CR6) 2011; 7 Hunt, Hively, Fujikawa, Linden, Daughtry, McCarty (CR18) 2010; 2 Fernández-Pacheco, Escarabajal-Henarejos, Ruiz-Canales, Conesa, Molina-Martínez (CR12) 2014; 117 Holman, Riche, Michalski, Castle, Wooster, Hawkesford (CR15) 2016; 8 D Turner (10026_CR37) 2012; 4 D Escarabajal-Henarejos (10026_CR10) 2015; 151 10026_CR31 L Zheng (10026_CR43) 2009; 65 HJ Kim (10026_CR20) 2013; 56 FJ Lopez-Bellido (10026_CR23) 2016; 169 10026_CR11 J Torres-Sánchez (10026_CR35) 2014; 103 Y Cheng (10026_CR7) 1995; 17 10026_CR32 N Ammour (10026_CR1) 2017; 9 E Hamuda (10026_CR13) 2017; 133 A Chang (10026_CR6) 2011; 7 JL Hernández-Hernández (10026_CR14) 2016; 122 L Costa (10026_CR8) 2022 PD Lancashire (10026_CR21) 1991; 119 LP Osco (10026_CR27) 2021; 22 A-X Hong (10026_CR16) 2004; 5 S Tu (10026_CR36) 2020; 21 ER Hunt (10026_CR17) 2005; 6 KH Dammer (10026_CR9) 2009; 10 DG Fernández-Pacheco (10026_CR12) 2014; 117 J Valente (10026_CR38) 2020; 21 W Yan (10026_CR41) 2020; 12 DM Woebbecke (10026_CR39) 1995; 38 N Borchard (10026_CR4) 2015; 211 FH Holman (10026_CR15) 2016; 8 S Liu (10026_CR22) 2022; 23 D Riehle (10026_CR29) 2020; 169 ER Hunt (10026_CR18) 2010; 2 L Xu (10026_CR40) 2022; 23 X Bai (10026_CR2) 2014; 125 J Torres-Sánchez (10026_CR34) 2015; 114 10026_CR26 10026_CR25 C Zhang (10026_CR42) 2012; 13 DW Kim (10026_CR19) 2018; 10 R Bu (10026_CR5) 2020; 21 E Salamí (10026_CR30) 2014; 6 K Thorp (10026_CR33) 2012; 124 Y Bai (10026_CR3) 2022; 23 N Otsu (10026_CR28) 1979; 9 |
| References_xml | – volume: 211 start-page: 84 year: 2015 end-page: 93 ident: CR4 article-title: Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2015.05.008 – volume: 114 start-page: 43 year: 2015 end-page: 52 ident: CR34 article-title: An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.03.019 – volume: 13 start-page: 693 issue: 6 year: 2012 end-page: 712 ident: CR42 article-title: The application of small unmanned aerial systems for precision agriculture: A review publication-title: Precision Agriculture doi: 10.1007/s11119-012-9274-5 – volume: 117 start-page: 23 year: 2014 end-page: 34 ident: CR12 article-title: A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2013.07.014 – volume: 38 start-page: 259 issue: 1 year: 1995 end-page: 269 ident: CR39 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: Transactions of the ASAE doi: 10.13031/2013.27838 – volume: 122 start-page: 124 year: 2016 end-page: 132 ident: CR14 article-title: Optimal color space selection method for plant/soil segmentation in agriculture publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.01.020 – volume: 23 start-page: 1604 issue: 5 year: 2022 end-page: 1632 ident: CR22 article-title: Estimating maize seedling number with UAV RGB images and advanced image processing methods publication-title: Precision Agriculture doi: 10.1007/s11119-022-09899-y – volume: 56 start-page: 23 issue: 1 year: 2013 end-page: 31 ident: CR20 article-title: Validation testing of a soil macronutrient sensing system publication-title: Transactions of the ASABE doi: 10.13031/2013.42582 – volume: 169 start-page: 105201 year: 2020 ident: CR29 article-title: Robust index-based semantic plant/background segmentation for RGB-images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105201 – volume: 65 start-page: 93 issue: 1 year: 2009 end-page: 98 ident: CR43 article-title: Mean-shift-based color segmentation of images containing green vegetation publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2008.08.002 – year: 2022 ident: CR8 article-title: Using UAV-based hyperspectral imaging and functional regression to assist in predicting grain yield and related traits in wheat under heat-related stress environments for the purpose of stable yielding genotypes publication-title: Precision Agriculture doi: 10.1007/s11119-021-09852-5 – volume: 23 start-page: 1720 issue: 5 year: 2022 end-page: 1742 ident: CR3 article-title: A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery publication-title: Precision Agriculture doi: 10.1007/s11119-022-09907-1 – volume: 7 start-page: 263 issue: 2 year: 2011 end-page: 274 ident: CR6 article-title: Canopy-cover thematic-map generation for Military Map products using remote sensing data in inaccessible areas publication-title: Landscape and Ecological Engineering doi: 10.1007/s11355-010-0132-1 – volume: 6 start-page: 359 issue: 4 year: 2005 end-page: 378 ident: CR17 article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status publication-title: Precision Agriculture doi: 10.1007/s11119-005-2324-5 – volume: 125 start-page: 80 year: 2014 end-page: 97 ident: CR2 article-title: Vegetation segmentation robust to illumination variations based on clustering and morphology modelling publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2014.06.015 – ident: CR25 – volume: 151 start-page: 167 year: 2015 end-page: 173 ident: CR10 article-title: Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2014.10.012 – volume: 124 start-page: 224 year: 2012 end-page: 233 ident: CR33 article-title: Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.05.013 – volume: 8 start-page: 1031 issue: 12 year: 2016 ident: CR15 article-title: High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing publication-title: Remote Sensing doi: 10.3390/rs8121031 – volume: 22 start-page: 1171 issue: 4 year: 2021 end-page: 1188 ident: CR27 article-title: Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery publication-title: Precision Agriculture doi: 10.1007/s11119-020-09777-5 – volume: 21 start-page: 782 year: 2020 end-page: 801 ident: CR5 article-title: A shadow detection and removal method for fruit recognition in natural environments publication-title: Precision Agriculture doi: 10.1007/s11119-019-09695-1 – volume: 10 start-page: 563 issue: 4 year: 2018 ident: CR19 article-title: Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery publication-title: Remote Sensing doi: 10.3390/rs10040563 – volume: 2 start-page: 290 issue: 1 year: 2010 end-page: 305 ident: CR18 article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring publication-title: Remote Sensing doi: 10.3390/rs2010290 – volume: 133 start-page: 97 year: 2017 end-page: 107 ident: CR13 article-title: Automatic crop detection under field conditions using the HSV colour space and morphological operations publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.11.021 – volume: 17 start-page: 790 issue: 8 year: 1995 end-page: 799 ident: CR7 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.400568 – ident: CR31 – ident: CR11 – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 ident: CR28 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 12 start-page: 515 issue: 3 year: 2020 ident: CR41 article-title: A self-adaptive mean shift tree-segmentation method using UAV LiDAR data publication-title: Remote Sensing doi: 10.3390/rs12030515 – ident: CR32 – volume: 5 start-page: 764 issue: 7 year: 2004 end-page: 772 ident: CR16 article-title: A flower image retrieval method based on ROI feature publication-title: Journal of Zhejiang University-Science A doi: 10.1631/jzus.2004.0764 – volume: 119 start-page: 561 issue: 3 year: 1991 end-page: 601 ident: CR21 article-title: A uniform decimal code for growth stages of crops and weeds publication-title: Annals of Applied Biology doi: 10.1111/j.1744-7348.1991.tb04895.x – volume: 103 start-page: 104 year: 2014 end-page: 113 ident: CR35 article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.02.009 – volume: 4 start-page: 1392 issue: 5 year: 2012 end-page: 1410 ident: CR37 article-title: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds publication-title: Remote Sensing doi: 10.3390/rs4051392 – volume: 21 start-page: 1072 year: 2020 end-page: 1091 ident: CR36 article-title: Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images publication-title: Precision Agriculture doi: 10.1007/s11119-020-09709-3 – volume: 10 start-page: 431 issue: 5 year: 2009 end-page: 442 ident: CR9 article-title: Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system publication-title: Precision Agriculture doi: 10.1007/s11119-008-9088-7 – volume: 21 start-page: 1366 year: 2020 end-page: 1384 ident: CR38 article-title: Automated crop plant counting from very high-resolution aerial imagery publication-title: Precision Agriculture doi: 10.1007/s11119-020-09725-3 – ident: CR26 – volume: 23 start-page: 1276 issue: 4 year: 2022 end-page: 1301 ident: CR40 article-title: An improved approach to estimate ratoon rice aboveground biomass by integrating UAV-based spectral, textural and structural features publication-title: Precision Agriculture doi: 10.1007/s11119-022-09884-5 – volume: 169 start-page: 423 issue: 3 year: 2016 end-page: 439 ident: CR23 article-title: New phenological growth stages of garlic ( ) publication-title: Annals of Applied Biology doi: 10.1111/aab.12312 – volume: 6 start-page: 11051 issue: 11 year: 2014 end-page: 11081 ident: CR30 article-title: UAV flight experiments applied to the remote sensing of vegetated areas publication-title: Remote Sensing doi: 10.3390/rs61111051 – volume: 9 start-page: 312 issue: 4 year: 2017 ident: CR1 article-title: Deep learning approach for car detection in UAV imagery publication-title: Remote Sensing doi: 10.3390/rs9040312 – volume: 119 start-page: 561 issue: 3 year: 1991 ident: 10026_CR21 publication-title: Annals of Applied Biology doi: 10.1111/j.1744-7348.1991.tb04895.x – volume: 5 start-page: 764 issue: 7 year: 2004 ident: 10026_CR16 publication-title: Journal of Zhejiang University-Science A doi: 10.1631/jzus.2004.0764 – volume: 114 start-page: 43 year: 2015 ident: 10026_CR34 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.03.019 – volume: 125 start-page: 80 year: 2014 ident: 10026_CR2 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2014.06.015 – volume: 21 start-page: 1072 year: 2020 ident: 10026_CR36 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09709-3 – volume: 169 start-page: 423 issue: 3 year: 2016 ident: 10026_CR23 publication-title: Annals of Applied Biology doi: 10.1111/aab.12312 – volume: 9 start-page: 312 issue: 4 year: 2017 ident: 10026_CR1 publication-title: Remote Sensing doi: 10.3390/rs9040312 – volume: 65 start-page: 93 issue: 1 year: 2009 ident: 10026_CR43 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2008.08.002 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10026_CR28 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 10 start-page: 563 issue: 4 year: 2018 ident: 10026_CR19 publication-title: Remote Sensing doi: 10.3390/rs10040563 – ident: 10026_CR31 doi: 10.1109/ICISCON.2013.6524164 – volume: 103 start-page: 104 year: 2014 ident: 10026_CR35 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.02.009 – volume: 2 start-page: 290 issue: 1 year: 2010 ident: 10026_CR18 publication-title: Remote Sensing doi: 10.3390/rs2010290 – volume: 8 start-page: 1031 issue: 12 year: 2016 ident: 10026_CR15 publication-title: Remote Sensing doi: 10.3390/rs8121031 – volume: 6 start-page: 359 issue: 4 year: 2005 ident: 10026_CR17 publication-title: Precision Agriculture doi: 10.1007/s11119-005-2324-5 – ident: 10026_CR25 doi: 10.1007/978-3-319-01622-1_7 – volume: 6 start-page: 11051 issue: 11 year: 2014 ident: 10026_CR30 publication-title: Remote Sensing doi: 10.3390/rs61111051 – volume: 17 start-page: 790 issue: 8 year: 1995 ident: 10026_CR7 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.400568 – volume: 151 start-page: 167 year: 2015 ident: 10026_CR10 publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2014.10.012 – volume: 56 start-page: 23 issue: 1 year: 2013 ident: 10026_CR20 publication-title: Transactions of the ASABE doi: 10.13031/2013.42582 – volume: 23 start-page: 1276 issue: 4 year: 2022 ident: 10026_CR40 publication-title: Precision Agriculture doi: 10.1007/s11119-022-09884-5 – volume: 122 start-page: 124 year: 2016 ident: 10026_CR14 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.01.020 – volume: 117 start-page: 23 year: 2014 ident: 10026_CR12 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2013.07.014 – volume: 4 start-page: 1392 issue: 5 year: 2012 ident: 10026_CR37 publication-title: Remote Sensing doi: 10.3390/rs4051392 – volume: 21 start-page: 782 year: 2020 ident: 10026_CR5 publication-title: Precision Agriculture doi: 10.1007/s11119-019-09695-1 – volume: 133 start-page: 97 year: 2017 ident: 10026_CR13 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.11.021 – volume: 12 start-page: 515 issue: 3 year: 2020 ident: 10026_CR41 publication-title: Remote Sensing doi: 10.3390/rs12030515 – ident: 10026_CR11 doi: 10.1007/s11119-022-09938-8 – volume: 211 start-page: 84 year: 2015 ident: 10026_CR4 publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2015.05.008 – volume: 7 start-page: 263 issue: 2 year: 2011 ident: 10026_CR6 publication-title: Landscape and Ecological Engineering doi: 10.1007/s11355-010-0132-1 – volume: 22 start-page: 1171 issue: 4 year: 2021 ident: 10026_CR27 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09777-5 – ident: 10026_CR26 doi: 10.1117/12.336896 – volume: 169 start-page: 105201 year: 2020 ident: 10026_CR29 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105201 – volume: 124 start-page: 224 year: 2012 ident: 10026_CR33 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.05.013 – volume: 13 start-page: 693 issue: 6 year: 2012 ident: 10026_CR42 publication-title: Precision Agriculture doi: 10.1007/s11119-012-9274-5 – year: 2022 ident: 10026_CR8 publication-title: Precision Agriculture doi: 10.1007/s11119-021-09852-5 – ident: 10026_CR32 doi: 10.1007/s11119-021-09842-7 – volume: 23 start-page: 1720 issue: 5 year: 2022 ident: 10026_CR3 publication-title: Precision Agriculture doi: 10.1007/s11119-022-09907-1 – volume: 10 start-page: 431 issue: 5 year: 2009 ident: 10026_CR9 publication-title: Precision Agriculture doi: 10.1007/s11119-008-9088-7 – volume: 21 start-page: 1366 year: 2020 ident: 10026_CR38 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09725-3 – volume: 38 start-page: 259 issue: 1 year: 1995 ident: 10026_CR39 publication-title: Transactions of the ASAE doi: 10.13031/2013.27838 – volume: 23 start-page: 1604 issue: 5 year: 2022 ident: 10026_CR22 publication-title: Precision Agriculture doi: 10.1007/s11119-022-09899-y |
| SSID | ssj0010042 |
| Score | 2.431003 |
| Snippet | Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1982 |
| SubjectTerms | Agriculture Algorithms Atmospheric Sciences Biomedical and Life Sciences Canopies canopy Chemistry and Earth Sciences cold Cold weather color Color imagery Complexity Computer Science Crop growth Crops Damage prevention Garlic geometry Growing season Height Illumination Image processing Image segmentation Life Sciences lighting Mathematical models Monitoring Onions Parameters Physics plant height Plants (botany) plastic film mulches precision Regression analysis Regression models Remote Sensing/Photogrammetry soil Soil Science & Conservation Statistics for Engineering temporal variation Unmanned aerial vehicles Vegetables vegetation wind |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61VEjlQNu0qKG0GiRusFL82I33mCIerVoOFam4Wbv2OkQidhWHAwf-OzObdaJWgFRfd72WPK9vNDvfABxYGWVlIp3QzsSCHJ4S2iZSmGFKqdtgUJmSK7o_L9T5OP1-Ja9CU1jb3XbvSpLeU6-b3ejRgmKMYNpQJbKX8EoynRdp8TgerWoHrIc-zcqkIG1VoVXm8TP-DkdrjPlPWdRHm9O3sB1gIo6Wcn0HL1zdg63RZB6oMlwP3nQDGTDYZw82_X3Oon0P92eUXi-uceZNlr-BTYX-upqYcOaNtNDUaOoSJ2Z-My3Q3uHxtxP8YSwyk_UcydcUzu_g6Q1NLTjilcgzv7B1k1noWqr55PHoN_46-4rTGfmn9gOMT08uj89FmLQgCgJgCyEJtJVaOwrulYpKaykJo0wiMhWlf8aSlH0Tb2Yd-U7LFGVOWgI-SaW0YdCyAxt1U7uPgIVMrUwqo1VGmeZQaW1MrExZOTMsykHah6j74XkRaMh5GsZNviZQZiHlJKTcCynP-nC4eufPkoTj2d17nRzzYJBtHmeEU3SaJUkf9lfLZEpcHzG1a27bPCHvz4SLSvbhqJP_-oinv7j7f9s_wet4qYJiEO3BxmJ-6z4TtFnYL16THwBXDOy4 priority: 102 providerName: Springer Nature |
| Title | Growth monitoring of field-grown onion and garlic by CIE Lab color space and region-based crop segmentation of UAV RGB images |
| URI | https://link.springer.com/article/10.1007/s11119-023-10026-8 https://www.proquest.com/docview/2852194833 https://www.proquest.com/docview/3153150665 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1573-1618 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010042 issn: 1385-2256 databaseCode: A8Z dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-1618 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010042 issn: 1385-2256 databaseCode: ABDBF dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1618 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010042 issn: 1385-2256 databaseCode: AFBBN dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1618 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010042 issn: 1385-2256 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1618 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010042 issn: 1385-2256 databaseCode: U2A dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa65LIdhnYPLFsXaMBum7D4IUU6FINbpOlewVAsQ7eLIVlyWqCxuyQ97LD_XtKRE7TA6qMtS4BJkR9N8SPAWysi5RLhufYm5mjwJNc2EdwMUwzdBoPSOMrofpvIk2n6-Uyc7cCkrYWhY5WtTWwMtasL-kf-IVboaHSqkuTj1R9OXaMou9q20DChtYI7aCjGHkA3JmasDnQPR5Pvp5u8AuloE4IpwVGTZSijWRfT4aU5-jBOtKSSq9uuaos_76RMG090vAuPA4Rk2Vrme7DjqyfwKJstAo2Gfwr_xhhdr87ZvNmxNA2rS9acVuMzCrwZPqgrZirHZmZxeVEw-5cdfRqxr8YyIrJeMDQ1hW9GUPOGuuLk8Byjll9s6WfzULRU0czT7Cc7HR-yizmap-UzmB6Pfhyd8NBogReIv1ZcIGZzWnv07aWMnLUYg2EgEZkSoz9jUchNDa-yHk2nJYYyLyzinqSU2hBmeQ6dqq78C2CFSK1ISqOlwkBzKLU2JpbGld4MCzdIexC13zQvAgs5NcO4zLf8ySSHHOWQN3LIVQ_ebd65WnNw3Dt6vxVVHvbjMt9qTw_ebB7jTqL0iKl8fb3MEzT-xLcoRQ_etyLeTvH_FV_ev-IreBivtYoPon3orBbX_jUimZXtI5JXv_vQzca_voz6QVnx7jTObgBoaPCW |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gA9oPIlAgUWCU6wIv7YjfdQobSkTWgaoapBvZld7zqt1NglToV64K_1tzHjrBOBRG_11c5a9uzMm5fxvAF4Z0SQ2Eg4rpwOOQY8yZWJBNedGKlbu51rSxXdo5Hsj-Ovp-J0DW6aXhj6rLKJiXWgtmVG_5F_ChMEGhUnUfT58ienqVFUXW1GaGg_WsHu1BJjvrHj0F3_QgpX7Qy-oL3fh-F-72Svz_2UAZ5h8jHnAhMWq5RDYMtlYI1BAoJZdKBzpD7a4BPWDayJcRg3DMlzOWEQ9KNcKk2Ajeveg404ihWSv43d3ujb8bKOQT5RU75EcPQc6dt2Fs17eCiOmMlJBlXy5G9oXOW7_5Roa-Tb34KHPmVl3cUeewRrrngMm93JzMt2uCfw-wDZ_PyMTesIQcuwMmf113F8QkSf4YmyYLqwbKJnF-cZM9dsb9BjQ20YCWfPGIa2zNVX0LCIsuAEsJbRiDFWucnUN0kVtPK4-50dH-yy8ymGw-opjO_klT-D9aIs3HNgmYiNiHKtZILEtiOV0jqU2uZOdzLbjlsQNO80zbzqOQ3fuEhXes1khxTtkNZ2SJMWfFj-5nKh-XHr1duNqVLv_1W62q0teLs8jZ5L5RhduPKqSiMEG9J3lKIFHxsTr5b4_x1f3H7HN3C_f3I0TIeD0eFLeBAudhhvB9uwPp9duVeYRc3Na79VGfy4a-_4A6L0KKY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTULwgMaXKOzDSPAE1poPu_HDhLqt3cpGNU0U7S2zY6dMWpPRdEJ74B_kr-IudVqBxN6W1zi2kvP97i7n-x3AOyOCxEbCceV0yBHwJFcmElx3Ygzd2u1cW8rofhnKo1H8-Vycr8DvphaGjlU2mFgDtS0z-ke-EyZoaFScRNFO7o9FnB70P13_4NRBijKtTTsN7dss2N2abswXeRy7258YzlW7gwOU_fsw7Pe-7h9x33GAZ-iIzLhA58Uq5dDI5TKwxmAwgh51oHMMg7TBt62LWRPjEEMMUXU5YdABiHKpNBlvnPcBrFHyC0Fiba83PD1b5DRIP-rwLxEctUj6Ep55IR9eiqP95ESJKnnyt5lc-r7_pGtrK9hfhyfefWXd-X57CiuueAaPu-Opp_Bwz-HXIUb2s-9sUqMFTcPKnNUn5fiYgn6GN8qC6cKysZ5eXWbM3LL9QY-daMOIRHvKEOYyV4-gxhFlwcnYWkbtxljlxhNfMFXQzKPuN3Z2uMcuJwiN1QsY3csnfwmrRVm4V8AyERsR5VrJBIPcjlRK61BqmzvdyWw7bkHQfNM08wzo1IjjKl1yN5McUpRDWsshTVrwYfHM9Zz_487RG42oUo8FVbrcuS14u7iNWkypGV248qZKIzQ8xPUoRQs-NiJeTvH_FV_fveI2PEQtSU8Gw-M38CicbzDeDjZgdTa9cZvoUM3Mlt-pDC7uWzn-AJwmLNU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+monitoring+of+field-grown+onion+and+garlic+by+CIE+Lab+color+space+and+region-based+crop+segmentation+of+UAV+RGB+images&rft.jtitle=Precision+agriculture&rft.au=Kim%2C+Dong-Wook&rft.au=Jeong%2C+Sang+Jin&rft.au=Lee%2C+Won+Suk&rft.au=Yun%2C+Heesup&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=24&rft.issue=5&rft.spage=1982&rft.epage=2001&rft_id=info:doi/10.1007%2Fs11119-023-10026-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon |