The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films
This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time...
Saved in:
Published in | Nanoscale Vol. 4; no. 6; p. 1996 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.03.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/c2nr30126a |
Cover
Abstract | This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. |
---|---|
AbstractList | This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. |
Author | Bergin, Stephen M. Charbonneau, Patrick Wiley, Benjamin J. Rathmell, Aaron R. Chen, Yu-Hui Li, Zhi-Yuan |
Author_xml | – sequence: 1 givenname: Stephen M. surname: Bergin fullname: Bergin, Stephen M. – sequence: 2 givenname: Yu-Hui surname: Chen fullname: Chen, Yu-Hui – sequence: 3 givenname: Aaron R. surname: Rathmell fullname: Rathmell, Aaron R. – sequence: 4 givenname: Patrick surname: Charbonneau fullname: Charbonneau, Patrick – sequence: 5 givenname: Zhi-Yuan surname: Li fullname: Li, Zhi-Yuan – sequence: 6 givenname: Benjamin J. surname: Wiley fullname: Wiley, Benjamin J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22349106$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LxDAQhoMo7vpx8QdIboJYnSZtujmK-AWCl_VcsslkN9ImNcki_nsrqy6Ip5nD87zMvAdk1wePhJyUcFkCl1ea-cihZELtkCmDCgrOG7b7u4tqQg5SegUQkgu-TyaM8UqWIKbEzldI0VrUmQZLvfLh3UWkHfplXlHlDTVO9Zgx0uBpHukhhgFjdpi-jByVT4OK6PMF1cGbtc7OL7dJ1nV9OiJ7VnUJj7_nIXm5u53fPBRPz_ePN9dPheY1y0UlRKNBGGGUsQ2TjZSmXoBclBwMYs1EVSldQqPsgms2A7A151JImAFnjeGH5GyTOx75tsaU294ljV2nPIZ1aiUTNTSy4SN5-k2uFz2adoiuV_Gj_almBGAD6BhSimhb7bLKLvjxZde1JbRf7bfb9kfl_I_yk_oP_AlmpoWU |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_9b07163 crossref_primary_10_1039_C9NR04193A crossref_primary_10_1038_s41528_017_0018_5 crossref_primary_10_3390_nano10061139 crossref_primary_10_1021_acsami_1c19433 crossref_primary_10_1039_C5RA25474D crossref_primary_10_1039_C7RA13683H crossref_primary_10_1002_smll_201303005 crossref_primary_10_1088_0957_4484_27_33_335203 crossref_primary_10_1002_smll_201703140 crossref_primary_10_1002_adfm_201303108 crossref_primary_10_3390_nano6030047 crossref_primary_10_1109_JSEN_2015_2490081 crossref_primary_10_1007_s11082_023_04664_5 crossref_primary_10_1039_C7CS00192D crossref_primary_10_1002_ange_201306585 crossref_primary_10_1021_cm502827b crossref_primary_10_1088_1757_899X_454_1_012090 crossref_primary_10_1007_s11814_020_0519_0 crossref_primary_10_1039_C6NR06276H crossref_primary_10_1016_j_tsf_2021_138679 crossref_primary_10_1021_acsanm_4c02614 crossref_primary_10_1038_s41598_019_47777_2 crossref_primary_10_1063_5_0036882 crossref_primary_10_1016_j_mattod_2020_08_017 crossref_primary_10_1021_acsami_9b17168 crossref_primary_10_1039_C6TC05455B crossref_primary_10_1103_PhysRevE_103_012126 crossref_primary_10_1039_C8CE00357B crossref_primary_10_1002_ange_202005827 crossref_primary_10_1021_acsami_7b07146 crossref_primary_10_1021_acs_jpcc_2c01251 crossref_primary_10_1039_C6CE02075E crossref_primary_10_1021_acsnano_4c02171 crossref_primary_10_1039_C5NR03671B crossref_primary_10_1016_j_apsusc_2021_149362 crossref_primary_10_1002_admt_202200027 crossref_primary_10_1016_j_compositesa_2020_105960 crossref_primary_10_1016_j_cap_2015_10_005 crossref_primary_10_1021_nn406672n crossref_primary_10_1016_j_matlet_2015_03_111 crossref_primary_10_1117_1_JPE_4_040990 crossref_primary_10_1088_1361_6528_abf8df crossref_primary_10_1002_biot_202000311 crossref_primary_10_1039_C7CY02402A crossref_primary_10_1002_adfm_201705409 crossref_primary_10_1002_adom_201700829 crossref_primary_10_1021_acsnano_6b04506 crossref_primary_10_1007_s11664_016_4395_7 crossref_primary_10_1039_D4TA03027C crossref_primary_10_1021_acsnano_5b05469 crossref_primary_10_1007_s10854_018_0027_8 crossref_primary_10_1021_acs_jpcc_7b00148 crossref_primary_10_1021_jacs_0c01859 crossref_primary_10_1088_1361_6528_acf2a2 crossref_primary_10_1021_acs_iecr_9b04539 crossref_primary_10_1007_s11426_020_9769_7 crossref_primary_10_1149_2_0131411jss crossref_primary_10_3390_nano11112785 crossref_primary_10_1002_adfm_201500677 crossref_primary_10_1021_nn4065567 crossref_primary_10_1039_D2NR06762E crossref_primary_10_1039_C7TC01002H crossref_primary_10_1039_D1RA00427A crossref_primary_10_1021_acsanm_4c00625 crossref_primary_10_1360_SSC_2022_0126 crossref_primary_10_1039_C7SM01329A crossref_primary_10_1039_C9CP00680J crossref_primary_10_1039_c4nr01024h crossref_primary_10_1016_j_apsusc_2017_01_152 crossref_primary_10_1021_acsami_4c00682 crossref_primary_10_1021_acsami_8b17644 crossref_primary_10_1016_j_carbon_2017_09_040 crossref_primary_10_1007_s11664_022_09564_0 crossref_primary_10_1088_0957_4484_25_49_495601 crossref_primary_10_4028_www_scientific_net_KEM_766_217 crossref_primary_10_1088_2053_1591_ac8787 crossref_primary_10_1016_j_actamat_2014_09_042 crossref_primary_10_1088_2399_1984_ac8388 crossref_primary_10_1088_1361_6528_ab94de crossref_primary_10_1002_cnma_201600337 crossref_primary_10_1021_acsami_7b00342 crossref_primary_10_1021_acsomega_8b01320 crossref_primary_10_1039_C8NR09236B crossref_primary_10_1039_C8TC00114F crossref_primary_10_1016_j_cej_2022_134598 crossref_primary_10_1007_s11664_023_10417_7 crossref_primary_10_1016_j_mtcomm_2022_104433 crossref_primary_10_1016_j_colsurfa_2022_130804 crossref_primary_10_1016_j_apsusc_2022_155236 crossref_primary_10_1016_j_colsurfa_2022_130806 crossref_primary_10_1039_D4NA00214H crossref_primary_10_1039_D4NR03525A crossref_primary_10_1016_j_nanoso_2017_08_016 crossref_primary_10_1088_1361_6528_ab93ef crossref_primary_10_1002_slct_201900298 crossref_primary_10_1155_2019_8646385 crossref_primary_10_1002_admt_202300602 crossref_primary_10_1016_j_mtener_2019_05_007 crossref_primary_10_1021_acs_macromol_3c00393 crossref_primary_10_1039_C6RA16108A crossref_primary_10_1088_1361_6439_aa73c7 crossref_primary_10_1039_C2NR32221H crossref_primary_10_1038_s41598_018_20978_x crossref_primary_10_1007_s11664_023_10693_3 crossref_primary_10_1186_s11671_015_0748_z crossref_primary_10_1002_advs_202302858 crossref_primary_10_1016_j_mattod_2014_08_018 crossref_primary_10_1063_1_5141162 crossref_primary_10_1002_lpor_201500271 crossref_primary_10_3390_nano9020220 crossref_primary_10_1016_j_materresbull_2014_01_022 crossref_primary_10_1039_D1TC04864C crossref_primary_10_1021_nn305491x crossref_primary_10_1109_JSEN_2018_2798599 crossref_primary_10_1021_acsami_1c02046 crossref_primary_10_1039_C4RA11660G crossref_primary_10_1063_1_4818498 crossref_primary_10_1016_j_tsf_2020_138096 crossref_primary_10_1039_C6NR04972A crossref_primary_10_2139_ssrn_4159238 crossref_primary_10_1021_acs_cgd_7b01300 crossref_primary_10_1016_j_orgel_2015_08_008 crossref_primary_10_1007_s12274_016_1105_y crossref_primary_10_1021_acs_jpclett_0c00653 crossref_primary_10_1021_nl4000739 crossref_primary_10_3390_nano9060904 crossref_primary_10_1073_pnas_1820041116 crossref_primary_10_1016_j_nanoms_2024_09_003 crossref_primary_10_1103_PhysRevE_88_032134 crossref_primary_10_1039_C7RA00238F crossref_primary_10_1016_j_jiec_2018_01_039 crossref_primary_10_1016_j_scib_2016_11_009 crossref_primary_10_1002_anie_201306585 crossref_primary_10_1021_acsomega_2c07164 crossref_primary_10_1364_OME_5_000314 crossref_primary_10_1016_j_colsurfa_2020_125809 crossref_primary_10_1016_j_mseb_2023_116396 crossref_primary_10_1002_solr_202000328 crossref_primary_10_1088_0957_4484_24_12_125202 crossref_primary_10_1016_j_optmat_2023_113591 crossref_primary_10_1134_S0036023624601697 crossref_primary_10_3390_nano8030161 crossref_primary_10_1016_j_colcom_2022_100663 crossref_primary_10_1088_2053_1591_ab0dc5 crossref_primary_10_3390_ijms20112803 crossref_primary_10_1021_acs_chemmater_5b03709 crossref_primary_10_1016_j_cocis_2014_03_013 crossref_primary_10_1002_admt_201900413 crossref_primary_10_1038_srep34629 crossref_primary_10_1039_C8RA02726A crossref_primary_10_1039_D2NR02475F crossref_primary_10_1039_C8EN00890F crossref_primary_10_1002_adfm_202306079 crossref_primary_10_1039_C5NR06851G crossref_primary_10_3390_ma10060570 crossref_primary_10_1016_j_orgel_2018_11_002 crossref_primary_10_1007_s10854_016_6188_4 crossref_primary_10_1088_2053_1591_3_7_075007 crossref_primary_10_3390_nano8040192 crossref_primary_10_1186_s11671_017_1963_6 crossref_primary_10_1088_2053_1591_ab17a4 crossref_primary_10_1016_j_eml_2016_04_011 crossref_primary_10_1016_j_snb_2017_10_056 crossref_primary_10_31857_S0044457X24080122 crossref_primary_10_1021_acsanm_4c02096 crossref_primary_10_1039_D1NJ04633K crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1080_00018732_2016_1226804 crossref_primary_10_1021_acsami_7b11740 crossref_primary_10_3762_bjnano_12_51 crossref_primary_10_1039_C6TC05000J crossref_primary_10_1021_acsami_0c16542 crossref_primary_10_1021_nl301045a crossref_primary_10_1134_S0036023624601685 crossref_primary_10_1002_smll_201503726 crossref_primary_10_1002_aisy_202100061 crossref_primary_10_1021_acs_jpcc_9b00339 crossref_primary_10_1016_j_jpowsour_2018_04_065 crossref_primary_10_1039_C9TC04744A crossref_primary_10_1039_C6NR03960J crossref_primary_10_1039_C6FD00017G crossref_primary_10_1039_C4CP02367F crossref_primary_10_1007_s12274_021_4042_3 crossref_primary_10_1016_j_solmat_2019_110106 crossref_primary_10_1016_j_mattod_2019_08_004 crossref_primary_10_1039_C4TA05728G crossref_primary_10_3390_en9060443 crossref_primary_10_1016_j_addma_2021_102473 crossref_primary_10_1039_C6CP05187A crossref_primary_10_1002_adfm_202401466 crossref_primary_10_1039_D1TC05815K crossref_primary_10_1039_c3ta13204h crossref_primary_10_1021_am5067095 crossref_primary_10_1039_C5NR00154D crossref_primary_10_1039_C5TA02942B crossref_primary_10_1016_j_jallcom_2015_09_279 crossref_primary_10_1177_1847980416663672 crossref_primary_10_1021_acs_langmuir_4c01631 crossref_primary_10_1007_s11051_021_05239_9 crossref_primary_10_1039_C5RA20097K crossref_primary_10_1016_j_tsf_2014_02_002 crossref_primary_10_1002_adfm_201505019 crossref_primary_10_1002_aelm_202100588 crossref_primary_10_1016_j_jallcom_2019_06_257 crossref_primary_10_1016_j_jallcom_2019_06_258 crossref_primary_10_1038_s41598_019_42841_3 crossref_primary_10_1088_1361_6528_ad8166 crossref_primary_10_1021_acscentsci_9b01142 crossref_primary_10_1039_C4TA00502C crossref_primary_10_3762_bjnano_12_9 crossref_primary_10_1088_1674_1056_26_2_025207 crossref_primary_10_1002_crat_201400473 crossref_primary_10_1021_acsanm_3c04816 crossref_primary_10_1021_acsami_7b04314 crossref_primary_10_1021_acsanm_2c05151 crossref_primary_10_1016_j_mseb_2017_05_002 crossref_primary_10_1021_nn504969z crossref_primary_10_1088_1361_6528_ac9c09 crossref_primary_10_1002_adfm_201503342 crossref_primary_10_1016_j_matdes_2018_07_048 crossref_primary_10_1039_C4CS00136B crossref_primary_10_1088_0957_4484_26_26_265201 crossref_primary_10_1088_1674_4926_39_1_011002 crossref_primary_10_1021_acsnano_8b05406 crossref_primary_10_1088_1361_6528_ab7b07 crossref_primary_10_1002_aisy_202000093 crossref_primary_10_1039_C6TA03308C crossref_primary_10_1016_j_apmt_2020_100634 crossref_primary_10_1039_C6RA26595B crossref_primary_10_1364_OME_9_002582 crossref_primary_10_1155_2014_193201 crossref_primary_10_35848_1347_4065_abd114 crossref_primary_10_1088_1674_4926_37_10_102001 crossref_primary_10_4313_TEEM_2016_17_1_33 crossref_primary_10_1063_1_5045176 crossref_primary_10_1080_10408436_2024_2379246 crossref_primary_10_1039_C5NR02611C crossref_primary_10_1016_j_apsusc_2018_10_092 crossref_primary_10_1088_0957_0233_26_12_125601 crossref_primary_10_1063_1_4789795 crossref_primary_10_4150_KPMI_2017_24_2_153 crossref_primary_10_1016_j_jiec_2020_12_010 crossref_primary_10_1002_adfm_201300413 crossref_primary_10_3390_mi10010029 crossref_primary_10_1016_j_jmst_2014_11_020 crossref_primary_10_1021_acsaelm_1c01258 crossref_primary_10_1088_2053_1591_1_3_035008 crossref_primary_10_1002_adma_201902743 crossref_primary_10_1002_sdtp_10660 crossref_primary_10_1016_j_compositesa_2024_108317 crossref_primary_10_1088_0957_4484_27_46_465706 crossref_primary_10_1039_C8RA01569D crossref_primary_10_1016_j_jmst_2015_12_009 crossref_primary_10_1016_j_jmrt_2024_01_197 crossref_primary_10_1088_0957_4484_26_34_345301 crossref_primary_10_1080_17435390_2019_1571645 crossref_primary_10_3390_ma12030401 crossref_primary_10_3390_mi10010022 crossref_primary_10_1002_adts_201700011 crossref_primary_10_1016_j_jallcom_2017_08_008 crossref_primary_10_1021_acs_chemmater_1c02474 crossref_primary_10_1038_s41598_018_35456_7 crossref_primary_10_1063_1_4985792 crossref_primary_10_1039_c3nr05607d crossref_primary_10_1109_TCPMT_2016_2581829 crossref_primary_10_1021_acsnano_5b03601 crossref_primary_10_1021_acs_chemmater_8b00760 crossref_primary_10_3390_pr12071487 crossref_primary_10_7567_JJAP_56_095002 crossref_primary_10_1021_acsami_9b04425 crossref_primary_10_1007_s10853_018_03235_4 crossref_primary_10_1088_0957_4484_24_33_335202 crossref_primary_10_1021_nn405941m crossref_primary_10_1039_C5RA08841K crossref_primary_10_1088_1361_6528_abce7a crossref_primary_10_1021_acsami_7b13085 crossref_primary_10_1063_1_4918986 crossref_primary_10_1016_j_matchemphys_2023_128335 crossref_primary_10_1021_acs_cgd_5b01289 crossref_primary_10_1039_C7TC05038K crossref_primary_10_1039_C8TA11435H crossref_primary_10_1002_adma_201902684 crossref_primary_10_1016_j_orgel_2017_01_043 crossref_primary_10_1039_C5RA27812K crossref_primary_10_1002_ppsc_201700385 crossref_primary_10_1021_acs_nanolett_5b02582 crossref_primary_10_1039_C6RA27760H crossref_primary_10_1088_1361_6528_ab2aad crossref_primary_10_1039_C5NR05138J crossref_primary_10_1016_j_matlet_2017_10_128 crossref_primary_10_1007_s40072_015_0068_4 crossref_primary_10_3390_mi14091702 crossref_primary_10_1088_1361_6528_ad07a1 crossref_primary_10_1088_2058_8585_1_3_035003 crossref_primary_10_1038_s41598_024_70789_6 crossref_primary_10_1109_JSEN_2020_3008159 crossref_primary_10_1002_admt_201900194 crossref_primary_10_1016_j_eml_2016_02_014 crossref_primary_10_1039_C9TC06865A crossref_primary_10_1007_s12274_014_0510_3 crossref_primary_10_1002_sdtp_10221 crossref_primary_10_1039_C5NR04084A crossref_primary_10_1038_srep12499 crossref_primary_10_1002_mame_202400017 crossref_primary_10_3390_nano13212865 crossref_primary_10_1002_aenm_201602751 crossref_primary_10_1088_1361_6528_ab6fe4 crossref_primary_10_1016_j_colsurfa_2018_11_050 crossref_primary_10_1021_acsami_6b02333 crossref_primary_10_1039_D0NA00392A crossref_primary_10_1039_C9TC06091J crossref_primary_10_1021_acsomega_2c05204 crossref_primary_10_1088_2053_1591_aacd3e crossref_primary_10_1364_PRJ_430172 crossref_primary_10_1002_anie_202005827 crossref_primary_10_1021_nn5038515 crossref_primary_10_1088_1361_6528_28_5_055709 crossref_primary_10_1021_nn504308n crossref_primary_10_1002_smll_201904415 crossref_primary_10_7736_KSPE_2018_35_5_545 crossref_primary_10_1016_j_mtchem_2017_02_001 crossref_primary_10_1021_acs_langmuir_8b00344 crossref_primary_10_1039_C5CP04582G crossref_primary_10_1038_srep22963 crossref_primary_10_1002_adma_201900756 crossref_primary_10_1063_1_4812390 crossref_primary_10_1016_j_supflu_2020_104915 crossref_primary_10_1088_0957_4484_27_29_295201 crossref_primary_10_1016_j_apmt_2020_100909 crossref_primary_10_1016_j_jmapro_2022_08_003 crossref_primary_10_1088_2058_8585_ad6457 crossref_primary_10_1039_D2CP00936F crossref_primary_10_3390_ma16155501 crossref_primary_10_3390_mi8010012 crossref_primary_10_1515_psr_2017_0084 crossref_primary_10_3740_MRSK_2024_34_11_545 crossref_primary_10_1038_srep34289 crossref_primary_10_3390_nano11030693 crossref_primary_10_1039_C6TC03563A crossref_primary_10_5188_ijsmer_25_28 crossref_primary_10_1007_s40820_021_00786_1 crossref_primary_10_1039_C8RA08810A crossref_primary_10_3365_KJMM_2024_62_6_464 crossref_primary_10_1049_mna2_12151 crossref_primary_10_1016_j_colsurfa_2019_123939 crossref_primary_10_1016_j_mattod_2020_06_005 crossref_primary_10_1021_acs_iecr_4c03890 crossref_primary_10_1021_acsami_7b14626 crossref_primary_10_1002_jsid_430 crossref_primary_10_1039_D2NR06687D crossref_primary_10_1021_acsami_6b16840 crossref_primary_10_1103_PhysRevE_105_044129 crossref_primary_10_1039_C5RA00320B crossref_primary_10_3390_app8050673 crossref_primary_10_1016_j_ensm_2019_04_042 crossref_primary_10_1109_JDT_2015_2432836 crossref_primary_10_1088_1361_6528_aba4ce crossref_primary_10_1007_s10854_019_00996_9 crossref_primary_10_1088_1361_6528_acf474 crossref_primary_10_1007_s00339_024_07853_5 crossref_primary_10_1002_adma_201402710 crossref_primary_10_4028_www_scientific_net_AMR_1043_109 crossref_primary_10_1063_1_5051390 crossref_primary_10_1039_C3CC48561G crossref_primary_10_1016_j_solmat_2024_113289 crossref_primary_10_1002_smll_202412741 crossref_primary_10_1016_j_matlet_2013_04_114 crossref_primary_10_1186_s11671_018_2486_5 crossref_primary_10_1016_j_mattod_2024_01_006 crossref_primary_10_1007_s11664_017_5467_z crossref_primary_10_1002_aenm_201300737 crossref_primary_10_1063_1_4939280 crossref_primary_10_1007_s12274_013_0391_x crossref_primary_10_3390_nano10020237 crossref_primary_10_1038_am_2014_36 crossref_primary_10_1063_5_0050049 crossref_primary_10_5104_jiep_19_228 crossref_primary_10_1002_adma_201302377 crossref_primary_10_7567_JJAP_54_081101 crossref_primary_10_1021_acsnano_6b03806 crossref_primary_10_1039_C4GC01566E crossref_primary_10_1021_acsami_1c00629 crossref_primary_10_1103_PhysRevB_86_134202 crossref_primary_10_1149_2_0201901jss crossref_primary_10_1002_smll_202106006 crossref_primary_10_1039_C4CC04698F crossref_primary_10_1007_s11998_015_9690_3 crossref_primary_10_1016_j_matchemphys_2016_09_052 crossref_primary_10_1007_s10854_022_09454_5 crossref_primary_10_1021_nn403324t crossref_primary_10_1021_acsanm_3c05847 crossref_primary_10_1088_2053_1591_2_7_075009 crossref_primary_10_1021_acsami_6b12289 crossref_primary_10_1021_acsami_6b13255 crossref_primary_10_1021_acs_chemrev_8b00745 crossref_primary_10_1021_acsnano_7b01714 crossref_primary_10_1021_am302011u crossref_primary_10_1007_s11051_023_05889_x crossref_primary_10_1039_C9RA04404C crossref_primary_10_1186_s11671_021_03549_4 |
Cites_doi | 10.1002/adma.201100871 10.1021/nl073296g 10.1088/0957-4484/21/21/215707 10.1557/mrs.2011.236 10.1021/nl034312m 10.1016/j.cpc.2009.11.008 10.1002/adma.201003188 10.1557/mrs.2011.232 10.1063/1.2356999 10.1021/nn900348c 10.1557/mrs.2011.212 10.1021/nn900758e 10.1103/PhysRevE.81.021120 10.1038/nmat2459 10.1021/nl800910d 10.1038/nmat2834 10.1103/PhysRevE.80.040104 10.1002/adma.201000775 10.1002/adma.201000236 10.1021/nl052406l 10.1021/nl048435y 10.1557/mrs.2011.235 10.1039/b417803n 10.1103/PhysRevB.10.1421 10.1557/mrs.2011.213 10.1021/nn1005232 10.1021/ar7000974 10.1021/nl903281v 10.1557/mrs.2011.234 10.1021/la050887i 10.1126/science.1182383 10.1021/nn1025803 10.1103/PhysRevB.6.4370 10.1088/0305-4608/12/6/017 10.1557/mrs2000.151 10.1002/adma.201001811 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2012 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1039/c2nr30126a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
ExternalDocumentID | 22349106 10_1039_c2nr30126a |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE CGR CUY CVF ECM EIF NPM RRC 7X8 |
ID | FETCH-LOGICAL-c352t-4667c06d6dadf729799d5b09b130dee52644ac107afb3c2800f533969080327d3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Sat Sep 27 18:35:10 EDT 2025 Wed Feb 19 01:55:14 EST 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 02:44:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This journal is © The Royal Society of Chemistry 2012 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-4667c06d6dadf729799d5b09b130dee52644ac107afb3c2800f533969080327d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22349106 |
PQID | 926507973 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_926507973 pubmed_primary_22349106 crossref_citationtrail_10_1039_c2nr30126a crossref_primary_10_1039_c2nr30126a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-21 |
PublicationDateYYYYMMDD | 2012-03-21 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2012 |
References | Niu (c2nr30126a-(cit12)/*[position()=1]) 2011; 36 Zeng (c2nr30126a-(cit6)/*[position()=1]) 2010; 22 Johnson (c2nr30126a-(cit35)/*[position()=1]) 1972; 6 Kirchmeyer (c2nr30126a-(cit15)/*[position()=1]) 2005; 15 Hu (c2nr30126a-(cit11)/*[position()=1]) 2011; 36 Mannsfeld (c2nr30126a-(cit9)/*[position()=1]) 2010; 9 Unalan (c2nr30126a-(cit31)/*[position()=1]) 2006; 6 Lu (c2nr30126a-(cit36)/*[position()=1]) 2010; 21 Woerle (c2nr30126a-(cit39)/*[position()=1]) 2011; 36 Lee (c2nr30126a-(cit4)/*[position()=1]) 2008; 8 Hecht (c2nr30126a-(cit10)/*[position()=1]) 2011; 23 Wiley (c2nr30126a-(cit24)/*[position()=1]) 2007; 40 De (c2nr30126a-(cit28)/*[position()=1]) 2011; 36 Hu (c2nr30126a-(cit18)/*[position()=1]) 2010; 4 Skrabalak (c2nr30126a-(cit22)/*[position()=1]) 2008; 8 Oskooi (c2nr30126a-(cit34)/*[position()=1]) 2010; 181 Gaynor (c2nr30126a-(cit5)/*[position()=1]) 2009; 4 Pike (c2nr30126a-(cit25)/*[position()=1]) 1974; 10 Hu (c2nr30126a-(cit29)/*[position()=1]) 2004; 4 Sun (c2nr30126a-(cit23)/*[position()=1]) 2003; 3 Elschner (c2nr30126a-(cit14)/*[position()=1]) 2011; 36 Li (c2nr30126a-(cit27)/*[position()=1]) 2010; 81 Sambles (c2nr30126a-(cit37)/*[position()=1]) 1982; 12 Critchley (c2nr30126a-(cit38)/*[position()=1]) 2010; 22 Wiley (c2nr30126a-(cit21)/*[position()=1]) 2005; 21 Li (c2nr30126a-(cit26)/*[position()=1]) 2009; 80 Dattoli (c2nr30126a-(cit13)/*[position()=1]) 2011; 36 Sekitani (c2nr30126a-(cit7)/*[position()=1]) 2009; 8 De (c2nr30126a-(cit17)/*[position()=1]) 2009; 3 Gordon (c2nr30126a-(cit1)/*[position()=1]) 2000; 25 Rogers (c2nr30126a-(cit3)/*[position()=1]) 2010; 327 Ho (c2nr30126a-(cit8)/*[position()=1]) 2010; 10 De (c2nr30126a-(cit32)/*[position()=1]) 2010; 4 Rathmell (c2nr30126a-(cit33)/*[position()=1]) 2010; 22 Leem (c2nr30126a-(cit16)/*[position()=1]) 2011; 23 Hecht (c2nr30126a-(cit30)/*[position()=1]) 2006; 89 |
References_xml | – volume: 23 start-page: 4371 year: 2011 ident: c2nr30126a-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100871 – volume: 8 start-page: 689 year: 2008 ident: c2nr30126a-(cit4)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl073296g – volume: 21 start-page: 215707 year: 2010 ident: c2nr30126a-(cit36)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/21/21/215707 – volume: 36 start-page: 774 year: 2011 ident: c2nr30126a-(cit28)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2011.236 – volume: 3 start-page: 955 year: 2003 ident: c2nr30126a-(cit23)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl034312m – volume: 181 start-page: 687 year: 2010 ident: c2nr30126a-(cit34)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.11.008 – volume: 23 start-page: 1482 year: 2011 ident: c2nr30126a-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201003188 – volume: 36 start-page: 794 year: 2011 ident: c2nr30126a-(cit14)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2011.232 – volume: 89 start-page: 133112 year: 2006 ident: c2nr30126a-(cit30)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2356999 – volume: 3 start-page: 1767 year: 2009 ident: c2nr30126a-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900348c – volume: 36 start-page: 782 year: 2011 ident: c2nr30126a-(cit13)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2011.212 – volume: 4 start-page: 30 year: 2009 ident: c2nr30126a-(cit5)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900758e – volume: 81 start-page: 021120 year: 2010 ident: c2nr30126a-(cit27)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.81.021120 – volume: 8 start-page: 494 year: 2009 ident: c2nr30126a-(cit7)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2459 – volume: 8 start-page: 2077 year: 2008 ident: c2nr30126a-(cit22)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl800910d – volume: 9 start-page: 859 year: 2010 ident: c2nr30126a-(cit9)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2834 – volume: 80 start-page: 040104 year: 2009 ident: c2nr30126a-(cit26)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.80.040104 – volume: 22 start-page: 3558 year: 2010 ident: c2nr30126a-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201000775 – volume: 22 start-page: 2338 year: 2010 ident: c2nr30126a-(cit38)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201000236 – volume: 6 start-page: 677 year: 2006 ident: c2nr30126a-(cit31)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl052406l – volume: 4 start-page: 2513 year: 2004 ident: c2nr30126a-(cit29)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl048435y – volume: 36 start-page: 789 year: 2011 ident: c2nr30126a-(cit39)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2011.235 – volume: 15 start-page: 2077 year: 2005 ident: c2nr30126a-(cit15)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b417803n – volume: 10 start-page: 1421 year: 1974 ident: c2nr30126a-(cit25)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.10.1421 – volume: 36 start-page: 766 year: 2011 ident: c2nr30126a-(cit12)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2011.213 – volume: 4 start-page: 2955 year: 2010 ident: c2nr30126a-(cit18)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1005232 – volume: 40 start-page: 1067 year: 2007 ident: c2nr30126a-(cit24)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar7000974 – volume: 10 start-page: 499 year: 2010 ident: c2nr30126a-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl903281v – volume: 36 start-page: 760 year: 2011 ident: c2nr30126a-(cit11)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2011.234 – volume: 21 start-page: 8077 year: 2005 ident: c2nr30126a-(cit21)/*[position()=1] publication-title: Langmuir doi: 10.1021/la050887i – volume: 327 start-page: 1603 year: 2010 ident: c2nr30126a-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1182383 – volume: 4 start-page: 7064 year: 2010 ident: c2nr30126a-(cit32)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1025803 – volume: 6 start-page: 4370 year: 1972 ident: c2nr30126a-(cit35)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.6.4370 – volume: 12 start-page: 1169 year: 1982 ident: c2nr30126a-(cit37)/*[position()=1] publication-title: J. Phys. F: Met. Phys. doi: 10.1088/0305-4608/12/6/017 – volume: 25 start-page: 52 year: 2000 ident: c2nr30126a-(cit1)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs2000.151 – volume: 22 start-page: 4484 year: 2010 ident: c2nr30126a-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201001811 |
SSID | ssj0069363 |
Score | 2.5553439 |
Snippet | This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1996 |
SubjectTerms | Electric Conductivity Electric Wiring Macromolecular Substances - chemistry Materials Testing Membranes, Artificial Molecular Conformation Nanotubes - chemistry Nanotubes - ultrastructure Particle Size Refractometry Silver - chemistry Surface Properties |
Title | The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22349106 https://www.proquest.com/docview/926507973 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 2040-3372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069363 issn: 2040-3364 databaseCode: AETIL dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagu8AB8ZsyQJbggkZGEid2fazQUEGIA-qkcaoc22GT1qTKkgt__d6znR9DnQRcoipx3Crf1-f34s-fCXkHI4gtixyqk0SVUWZ5Ei2UkFGiCyNkoYU1TiD7na9Os69n-dkoG3OrS9riWP_eu67kf1CFc4ArrpL9B2SHTuEEfAZ84QgIw_GvMfaCDKfHUFWNzsNHuDlKWLEG6G9R8BLmBFCOtUMltbeabZ2zOS4Hc6EYSmN0f8WXB0Nf5cVl8DMPGSyE4_oKgB1n423zyxsRBMXY0UQz4IPazy5adRfjlFJ7vg3THUvVwC_7Md6gmgKlN6rz6W07uPaHNxMo8WCRX-58bF0ES1GuyJi4EW6zCaumoRPl0HtjeszQElWnVQPBKOVq2gjw2G0dupDmZJD6_GGr7Qbq_tJdcpAKztMZOVierL9860dsLhlnvXUtkx_Hr0Kr6HDzzbzllmLEJSXrh-RBqCbo0lPjEbljq8fk_sRj8gkpgSTUk4TWJe2BpZ4kFEhCe5LQuqJAEjqSBO-YkOQDHSky9uQo8pScfj5Zf1pFYXONSEPO3UYZ50LH3HCjTAkVlpDS5EUsC0hqjLU5JspKJ7FQZcF0CnVFCZWB5BJKDJYKw56RWVVX9gWhC0jbDZpAiRzyU_iXyzLJFwsd6wxGr9jMyfv-0W10cJ7HDVAuN04BweRmfOJz8nZou_N-K3tb0R6BDYRDnONSla27q41MoeQQUrA5ee6RGbrpkXx565VDcm_k8Ssya5vOvoacsy3eBMpcA4RshKk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+nanowire+length+and+diameter+on+the+properties+of+transparent%2C+conducting+nanowire+films&rft.jtitle=Nanoscale&rft.au=Bergin%2C+Stephen+M&rft.au=Chen%2C+Yu-Hui&rft.au=Rathmell%2C+Aaron+R&rft.au=Charbonneau%2C+Patrick&rft.date=2012-03-21&rft.eissn=2040-3372&rft.volume=4&rft.issue=6&rft.spage=1996&rft_id=info:doi/10.1039%2Fc2nr30126a&rft_id=info%3Apmid%2F22349106&rft.externalDocID=22349106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |