The Application and Potential of Multi-Objective Optimization Algorithms in Decision-Making for LID Facilities Layout
Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID facilities is paramount to optimizing their efficacy within urban landscapes. This study conducts a comprehensive bibliometric analysis of LID-relate...
        Saved in:
      
    
          | Published in | Water resources management Vol. 38; no. 14; pp. 5403 - 5417 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.11.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-4741 1573-1650  | 
| DOI | 10.1007/s11269-024-03926-5 | 
Cover
| Abstract | Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID facilities is paramount to optimizing their efficacy within urban landscapes. This study conducts a comprehensive bibliometric analysis of LID-related literature over the past decade, utilizing data visualization tools to elucidate key disciplines, publication trends, and the prevalence of various optimization algorithms. We delve into the application of multi-objective optimization (MOO) algorithms in LID facility layout, examining their practical applications, theoretical underpinnings, and case studies. The paper also scrutinizes the strengths and limitations of these algorithms, proposing future research trajectories that leverage MOO to enhance LID’s role in urban stormwater management. | 
    
|---|---|
| AbstractList | Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID facilities is paramount to optimizing their efficacy within urban landscapes. This study conducts a comprehensive bibliometric analysis of LID-related literature over the past decade, utilizing data visualization tools to elucidate key disciplines, publication trends, and the prevalence of various optimization algorithms. We delve into the application of multi-objective optimization (MOO) algorithms in LID facility layout, examining their practical applications, theoretical underpinnings, and case studies. The paper also scrutinizes the strengths and limitations of these algorithms, proposing future research trajectories that leverage MOO to enhance LID’s role in urban stormwater management. | 
    
| Author | Ying, Xin Wang, Haiyan Ge, Xiaoyu Wang, Kaiyi Xie, Yuanyuan  | 
    
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Xie fullname: Xie, Yuanyuan organization: School of Information Science and Technology, Beijing Forestry University – sequence: 2 givenname: Haiyan surname: Wang fullname: Wang, Haiyan email: wanghaiyan2008@bjfu.edu.cn organization: School of Information Science and Technology, Beijing Forestry University – sequence: 3 givenname: Kaiyi surname: Wang fullname: Wang, Kaiyi organization: School of Information Science and Technology, Beijing Forestry University – sequence: 4 givenname: Xiaoyu surname: Ge fullname: Ge, Xiaoyu organization: School of Landscape Architecture, Beijing Forestry University – sequence: 5 givenname: Xin surname: Ying fullname: Ying, Xin organization: Beijing BLDJ Landscape Architecture Institute Co., LTD  | 
    
| BookMark | eNp9kU1r3DAQhkVJoZu0f6AnQS-9qB192j4uSdMGNmwP6VnIsrzRViu5khxIf33duFDIIaeB4XmGl3nP0VlM0SH0nsInCtB8LpQy1RFgggDvmCLyFdpQ2XBClYQztIGOARGNoG_QeSlHgEXrYIPmu3uHt9MUvDXVp4hNHPD3VF2s3gScRnw7h-rJvj86W_2Dw_up-pP_vdLbcEjZ1_tTwT7iK2d9Wdbk1vz08YDHlPHu5gpfG-uDr94VvDOPaa5v0evRhOLe_ZsX6Mf1l7vLb2S3_3pzud0RyyWrRIwNDEMLbgRgRnY9E71qe8ktM4yN0joOAzNKNJyz1o7cyHYQYJmTVPTc8Av0cb075fRrdqXqky_WhWCiS3PRnEpBZcsbWNAPz9BjmnNc0i0UU0woRdVCtStlcyolu1FbX59eUbPxQVPQf_vQax966UM_9aHlorJn6pT9yeTHlyW-SmWB48Hl_6lesP4A_LmfVA | 
    
| CitedBy_id | crossref_primary_10_3390_w16172373 crossref_primary_10_3390_w17060840 crossref_primary_10_2166_wst_2025_030  | 
    
| Cites_doi | 10.1016/j.jhydrol.2019.124091 10.11660/slfdxb.20210607 10.1007/s11042-020-10139-6 10.1016/j.resconrec.2023.106906 10.3390/w9070548 10.1007/s13201-023-01913-6 10.1109/ACCESS.2022.3142859 10.1061/(ASCE)WR.1943-5452.0000251 10.3390/w16070965 10.1016/j.scitotenv.2019.06.051 10.1021/acsestwater.1c00235 10.1016/j.jenvman.2022.114700 10.3390/w9060439 10.1016/j.scs.2021.102706 10.3390/app12178392 10.1016/j.scitotenv.2016.01.052 10.1016/j.jhydrol.2018.07.044 10.1016/j.jhydrol.2019.06.073 10.1016/j.jhydrol.2019.124266 10.1016/j.resconrec.2022.106861 10.1007/s11069-023-06226-0 10.19830/j.upi.2022.428 10.3390/ijerph18147586 10.1016/j.jenvman.2018.10.024 10.1057/palgrave.jors.2602068 10.3390/w15183319 10.2166/hydro.2019.033 10.13626/j.cnki.hs.2015.12.004 10.3390/w12020533 10.1155/2022/2281856 10.1007/s11269-023-03630-w 10.1016/j.watres.2022.118685 10.1080/02626667.2023.2248137 10.1016/j.watres.2022.119036 10.1109/ACCESS.2021.3070634 10.1515/geo-2017-0020 10.3390/w9100756 10.1016/j.ecolind.2023.109950 10.1016/j.ecoleng.2023.107147 10.1016/j.ufug.2021.127032 10.2166/wst.2021.283 10.1016/j.watres.2020.115597 10.3390/w13020125 10.1080/1573062X.2023.2211557 10.13671/j.hjkxxb.2021.0144 10.1016/j.ins.2018.10.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6  | 
    
| DOI | 10.1007/s11269-024-03926-5 | 
    
| DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-1650 | 
    
| EndPage | 5417 | 
    
| ExternalDocumentID | 10_1007_s11269_024_03926_5 | 
    
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c352t-4f70dd80ef002a59b24b68b53c2a22f5ce30d2a6473328cf3a58d40c2e514b3a3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0920-4741 | 
    
| IngestDate | Tue Aug 05 10:10:31 EDT 2025 Fri Jul 25 18:56:56 EDT 2025 Wed Oct 01 01:10:55 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Fri Feb 21 02:36:22 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Keywords | Algorithm Optimization Multi-objective Optimization Genetic Algorithms Layout Decision Low-impact Development  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-4f70dd80ef002a59b24b68b53c2a22f5ce30d2a6473328cf3a58d40c2e514b3a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 3126246616 | 
    
| PQPubID | 54174 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_3154158370 proquest_journals_3126246616 crossref_citationtrail_10_1007_s11269_024_03926_5 crossref_primary_10_1007_s11269_024_03926_5 springer_journals_10_1007_s11269_024_03926_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241100 2024-11-00 20241101  | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) | 
    
| PublicationTitle | Water resources management | 
    
| PublicationTitleAbbrev | Water Resour Manage | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | LiFYanXFDuanHF.Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality201910.1007/s11269-019-02300-0 Li Q, Wang F, Yu Y et al (2019a) Comprehensive performance evaluation of LID practices for the sponge city construction: a case study in Guangxi, China[J].Journal of Environmental Management. 231 ISSN 0301–4797. https://doi.org/10.1016/j.jenvman.2018.10.024 ZhuZBuild residential low impact development of rainwater management measures analysis [J]J Residential Sci Technol20153512151910.13626/j.cnki.hs.2015.12.004 Tang SJ, Jiang JP et al (2021) Comprehensive optimization Framework for Low Impact Development Facility Layout Design with cost–benefit analysis: a Case Study in Shenzhen City. China[J].ACS ES&T Water. https://doi.org/10.1021/acsestwater.1c00235 Dang M (2020) Hai.Optimal Planning of Low-Impact Development for TSS Control in the Upper Area of the Cau Bay River Basin. Vietnam[J] Water 12(2). https://doi.org/10.3390/w12020533 VermaSPantMSnaselVA Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems202110.1109/ACCESS.2021.3070634 GhodsiSHZahmatkeshZGoharianEOptimal design of low Impact Development practices in response to Climate Change[J]J Hydrol201958012426610.1016/j.jhydrol.2019.124266 KullerMBachPMRobertsSA planning-support tool for spatial suitability assessment of green urban stormwater infrastructure[J]Sci Total Environ20196868568681:CAS:528:DC%2BC1MXht1ekt7vE10.1016/j.scitotenv.2019.06.051 Shafique M, Kim R (2017) Retrofitting the Low Impact Development Practices into developed urban areas including barriers and potential Solution[J].Open geosciences. 9(1):240–254. https://doi.org/10.1515/geo-2017-0020 Li HC, Sansalone J (2022) Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics[J].Water Research. 220:0043–1354. https://doi.org/10.1016/j.watres.2022.118685 Zhu YF, Xu CQ, Liu ZJ, Conservation, Recycling et al (2023) Volume 191, 106906, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2023.106906 Taghizadeh S, Khani S, Rajaee T, .Hybrid SWMM and particle swarm optimization model for urban runoff water quality[J].Urban Forestry & Urban Greening, 2021,60.DOI:https://doi.org/10.1016/j.ufug.2021.127032 Shami TM, El-Saleh AA Particle swarm optimization: a Comprehensive. Survey[J] IEEE Access, 10:10031–10061.https://doi.org/10.1109/ACCESS.2022.3142859 ThomJKSzotaCCouttsAMTranspiration by established trees could increase the efficiency of stormwater control measures[J]Water Res20201731155971:CAS:528:DC%2BB3cXjsVSrtLw%3D10.1016/j.watres.2020.115597 FengJYangYLiJOptimization of the low-Impact Development Facility Area based on a surrogate Model[J]Water Resour Manage202310.1007/s11269-023-03630-w Hamedani AS, Lago CD, Giacomoni MH (2023) Exploring near-optimal locations for bioretention systems in catchment scale using many-objective evolutionary optimization[J]. Urban Water J 7/820. https://doi.org/10.1080/1573062X.2023.2211557 ChengDLWater Allocation optimization and Environmental Planning with simulated annealing Algorithms[J]Math Probl Eng202210.1155/2022/2281856 YiJHXingLNWangGGBehavior of crossover operators in NSGA-III for large-scale optimization problems[J]Inform Sciences: Int J202050947048710.1016/j.ins.2018.10.005 LiuGChenLShenZA fast and robust simulation-optimization methodology for stormwater quality management[J]J Hydrol20195765205271:CAS:528:DC%2BC1MXhtlamtrbP10.1016/j.jhydrol.2019.06.073 Zhang XY, Jia HF (2023) Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives[J].Resources, Conservation and Recycling, Volume 190, 106861, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2022.106861 César Ambrogi Ferreira do LagoInformationVFAHamedaniASSimulation and optimization framework for evaluating the robustness of low-impact development placement solutions under climate change in a small urban catchment[J]Hydrol Sci J202310.1080/02626667.2023.2248137 DwivedulaRMadhuriRRajuKSMultiobjective optimisation and cluster analysis in placement of best management practices in an urban flooding scenario[J]Water Sci Technol202110.2166/wst.2021.283 Li W, Chen ZJ, Li MC, Zhang H et al Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China[J].Ecological Indicators,2023,147.https://doi.org/10.1016/j.ecolind.2023.109950 Luo Y, Minghan LI (2016). Building Sponge City: examples of Landscape Architecture Curriculum on Stormwater Management in the UniteD States[J]. Landsc Archit Front, 4(2) Luan Q, Fu X, Song C et al Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: a Case Study in China[J].Water 2017, 9, 439. https://doi.org/10.3390/w9060439 Chen QH, Zou CH, Huang CD et al (2019) Research on LID facilities optimization layout based on multi-objective particle swarm optimization Algorithm[J], vol 35. CHINA WATER & WASTEWATER, p 7. 19DOI:CNKI:SUN:GSPS.0.2019-19-028 GhodsiSHKerachianRZahmatkeshZ.A multi-stakeholder framework for urban runoff quality management: application of social choice and bargaining techniques[J]Sci Total Environ201610.1016/j.scitotenv.2016.01.052 Chen L, Long Y (2022). Spatial layout optimization of low-impact development facilities based on stormwater management model and NSGA-II algorithm: A case study of a residential cluster in Tongzhou, Beijing [J]. International urban planning, 37(06):42–48.https://doi.org/10.19830/j.upi.2022.428 Miao ZT, Sun KL Research on urban stormwater system planning model under the concept of low impact development [. J] Architectural J 2014(S 2):40–43. (in Chinese).CNKI:SUN:JZXB.0.2014-S2-009 Dong X, Yuan P, Song Y et al (2021) Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties[J].IJERPH, 18.https://doi.org/10.3390/ijerph18147586 Seo KW, Seo SB, Kim KM et al Genetic algorithm-based allocation of LID practices to mitigate urban flooding[J].Natural hazards 2024.https://doi.org/10.1007/s11069-023-06226-0 Raei E, Alizadeh MR, Nikoo MR, Adamowski J (2019) Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty[J]. J Hydrol 579. https://doi.org/10.1016/j.jhydrol.2019.124091 Swathi V, Raju KS, Varma MRR et al (2019) Automatic calibration of SWMM using NSGA-III and the effects of delineation scale on an urban catchment[J]. J Hydroinformatics 21(4). https://doi.org/10.2166/hydro.2019.033 Wang H, Zeng P, Liu Z et al Optimization of LID Strategies for Urban CSO reduction and cost efficiency: a Beijing Case Study[J].Water 2024, 16, 965. https://doi.org/10.3390/w16070965 LengLYXuCQJiaHFIncorporating receiving waters responses into the framework of spatial optimization of LID-BMPs in plain river network region[J]Water Res202210.1016/j.watres.2022.119036 Suman B, Kumar P A survey of simulated annealing as a tool for single and multiobjective optimization[J]. J Oper Res Soc 2006, 57(10):1143–1160.https://doi.org/10.1057/palgrave.jors.2602068 HuangJJXiaoMLiYThe optimization of low Impact Development placement considering life cycle cost using genetic Algorithm[J]J Environ Manage202230911470010.1016/j.jenvman.2022.114700 Beijing Hydrological StationAnalysis report of 23·7 regional heavy rainstorm flood in Beijing2023BeijingBeijing Hydrological Station GebreSLCattrysseDOrshovenJV.Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic202110.3390/w13020125 HuangCLHsuNSLiuHJOptimization of low impact development layout designs for megacity flood mitigation[J]J Hydrol201856454255810.1016/j.jhydrol.2018.07.044 Adnan RM, Dai HL, Mostafa RR et al (2023) Application of novel binary optimized machine learning models for monthly streamflow prediction[J]. Appl Water Sci 13(5). https://doi.org/10.1007/s13201-023-01913-6 Dong XY, Zhang JH, Yuan P et al Low-impact development facilities Layout Method based on multi-objective Optimization[J]. Acta Sci Circum 2021, 41(07):2933–2941.https://doi.org/10.13671/j.hjkxxb.2021.0144 KatochSChauhanSS. A review on genetic algorithm: past, present, and future[J]Multimedia Tools Appl202010.1007/s11042-020-10139-6 Ren YZ, Zhang HY, Wang XH et al (2023) Optimized Design of Sponge-Type Comprehensive Pipe Corridor Rainwater Chamber Based on NSGA-III Algorithm[J].Water, DOI:110.3390/w15183319 ZhuZHChenXH.Evaluating the effects of Low Impact Development Practices on Urban Flooding underDifferent Rainfall Intensities[J] Water20179754810.3390/w9070548 YangFRChenLZhangYZReview on planning of stormwater system for low impact development [J]J Hydroelectric Power20214061710.11660/slfdxb.20210607 Cheng H, Kim S, Hyun JH (2024) .A multi-objective spatial optimization of wetland for Sponge City in the plain. China[J] Ecol Engineering: J Ecotechnology 198. https://doi.org/10.1016/j.ecoleng.2023.107147 Disaster Investigation Team of The State CouncilInvestigation Report of the July 20 heavy rain disaster in Zhengzhou, Henan Province2022BeijingMinistry of Emergency Management, PRC SheLWeiMYouXY.Multi-objective Layout Optimization for Sponge City by Annealing Algorithm and Its Environmental Benefits Analysis[J]202110.1016/j.scs.2021.102706 DamodaramCZechmanEMSimulation-optimization Approach to Design Low Impact Development for Managing Peak Flow alterations in Urbanizing Watersheds[J]J Water Resour Plan Manag2013139329029810.1061/(ASCE)WR.1943-5452.0000251 Chen PY, Tung CP, Li YH (2017) .Low Impact Development Planning and Adaptation decision-making under Climate Change for a community against. Pluvial Flooding[J] Water 9(10). https://doi.org/10.3390/w9100756 Jain M, Saihjpal V (2022) An overview of variants and advancements of PSO Algorithm[J]. Appl Scineces-Basel 12(9). https://doi.org/10.3390/app12178392 CL Huang (3926_CR47) 2018; 564 3926_CR8 3926_CR6 3926_CR7 3926_CR4 DL Cheng (3926_CR49) 2022 ZH Zhu (3926_CR41) 2017; 9 3926_CR48 Z Zhu (3926_CR5) 2015; 35 L She (3926_CR46) 2021 3926_CR44 3926_CR45 3926_CR40 3926_CR42 3926_CR43 JK Thom (3926_CR3) 2020; 173 G Liu (3926_CR50) 2019; 576 S Katoch (3926_CR19) 2020 VFA Information (3926_CR28) 2023 F Li (3926_CR9) 2019 SH Ghodsi (3926_CR21) 2019; 580 Disaster Investigation Team of The State Council (3926_CR1) 2022 3926_CR39 SH Ghodsi (3926_CR30) 2016 3926_CR34 3926_CR35 3926_CR36 3926_CR31 3926_CR32 C Damodaram (3926_CR20) 2013; 139 R Dwivedula (3926_CR37) 2021 JJ Huang (3926_CR13) 2022; 309 Beijing Hydrological Station (3926_CR2) 2023 J Feng (3926_CR22) 2023 3926_CR26 3926_CR27 3926_CR29 3926_CR23 3926_CR25 M Kuller (3926_CR10) 2019; 686 LY Leng (3926_CR38) 2022 SL Gebre (3926_CR15) 2021 3926_CR16 S Verma (3926_CR24) 2021 3926_CR18 3926_CR11 3926_CR12 FR Yang (3926_CR17) 2021; 40 3926_CR14 3926_CR51 3926_CR52 JH Yi (3926_CR33) 2020; 509  | 
    
| References_xml | – reference: GhodsiSHKerachianRZahmatkeshZ.A multi-stakeholder framework for urban runoff quality management: application of social choice and bargaining techniques[J]Sci Total Environ201610.1016/j.scitotenv.2016.01.052 – reference: HuangJJXiaoMLiYThe optimization of low Impact Development placement considering life cycle cost using genetic Algorithm[J]J Environ Manage202230911470010.1016/j.jenvman.2022.114700 – reference: KatochSChauhanSS. A review on genetic algorithm: past, present, and future[J]Multimedia Tools Appl202010.1007/s11042-020-10139-6 – reference: Li W, Chen ZJ, Li MC, Zhang H et al Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China[J].Ecological Indicators,2023,147.https://doi.org/10.1016/j.ecolind.2023.109950 – reference: YangFRChenLZhangYZReview on planning of stormwater system for low impact development [J]J Hydroelectric Power20214061710.11660/slfdxb.20210607 – reference: Suman B, Kumar P A survey of simulated annealing as a tool for single and multiobjective optimization[J]. J Oper Res Soc 2006, 57(10):1143–1160.https://doi.org/10.1057/palgrave.jors.2602068 – reference: Chen QH, Zou CH, Huang CD et al (2019) Research on LID facilities optimization layout based on multi-objective particle swarm optimization Algorithm[J], vol 35. CHINA WATER & WASTEWATER, p 7. 19DOI:CNKI:SUN:GSPS.0.2019-19-028 – reference: HuangCLHsuNSLiuHJOptimization of low impact development layout designs for megacity flood mitigation[J]J Hydrol201856454255810.1016/j.jhydrol.2018.07.044 – reference: DwivedulaRMadhuriRRajuKSMultiobjective optimisation and cluster analysis in placement of best management practices in an urban flooding scenario[J]Water Sci Technol202110.2166/wst.2021.283 – reference: GhodsiSHZahmatkeshZGoharianEOptimal design of low Impact Development practices in response to Climate Change[J]J Hydrol201958012426610.1016/j.jhydrol.2019.124266 – reference: Zhang XY, Jia HF (2023) Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives[J].Resources, Conservation and Recycling, Volume 190, 106861, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2022.106861 – reference: SheLWeiMYouXY.Multi-objective Layout Optimization for Sponge City by Annealing Algorithm and Its Environmental Benefits Analysis[J]202110.1016/j.scs.2021.102706 – reference: Seo KW, Seo SB, Kim KM et al Genetic algorithm-based allocation of LID practices to mitigate urban flooding[J].Natural hazards 2024.https://doi.org/10.1007/s11069-023-06226-0 – reference: GebreSLCattrysseDOrshovenJV.Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic202110.3390/w13020125 – reference: ThomJKSzotaCCouttsAMTranspiration by established trees could increase the efficiency of stormwater control measures[J]Water Res20201731155971:CAS:528:DC%2BB3cXjsVSrtLw%3D10.1016/j.watres.2020.115597 – reference: Luan Q, Fu X, Song C et al Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: a Case Study in China[J].Water 2017, 9, 439. https://doi.org/10.3390/w9060439 – reference: Dang M (2020) Hai.Optimal Planning of Low-Impact Development for TSS Control in the Upper Area of the Cau Bay River Basin. Vietnam[J] Water 12(2). https://doi.org/10.3390/w12020533 – reference: Dong X, Yuan P, Song Y et al (2021) Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties[J].IJERPH, 18.https://doi.org/10.3390/ijerph18147586 – reference: Ren YZ, Zhang HY, Wang XH et al (2023) Optimized Design of Sponge-Type Comprehensive Pipe Corridor Rainwater Chamber Based on NSGA-III Algorithm[J].Water, DOI:110.3390/w15183319 – reference: LiFYanXFDuanHF.Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality201910.1007/s11269-019-02300-0 – reference: Wang H, Zeng P, Liu Z et al Optimization of LID Strategies for Urban CSO reduction and cost efficiency: a Beijing Case Study[J].Water 2024, 16, 965. https://doi.org/10.3390/w16070965 – reference: Li HC, Sansalone J (2022) Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics[J].Water Research. 220:0043–1354. https://doi.org/10.1016/j.watres.2022.118685 – reference: Raei E, Alizadeh MR, Nikoo MR, Adamowski J (2019) Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty[J]. J Hydrol 579. https://doi.org/10.1016/j.jhydrol.2019.124091 – reference: VermaSPantMSnaselVA Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems202110.1109/ACCESS.2021.3070634 – reference: YiJHXingLNWangGGBehavior of crossover operators in NSGA-III for large-scale optimization problems[J]Inform Sciences: Int J202050947048710.1016/j.ins.2018.10.005 – reference: ZhuZBuild residential low impact development of rainwater management measures analysis [J]J Residential Sci Technol20153512151910.13626/j.cnki.hs.2015.12.004 – reference: Shami TM, El-Saleh AA Particle swarm optimization: a Comprehensive. Survey[J] IEEE Access, 10:10031–10061.https://doi.org/10.1109/ACCESS.2022.3142859 – reference: Jain M, Saihjpal V (2022) An overview of variants and advancements of PSO Algorithm[J]. Appl Scineces-Basel 12(9). https://doi.org/10.3390/app12178392 – reference: Swathi V, Raju KS, Varma MRR et al (2019) Automatic calibration of SWMM using NSGA-III and the effects of delineation scale on an urban catchment[J]. J Hydroinformatics 21(4). https://doi.org/10.2166/hydro.2019.033 – reference: Li Q, Wang F, Yu Y et al (2019a) Comprehensive performance evaluation of LID practices for the sponge city construction: a case study in Guangxi, China[J].Journal of Environmental Management. 231 ISSN 0301–4797. https://doi.org/10.1016/j.jenvman.2018.10.024 – reference: KullerMBachPMRobertsSA planning-support tool for spatial suitability assessment of green urban stormwater infrastructure[J]Sci Total Environ20196868568681:CAS:528:DC%2BC1MXht1ekt7vE10.1016/j.scitotenv.2019.06.051 – reference: Adnan RM, Dai HL, Mostafa RR et al (2023) Application of novel binary optimized machine learning models for monthly streamflow prediction[J]. Appl Water Sci 13(5). https://doi.org/10.1007/s13201-023-01913-6 – reference: Cheng H, Kim S, Hyun JH (2024) .A multi-objective spatial optimization of wetland for Sponge City in the plain. China[J] Ecol Engineering: J Ecotechnology 198. https://doi.org/10.1016/j.ecoleng.2023.107147 – reference: Miao ZT, Sun KL Research on urban stormwater system planning model under the concept of low impact development [. J] Architectural J 2014(S 2):40–43. (in Chinese).CNKI:SUN:JZXB.0.2014-S2-009 – reference: Beijing Hydrological StationAnalysis report of 23·7 regional heavy rainstorm flood in Beijing2023BeijingBeijing Hydrological Station – reference: LiuGChenLShenZA fast and robust simulation-optimization methodology for stormwater quality management[J]J Hydrol20195765205271:CAS:528:DC%2BC1MXhtlamtrbP10.1016/j.jhydrol.2019.06.073 – reference: Taghizadeh S, Khani S, Rajaee T, .Hybrid SWMM and particle swarm optimization model for urban runoff water quality[J].Urban Forestry & Urban Greening, 2021,60.DOI:https://doi.org/10.1016/j.ufug.2021.127032 – reference: Dong XY, Zhang JH, Yuan P et al Low-impact development facilities Layout Method based on multi-objective Optimization[J]. Acta Sci Circum 2021, 41(07):2933–2941.https://doi.org/10.13671/j.hjkxxb.2021.0144 – reference: ZhuZHChenXH.Evaluating the effects of Low Impact Development Practices on Urban Flooding underDifferent Rainfall Intensities[J] Water20179754810.3390/w9070548 – reference: Tang SJ, Jiang JP et al (2021) Comprehensive optimization Framework for Low Impact Development Facility Layout Design with cost–benefit analysis: a Case Study in Shenzhen City. China[J].ACS ES&T Water. https://doi.org/10.1021/acsestwater.1c00235 – reference: Chen PY, Tung CP, Li YH (2017) .Low Impact Development Planning and Adaptation decision-making under Climate Change for a community against. Pluvial Flooding[J] Water 9(10). https://doi.org/10.3390/w9100756 – reference: LengLYXuCQJiaHFIncorporating receiving waters responses into the framework of spatial optimization of LID-BMPs in plain river network region[J]Water Res202210.1016/j.watres.2022.119036 – reference: Zhu YF, Xu CQ, Liu ZJ, Conservation, Recycling et al (2023) Volume 191, 106906, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2023.106906 – reference: Disaster Investigation Team of The State CouncilInvestigation Report of the July 20 heavy rain disaster in Zhengzhou, Henan Province2022BeijingMinistry of Emergency Management, PRC – reference: Shafique M, Kim R (2017) Retrofitting the Low Impact Development Practices into developed urban areas including barriers and potential Solution[J].Open geosciences. 9(1):240–254. https://doi.org/10.1515/geo-2017-0020 – reference: Luo Y, Minghan LI (2016). Building Sponge City: examples of Landscape Architecture Curriculum on Stormwater Management in the UniteD States[J]. Landsc Archit Front, 4(2) – reference: Hamedani AS, Lago CD, Giacomoni MH (2023) Exploring near-optimal locations for bioretention systems in catchment scale using many-objective evolutionary optimization[J]. Urban Water J 7/820. https://doi.org/10.1080/1573062X.2023.2211557 – reference: César Ambrogi Ferreira do LagoInformationVFAHamedaniASSimulation and optimization framework for evaluating the robustness of low-impact development placement solutions under climate change in a small urban catchment[J]Hydrol Sci J202310.1080/02626667.2023.2248137 – reference: ChengDLWater Allocation optimization and Environmental Planning with simulated annealing Algorithms[J]Math Probl Eng202210.1155/2022/2281856 – reference: DamodaramCZechmanEMSimulation-optimization Approach to Design Low Impact Development for Managing Peak Flow alterations in Urbanizing Watersheds[J]J Water Resour Plan Manag2013139329029810.1061/(ASCE)WR.1943-5452.0000251 – reference: Chen L, Long Y (2022). Spatial layout optimization of low-impact development facilities based on stormwater management model and NSGA-II algorithm: A case study of a residential cluster in Tongzhou, Beijing [J]. International urban planning, 37(06):42–48.https://doi.org/10.19830/j.upi.2022.428 – reference: FengJYangYLiJOptimization of the low-Impact Development Facility Area based on a surrogate Model[J]Water Resour Manage202310.1007/s11269-023-03630-w – ident: 3926_CR31 doi: 10.1016/j.jhydrol.2019.124091 – volume: 40 start-page: 17 issue: 6 year: 2021 ident: 3926_CR17 publication-title: J Hydroelectric Power doi: 10.11660/slfdxb.20210607 – year: 2020 ident: 3926_CR19 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-020-10139-6 – ident: 3926_CR14 doi: 10.1016/j.resconrec.2023.106906 – volume: 9 start-page: 548 issue: 7 year: 2017 ident: 3926_CR41 publication-title: Different Rainfall Intensities[J] Water doi: 10.3390/w9070548 – ident: 3926_CR52 doi: 10.1007/s13201-023-01913-6 – ident: 3926_CR40 doi: 10.1109/ACCESS.2022.3142859 – volume: 139 start-page: 290 issue: 3 year: 2013 ident: 3926_CR20 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000251 – ident: 3926_CR27 doi: 10.3390/w16070965 – volume: 686 start-page: 856 year: 2019 ident: 3926_CR10 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.06.051 – ident: 3926_CR11 doi: 10.1021/acsestwater.1c00235 – volume: 309 start-page: 114700 year: 2022 ident: 3926_CR13 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2022.114700 – ident: 3926_CR7 doi: 10.3390/w9060439 – year: 2021 ident: 3926_CR46 doi: 10.1016/j.scs.2021.102706 – ident: 3926_CR39 doi: 10.3390/app12178392 – year: 2016 ident: 3926_CR30 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.01.052 – ident: 3926_CR6 – volume: 564 start-page: 542 year: 2018 ident: 3926_CR47 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.07.044 – volume: 576 start-page: 520 year: 2019 ident: 3926_CR50 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.06.073 – volume: 580 start-page: 124266 year: 2019 ident: 3926_CR21 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124266 – ident: 3926_CR18 doi: 10.1016/j.resconrec.2022.106861 – ident: 3926_CR23 doi: 10.1007/s11069-023-06226-0 – ident: 3926_CR12 doi: 10.19830/j.upi.2022.428 – ident: 3926_CR43 – ident: 3926_CR32 doi: 10.3390/ijerph18147586 – ident: 3926_CR8 doi: 10.1016/j.jenvman.2018.10.024 – ident: 3926_CR45 doi: 10.1057/palgrave.jors.2602068 – ident: 3926_CR34 doi: 10.3390/w15183319 – ident: 3926_CR36 doi: 10.2166/hydro.2019.033 – volume: 35 start-page: 15 issue: 12 year: 2015 ident: 3926_CR5 publication-title: J Residential Sci Technol doi: 10.13626/j.cnki.hs.2015.12.004 – volume-title: Analysis report of 23·7 regional heavy rainstorm flood in Beijing year: 2023 ident: 3926_CR2 – ident: 3926_CR25 doi: 10.3390/w12020533 – year: 2022 ident: 3926_CR49 publication-title: Math Probl Eng doi: 10.1155/2022/2281856 – year: 2023 ident: 3926_CR22 publication-title: Water Resour Manage doi: 10.1007/s11269-023-03630-w – ident: 3926_CR51 doi: 10.1016/j.watres.2022.118685 – year: 2019 ident: 3926_CR9 – year: 2023 ident: 3926_CR28 publication-title: Hydrol Sci J doi: 10.1080/02626667.2023.2248137 – year: 2022 ident: 3926_CR38 publication-title: Water Res doi: 10.1016/j.watres.2022.119036 – year: 2021 ident: 3926_CR24 doi: 10.1109/ACCESS.2021.3070634 – ident: 3926_CR16 doi: 10.1515/geo-2017-0020 – ident: 3926_CR48 doi: 10.3390/w9100756 – ident: 3926_CR44 doi: 10.1016/j.ecolind.2023.109950 – ident: 3926_CR4 – ident: 3926_CR29 doi: 10.1016/j.ecoleng.2023.107147 – ident: 3926_CR42 doi: 10.1016/j.ufug.2021.127032 – year: 2021 ident: 3926_CR37 publication-title: Water Sci Technol doi: 10.2166/wst.2021.283 – volume: 173 start-page: 115597 year: 2020 ident: 3926_CR3 publication-title: Water Res doi: 10.1016/j.watres.2020.115597 – volume-title: Investigation Report of the July 20 heavy rain disaster in Zhengzhou, Henan Province year: 2022 ident: 3926_CR1 – year: 2021 ident: 3926_CR15 doi: 10.3390/w13020125 – ident: 3926_CR35 doi: 10.1080/1573062X.2023.2211557 – ident: 3926_CR26 doi: 10.13671/j.hjkxxb.2021.0144 – volume: 509 start-page: 470 year: 2020 ident: 3926_CR33 publication-title: Inform Sciences: Int J doi: 10.1016/j.ins.2018.10.005  | 
    
| SSID | ssj0010090 | 
    
| Score | 2.456981 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 5403 | 
    
| SubjectTerms | Algorithms Atmospheric Sciences bibliometric analysis Bibliometrics Civil Engineering Collaboration Computer science data visualization Decision making Earth and Environmental Science Earth Sciences Environment Environmental risk Facilities management Floods Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Green infrastructure Hydrogeology Hydrology/Water Resources Keywords Landscape architecture Legal documents Linear programming Multiple objective analysis Optimization Optimization algorithms Planning Plant layout Runoff Scientific visualization Storm runoff Stormwater Stormwater management Stormwater runoff Trends Urban environments Urban runoff Water management Water quality Water resources  | 
    
| Title | The Application and Potential of Multi-Objective Optimization Algorithms in Decision-Making for LID Facilities Layout | 
    
| URI | https://link.springer.com/article/10.1007/s11269-024-03926-5 https://www.proquest.com/docview/3126246616 https://www.proquest.com/docview/3154158370  | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuLAHBOyiLY_KSNwWS6lfTY8BWt4Poa3EniLbcXgIEkTTA_-ecZo0gFgkTjlk7Egz9sw3mRfAtgyVdF1mKbo_kgqnFA1V0qGyk7CAp05PksfPztXhUBxfy-uqKGxUZ7vXIclSUzfFbh2mehRtCg3QqCsqZ2Fe-nZeeIqHLJrGDhA1lH9WeugYCTSYVanM53u8N0cNxvwQFi2tzWAJFiuYSKKJXJdhxmUr8ONN88CfMEYJk6iJPxOdJeQyL3z6Dy7NU1IW19ILcz9RauQC1cNjVXdJooeb_PmuuH0ckbuM7FejduhZOZ2KIJQlp0f7ZKCtT55Fd5qc6pd8XPyC4aD_d--QVkMUqEVsVVCRdoMkCQOXou7TsmeYMCo0klumGUuldTxImFaiyzkLbcq1DBMRWOZQSoZrvgpzWZ6530AQXHnvyjiZpMIq0ROSG63Rh9bOCGlb0Kl5Gduqw7gfdPEQN72RPf9j5H9c8j-WLfgzXfM06a_xJfVGLaK4umujmCMVE4gzVAu2pq_xlvjQh85cPvY0EpGKb_TTgp1atM0W___i2vfI12GB-dNVFituwFzxPHabiFoK04bZcHDQhvno4N9JH5-7_fPLq3Z5dF8Bw-nlkg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7gAcgA0mCmN40m7gKfVX02PF1nWs3Tis0jhFtuPAYEvQmhzgr-c5cRqY2KSd8-wkfvZ7v-f3BbArYyXdkFmK5o-kwilFY5UOqBykLOKZ003w-PxETRfi07k8D0lhyzbavXVJ1pK6S3YbMDWiqFNohEpdUfkQ1gQaKKwHa-PDL8cHK-8B4ob6bmWEppFAlRmSZf4_y78KqUOZNxyjtb6ZPINF-6VNmMmPvao0e_b3jSKO9_2V5_A0AFAybnbMOjxw-QY8-ass4QuocO-QcefZJjpPyeei9IFFOLTISJ22S0_N90ZcklMUPFcho5OML78W1xflt6slucjJfmjiQ-d13yuCIJnMjvbJRFsflouGOpnpX0VVvoTF5ODs45SG9gzUImorqciGUZrGkctQqmo5MkwYFRvJLdOMZdI6HqVMKzHknMU241rGqYgsc8h_wzXfhF5e5O4VEIRt3m4zTqaZsEqMhORGa7TOtTNC2j4MWh4lNtQu9y00LpOu6rJf0gSXNKmXNJF9eL8a87Op3HEn9VbL-iSc4mXCkYoJRDCqDzurx3j-vFNF566oPI1EDORLCPXhQ8vtborb3_j6fuTv4NH0bD5LZkcnx2_gMfObp06J3IJeeV25t4iNSrMdjsIfZiUBcw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-NADLZYkNByQLCAKM9ZaW_siHReTY8VpQK2PA5U4hbNKzwECYL0wL_Hk6QNIBaJc5yJYjvjz_F8NsAfGSvpO8xSTH8kFV4pGivXprLtWMRTr6vD46dn6mgkTq7k1RsWf3nafVKSrDgNoUtTVuw_unS_Ib61mepSjC80wgCvqPwBcyI0SkCPHrHetI6ACKL8y9LFJElg8KxpM5-v8T40NXjzQ4m0jDyDJVisISPpVTZehhmf_YKFN40EV2CM1ia9phZNdObIRR7eCP2L5Ckpibb03NxVGxw5x63ioeZgkt79df50W9w8PJPbjPTrsTv0tJxURRDWkuFxnwy0DQdpMbUmQ_2Sj4tVGA0OLw-OaD1QgVrEWQUVaSdyLo58ivugll3DhFGxkdwyzVgqreeRY1qJDucstinXMnYissyjxQzXfA1mszzz60AQaIVMy3jpUmGV6ArJjdaYT2tvhLQtaE90mdi623gYenGfNH2Sg_4T1H9S6j-RLdib3vNY9dr4UnprYqKk_u6eE45STCDmUC34Pb2MX0wog-jM5-MgIxG1hKY_Lfg7MW2zxP-fuPE98V2Yv-gPkuHx2b9N-MmCo5Ucxi2YLZ7GfhvBTGF2Sn99BTxf6KY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+and+Potential+of+Multi-Objective+Optimization+Algorithms+in+Decision-Making+for+LID+Facilities+Layout&rft.jtitle=Water+resources+management&rft.au=Xie%2C+Yuanyuan&rft.au=Wang%2C+Haiyan&rft.au=Wang%2C+Kaiyi&rft.au=Ge%2C+Xiaoyu&rft.date=2024-11-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=14&rft.spage=5403&rft.epage=5417&rft_id=info:doi/10.1007%2Fs11269-024-03926-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_024_03926_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |