The Application and Potential of Multi-Objective Optimization Algorithms in Decision-Making for LID Facilities Layout

Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID facilities is paramount to optimizing their efficacy within urban landscapes. This study conducts a comprehensive bibliometric analysis of LID-relate...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 38; no. 14; pp. 5403 - 5417
Main Authors Xie, Yuanyuan, Wang, Haiyan, Wang, Kaiyi, Ge, Xiaoyu, Ying, Xin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-024-03926-5

Cover

Abstract Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID facilities is paramount to optimizing their efficacy within urban landscapes. This study conducts a comprehensive bibliometric analysis of LID-related literature over the past decade, utilizing data visualization tools to elucidate key disciplines, publication trends, and the prevalence of various optimization algorithms. We delve into the application of multi-objective optimization (MOO) algorithms in LID facility layout, examining their practical applications, theoretical underpinnings, and case studies. The paper also scrutinizes the strengths and limitations of these algorithms, proposing future research trajectories that leverage MOO to enhance LID’s role in urban stormwater management.
AbstractList Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID facilities is paramount to optimizing their efficacy within urban landscapes. This study conducts a comprehensive bibliometric analysis of LID-related literature over the past decade, utilizing data visualization tools to elucidate key disciplines, publication trends, and the prevalence of various optimization algorithms. We delve into the application of multi-objective optimization (MOO) algorithms in LID facility layout, examining their practical applications, theoretical underpinnings, and case studies. The paper also scrutinizes the strengths and limitations of these algorithms, proposing future research trajectories that leverage MOO to enhance LID’s role in urban stormwater management.
Author Ying, Xin
Wang, Haiyan
Ge, Xiaoyu
Wang, Kaiyi
Xie, Yuanyuan
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Xie
  fullname: Xie, Yuanyuan
  organization: School of Information Science and Technology, Beijing Forestry University
– sequence: 2
  givenname: Haiyan
  surname: Wang
  fullname: Wang, Haiyan
  email: wanghaiyan2008@bjfu.edu.cn
  organization: School of Information Science and Technology, Beijing Forestry University
– sequence: 3
  givenname: Kaiyi
  surname: Wang
  fullname: Wang, Kaiyi
  organization: School of Information Science and Technology, Beijing Forestry University
– sequence: 4
  givenname: Xiaoyu
  surname: Ge
  fullname: Ge, Xiaoyu
  organization: School of Landscape Architecture, Beijing Forestry University
– sequence: 5
  givenname: Xin
  surname: Ying
  fullname: Ying, Xin
  organization: Beijing BLDJ Landscape Architecture Institute Co., LTD
BookMark eNp9kU1r3DAQhkVJoZu0f6AnQS-9qB192j4uSdMGNmwP6VnIsrzRViu5khxIf33duFDIIaeB4XmGl3nP0VlM0SH0nsInCtB8LpQy1RFgggDvmCLyFdpQ2XBClYQztIGOARGNoG_QeSlHgEXrYIPmu3uHt9MUvDXVp4hNHPD3VF2s3gScRnw7h-rJvj86W_2Dw_up-pP_vdLbcEjZ1_tTwT7iK2d9Wdbk1vz08YDHlPHu5gpfG-uDr94VvDOPaa5v0evRhOLe_ZsX6Mf1l7vLb2S3_3pzud0RyyWrRIwNDEMLbgRgRnY9E71qe8ktM4yN0joOAzNKNJyz1o7cyHYQYJmTVPTc8Av0cb075fRrdqXqky_WhWCiS3PRnEpBZcsbWNAPz9BjmnNc0i0UU0woRdVCtStlcyolu1FbX59eUbPxQVPQf_vQax966UM_9aHlorJn6pT9yeTHlyW-SmWB48Hl_6lesP4A_LmfVA
CitedBy_id crossref_primary_10_3390_w16172373
crossref_primary_10_3390_w17060840
crossref_primary_10_2166_wst_2025_030
Cites_doi 10.1016/j.jhydrol.2019.124091
10.11660/slfdxb.20210607
10.1007/s11042-020-10139-6
10.1016/j.resconrec.2023.106906
10.3390/w9070548
10.1007/s13201-023-01913-6
10.1109/ACCESS.2022.3142859
10.1061/(ASCE)WR.1943-5452.0000251
10.3390/w16070965
10.1016/j.scitotenv.2019.06.051
10.1021/acsestwater.1c00235
10.1016/j.jenvman.2022.114700
10.3390/w9060439
10.1016/j.scs.2021.102706
10.3390/app12178392
10.1016/j.scitotenv.2016.01.052
10.1016/j.jhydrol.2018.07.044
10.1016/j.jhydrol.2019.06.073
10.1016/j.jhydrol.2019.124266
10.1016/j.resconrec.2022.106861
10.1007/s11069-023-06226-0
10.19830/j.upi.2022.428
10.3390/ijerph18147586
10.1016/j.jenvman.2018.10.024
10.1057/palgrave.jors.2602068
10.3390/w15183319
10.2166/hydro.2019.033
10.13626/j.cnki.hs.2015.12.004
10.3390/w12020533
10.1155/2022/2281856
10.1007/s11269-023-03630-w
10.1016/j.watres.2022.118685
10.1080/02626667.2023.2248137
10.1016/j.watres.2022.119036
10.1109/ACCESS.2021.3070634
10.1515/geo-2017-0020
10.3390/w9100756
10.1016/j.ecolind.2023.109950
10.1016/j.ecoleng.2023.107147
10.1016/j.ufug.2021.127032
10.2166/wst.2021.283
10.1016/j.watres.2020.115597
10.3390/w13020125
10.1080/1573062X.2023.2211557
10.13671/j.hjkxxb.2021.0144
10.1016/j.ins.2018.10.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
DOI 10.1007/s11269-024-03926-5
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-1650
EndPage 5417
ExternalDocumentID 10_1007_s11269_024_03926_5
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-4f70dd80ef002a59b24b68b53c2a22f5ce30d2a6473328cf3a58d40c2e514b3a3
IEDL.DBID U2A
ISSN 0920-4741
IngestDate Tue Aug 05 10:10:31 EDT 2025
Fri Jul 25 18:56:56 EDT 2025
Wed Oct 01 01:10:55 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Fri Feb 21 02:36:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Algorithm Optimization
Multi-objective Optimization
Genetic Algorithms
Layout Decision
Low-impact Development
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-4f70dd80ef002a59b24b68b53c2a22f5ce30d2a6473328cf3a58d40c2e514b3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3126246616
PQPubID 54174
PageCount 15
ParticipantIDs proquest_miscellaneous_3154158370
proquest_journals_3126246616
crossref_citationtrail_10_1007_s11269_024_03926_5
crossref_primary_10_1007_s11269_024_03926_5
springer_journals_10_1007_s11269_024_03926_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LiFYanXFDuanHF.Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality201910.1007/s11269-019-02300-0
Li Q, Wang F, Yu Y et al (2019a) Comprehensive performance evaluation of LID practices for the sponge city construction: a case study in Guangxi, China[J].Journal of Environmental Management. 231 ISSN 0301–4797. https://doi.org/10.1016/j.jenvman.2018.10.024
ZhuZBuild residential low impact development of rainwater management measures analysis [J]J Residential Sci Technol20153512151910.13626/j.cnki.hs.2015.12.004
Tang SJ, Jiang JP et al (2021) Comprehensive optimization Framework for Low Impact Development Facility Layout Design with cost–benefit analysis: a Case Study in Shenzhen City. China[J].ACS ES&T Water. https://doi.org/10.1021/acsestwater.1c00235
Dang M (2020) Hai.Optimal Planning of Low-Impact Development for TSS Control in the Upper Area of the Cau Bay River Basin. Vietnam[J] Water 12(2). https://doi.org/10.3390/w12020533
VermaSPantMSnaselVA Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems202110.1109/ACCESS.2021.3070634
GhodsiSHZahmatkeshZGoharianEOptimal design of low Impact Development practices in response to Climate Change[J]J Hydrol201958012426610.1016/j.jhydrol.2019.124266
KullerMBachPMRobertsSA planning-support tool for spatial suitability assessment of green urban stormwater infrastructure[J]Sci Total Environ20196868568681:CAS:528:DC%2BC1MXht1ekt7vE10.1016/j.scitotenv.2019.06.051
Shafique M, Kim R (2017) Retrofitting the Low Impact Development Practices into developed urban areas including barriers and potential Solution[J].Open geosciences. 9(1):240–254. https://doi.org/10.1515/geo-2017-0020
Li HC, Sansalone J (2022) Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics[J].Water Research. 220:0043–1354. https://doi.org/10.1016/j.watres.2022.118685
Zhu YF, Xu CQ, Liu ZJ, Conservation, Recycling et al (2023) Volume 191, 106906, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2023.106906
Taghizadeh S, Khani S, Rajaee T, .Hybrid SWMM and particle swarm optimization model for urban runoff water quality[J].Urban Forestry & Urban Greening, 2021,60.DOI:https://doi.org/10.1016/j.ufug.2021.127032
Shami TM, El-Saleh AA Particle swarm optimization: a Comprehensive. Survey[J] IEEE Access, 10:10031–10061.https://doi.org/10.1109/ACCESS.2022.3142859
ThomJKSzotaCCouttsAMTranspiration by established trees could increase the efficiency of stormwater control measures[J]Water Res20201731155971:CAS:528:DC%2BB3cXjsVSrtLw%3D10.1016/j.watres.2020.115597
FengJYangYLiJOptimization of the low-Impact Development Facility Area based on a surrogate Model[J]Water Resour Manage202310.1007/s11269-023-03630-w
Hamedani AS, Lago CD, Giacomoni MH (2023) Exploring near-optimal locations for bioretention systems in catchment scale using many-objective evolutionary optimization[J]. Urban Water J 7/820. https://doi.org/10.1080/1573062X.2023.2211557
ChengDLWater Allocation optimization and Environmental Planning with simulated annealing Algorithms[J]Math Probl Eng202210.1155/2022/2281856
YiJHXingLNWangGGBehavior of crossover operators in NSGA-III for large-scale optimization problems[J]Inform Sciences: Int J202050947048710.1016/j.ins.2018.10.005
LiuGChenLShenZA fast and robust simulation-optimization methodology for stormwater quality management[J]J Hydrol20195765205271:CAS:528:DC%2BC1MXhtlamtrbP10.1016/j.jhydrol.2019.06.073
Zhang XY, Jia HF (2023) Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives[J].Resources, Conservation and Recycling, Volume 190, 106861, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2022.106861
César Ambrogi Ferreira do LagoInformationVFAHamedaniASSimulation and optimization framework for evaluating the robustness of low-impact development placement solutions under climate change in a small urban catchment[J]Hydrol Sci J202310.1080/02626667.2023.2248137
DwivedulaRMadhuriRRajuKSMultiobjective optimisation and cluster analysis in placement of best management practices in an urban flooding scenario[J]Water Sci Technol202110.2166/wst.2021.283
Li W, Chen ZJ, Li MC, Zhang H et al Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China[J].Ecological Indicators,2023,147.https://doi.org/10.1016/j.ecolind.2023.109950
Luo Y, Minghan LI (2016). Building Sponge City: examples of Landscape Architecture Curriculum on Stormwater Management in the UniteD States[J]. Landsc Archit Front, 4(2)
Luan Q, Fu X, Song C et al Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: a Case Study in China[J].Water 2017, 9, 439. https://doi.org/10.3390/w9060439
Chen QH, Zou CH, Huang CD et al (2019) Research on LID facilities optimization layout based on multi-objective particle swarm optimization Algorithm[J], vol 35. CHINA WATER & WASTEWATER, p 7. 19DOI:CNKI:SUN:GSPS.0.2019-19-028
GhodsiSHKerachianRZahmatkeshZ.A multi-stakeholder framework for urban runoff quality management: application of social choice and bargaining techniques[J]Sci Total Environ201610.1016/j.scitotenv.2016.01.052
Chen L, Long Y (2022). Spatial layout optimization of low-impact development facilities based on stormwater management model and NSGA-II algorithm: A case study of a residential cluster in Tongzhou, Beijing [J]. International urban planning, 37(06):42–48.https://doi.org/10.19830/j.upi.2022.428
Miao ZT, Sun KL Research on urban stormwater system planning model under the concept of low impact development [. J] Architectural J 2014(S 2):40–43. (in Chinese).CNKI:SUN:JZXB.0.2014-S2-009
Dong X, Yuan P, Song Y et al (2021) Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties[J].IJERPH, 18.https://doi.org/10.3390/ijerph18147586
Seo KW, Seo SB, Kim KM et al Genetic algorithm-based allocation of LID practices to mitigate urban flooding[J].Natural hazards 2024.https://doi.org/10.1007/s11069-023-06226-0
Raei E, Alizadeh MR, Nikoo MR, Adamowski J (2019) Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty[J]. J Hydrol 579. https://doi.org/10.1016/j.jhydrol.2019.124091
Swathi V, Raju KS, Varma MRR et al (2019) Automatic calibration of SWMM using NSGA-III and the effects of delineation scale on an urban catchment[J]. J Hydroinformatics 21(4). https://doi.org/10.2166/hydro.2019.033
Wang H, Zeng P, Liu Z et al Optimization of LID Strategies for Urban CSO reduction and cost efficiency: a Beijing Case Study[J].Water 2024, 16, 965. https://doi.org/10.3390/w16070965
LengLYXuCQJiaHFIncorporating receiving waters responses into the framework of spatial optimization of LID-BMPs in plain river network region[J]Water Res202210.1016/j.watres.2022.119036
Suman B, Kumar P A survey of simulated annealing as a tool for single and multiobjective optimization[J]. J Oper Res Soc 2006, 57(10):1143–1160.https://doi.org/10.1057/palgrave.jors.2602068
HuangJJXiaoMLiYThe optimization of low Impact Development placement considering life cycle cost using genetic Algorithm[J]J Environ Manage202230911470010.1016/j.jenvman.2022.114700
Beijing Hydrological StationAnalysis report of 23·7 regional heavy rainstorm flood in Beijing2023BeijingBeijing Hydrological Station
GebreSLCattrysseDOrshovenJV.Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic202110.3390/w13020125
HuangCLHsuNSLiuHJOptimization of low impact development layout designs for megacity flood mitigation[J]J Hydrol201856454255810.1016/j.jhydrol.2018.07.044
Adnan RM, Dai HL, Mostafa RR et al (2023) Application of novel binary optimized machine learning models for monthly streamflow prediction[J]. Appl Water Sci 13(5). https://doi.org/10.1007/s13201-023-01913-6
Dong XY, Zhang JH, Yuan P et al Low-impact development facilities Layout Method based on multi-objective Optimization[J]. Acta Sci Circum 2021, 41(07):2933–2941.https://doi.org/10.13671/j.hjkxxb.2021.0144
KatochSChauhanSS. A review on genetic algorithm: past, present, and future[J]Multimedia Tools Appl202010.1007/s11042-020-10139-6
Ren YZ, Zhang HY, Wang XH et al (2023) Optimized Design of Sponge-Type Comprehensive Pipe Corridor Rainwater Chamber Based on NSGA-III Algorithm[J].Water, DOI:110.3390/w15183319
ZhuZHChenXH.Evaluating the effects of Low Impact Development Practices on Urban Flooding underDifferent Rainfall Intensities[J] Water20179754810.3390/w9070548
YangFRChenLZhangYZReview on planning of stormwater system for low impact development [J]J Hydroelectric Power20214061710.11660/slfdxb.20210607
Cheng H, Kim S, Hyun JH (2024) .A multi-objective spatial optimization of wetland for Sponge City in the plain. China[J] Ecol Engineering: J Ecotechnology 198. https://doi.org/10.1016/j.ecoleng.2023.107147
Disaster Investigation Team of The State CouncilInvestigation Report of the July 20 heavy rain disaster in Zhengzhou, Henan Province2022BeijingMinistry of Emergency Management, PRC
SheLWeiMYouXY.Multi-objective Layout Optimization for Sponge City by Annealing Algorithm and Its Environmental Benefits Analysis[J]202110.1016/j.scs.2021.102706
DamodaramCZechmanEMSimulation-optimization Approach to Design Low Impact Development for Managing Peak Flow alterations in Urbanizing Watersheds[J]J Water Resour Plan Manag2013139329029810.1061/(ASCE)WR.1943-5452.0000251
Chen PY, Tung CP, Li YH (2017) .Low Impact Development Planning and Adaptation decision-making under Climate Change for a community against. Pluvial Flooding[J] Water 9(10). https://doi.org/10.3390/w9100756
Jain M, Saihjpal V (2022) An overview of variants and advancements of PSO Algorithm[J]. Appl Scineces-Basel 12(9). https://doi.org/10.3390/app12178392
CL Huang (3926_CR47) 2018; 564
3926_CR8
3926_CR6
3926_CR7
3926_CR4
DL Cheng (3926_CR49) 2022
ZH Zhu (3926_CR41) 2017; 9
3926_CR48
Z Zhu (3926_CR5) 2015; 35
L She (3926_CR46) 2021
3926_CR44
3926_CR45
3926_CR40
3926_CR42
3926_CR43
JK Thom (3926_CR3) 2020; 173
G Liu (3926_CR50) 2019; 576
S Katoch (3926_CR19) 2020
VFA Information (3926_CR28) 2023
F Li (3926_CR9) 2019
SH Ghodsi (3926_CR21) 2019; 580
Disaster Investigation Team of The State Council (3926_CR1) 2022
3926_CR39
SH Ghodsi (3926_CR30) 2016
3926_CR34
3926_CR35
3926_CR36
3926_CR31
3926_CR32
C Damodaram (3926_CR20) 2013; 139
R Dwivedula (3926_CR37) 2021
JJ Huang (3926_CR13) 2022; 309
Beijing Hydrological Station (3926_CR2) 2023
J Feng (3926_CR22) 2023
3926_CR26
3926_CR27
3926_CR29
3926_CR23
3926_CR25
M Kuller (3926_CR10) 2019; 686
LY Leng (3926_CR38) 2022
SL Gebre (3926_CR15) 2021
3926_CR16
S Verma (3926_CR24) 2021
3926_CR18
3926_CR11
3926_CR12
FR Yang (3926_CR17) 2021; 40
3926_CR14
3926_CR51
3926_CR52
JH Yi (3926_CR33) 2020; 509
References_xml – reference: GhodsiSHKerachianRZahmatkeshZ.A multi-stakeholder framework for urban runoff quality management: application of social choice and bargaining techniques[J]Sci Total Environ201610.1016/j.scitotenv.2016.01.052
– reference: HuangJJXiaoMLiYThe optimization of low Impact Development placement considering life cycle cost using genetic Algorithm[J]J Environ Manage202230911470010.1016/j.jenvman.2022.114700
– reference: KatochSChauhanSS. A review on genetic algorithm: past, present, and future[J]Multimedia Tools Appl202010.1007/s11042-020-10139-6
– reference: Li W, Chen ZJ, Li MC, Zhang H et al Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China[J].Ecological Indicators,2023,147.https://doi.org/10.1016/j.ecolind.2023.109950
– reference: YangFRChenLZhangYZReview on planning of stormwater system for low impact development [J]J Hydroelectric Power20214061710.11660/slfdxb.20210607
– reference: Suman B, Kumar P A survey of simulated annealing as a tool for single and multiobjective optimization[J]. J Oper Res Soc 2006, 57(10):1143–1160.https://doi.org/10.1057/palgrave.jors.2602068
– reference: Chen QH, Zou CH, Huang CD et al (2019) Research on LID facilities optimization layout based on multi-objective particle swarm optimization Algorithm[J], vol 35. CHINA WATER & WASTEWATER, p 7. 19DOI:CNKI:SUN:GSPS.0.2019-19-028
– reference: HuangCLHsuNSLiuHJOptimization of low impact development layout designs for megacity flood mitigation[J]J Hydrol201856454255810.1016/j.jhydrol.2018.07.044
– reference: DwivedulaRMadhuriRRajuKSMultiobjective optimisation and cluster analysis in placement of best management practices in an urban flooding scenario[J]Water Sci Technol202110.2166/wst.2021.283
– reference: GhodsiSHZahmatkeshZGoharianEOptimal design of low Impact Development practices in response to Climate Change[J]J Hydrol201958012426610.1016/j.jhydrol.2019.124266
– reference: Zhang XY, Jia HF (2023) Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives[J].Resources, Conservation and Recycling, Volume 190, 106861, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2022.106861
– reference: SheLWeiMYouXY.Multi-objective Layout Optimization for Sponge City by Annealing Algorithm and Its Environmental Benefits Analysis[J]202110.1016/j.scs.2021.102706
– reference: Seo KW, Seo SB, Kim KM et al Genetic algorithm-based allocation of LID practices to mitigate urban flooding[J].Natural hazards 2024.https://doi.org/10.1007/s11069-023-06226-0
– reference: GebreSLCattrysseDOrshovenJV.Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic202110.3390/w13020125
– reference: ThomJKSzotaCCouttsAMTranspiration by established trees could increase the efficiency of stormwater control measures[J]Water Res20201731155971:CAS:528:DC%2BB3cXjsVSrtLw%3D10.1016/j.watres.2020.115597
– reference: Luan Q, Fu X, Song C et al Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: a Case Study in China[J].Water 2017, 9, 439. https://doi.org/10.3390/w9060439
– reference: Dang M (2020) Hai.Optimal Planning of Low-Impact Development for TSS Control in the Upper Area of the Cau Bay River Basin. Vietnam[J] Water 12(2). https://doi.org/10.3390/w12020533
– reference: Dong X, Yuan P, Song Y et al (2021) Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties[J].IJERPH, 18.https://doi.org/10.3390/ijerph18147586
– reference: Ren YZ, Zhang HY, Wang XH et al (2023) Optimized Design of Sponge-Type Comprehensive Pipe Corridor Rainwater Chamber Based on NSGA-III Algorithm[J].Water, DOI:110.3390/w15183319
– reference: LiFYanXFDuanHF.Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality201910.1007/s11269-019-02300-0
– reference: Wang H, Zeng P, Liu Z et al Optimization of LID Strategies for Urban CSO reduction and cost efficiency: a Beijing Case Study[J].Water 2024, 16, 965. https://doi.org/10.3390/w16070965
– reference: Li HC, Sansalone J (2022) Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics[J].Water Research. 220:0043–1354. https://doi.org/10.1016/j.watres.2022.118685
– reference: Raei E, Alizadeh MR, Nikoo MR, Adamowski J (2019) Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty[J]. J Hydrol 579. https://doi.org/10.1016/j.jhydrol.2019.124091
– reference: VermaSPantMSnaselVA Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems202110.1109/ACCESS.2021.3070634
– reference: YiJHXingLNWangGGBehavior of crossover operators in NSGA-III for large-scale optimization problems[J]Inform Sciences: Int J202050947048710.1016/j.ins.2018.10.005
– reference: ZhuZBuild residential low impact development of rainwater management measures analysis [J]J Residential Sci Technol20153512151910.13626/j.cnki.hs.2015.12.004
– reference: Shami TM, El-Saleh AA Particle swarm optimization: a Comprehensive. Survey[J] IEEE Access, 10:10031–10061.https://doi.org/10.1109/ACCESS.2022.3142859
– reference: Jain M, Saihjpal V (2022) An overview of variants and advancements of PSO Algorithm[J]. Appl Scineces-Basel 12(9). https://doi.org/10.3390/app12178392
– reference: Swathi V, Raju KS, Varma MRR et al (2019) Automatic calibration of SWMM using NSGA-III and the effects of delineation scale on an urban catchment[J]. J Hydroinformatics 21(4). https://doi.org/10.2166/hydro.2019.033
– reference: Li Q, Wang F, Yu Y et al (2019a) Comprehensive performance evaluation of LID practices for the sponge city construction: a case study in Guangxi, China[J].Journal of Environmental Management. 231 ISSN 0301–4797. https://doi.org/10.1016/j.jenvman.2018.10.024
– reference: KullerMBachPMRobertsSA planning-support tool for spatial suitability assessment of green urban stormwater infrastructure[J]Sci Total Environ20196868568681:CAS:528:DC%2BC1MXht1ekt7vE10.1016/j.scitotenv.2019.06.051
– reference: Adnan RM, Dai HL, Mostafa RR et al (2023) Application of novel binary optimized machine learning models for monthly streamflow prediction[J]. Appl Water Sci 13(5). https://doi.org/10.1007/s13201-023-01913-6
– reference: Cheng H, Kim S, Hyun JH (2024) .A multi-objective spatial optimization of wetland for Sponge City in the plain. China[J] Ecol Engineering: J Ecotechnology 198. https://doi.org/10.1016/j.ecoleng.2023.107147
– reference: Miao ZT, Sun KL Research on urban stormwater system planning model under the concept of low impact development [. J] Architectural J 2014(S 2):40–43. (in Chinese).CNKI:SUN:JZXB.0.2014-S2-009
– reference: Beijing Hydrological StationAnalysis report of 23·7 regional heavy rainstorm flood in Beijing2023BeijingBeijing Hydrological Station
– reference: LiuGChenLShenZA fast and robust simulation-optimization methodology for stormwater quality management[J]J Hydrol20195765205271:CAS:528:DC%2BC1MXhtlamtrbP10.1016/j.jhydrol.2019.06.073
– reference: Taghizadeh S, Khani S, Rajaee T, .Hybrid SWMM and particle swarm optimization model for urban runoff water quality[J].Urban Forestry & Urban Greening, 2021,60.DOI:https://doi.org/10.1016/j.ufug.2021.127032
– reference: Dong XY, Zhang JH, Yuan P et al Low-impact development facilities Layout Method based on multi-objective Optimization[J]. Acta Sci Circum 2021, 41(07):2933–2941.https://doi.org/10.13671/j.hjkxxb.2021.0144
– reference: ZhuZHChenXH.Evaluating the effects of Low Impact Development Practices on Urban Flooding underDifferent Rainfall Intensities[J] Water20179754810.3390/w9070548
– reference: Tang SJ, Jiang JP et al (2021) Comprehensive optimization Framework for Low Impact Development Facility Layout Design with cost–benefit analysis: a Case Study in Shenzhen City. China[J].ACS ES&T Water. https://doi.org/10.1021/acsestwater.1c00235
– reference: Chen PY, Tung CP, Li YH (2017) .Low Impact Development Planning and Adaptation decision-making under Climate Change for a community against. Pluvial Flooding[J] Water 9(10). https://doi.org/10.3390/w9100756
– reference: LengLYXuCQJiaHFIncorporating receiving waters responses into the framework of spatial optimization of LID-BMPs in plain river network region[J]Water Res202210.1016/j.watres.2022.119036
– reference: Zhu YF, Xu CQ, Liu ZJ, Conservation, Recycling et al (2023) Volume 191, 106906, ISSN 0921–3449, https://doi.org/10.1016/j.resconrec.2023.106906
– reference: Disaster Investigation Team of The State CouncilInvestigation Report of the July 20 heavy rain disaster in Zhengzhou, Henan Province2022BeijingMinistry of Emergency Management, PRC
– reference: Shafique M, Kim R (2017) Retrofitting the Low Impact Development Practices into developed urban areas including barriers and potential Solution[J].Open geosciences. 9(1):240–254. https://doi.org/10.1515/geo-2017-0020
– reference: Luo Y, Minghan LI (2016). Building Sponge City: examples of Landscape Architecture Curriculum on Stormwater Management in the UniteD States[J]. Landsc Archit Front, 4(2)
– reference: Hamedani AS, Lago CD, Giacomoni MH (2023) Exploring near-optimal locations for bioretention systems in catchment scale using many-objective evolutionary optimization[J]. Urban Water J 7/820. https://doi.org/10.1080/1573062X.2023.2211557
– reference: César Ambrogi Ferreira do LagoInformationVFAHamedaniASSimulation and optimization framework for evaluating the robustness of low-impact development placement solutions under climate change in a small urban catchment[J]Hydrol Sci J202310.1080/02626667.2023.2248137
– reference: ChengDLWater Allocation optimization and Environmental Planning with simulated annealing Algorithms[J]Math Probl Eng202210.1155/2022/2281856
– reference: DamodaramCZechmanEMSimulation-optimization Approach to Design Low Impact Development for Managing Peak Flow alterations in Urbanizing Watersheds[J]J Water Resour Plan Manag2013139329029810.1061/(ASCE)WR.1943-5452.0000251
– reference: Chen L, Long Y (2022). Spatial layout optimization of low-impact development facilities based on stormwater management model and NSGA-II algorithm: A case study of a residential cluster in Tongzhou, Beijing [J]. International urban planning, 37(06):42–48.https://doi.org/10.19830/j.upi.2022.428
– reference: FengJYangYLiJOptimization of the low-Impact Development Facility Area based on a surrogate Model[J]Water Resour Manage202310.1007/s11269-023-03630-w
– ident: 3926_CR31
  doi: 10.1016/j.jhydrol.2019.124091
– volume: 40
  start-page: 17
  issue: 6
  year: 2021
  ident: 3926_CR17
  publication-title: J Hydroelectric Power
  doi: 10.11660/slfdxb.20210607
– year: 2020
  ident: 3926_CR19
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-10139-6
– ident: 3926_CR14
  doi: 10.1016/j.resconrec.2023.106906
– volume: 9
  start-page: 548
  issue: 7
  year: 2017
  ident: 3926_CR41
  publication-title: Different Rainfall Intensities[J] Water
  doi: 10.3390/w9070548
– ident: 3926_CR52
  doi: 10.1007/s13201-023-01913-6
– ident: 3926_CR40
  doi: 10.1109/ACCESS.2022.3142859
– volume: 139
  start-page: 290
  issue: 3
  year: 2013
  ident: 3926_CR20
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000251
– ident: 3926_CR27
  doi: 10.3390/w16070965
– volume: 686
  start-page: 856
  year: 2019
  ident: 3926_CR10
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.06.051
– ident: 3926_CR11
  doi: 10.1021/acsestwater.1c00235
– volume: 309
  start-page: 114700
  year: 2022
  ident: 3926_CR13
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2022.114700
– ident: 3926_CR7
  doi: 10.3390/w9060439
– year: 2021
  ident: 3926_CR46
  doi: 10.1016/j.scs.2021.102706
– ident: 3926_CR39
  doi: 10.3390/app12178392
– year: 2016
  ident: 3926_CR30
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.01.052
– ident: 3926_CR6
– volume: 564
  start-page: 542
  year: 2018
  ident: 3926_CR47
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.07.044
– volume: 576
  start-page: 520
  year: 2019
  ident: 3926_CR50
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.06.073
– volume: 580
  start-page: 124266
  year: 2019
  ident: 3926_CR21
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124266
– ident: 3926_CR18
  doi: 10.1016/j.resconrec.2022.106861
– ident: 3926_CR23
  doi: 10.1007/s11069-023-06226-0
– ident: 3926_CR12
  doi: 10.19830/j.upi.2022.428
– ident: 3926_CR43
– ident: 3926_CR32
  doi: 10.3390/ijerph18147586
– ident: 3926_CR8
  doi: 10.1016/j.jenvman.2018.10.024
– ident: 3926_CR45
  doi: 10.1057/palgrave.jors.2602068
– ident: 3926_CR34
  doi: 10.3390/w15183319
– ident: 3926_CR36
  doi: 10.2166/hydro.2019.033
– volume: 35
  start-page: 15
  issue: 12
  year: 2015
  ident: 3926_CR5
  publication-title: J Residential Sci Technol
  doi: 10.13626/j.cnki.hs.2015.12.004
– volume-title: Analysis report of 23·7 regional heavy rainstorm flood in Beijing
  year: 2023
  ident: 3926_CR2
– ident: 3926_CR25
  doi: 10.3390/w12020533
– year: 2022
  ident: 3926_CR49
  publication-title: Math Probl Eng
  doi: 10.1155/2022/2281856
– year: 2023
  ident: 3926_CR22
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-023-03630-w
– ident: 3926_CR51
  doi: 10.1016/j.watres.2022.118685
– year: 2019
  ident: 3926_CR9
– year: 2023
  ident: 3926_CR28
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2023.2248137
– year: 2022
  ident: 3926_CR38
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.119036
– year: 2021
  ident: 3926_CR24
  doi: 10.1109/ACCESS.2021.3070634
– ident: 3926_CR16
  doi: 10.1515/geo-2017-0020
– ident: 3926_CR48
  doi: 10.3390/w9100756
– ident: 3926_CR44
  doi: 10.1016/j.ecolind.2023.109950
– ident: 3926_CR4
– ident: 3926_CR29
  doi: 10.1016/j.ecoleng.2023.107147
– ident: 3926_CR42
  doi: 10.1016/j.ufug.2021.127032
– year: 2021
  ident: 3926_CR37
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2021.283
– volume: 173
  start-page: 115597
  year: 2020
  ident: 3926_CR3
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115597
– volume-title: Investigation Report of the July 20 heavy rain disaster in Zhengzhou, Henan Province
  year: 2022
  ident: 3926_CR1
– year: 2021
  ident: 3926_CR15
  doi: 10.3390/w13020125
– ident: 3926_CR35
  doi: 10.1080/1573062X.2023.2211557
– ident: 3926_CR26
  doi: 10.13671/j.hjkxxb.2021.0144
– volume: 509
  start-page: 470
  year: 2020
  ident: 3926_CR33
  publication-title: Inform Sciences: Int J
  doi: 10.1016/j.ins.2018.10.005
SSID ssj0010090
Score 2.456981
SecondaryResourceType review_article
Snippet Low-impact development (LID) practices are critical for mitigating urban stormwater runoff and alleviating flood risks. The strategic placement of LID...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5403
SubjectTerms Algorithms
Atmospheric Sciences
bibliometric analysis
Bibliometrics
Civil Engineering
Collaboration
Computer science
data visualization
Decision making
Earth and Environmental Science
Earth Sciences
Environment
Environmental risk
Facilities management
Floods
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Green infrastructure
Hydrogeology
Hydrology/Water Resources
Keywords
Landscape architecture
Legal documents
Linear programming
Multiple objective analysis
Optimization
Optimization algorithms
Planning
Plant layout
Runoff
Scientific visualization
Storm runoff
Stormwater
Stormwater management
Stormwater runoff
Trends
Urban environments
Urban runoff
Water management
Water quality
Water resources
Title The Application and Potential of Multi-Objective Optimization Algorithms in Decision-Making for LID Facilities Layout
URI https://link.springer.com/article/10.1007/s11269-024-03926-5
https://www.proquest.com/docview/3126246616
https://www.proquest.com/docview/3154158370
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuLAHBOyiLY_KSNwWS6lfTY8BWt4Poa3EniLbcXgIEkTTA_-ecZo0gFgkTjlk7Egz9sw3mRfAtgyVdF1mKbo_kgqnFA1V0qGyk7CAp05PksfPztXhUBxfy-uqKGxUZ7vXIclSUzfFbh2mehRtCg3QqCsqZ2Fe-nZeeIqHLJrGDhA1lH9WeugYCTSYVanM53u8N0cNxvwQFi2tzWAJFiuYSKKJXJdhxmUr8ONN88CfMEYJk6iJPxOdJeQyL3z6Dy7NU1IW19ILcz9RauQC1cNjVXdJooeb_PmuuH0ckbuM7FejduhZOZ2KIJQlp0f7ZKCtT55Fd5qc6pd8XPyC4aD_d--QVkMUqEVsVVCRdoMkCQOXou7TsmeYMCo0klumGUuldTxImFaiyzkLbcq1DBMRWOZQSoZrvgpzWZ6530AQXHnvyjiZpMIq0ROSG63Rh9bOCGlb0Kl5Gduqw7gfdPEQN72RPf9j5H9c8j-WLfgzXfM06a_xJfVGLaK4umujmCMVE4gzVAu2pq_xlvjQh85cPvY0EpGKb_TTgp1atM0W___i2vfI12GB-dNVFituwFzxPHabiFoK04bZcHDQhvno4N9JH5-7_fPLq3Z5dF8Bw-nlkg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7gAcgA0mCmN40m7gKfVX02PF1nWs3Tis0jhFtuPAYEvQmhzgr-c5cRqY2KSd8-wkfvZ7v-f3BbArYyXdkFmK5o-kwilFY5UOqBykLOKZ003w-PxETRfi07k8D0lhyzbavXVJ1pK6S3YbMDWiqFNohEpdUfkQ1gQaKKwHa-PDL8cHK-8B4ob6bmWEppFAlRmSZf4_y78KqUOZNxyjtb6ZPINF-6VNmMmPvao0e_b3jSKO9_2V5_A0AFAybnbMOjxw-QY8-ass4QuocO-QcefZJjpPyeei9IFFOLTISJ22S0_N90ZcklMUPFcho5OML78W1xflt6slucjJfmjiQ-d13yuCIJnMjvbJRFsflouGOpnpX0VVvoTF5ODs45SG9gzUImorqciGUZrGkctQqmo5MkwYFRvJLdOMZdI6HqVMKzHknMU241rGqYgsc8h_wzXfhF5e5O4VEIRt3m4zTqaZsEqMhORGa7TOtTNC2j4MWh4lNtQu9y00LpOu6rJf0gSXNKmXNJF9eL8a87Op3HEn9VbL-iSc4mXCkYoJRDCqDzurx3j-vFNF566oPI1EDORLCPXhQ8vtborb3_j6fuTv4NH0bD5LZkcnx2_gMfObp06J3IJeeV25t4iNSrMdjsIfZiUBcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-NADLZYkNByQLCAKM9ZaW_siHReTY8VpQK2PA5U4hbNKzwECYL0wL_Hk6QNIBaJc5yJYjvjz_F8NsAfGSvpO8xSTH8kFV4pGivXprLtWMRTr6vD46dn6mgkTq7k1RsWf3nafVKSrDgNoUtTVuw_unS_Ib61mepSjC80wgCvqPwBcyI0SkCPHrHetI6ACKL8y9LFJElg8KxpM5-v8T40NXjzQ4m0jDyDJVisISPpVTZehhmf_YKFN40EV2CM1ia9phZNdObIRR7eCP2L5Ckpibb03NxVGxw5x63ioeZgkt79df50W9w8PJPbjPTrsTv0tJxURRDWkuFxnwy0DQdpMbUmQ_2Sj4tVGA0OLw-OaD1QgVrEWQUVaSdyLo58ivugll3DhFGxkdwyzVgqreeRY1qJDucstinXMnYissyjxQzXfA1mszzz60AQaIVMy3jpUmGV6ArJjdaYT2tvhLQtaE90mdi623gYenGfNH2Sg_4T1H9S6j-RLdib3vNY9dr4UnprYqKk_u6eE45STCDmUC34Pb2MX0wog-jM5-MgIxG1hKY_Lfg7MW2zxP-fuPE98V2Yv-gPkuHx2b9N-MmCo5Ucxi2YLZ7GfhvBTGF2Sn99BTxf6KY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+and+Potential+of+Multi-Objective+Optimization+Algorithms+in+Decision-Making+for+LID+Facilities+Layout&rft.jtitle=Water+resources+management&rft.au=Xie%2C+Yuanyuan&rft.au=Wang%2C+Haiyan&rft.au=Wang%2C+Kaiyi&rft.au=Ge%2C+Xiaoyu&rft.date=2024-11-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=14&rft.spage=5403&rft.epage=5417&rft_id=info:doi/10.1007%2Fs11269-024-03926-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_024_03926_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon