Growth monitoring of field-grown onion and garlic by CIE Lab color space and region-based crop segmentation of UAV RGB images

Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variati...

Full description

Saved in:
Bibliographic Details
Published inPrecision agriculture Vol. 24; no. 5; pp. 1982 - 2001
Main Authors Kim, Dong-Wook, Jeong, Sang Jin, Lee, Won Suk, Yun, Heesup, Chung, Yong Suk, Kwon, Young-Seok, Kim, Hak-Jin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1385-2256
1573-1618
DOI10.1007/s11119-023-10026-8

Cover

Abstract Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R 2 ) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R 2  > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season.
AbstractList Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R²) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R² > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season.
Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R 2 ) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R 2  > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season.
Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of images by wind and illumination variations. Under Korean cultivation conditions, a plastic mulch used to restrict weeds and prevent cold weather damage increases the complexity of the image background. In particular, on-site monitoring of onion and garlic growth has been limited by their morphology because they have long narrow leaves. The ultimate goal of this study was to quantify the growth parameters of onion and garlic at multiple growth stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage and plant height were used as predictor variables to develop mathematical models to estimate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and garlic from complex backgrounds, including plastic mulch, soil, and shadows under varying illumination conditions. Multiple linear regression models consisting of the a* band-based vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted the fresh weight data of onion and garlic well with high coefficients of determination (R2) ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly linear relationships (R2 > 0.82) between the onion and garlic fresh weights obtained with the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery based on the use of the a*band and PH can be used to quantify the spatial and temporal variability of onion and garlic growth parameters during the growing season.
Author Lee, Won Suk
Kim, Dong-Wook
Kwon, Young-Seok
Jeong, Sang Jin
Kim, Hak-Jin
Yun, Heesup
Chung, Yong Suk
Author_xml – sequence: 1
  givenname: Dong-Wook
  surname: Kim
  fullname: Kim, Dong-Wook
  organization: Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Research Institute of Agriculture and Life Sciences, Seoul National University
– sequence: 2
  givenname: Sang Jin
  surname: Jeong
  fullname: Jeong, Sang Jin
  organization: Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University
– sequence: 3
  givenname: Won Suk
  surname: Lee
  fullname: Lee, Won Suk
  organization: Department of Agricultural and Biological Engineering, University of Florida
– sequence: 4
  givenname: Heesup
  surname: Yun
  fullname: Yun, Heesup
  organization: Department of Biological and Agricultural Engineering, University of California Davis
– sequence: 5
  givenname: Yong Suk
  surname: Chung
  fullname: Chung, Yong Suk
  organization: Department of Plant Resources and Environment, Jeju National University
– sequence: 6
  givenname: Young-Seok
  surname: Kwon
  fullname: Kwon, Young-Seok
  organization: Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science
– sequence: 7
  givenname: Hak-Jin
  surname: Kim
  fullname: Kim, Hak-Jin
  email: kimhj69@snu.ac.kr
  organization: Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Research Institute of Agriculture and Life Sciences, Seoul National University, Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University
BookMark eNp9kU1r3DAQhkVJoUnaP9CToJde1OpjJUvHdEk3gYVCaXoVsjx2HbySK3kpOfS_dzYOFHKIEGiGed5hRu8FOUs5ASHvBf8kOG8-V4HHMS4Vw1waZl-Rc6EbTI2wZxgrq5mU2rwhF7Xec47YRp6Tv7uS_yy_6CGnccllTAPNPe1HmDo2YClRLOREQ-roEMo0Rto-0O3tNd2HlsY85ULrHCI8EgUGhFkbKnQ0ljzTCsMB0hKWUxPsfHf1k37ffaHjIQxQ35LXfZgqvHt6L8nd1-sf2xu2_7a73V7tWVRaLkzrRnfOATeiN6JrW-esabQI_Ya70MYYOOfK2RYaI7GoHehWNkr1xgVujLokH9e-c8m_j1AXfxhrhGkKCfKxeiU0XiQ1oh-eoff5WBJO56XVUriNVQopuVK4ZK0Fej8XXKk8eMH9yRG_OuLREf_oiLcoss9EcVx_ZilhnF6WqlVa55NHUP5P9YLqH0RnoF4
CitedBy_id crossref_primary_10_1016_j_jag_2024_103668
crossref_primary_10_1109_ACCESS_2025_3527502
crossref_primary_10_3390_agriculture14050754
crossref_primary_10_1016_j_compag_2025_110273
crossref_primary_10_1016_j_atech_2024_100396
crossref_primary_10_1016_j_atech_2025_100808
crossref_primary_10_1016_j_atech_2024_100488
crossref_primary_10_1016_j_solener_2024_112598
crossref_primary_10_1016_j_atech_2024_100513
Cites_doi 10.1016/j.agee.2015.05.008
10.1016/j.compag.2015.03.019
10.1007/s11119-012-9274-5
10.1016/j.biosystemseng.2013.07.014
10.13031/2013.27838
10.1016/j.compag.2016.01.020
10.1007/s11119-022-09899-y
10.13031/2013.42582
10.1016/j.compag.2019.105201
10.1016/j.compag.2008.08.002
10.1007/s11119-021-09852-5
10.1007/s11119-022-09907-1
10.1007/s11355-010-0132-1
10.1007/s11119-005-2324-5
10.1016/j.biosystemseng.2014.06.015
10.1016/j.agwat.2014.10.012
10.1016/j.rse.2012.05.013
10.3390/rs8121031
10.1007/s11119-020-09777-5
10.1007/s11119-019-09695-1
10.3390/rs10040563
10.3390/rs2010290
10.1016/j.compag.2016.11.021
10.1109/34.400568
10.1109/TSMC.1979.4310076
10.3390/rs12030515
10.1631/jzus.2004.0764
10.1111/j.1744-7348.1991.tb04895.x
10.1016/j.compag.2014.02.009
10.3390/rs4051392
10.1007/s11119-020-09709-3
10.1007/s11119-008-9088-7
10.1007/s11119-020-09725-3
10.1007/s11119-022-09884-5
10.1111/aab.12312
10.3390/rs61111051
10.3390/rs9040312
10.1109/ICISCON.2013.6524164
10.1007/978-3-319-01622-1_7
10.1007/s11119-022-09938-8
10.1117/12.336896
10.1007/s11119-021-09842-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7WY
7WZ
7X2
7XB
87Z
88I
8FE
8FH
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
L.-
M0C
M0K
M2P
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11119-023-10026-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest ABI/INFORM Global
Agriculture Science Database
Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Physics
Computer Science
EISSN 1573-1618
EndPage 2001
ExternalDocumentID 10_1007_s11119_023_10026_8
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
7WY
7X2
7XC
88I
8FE
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAK
LLZTM
M0C
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z7R
Z7U
Z7V
Z7W
Z7Y
Z83
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PUEGO
7ST
7XB
8FK
C1K
L.-
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-5575d99e061f61dbb9986751af409abcca000398be762b9959e5b2733f69a0663
IEDL.DBID BENPR
ISSN 1385-2256
IngestDate Sun Sep 28 00:49:21 EDT 2025
Sat Jul 26 01:04:14 EDT 2025
Wed Oct 01 01:21:22 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Fri Feb 21 02:43:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords CIE Lab color space
Crop segmentation
Growth monitoring
Unmanned aerial vehicle
Remote sensing
Crop with long narrow leaves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-5575d99e061f61dbb9986751af409abcca000398be762b9959e5b2733f69a0663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2852194833
PQPubID 54630
PageCount 20
ParticipantIDs proquest_miscellaneous_3153150665
proquest_journals_2852194833
crossref_primary_10_1007_s11119_023_10026_8
crossref_citationtrail_10_1007_s11119_023_10026_8
springer_journals_10_1007_s11119_023_10026_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances in Precision Agriculture
PublicationTitle Precision agriculture
PublicationTitleAbbrev Precision Agric
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liu, Yin, Feng, Li, Xu, Shi, Jin (CR22) 2022; 23
Hernández-Hernández, García-Mateos, González-Esquiva, Escarabajal-Henarejos, Ruiz-Canales, Molina-Martínez (CR14) 2016; 122
Dammer, Thöle, Volk, Hau (CR9) 2009; 10
Lopez-Bellido, Lopez-Bellido, Muñoz-Romero, Fernandez-Garcia, Lopez-Bellido (CR23) 2016; 169
Woebbecke, Meyer, Von Bargen, Mortensen (CR39) 1995; 38
Costa, McBreen, Ampatzidis, Guo, Gahrooei, Babar (CR8) 2022
Kim, Yun, Jeong, Kwon, Kim, Lee, Kim (CR19) 2018; 10
Tu, Pang, Liu, Zhuang, Chen, Zheng, Wan, Xue (CR36) 2020; 21
Riehle, Reiser, Griepentrog (CR29) 2020; 169
CR11
Zheng, Zhang, Wang (CR43) 2009; 65
CR32
CR31
Otsu (CR28) 1979; 9
Yan, Guan, Cao, Yu, Li, Lu (CR41) 2020; 12
Lancashire, Bleiholder, Boom, Langelüddeke, Stauss, Weber, Witzenberger (CR21) 1991; 119
Borchard, Schirrmann, von Hebel, Schmidt, Baatz, Firbank, Vereecken, Herbst (CR4) 2015; 211
Hong, Chen, Li, Chi, Zhang (CR16) 2004; 5
Bai, Cao, Wang, Yu, Hu, Zhang, Li (CR2) 2014; 125
Hunt, Cavigelli, Daughtry, Mcmurtrey, Walthall (CR17) 2005; 6
Valente, Sari, Kooistra, Kramer, Mücher (CR38) 2020; 21
Xu, Zhou, Meng, Zhao, Lv, Xu, Zeng, Yu, Peng (CR40) 2022; 23
Ammour, Alhichri, Bazi, Benjdira, Alajlan, Zuair (CR1) 2017; 9
Cheng (CR7) 1995; 17
Bu, Xiong, Chen, Zheng, Guo, Yang, Lin (CR5) 2020; 21
Kim, Sudduth, Hummel, Drummond (CR20) 2013; 56
Torres-Sánchez, López-Granados, Pena (CR34) 2015; 114
Bai, Nie, Wang, Cheng, Liu, Yu, Shao, Wang, Tuohuti (CR3) 2022; 23
Zhang, Kovacs (CR42) 2012; 13
Torres-Sánchez, Pena, de Castro, López-Granados (CR35) 2014; 103
CR26
Salamí, Barrado, Pastor (CR30) 2014; 6
CR25
Turner, Lucieer, Watson (CR37) 2012; 4
Escarabajal-Henarejos, Molina-Martínez, Fernández-Pacheco, García-Mateos (CR10) 2015; 151
Osco, Nogueira, Marques Ramos, Faita Pinheiro, Furuya, Gonçalves, de Castro Jorge, Marcato Junior, dos Santos (CR27) 2021; 22
Hamuda, Mc Ginley, Glavin, Jones (CR13) 2017; 133
Thorp, Wang, West, Moran, Bronson, White, Mon (CR33) 2012; 124
Chang, Eo, Kim, Kim, Kim (CR6) 2011; 7
Hunt, Hively, Fujikawa, Linden, Daughtry, McCarty (CR18) 2010; 2
Fernández-Pacheco, Escarabajal-Henarejos, Ruiz-Canales, Conesa, Molina-Martínez (CR12) 2014; 117
Holman, Riche, Michalski, Castle, Wooster, Hawkesford (CR15) 2016; 8
D Turner (10026_CR37) 2012; 4
D Escarabajal-Henarejos (10026_CR10) 2015; 151
10026_CR31
L Zheng (10026_CR43) 2009; 65
HJ Kim (10026_CR20) 2013; 56
FJ Lopez-Bellido (10026_CR23) 2016; 169
10026_CR11
J Torres-Sánchez (10026_CR35) 2014; 103
Y Cheng (10026_CR7) 1995; 17
10026_CR32
N Ammour (10026_CR1) 2017; 9
E Hamuda (10026_CR13) 2017; 133
A Chang (10026_CR6) 2011; 7
JL Hernández-Hernández (10026_CR14) 2016; 122
L Costa (10026_CR8) 2022
PD Lancashire (10026_CR21) 1991; 119
LP Osco (10026_CR27) 2021; 22
A-X Hong (10026_CR16) 2004; 5
S Tu (10026_CR36) 2020; 21
ER Hunt (10026_CR17) 2005; 6
KH Dammer (10026_CR9) 2009; 10
DG Fernández-Pacheco (10026_CR12) 2014; 117
J Valente (10026_CR38) 2020; 21
W Yan (10026_CR41) 2020; 12
DM Woebbecke (10026_CR39) 1995; 38
N Borchard (10026_CR4) 2015; 211
FH Holman (10026_CR15) 2016; 8
S Liu (10026_CR22) 2022; 23
D Riehle (10026_CR29) 2020; 169
ER Hunt (10026_CR18) 2010; 2
L Xu (10026_CR40) 2022; 23
X Bai (10026_CR2) 2014; 125
J Torres-Sánchez (10026_CR34) 2015; 114
10026_CR26
10026_CR25
C Zhang (10026_CR42) 2012; 13
DW Kim (10026_CR19) 2018; 10
R Bu (10026_CR5) 2020; 21
E Salamí (10026_CR30) 2014; 6
K Thorp (10026_CR33) 2012; 124
Y Bai (10026_CR3) 2022; 23
N Otsu (10026_CR28) 1979; 9
References_xml – volume: 211
  start-page: 84
  year: 2015
  end-page: 93
  ident: CR4
  article-title: Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2015.05.008
– volume: 114
  start-page: 43
  year: 2015
  end-page: 52
  ident: CR34
  article-title: An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.03.019
– volume: 13
  start-page: 693
  issue: 6
  year: 2012
  end-page: 712
  ident: CR42
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-012-9274-5
– volume: 117
  start-page: 23
  year: 2014
  end-page: 34
  ident: CR12
  article-title: A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2013.07.014
– volume: 38
  start-page: 259
  issue: 1
  year: 1995
  end-page: 269
  ident: CR39
  article-title: Color indices for weed identification under various soil, residue, and lighting conditions
  publication-title: Transactions of the ASAE
  doi: 10.13031/2013.27838
– volume: 122
  start-page: 124
  year: 2016
  end-page: 132
  ident: CR14
  article-title: Optimal color space selection method for plant/soil segmentation in agriculture
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.01.020
– volume: 23
  start-page: 1604
  issue: 5
  year: 2022
  end-page: 1632
  ident: CR22
  article-title: Estimating maize seedling number with UAV RGB images and advanced image processing methods
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-022-09899-y
– volume: 56
  start-page: 23
  issue: 1
  year: 2013
  end-page: 31
  ident: CR20
  article-title: Validation testing of a soil macronutrient sensing system
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.42582
– volume: 169
  start-page: 105201
  year: 2020
  ident: CR29
  article-title: Robust index-based semantic plant/background segmentation for RGB-images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105201
– volume: 65
  start-page: 93
  issue: 1
  year: 2009
  end-page: 98
  ident: CR43
  article-title: Mean-shift-based color segmentation of images containing green vegetation
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2008.08.002
– year: 2022
  ident: CR8
  article-title: Using UAV-based hyperspectral imaging and functional regression to assist in predicting grain yield and related traits in wheat under heat-related stress environments for the purpose of stable yielding genotypes
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-021-09852-5
– volume: 23
  start-page: 1720
  issue: 5
  year: 2022
  end-page: 1742
  ident: CR3
  article-title: A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-022-09907-1
– volume: 7
  start-page: 263
  issue: 2
  year: 2011
  end-page: 274
  ident: CR6
  article-title: Canopy-cover thematic-map generation for Military Map products using remote sensing data in inaccessible areas
  publication-title: Landscape and Ecological Engineering
  doi: 10.1007/s11355-010-0132-1
– volume: 6
  start-page: 359
  issue: 4
  year: 2005
  end-page: 378
  ident: CR17
  article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-005-2324-5
– volume: 125
  start-page: 80
  year: 2014
  end-page: 97
  ident: CR2
  article-title: Vegetation segmentation robust to illumination variations based on clustering and morphology modelling
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2014.06.015
– ident: CR25
– volume: 151
  start-page: 167
  year: 2015
  end-page: 173
  ident: CR10
  article-title: Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2014.10.012
– volume: 124
  start-page: 224
  year: 2012
  end-page: 233
  ident: CR33
  article-title: Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.05.013
– volume: 8
  start-page: 1031
  issue: 12
  year: 2016
  ident: CR15
  article-title: High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing
  publication-title: Remote Sensing
  doi: 10.3390/rs8121031
– volume: 22
  start-page: 1171
  issue: 4
  year: 2021
  end-page: 1188
  ident: CR27
  article-title: Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09777-5
– volume: 21
  start-page: 782
  year: 2020
  end-page: 801
  ident: CR5
  article-title: A shadow detection and removal method for fruit recognition in natural environments
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09695-1
– volume: 10
  start-page: 563
  issue: 4
  year: 2018
  ident: CR19
  article-title: Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs10040563
– volume: 2
  start-page: 290
  issue: 1
  year: 2010
  end-page: 305
  ident: CR18
  article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring
  publication-title: Remote Sensing
  doi: 10.3390/rs2010290
– volume: 133
  start-page: 97
  year: 2017
  end-page: 107
  ident: CR13
  article-title: Automatic crop detection under field conditions using the HSV colour space and morphological operations
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.11.021
– volume: 17
  start-page: 790
  issue: 8
  year: 1995
  end-page: 799
  ident: CR7
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.400568
– ident: CR31
– ident: CR11
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  ident: CR28
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 12
  start-page: 515
  issue: 3
  year: 2020
  ident: CR41
  article-title: A self-adaptive mean shift tree-segmentation method using UAV LiDAR data
  publication-title: Remote Sensing
  doi: 10.3390/rs12030515
– ident: CR32
– volume: 5
  start-page: 764
  issue: 7
  year: 2004
  end-page: 772
  ident: CR16
  article-title: A flower image retrieval method based on ROI feature
  publication-title: Journal of Zhejiang University-Science A
  doi: 10.1631/jzus.2004.0764
– volume: 119
  start-page: 561
  issue: 3
  year: 1991
  end-page: 601
  ident: CR21
  article-title: A uniform decimal code for growth stages of crops and weeds
  publication-title: Annals of Applied Biology
  doi: 10.1111/j.1744-7348.1991.tb04895.x
– volume: 103
  start-page: 104
  year: 2014
  end-page: 113
  ident: CR35
  article-title: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.02.009
– volume: 4
  start-page: 1392
  issue: 5
  year: 2012
  end-page: 1410
  ident: CR37
  article-title: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds
  publication-title: Remote Sensing
  doi: 10.3390/rs4051392
– volume: 21
  start-page: 1072
  year: 2020
  end-page: 1091
  ident: CR36
  article-title: Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09709-3
– volume: 10
  start-page: 431
  issue: 5
  year: 2009
  end-page: 442
  ident: CR9
  article-title: Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-008-9088-7
– volume: 21
  start-page: 1366
  year: 2020
  end-page: 1384
  ident: CR38
  article-title: Automated crop plant counting from very high-resolution aerial imagery
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09725-3
– ident: CR26
– volume: 23
  start-page: 1276
  issue: 4
  year: 2022
  end-page: 1301
  ident: CR40
  article-title: An improved approach to estimate ratoon rice aboveground biomass by integrating UAV-based spectral, textural and structural features
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-022-09884-5
– volume: 169
  start-page: 423
  issue: 3
  year: 2016
  end-page: 439
  ident: CR23
  article-title: New phenological growth stages of garlic ( )
  publication-title: Annals of Applied Biology
  doi: 10.1111/aab.12312
– volume: 6
  start-page: 11051
  issue: 11
  year: 2014
  end-page: 11081
  ident: CR30
  article-title: UAV flight experiments applied to the remote sensing of vegetated areas
  publication-title: Remote Sensing
  doi: 10.3390/rs61111051
– volume: 9
  start-page: 312
  issue: 4
  year: 2017
  ident: CR1
  article-title: Deep learning approach for car detection in UAV imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs9040312
– volume: 119
  start-page: 561
  issue: 3
  year: 1991
  ident: 10026_CR21
  publication-title: Annals of Applied Biology
  doi: 10.1111/j.1744-7348.1991.tb04895.x
– volume: 5
  start-page: 764
  issue: 7
  year: 2004
  ident: 10026_CR16
  publication-title: Journal of Zhejiang University-Science A
  doi: 10.1631/jzus.2004.0764
– volume: 114
  start-page: 43
  year: 2015
  ident: 10026_CR34
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.03.019
– volume: 125
  start-page: 80
  year: 2014
  ident: 10026_CR2
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2014.06.015
– volume: 21
  start-page: 1072
  year: 2020
  ident: 10026_CR36
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09709-3
– volume: 169
  start-page: 423
  issue: 3
  year: 2016
  ident: 10026_CR23
  publication-title: Annals of Applied Biology
  doi: 10.1111/aab.12312
– volume: 9
  start-page: 312
  issue: 4
  year: 2017
  ident: 10026_CR1
  publication-title: Remote Sensing
  doi: 10.3390/rs9040312
– volume: 65
  start-page: 93
  issue: 1
  year: 2009
  ident: 10026_CR43
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2008.08.002
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10026_CR28
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 10
  start-page: 563
  issue: 4
  year: 2018
  ident: 10026_CR19
  publication-title: Remote Sensing
  doi: 10.3390/rs10040563
– ident: 10026_CR31
  doi: 10.1109/ICISCON.2013.6524164
– volume: 103
  start-page: 104
  year: 2014
  ident: 10026_CR35
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.02.009
– volume: 2
  start-page: 290
  issue: 1
  year: 2010
  ident: 10026_CR18
  publication-title: Remote Sensing
  doi: 10.3390/rs2010290
– volume: 8
  start-page: 1031
  issue: 12
  year: 2016
  ident: 10026_CR15
  publication-title: Remote Sensing
  doi: 10.3390/rs8121031
– volume: 6
  start-page: 359
  issue: 4
  year: 2005
  ident: 10026_CR17
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-005-2324-5
– ident: 10026_CR25
  doi: 10.1007/978-3-319-01622-1_7
– volume: 6
  start-page: 11051
  issue: 11
  year: 2014
  ident: 10026_CR30
  publication-title: Remote Sensing
  doi: 10.3390/rs61111051
– volume: 17
  start-page: 790
  issue: 8
  year: 1995
  ident: 10026_CR7
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.400568
– volume: 151
  start-page: 167
  year: 2015
  ident: 10026_CR10
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2014.10.012
– volume: 56
  start-page: 23
  issue: 1
  year: 2013
  ident: 10026_CR20
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.42582
– volume: 23
  start-page: 1276
  issue: 4
  year: 2022
  ident: 10026_CR40
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-022-09884-5
– volume: 122
  start-page: 124
  year: 2016
  ident: 10026_CR14
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.01.020
– volume: 117
  start-page: 23
  year: 2014
  ident: 10026_CR12
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2013.07.014
– volume: 4
  start-page: 1392
  issue: 5
  year: 2012
  ident: 10026_CR37
  publication-title: Remote Sensing
  doi: 10.3390/rs4051392
– volume: 21
  start-page: 782
  year: 2020
  ident: 10026_CR5
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-019-09695-1
– volume: 133
  start-page: 97
  year: 2017
  ident: 10026_CR13
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.11.021
– volume: 12
  start-page: 515
  issue: 3
  year: 2020
  ident: 10026_CR41
  publication-title: Remote Sensing
  doi: 10.3390/rs12030515
– ident: 10026_CR11
  doi: 10.1007/s11119-022-09938-8
– volume: 211
  start-page: 84
  year: 2015
  ident: 10026_CR4
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2015.05.008
– volume: 7
  start-page: 263
  issue: 2
  year: 2011
  ident: 10026_CR6
  publication-title: Landscape and Ecological Engineering
  doi: 10.1007/s11355-010-0132-1
– volume: 22
  start-page: 1171
  issue: 4
  year: 2021
  ident: 10026_CR27
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09777-5
– ident: 10026_CR26
  doi: 10.1117/12.336896
– volume: 169
  start-page: 105201
  year: 2020
  ident: 10026_CR29
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105201
– volume: 124
  start-page: 224
  year: 2012
  ident: 10026_CR33
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.05.013
– volume: 13
  start-page: 693
  issue: 6
  year: 2012
  ident: 10026_CR42
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-012-9274-5
– year: 2022
  ident: 10026_CR8
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-021-09852-5
– ident: 10026_CR32
  doi: 10.1007/s11119-021-09842-7
– volume: 23
  start-page: 1720
  issue: 5
  year: 2022
  ident: 10026_CR3
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-022-09907-1
– volume: 10
  start-page: 431
  issue: 5
  year: 2009
  ident: 10026_CR9
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-008-9088-7
– volume: 21
  start-page: 1366
  year: 2020
  ident: 10026_CR38
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09725-3
– volume: 38
  start-page: 259
  issue: 1
  year: 1995
  ident: 10026_CR39
  publication-title: Transactions of the ASAE
  doi: 10.13031/2013.27838
– volume: 23
  start-page: 1604
  issue: 5
  year: 2022
  ident: 10026_CR22
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-022-09899-y
SSID ssj0010042
Score 2.431003
Snippet Canopy coverage-based crop growth monitoring is highly dependent on the performance of crop segmentation algorithms. Under field conditions, crop segmentation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1982
SubjectTerms Agriculture
Algorithms
Atmospheric Sciences
Biomedical and Life Sciences
Canopies
canopy
Chemistry and Earth Sciences
cold
Cold weather
color
Color imagery
Complexity
Computer Science
Crop growth
Crops
Damage prevention
Garlic
geometry
Growing season
Height
Illumination
Image processing
Image segmentation
Life Sciences
lighting
Mathematical models
Monitoring
Onions
Parameters
Physics
plant height
Plants (botany)
plastic film mulches
precision
Regression analysis
Regression models
Remote Sensing/Photogrammetry
soil
Soil Science & Conservation
Statistics for Engineering
temporal variation
Unmanned aerial vehicles
Vegetables
vegetation
wind
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61VEjlQNu0qKG0GiRusFL82I33mCIerVoOFam4Wbv2OkQidhWHAwf-OzObdaJWgFRfd72WPK9vNDvfABxYGWVlIp3QzsSCHJ4S2iZSmGFKqdtgUJmSK7o_L9T5OP1-Ja9CU1jb3XbvSpLeU6-b3ejRgmKMYNpQJbKX8EoynRdp8TgerWoHrIc-zcqkIG1VoVXm8TP-DkdrjPlPWdRHm9O3sB1gIo6Wcn0HL1zdg63RZB6oMlwP3nQDGTDYZw82_X3Oon0P92eUXi-uceZNlr-BTYX-upqYcOaNtNDUaOoSJ2Z-My3Q3uHxtxP8YSwyk_UcydcUzu_g6Q1NLTjilcgzv7B1k1noWqr55PHoN_46-4rTGfmn9gOMT08uj89FmLQgCgJgCyEJtJVaOwrulYpKaykJo0wiMhWlf8aSlH0Tb2Yd-U7LFGVOWgI-SaW0YdCyAxt1U7uPgIVMrUwqo1VGmeZQaW1MrExZOTMsykHah6j74XkRaMh5GsZNviZQZiHlJKTcCynP-nC4eufPkoTj2d17nRzzYJBtHmeEU3SaJUkf9lfLZEpcHzG1a27bPCHvz4SLSvbhqJP_-oinv7j7f9s_wet4qYJiEO3BxmJ-6z4TtFnYL16THwBXDOy4
  priority: 102
  providerName: Springer Nature
Title Growth monitoring of field-grown onion and garlic by CIE Lab color space and region-based crop segmentation of UAV RGB images
URI https://link.springer.com/article/10.1007/s11119-023-10026-8
https://www.proquest.com/docview/2852194833
https://www.proquest.com/docview/3153150665
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1573-1618
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010042
  issn: 1385-2256
  databaseCode: A8Z
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-1618
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010042
  issn: 1385-2256
  databaseCode: ABDBF
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1618
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010042
  issn: 1385-2256
  databaseCode: AFBBN
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1618
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010042
  issn: 1385-2256
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1618
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010042
  issn: 1385-2256
  databaseCode: U2A
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa65LIdhnYPLFsXaMBum7D4IUU6FINbpOlewVAsQ7eLIVlyWqCxuyQ97LD_XtKRE7TA6qMtS4BJkR9N8SPAWysi5RLhufYm5mjwJNc2EdwMUwzdBoPSOMrofpvIk2n6-Uyc7cCkrYWhY5WtTWwMtasL-kf-IVboaHSqkuTj1R9OXaMou9q20DChtYI7aCjGHkA3JmasDnQPR5Pvp5u8AuloE4IpwVGTZSijWRfT4aU5-jBOtKSSq9uuaos_76RMG090vAuPA4Rk2Vrme7DjqyfwKJstAo2Gfwr_xhhdr87ZvNmxNA2rS9acVuMzCrwZPqgrZirHZmZxeVEw-5cdfRqxr8YyIrJeMDQ1hW9GUPOGuuLk8Byjll9s6WfzULRU0czT7Cc7HR-yizmap-UzmB6Pfhyd8NBogReIv1ZcIGZzWnv07aWMnLUYg2EgEZkSoz9jUchNDa-yHk2nJYYyLyzinqSU2hBmeQ6dqq78C2CFSK1ISqOlwkBzKLU2JpbGld4MCzdIexC13zQvAgs5NcO4zLf8ySSHHOWQN3LIVQ_ebd65WnNw3Dt6vxVVHvbjMt9qTw_ebB7jTqL0iKl8fb3MEzT-xLcoRQ_etyLeTvH_FV_ev-IreBivtYoPon3orBbX_jUimZXtI5JXv_vQzca_voz6QVnx7jTObgBoaPCW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gA9oPIlAgUWCU6wIv7YjfdQobSkTWgaoapBvZld7zqt1NglToV64K_1tzHjrBOBRG_11c5a9uzMm5fxvAF4Z0SQ2Eg4rpwOOQY8yZWJBNedGKlbu51rSxXdo5Hsj-Ovp-J0DW6aXhj6rLKJiXWgtmVG_5F_ChMEGhUnUfT58ienqVFUXW1GaGg_WsHu1BJjvrHj0F3_QgpX7Qy-oL3fh-F-72Svz_2UAZ5h8jHnAhMWq5RDYMtlYI1BAoJZdKBzpD7a4BPWDayJcRg3DMlzOWEQ9KNcKk2Ajeveg404ihWSv43d3ujb8bKOQT5RU75EcPQc6dt2Fs17eCiOmMlJBlXy5G9oXOW7_5Roa-Tb34KHPmVl3cUeewRrrngMm93JzMt2uCfw-wDZ_PyMTesIQcuwMmf113F8QkSf4YmyYLqwbKJnF-cZM9dsb9BjQ20YCWfPGIa2zNVX0LCIsuAEsJbRiDFWucnUN0kVtPK4-50dH-yy8ymGw-opjO_klT-D9aIs3HNgmYiNiHKtZILEtiOV0jqU2uZOdzLbjlsQNO80zbzqOQ3fuEhXes1khxTtkNZ2SJMWfFj-5nKh-XHr1duNqVLv_1W62q0teLs8jZ5L5RhduPKqSiMEG9J3lKIFHxsTr5b4_x1f3H7HN3C_f3I0TIeD0eFLeBAudhhvB9uwPp9duVeYRc3Na79VGfy4a-_4A6L0KKY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTULwgMaXKOzDSPAE1poPu_HDhLqt3cpGNU0U7S2zY6dMWpPRdEJ74B_kr-IudVqBxN6W1zi2kvP97i7n-x3AOyOCxEbCceV0yBHwJFcmElx3Ygzd2u1cW8rofhnKo1H8-Vycr8DvphaGjlU2mFgDtS0z-ke-EyZoaFScRNFO7o9FnB70P13_4NRBijKtTTsN7dss2N2abswXeRy7258YzlW7gwOU_fsw7Pe-7h9x33GAZ-iIzLhA58Uq5dDI5TKwxmAwgh51oHMMg7TBt62LWRPjEEMMUXU5YdABiHKpNBlvnPcBrFHyC0Fiba83PD1b5DRIP-rwLxEctUj6Ep55IR9eiqP95ESJKnnyt5lc-r7_pGtrK9hfhyfefWXd-X57CiuueAaPu-Opp_Bwz-HXIUb2s-9sUqMFTcPKnNUn5fiYgn6GN8qC6cKysZ5eXWbM3LL9QY-daMOIRHvKEOYyV4-gxhFlwcnYWkbtxljlxhNfMFXQzKPuN3Z2uMcuJwiN1QsY3csnfwmrRVm4V8AyERsR5VrJBIPcjlRK61BqmzvdyWw7bkHQfNM08wzo1IjjKl1yN5McUpRDWsshTVrwYfHM9Zz_487RG42oUo8FVbrcuS14u7iNWkypGV248qZKIzQ8xPUoRQs-NiJeTvH_FV_fveI2PEQtSU8Gw-M38CicbzDeDjZgdTa9cZvoUM3Mlt-pDC7uWzn-AJwmLNU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+monitoring+of+field-grown+onion+and+garlic+by+CIE+Lab+color+space+and+region-based+crop+segmentation+of+UAV+RGB+images&rft.jtitle=Precision+agriculture&rft.au=Kim%2C+Dong-Wook&rft.au=Jeong%2C+Sang+Jin&rft.au=Lee%2C+Won+Suk&rft.au=Yun%2C+Heesup&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=24&rft.issue=5&rft.spage=1982&rft.epage=2001&rft_id=info:doi/10.1007%2Fs11119-023-10026-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon