The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films

This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 4; no. 6; p. 1996
Main Authors Bergin, Stephen M., Chen, Yu-Hui, Rathmell, Aaron R., Charbonneau, Patrick, Li, Zhi-Yuan, Wiley, Benjamin J.
Format Journal Article
LanguageEnglish
Published England 21.03.2012
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/c2nr30126a

Cover

Abstract This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.
AbstractList This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.
This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.
Author Bergin, Stephen M.
Charbonneau, Patrick
Wiley, Benjamin J.
Rathmell, Aaron R.
Chen, Yu-Hui
Li, Zhi-Yuan
Author_xml – sequence: 1
  givenname: Stephen M.
  surname: Bergin
  fullname: Bergin, Stephen M.
– sequence: 2
  givenname: Yu-Hui
  surname: Chen
  fullname: Chen, Yu-Hui
– sequence: 3
  givenname: Aaron R.
  surname: Rathmell
  fullname: Rathmell, Aaron R.
– sequence: 4
  givenname: Patrick
  surname: Charbonneau
  fullname: Charbonneau, Patrick
– sequence: 5
  givenname: Zhi-Yuan
  surname: Li
  fullname: Li, Zhi-Yuan
– sequence: 6
  givenname: Benjamin J.
  surname: Wiley
  fullname: Wiley, Benjamin J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22349106$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LxDAQhoMo7vpx8QdIboJYnSZtujmK-AWCl_VcsslkN9ImNcki_nsrqy6Ip5nD87zMvAdk1wePhJyUcFkCl1ea-cihZELtkCmDCgrOG7b7u4tqQg5SegUQkgu-TyaM8UqWIKbEzldI0VrUmQZLvfLh3UWkHfplXlHlDTVO9Zgx0uBpHukhhgFjdpi-jByVT4OK6PMF1cGbtc7OL7dJ1nV9OiJ7VnUJj7_nIXm5u53fPBRPz_ePN9dPheY1y0UlRKNBGGGUsQ2TjZSmXoBclBwMYs1EVSldQqPsgms2A7A151JImAFnjeGH5GyTOx75tsaU294ljV2nPIZ1aiUTNTSy4SN5-k2uFz2adoiuV_Gj_almBGAD6BhSimhb7bLKLvjxZde1JbRf7bfb9kfl_I_yk_oP_AlmpoWU
CitedBy_id crossref_primary_10_1021_acs_jpcc_9b07163
crossref_primary_10_1039_C9NR04193A
crossref_primary_10_1038_s41528_017_0018_5
crossref_primary_10_3390_nano10061139
crossref_primary_10_1021_acsami_1c19433
crossref_primary_10_1039_C5RA25474D
crossref_primary_10_1039_C7RA13683H
crossref_primary_10_1002_smll_201303005
crossref_primary_10_1088_0957_4484_27_33_335203
crossref_primary_10_1002_smll_201703140
crossref_primary_10_1002_adfm_201303108
crossref_primary_10_3390_nano6030047
crossref_primary_10_1109_JSEN_2015_2490081
crossref_primary_10_1007_s11082_023_04664_5
crossref_primary_10_1039_C7CS00192D
crossref_primary_10_1002_ange_201306585
crossref_primary_10_1021_cm502827b
crossref_primary_10_1088_1757_899X_454_1_012090
crossref_primary_10_1007_s11814_020_0519_0
crossref_primary_10_1039_C6NR06276H
crossref_primary_10_1016_j_tsf_2021_138679
crossref_primary_10_1021_acsanm_4c02614
crossref_primary_10_1038_s41598_019_47777_2
crossref_primary_10_1063_5_0036882
crossref_primary_10_1016_j_mattod_2020_08_017
crossref_primary_10_1021_acsami_9b17168
crossref_primary_10_1039_C6TC05455B
crossref_primary_10_1103_PhysRevE_103_012126
crossref_primary_10_1039_C8CE00357B
crossref_primary_10_1002_ange_202005827
crossref_primary_10_1021_acsami_7b07146
crossref_primary_10_1021_acs_jpcc_2c01251
crossref_primary_10_1039_C6CE02075E
crossref_primary_10_1021_acsnano_4c02171
crossref_primary_10_1039_C5NR03671B
crossref_primary_10_1016_j_apsusc_2021_149362
crossref_primary_10_1002_admt_202200027
crossref_primary_10_1016_j_compositesa_2020_105960
crossref_primary_10_1016_j_cap_2015_10_005
crossref_primary_10_1021_nn406672n
crossref_primary_10_1016_j_matlet_2015_03_111
crossref_primary_10_1117_1_JPE_4_040990
crossref_primary_10_1088_1361_6528_abf8df
crossref_primary_10_1002_biot_202000311
crossref_primary_10_1039_C7CY02402A
crossref_primary_10_1002_adfm_201705409
crossref_primary_10_1002_adom_201700829
crossref_primary_10_1021_acsnano_6b04506
crossref_primary_10_1007_s11664_016_4395_7
crossref_primary_10_1039_D4TA03027C
crossref_primary_10_1021_acsnano_5b05469
crossref_primary_10_1007_s10854_018_0027_8
crossref_primary_10_1021_acs_jpcc_7b00148
crossref_primary_10_1021_jacs_0c01859
crossref_primary_10_1088_1361_6528_acf2a2
crossref_primary_10_1021_acs_iecr_9b04539
crossref_primary_10_1007_s11426_020_9769_7
crossref_primary_10_1149_2_0131411jss
crossref_primary_10_3390_nano11112785
crossref_primary_10_1002_adfm_201500677
crossref_primary_10_1021_nn4065567
crossref_primary_10_1039_D2NR06762E
crossref_primary_10_1039_C7TC01002H
crossref_primary_10_1039_D1RA00427A
crossref_primary_10_1021_acsanm_4c00625
crossref_primary_10_1360_SSC_2022_0126
crossref_primary_10_1039_C7SM01329A
crossref_primary_10_1039_C9CP00680J
crossref_primary_10_1039_c4nr01024h
crossref_primary_10_1016_j_apsusc_2017_01_152
crossref_primary_10_1021_acsami_4c00682
crossref_primary_10_1021_acsami_8b17644
crossref_primary_10_1016_j_carbon_2017_09_040
crossref_primary_10_1007_s11664_022_09564_0
crossref_primary_10_1088_0957_4484_25_49_495601
crossref_primary_10_4028_www_scientific_net_KEM_766_217
crossref_primary_10_1088_2053_1591_ac8787
crossref_primary_10_1016_j_actamat_2014_09_042
crossref_primary_10_1088_2399_1984_ac8388
crossref_primary_10_1088_1361_6528_ab94de
crossref_primary_10_1002_cnma_201600337
crossref_primary_10_1021_acsami_7b00342
crossref_primary_10_1021_acsomega_8b01320
crossref_primary_10_1039_C8NR09236B
crossref_primary_10_1039_C8TC00114F
crossref_primary_10_1016_j_cej_2022_134598
crossref_primary_10_1007_s11664_023_10417_7
crossref_primary_10_1016_j_mtcomm_2022_104433
crossref_primary_10_1016_j_colsurfa_2022_130804
crossref_primary_10_1016_j_apsusc_2022_155236
crossref_primary_10_1016_j_colsurfa_2022_130806
crossref_primary_10_1039_D4NA00214H
crossref_primary_10_1039_D4NR03525A
crossref_primary_10_1016_j_nanoso_2017_08_016
crossref_primary_10_1088_1361_6528_ab93ef
crossref_primary_10_1002_slct_201900298
crossref_primary_10_1155_2019_8646385
crossref_primary_10_1002_admt_202300602
crossref_primary_10_1016_j_mtener_2019_05_007
crossref_primary_10_1021_acs_macromol_3c00393
crossref_primary_10_1039_C6RA16108A
crossref_primary_10_1088_1361_6439_aa73c7
crossref_primary_10_1039_C2NR32221H
crossref_primary_10_1038_s41598_018_20978_x
crossref_primary_10_1007_s11664_023_10693_3
crossref_primary_10_1186_s11671_015_0748_z
crossref_primary_10_1002_advs_202302858
crossref_primary_10_1016_j_mattod_2014_08_018
crossref_primary_10_1063_1_5141162
crossref_primary_10_1002_lpor_201500271
crossref_primary_10_3390_nano9020220
crossref_primary_10_1016_j_materresbull_2014_01_022
crossref_primary_10_1039_D1TC04864C
crossref_primary_10_1021_nn305491x
crossref_primary_10_1109_JSEN_2018_2798599
crossref_primary_10_1021_acsami_1c02046
crossref_primary_10_1039_C4RA11660G
crossref_primary_10_1063_1_4818498
crossref_primary_10_1016_j_tsf_2020_138096
crossref_primary_10_1039_C6NR04972A
crossref_primary_10_2139_ssrn_4159238
crossref_primary_10_1021_acs_cgd_7b01300
crossref_primary_10_1016_j_orgel_2015_08_008
crossref_primary_10_1007_s12274_016_1105_y
crossref_primary_10_1021_acs_jpclett_0c00653
crossref_primary_10_1021_nl4000739
crossref_primary_10_3390_nano9060904
crossref_primary_10_1073_pnas_1820041116
crossref_primary_10_1016_j_nanoms_2024_09_003
crossref_primary_10_1103_PhysRevE_88_032134
crossref_primary_10_1039_C7RA00238F
crossref_primary_10_1016_j_jiec_2018_01_039
crossref_primary_10_1016_j_scib_2016_11_009
crossref_primary_10_1002_anie_201306585
crossref_primary_10_1021_acsomega_2c07164
crossref_primary_10_1364_OME_5_000314
crossref_primary_10_1016_j_colsurfa_2020_125809
crossref_primary_10_1016_j_mseb_2023_116396
crossref_primary_10_1002_solr_202000328
crossref_primary_10_1088_0957_4484_24_12_125202
crossref_primary_10_1016_j_optmat_2023_113591
crossref_primary_10_1134_S0036023624601697
crossref_primary_10_3390_nano8030161
crossref_primary_10_1016_j_colcom_2022_100663
crossref_primary_10_1088_2053_1591_ab0dc5
crossref_primary_10_3390_ijms20112803
crossref_primary_10_1021_acs_chemmater_5b03709
crossref_primary_10_1016_j_cocis_2014_03_013
crossref_primary_10_1002_admt_201900413
crossref_primary_10_1038_srep34629
crossref_primary_10_1039_C8RA02726A
crossref_primary_10_1039_D2NR02475F
crossref_primary_10_1039_C8EN00890F
crossref_primary_10_1002_adfm_202306079
crossref_primary_10_1039_C5NR06851G
crossref_primary_10_3390_ma10060570
crossref_primary_10_1016_j_orgel_2018_11_002
crossref_primary_10_1007_s10854_016_6188_4
crossref_primary_10_1088_2053_1591_3_7_075007
crossref_primary_10_3390_nano8040192
crossref_primary_10_1186_s11671_017_1963_6
crossref_primary_10_1088_2053_1591_ab17a4
crossref_primary_10_1016_j_eml_2016_04_011
crossref_primary_10_1016_j_snb_2017_10_056
crossref_primary_10_31857_S0044457X24080122
crossref_primary_10_1021_acsanm_4c02096
crossref_primary_10_1039_D1NJ04633K
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1080_00018732_2016_1226804
crossref_primary_10_1021_acsami_7b11740
crossref_primary_10_3762_bjnano_12_51
crossref_primary_10_1039_C6TC05000J
crossref_primary_10_1021_acsami_0c16542
crossref_primary_10_1021_nl301045a
crossref_primary_10_1134_S0036023624601685
crossref_primary_10_1002_smll_201503726
crossref_primary_10_1002_aisy_202100061
crossref_primary_10_1021_acs_jpcc_9b00339
crossref_primary_10_1016_j_jpowsour_2018_04_065
crossref_primary_10_1039_C9TC04744A
crossref_primary_10_1039_C6NR03960J
crossref_primary_10_1039_C6FD00017G
crossref_primary_10_1039_C4CP02367F
crossref_primary_10_1007_s12274_021_4042_3
crossref_primary_10_1016_j_solmat_2019_110106
crossref_primary_10_1016_j_mattod_2019_08_004
crossref_primary_10_1039_C4TA05728G
crossref_primary_10_3390_en9060443
crossref_primary_10_1016_j_addma_2021_102473
crossref_primary_10_1039_C6CP05187A
crossref_primary_10_1002_adfm_202401466
crossref_primary_10_1039_D1TC05815K
crossref_primary_10_1039_c3ta13204h
crossref_primary_10_1021_am5067095
crossref_primary_10_1039_C5NR00154D
crossref_primary_10_1039_C5TA02942B
crossref_primary_10_1016_j_jallcom_2015_09_279
crossref_primary_10_1177_1847980416663672
crossref_primary_10_1021_acs_langmuir_4c01631
crossref_primary_10_1007_s11051_021_05239_9
crossref_primary_10_1039_C5RA20097K
crossref_primary_10_1016_j_tsf_2014_02_002
crossref_primary_10_1002_adfm_201505019
crossref_primary_10_1002_aelm_202100588
crossref_primary_10_1016_j_jallcom_2019_06_257
crossref_primary_10_1016_j_jallcom_2019_06_258
crossref_primary_10_1038_s41598_019_42841_3
crossref_primary_10_1088_1361_6528_ad8166
crossref_primary_10_1021_acscentsci_9b01142
crossref_primary_10_1039_C4TA00502C
crossref_primary_10_3762_bjnano_12_9
crossref_primary_10_1088_1674_1056_26_2_025207
crossref_primary_10_1002_crat_201400473
crossref_primary_10_1021_acsanm_3c04816
crossref_primary_10_1021_acsami_7b04314
crossref_primary_10_1021_acsanm_2c05151
crossref_primary_10_1016_j_mseb_2017_05_002
crossref_primary_10_1021_nn504969z
crossref_primary_10_1088_1361_6528_ac9c09
crossref_primary_10_1002_adfm_201503342
crossref_primary_10_1016_j_matdes_2018_07_048
crossref_primary_10_1039_C4CS00136B
crossref_primary_10_1088_0957_4484_26_26_265201
crossref_primary_10_1088_1674_4926_39_1_011002
crossref_primary_10_1021_acsnano_8b05406
crossref_primary_10_1088_1361_6528_ab7b07
crossref_primary_10_1002_aisy_202000093
crossref_primary_10_1039_C6TA03308C
crossref_primary_10_1016_j_apmt_2020_100634
crossref_primary_10_1039_C6RA26595B
crossref_primary_10_1364_OME_9_002582
crossref_primary_10_1155_2014_193201
crossref_primary_10_35848_1347_4065_abd114
crossref_primary_10_1088_1674_4926_37_10_102001
crossref_primary_10_4313_TEEM_2016_17_1_33
crossref_primary_10_1063_1_5045176
crossref_primary_10_1080_10408436_2024_2379246
crossref_primary_10_1039_C5NR02611C
crossref_primary_10_1016_j_apsusc_2018_10_092
crossref_primary_10_1088_0957_0233_26_12_125601
crossref_primary_10_1063_1_4789795
crossref_primary_10_4150_KPMI_2017_24_2_153
crossref_primary_10_1016_j_jiec_2020_12_010
crossref_primary_10_1002_adfm_201300413
crossref_primary_10_3390_mi10010029
crossref_primary_10_1016_j_jmst_2014_11_020
crossref_primary_10_1021_acsaelm_1c01258
crossref_primary_10_1088_2053_1591_1_3_035008
crossref_primary_10_1002_adma_201902743
crossref_primary_10_1002_sdtp_10660
crossref_primary_10_1016_j_compositesa_2024_108317
crossref_primary_10_1088_0957_4484_27_46_465706
crossref_primary_10_1039_C8RA01569D
crossref_primary_10_1016_j_jmst_2015_12_009
crossref_primary_10_1016_j_jmrt_2024_01_197
crossref_primary_10_1088_0957_4484_26_34_345301
crossref_primary_10_1080_17435390_2019_1571645
crossref_primary_10_3390_ma12030401
crossref_primary_10_3390_mi10010022
crossref_primary_10_1002_adts_201700011
crossref_primary_10_1016_j_jallcom_2017_08_008
crossref_primary_10_1021_acs_chemmater_1c02474
crossref_primary_10_1038_s41598_018_35456_7
crossref_primary_10_1063_1_4985792
crossref_primary_10_1039_c3nr05607d
crossref_primary_10_1109_TCPMT_2016_2581829
crossref_primary_10_1021_acsnano_5b03601
crossref_primary_10_1021_acs_chemmater_8b00760
crossref_primary_10_3390_pr12071487
crossref_primary_10_7567_JJAP_56_095002
crossref_primary_10_1021_acsami_9b04425
crossref_primary_10_1007_s10853_018_03235_4
crossref_primary_10_1088_0957_4484_24_33_335202
crossref_primary_10_1021_nn405941m
crossref_primary_10_1039_C5RA08841K
crossref_primary_10_1088_1361_6528_abce7a
crossref_primary_10_1021_acsami_7b13085
crossref_primary_10_1063_1_4918986
crossref_primary_10_1016_j_matchemphys_2023_128335
crossref_primary_10_1021_acs_cgd_5b01289
crossref_primary_10_1039_C7TC05038K
crossref_primary_10_1039_C8TA11435H
crossref_primary_10_1002_adma_201902684
crossref_primary_10_1016_j_orgel_2017_01_043
crossref_primary_10_1039_C5RA27812K
crossref_primary_10_1002_ppsc_201700385
crossref_primary_10_1021_acs_nanolett_5b02582
crossref_primary_10_1039_C6RA27760H
crossref_primary_10_1088_1361_6528_ab2aad
crossref_primary_10_1039_C5NR05138J
crossref_primary_10_1016_j_matlet_2017_10_128
crossref_primary_10_1007_s40072_015_0068_4
crossref_primary_10_3390_mi14091702
crossref_primary_10_1088_1361_6528_ad07a1
crossref_primary_10_1088_2058_8585_1_3_035003
crossref_primary_10_1038_s41598_024_70789_6
crossref_primary_10_1109_JSEN_2020_3008159
crossref_primary_10_1002_admt_201900194
crossref_primary_10_1016_j_eml_2016_02_014
crossref_primary_10_1039_C9TC06865A
crossref_primary_10_1007_s12274_014_0510_3
crossref_primary_10_1002_sdtp_10221
crossref_primary_10_1039_C5NR04084A
crossref_primary_10_1038_srep12499
crossref_primary_10_1002_mame_202400017
crossref_primary_10_3390_nano13212865
crossref_primary_10_1002_aenm_201602751
crossref_primary_10_1088_1361_6528_ab6fe4
crossref_primary_10_1016_j_colsurfa_2018_11_050
crossref_primary_10_1021_acsami_6b02333
crossref_primary_10_1039_D0NA00392A
crossref_primary_10_1039_C9TC06091J
crossref_primary_10_1021_acsomega_2c05204
crossref_primary_10_1088_2053_1591_aacd3e
crossref_primary_10_1364_PRJ_430172
crossref_primary_10_1002_anie_202005827
crossref_primary_10_1021_nn5038515
crossref_primary_10_1088_1361_6528_28_5_055709
crossref_primary_10_1021_nn504308n
crossref_primary_10_1002_smll_201904415
crossref_primary_10_7736_KSPE_2018_35_5_545
crossref_primary_10_1016_j_mtchem_2017_02_001
crossref_primary_10_1021_acs_langmuir_8b00344
crossref_primary_10_1039_C5CP04582G
crossref_primary_10_1038_srep22963
crossref_primary_10_1002_adma_201900756
crossref_primary_10_1063_1_4812390
crossref_primary_10_1016_j_supflu_2020_104915
crossref_primary_10_1088_0957_4484_27_29_295201
crossref_primary_10_1016_j_apmt_2020_100909
crossref_primary_10_1016_j_jmapro_2022_08_003
crossref_primary_10_1088_2058_8585_ad6457
crossref_primary_10_1039_D2CP00936F
crossref_primary_10_3390_ma16155501
crossref_primary_10_3390_mi8010012
crossref_primary_10_1515_psr_2017_0084
crossref_primary_10_3740_MRSK_2024_34_11_545
crossref_primary_10_1038_srep34289
crossref_primary_10_3390_nano11030693
crossref_primary_10_1039_C6TC03563A
crossref_primary_10_5188_ijsmer_25_28
crossref_primary_10_1007_s40820_021_00786_1
crossref_primary_10_1039_C8RA08810A
crossref_primary_10_3365_KJMM_2024_62_6_464
crossref_primary_10_1049_mna2_12151
crossref_primary_10_1016_j_colsurfa_2019_123939
crossref_primary_10_1016_j_mattod_2020_06_005
crossref_primary_10_1021_acs_iecr_4c03890
crossref_primary_10_1021_acsami_7b14626
crossref_primary_10_1002_jsid_430
crossref_primary_10_1039_D2NR06687D
crossref_primary_10_1021_acsami_6b16840
crossref_primary_10_1103_PhysRevE_105_044129
crossref_primary_10_1039_C5RA00320B
crossref_primary_10_3390_app8050673
crossref_primary_10_1016_j_ensm_2019_04_042
crossref_primary_10_1109_JDT_2015_2432836
crossref_primary_10_1088_1361_6528_aba4ce
crossref_primary_10_1007_s10854_019_00996_9
crossref_primary_10_1088_1361_6528_acf474
crossref_primary_10_1007_s00339_024_07853_5
crossref_primary_10_1002_adma_201402710
crossref_primary_10_4028_www_scientific_net_AMR_1043_109
crossref_primary_10_1063_1_5051390
crossref_primary_10_1039_C3CC48561G
crossref_primary_10_1016_j_solmat_2024_113289
crossref_primary_10_1002_smll_202412741
crossref_primary_10_1016_j_matlet_2013_04_114
crossref_primary_10_1186_s11671_018_2486_5
crossref_primary_10_1016_j_mattod_2024_01_006
crossref_primary_10_1007_s11664_017_5467_z
crossref_primary_10_1002_aenm_201300737
crossref_primary_10_1063_1_4939280
crossref_primary_10_1007_s12274_013_0391_x
crossref_primary_10_3390_nano10020237
crossref_primary_10_1038_am_2014_36
crossref_primary_10_1063_5_0050049
crossref_primary_10_5104_jiep_19_228
crossref_primary_10_1002_adma_201302377
crossref_primary_10_7567_JJAP_54_081101
crossref_primary_10_1021_acsnano_6b03806
crossref_primary_10_1039_C4GC01566E
crossref_primary_10_1021_acsami_1c00629
crossref_primary_10_1103_PhysRevB_86_134202
crossref_primary_10_1149_2_0201901jss
crossref_primary_10_1002_smll_202106006
crossref_primary_10_1039_C4CC04698F
crossref_primary_10_1007_s11998_015_9690_3
crossref_primary_10_1016_j_matchemphys_2016_09_052
crossref_primary_10_1007_s10854_022_09454_5
crossref_primary_10_1021_nn403324t
crossref_primary_10_1021_acsanm_3c05847
crossref_primary_10_1088_2053_1591_2_7_075009
crossref_primary_10_1021_acsami_6b12289
crossref_primary_10_1021_acsami_6b13255
crossref_primary_10_1021_acs_chemrev_8b00745
crossref_primary_10_1021_acsnano_7b01714
crossref_primary_10_1021_am302011u
crossref_primary_10_1007_s11051_023_05889_x
crossref_primary_10_1039_C9RA04404C
crossref_primary_10_1186_s11671_021_03549_4
Cites_doi 10.1002/adma.201100871
10.1021/nl073296g
10.1088/0957-4484/21/21/215707
10.1557/mrs.2011.236
10.1021/nl034312m
10.1016/j.cpc.2009.11.008
10.1002/adma.201003188
10.1557/mrs.2011.232
10.1063/1.2356999
10.1021/nn900348c
10.1557/mrs.2011.212
10.1021/nn900758e
10.1103/PhysRevE.81.021120
10.1038/nmat2459
10.1021/nl800910d
10.1038/nmat2834
10.1103/PhysRevE.80.040104
10.1002/adma.201000775
10.1002/adma.201000236
10.1021/nl052406l
10.1021/nl048435y
10.1557/mrs.2011.235
10.1039/b417803n
10.1103/PhysRevB.10.1421
10.1557/mrs.2011.213
10.1021/nn1005232
10.1021/ar7000974
10.1021/nl903281v
10.1557/mrs.2011.234
10.1021/la050887i
10.1126/science.1182383
10.1021/nn1025803
10.1103/PhysRevB.6.4370
10.1088/0305-4608/12/6/017
10.1557/mrs2000.151
10.1002/adma.201001811
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2012
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/c2nr30126a
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
ExternalDocumentID 22349106
10_1039_c2nr30126a
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
CGR
CUY
CVF
ECM
EIF
NPM
RRC
7X8
ID FETCH-LOGICAL-c352t-4667c06d6dadf729799d5b09b130dee52644ac107afb3c2800f533969080327d3
ISSN 2040-3364
2040-3372
IngestDate Sat Sep 27 18:35:10 EDT 2025
Wed Feb 19 01:55:14 EST 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 02:44:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This journal is © The Royal Society of Chemistry 2012
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-4667c06d6dadf729799d5b09b130dee52644ac107afb3c2800f533969080327d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22349106
PQID 926507973
PQPubID 23479
ParticipantIDs proquest_miscellaneous_926507973
pubmed_primary_22349106
crossref_citationtrail_10_1039_c2nr30126a
crossref_primary_10_1039_c2nr30126a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-21
PublicationDateYYYYMMDD 2012-03-21
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2012
References Niu (c2nr30126a-(cit12)/*[position()=1]) 2011; 36
Zeng (c2nr30126a-(cit6)/*[position()=1]) 2010; 22
Johnson (c2nr30126a-(cit35)/*[position()=1]) 1972; 6
Kirchmeyer (c2nr30126a-(cit15)/*[position()=1]) 2005; 15
Hu (c2nr30126a-(cit11)/*[position()=1]) 2011; 36
Mannsfeld (c2nr30126a-(cit9)/*[position()=1]) 2010; 9
Unalan (c2nr30126a-(cit31)/*[position()=1]) 2006; 6
Lu (c2nr30126a-(cit36)/*[position()=1]) 2010; 21
Woerle (c2nr30126a-(cit39)/*[position()=1]) 2011; 36
Lee (c2nr30126a-(cit4)/*[position()=1]) 2008; 8
Hecht (c2nr30126a-(cit10)/*[position()=1]) 2011; 23
Wiley (c2nr30126a-(cit24)/*[position()=1]) 2007; 40
De (c2nr30126a-(cit28)/*[position()=1]) 2011; 36
Hu (c2nr30126a-(cit18)/*[position()=1]) 2010; 4
Skrabalak (c2nr30126a-(cit22)/*[position()=1]) 2008; 8
Oskooi (c2nr30126a-(cit34)/*[position()=1]) 2010; 181
Gaynor (c2nr30126a-(cit5)/*[position()=1]) 2009; 4
Pike (c2nr30126a-(cit25)/*[position()=1]) 1974; 10
Hu (c2nr30126a-(cit29)/*[position()=1]) 2004; 4
Sun (c2nr30126a-(cit23)/*[position()=1]) 2003; 3
Elschner (c2nr30126a-(cit14)/*[position()=1]) 2011; 36
Li (c2nr30126a-(cit27)/*[position()=1]) 2010; 81
Sambles (c2nr30126a-(cit37)/*[position()=1]) 1982; 12
Critchley (c2nr30126a-(cit38)/*[position()=1]) 2010; 22
Wiley (c2nr30126a-(cit21)/*[position()=1]) 2005; 21
Li (c2nr30126a-(cit26)/*[position()=1]) 2009; 80
Dattoli (c2nr30126a-(cit13)/*[position()=1]) 2011; 36
Sekitani (c2nr30126a-(cit7)/*[position()=1]) 2009; 8
De (c2nr30126a-(cit17)/*[position()=1]) 2009; 3
Gordon (c2nr30126a-(cit1)/*[position()=1]) 2000; 25
Rogers (c2nr30126a-(cit3)/*[position()=1]) 2010; 327
Ho (c2nr30126a-(cit8)/*[position()=1]) 2010; 10
De (c2nr30126a-(cit32)/*[position()=1]) 2010; 4
Rathmell (c2nr30126a-(cit33)/*[position()=1]) 2010; 22
Leem (c2nr30126a-(cit16)/*[position()=1]) 2011; 23
Hecht (c2nr30126a-(cit30)/*[position()=1]) 2006; 89
References_xml – volume: 23
  start-page: 4371
  year: 2011
  ident: c2nr30126a-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100871
– volume: 8
  start-page: 689
  year: 2008
  ident: c2nr30126a-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl073296g
– volume: 21
  start-page: 215707
  year: 2010
  ident: c2nr30126a-(cit36)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/21/215707
– volume: 36
  start-page: 774
  year: 2011
  ident: c2nr30126a-(cit28)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.236
– volume: 3
  start-page: 955
  year: 2003
  ident: c2nr30126a-(cit23)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl034312m
– volume: 181
  start-page: 687
  year: 2010
  ident: c2nr30126a-(cit34)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.11.008
– volume: 23
  start-page: 1482
  year: 2011
  ident: c2nr30126a-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003188
– volume: 36
  start-page: 794
  year: 2011
  ident: c2nr30126a-(cit14)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.232
– volume: 89
  start-page: 133112
  year: 2006
  ident: c2nr30126a-(cit30)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2356999
– volume: 3
  start-page: 1767
  year: 2009
  ident: c2nr30126a-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900348c
– volume: 36
  start-page: 782
  year: 2011
  ident: c2nr30126a-(cit13)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.212
– volume: 4
  start-page: 30
  year: 2009
  ident: c2nr30126a-(cit5)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900758e
– volume: 81
  start-page: 021120
  year: 2010
  ident: c2nr30126a-(cit27)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.81.021120
– volume: 8
  start-page: 494
  year: 2009
  ident: c2nr30126a-(cit7)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2459
– volume: 8
  start-page: 2077
  year: 2008
  ident: c2nr30126a-(cit22)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl800910d
– volume: 9
  start-page: 859
  year: 2010
  ident: c2nr30126a-(cit9)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2834
– volume: 80
  start-page: 040104
  year: 2009
  ident: c2nr30126a-(cit26)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.80.040104
– volume: 22
  start-page: 3558
  year: 2010
  ident: c2nr30126a-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000775
– volume: 22
  start-page: 2338
  year: 2010
  ident: c2nr30126a-(cit38)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000236
– volume: 6
  start-page: 677
  year: 2006
  ident: c2nr30126a-(cit31)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl052406l
– volume: 4
  start-page: 2513
  year: 2004
  ident: c2nr30126a-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl048435y
– volume: 36
  start-page: 789
  year: 2011
  ident: c2nr30126a-(cit39)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.235
– volume: 15
  start-page: 2077
  year: 2005
  ident: c2nr30126a-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b417803n
– volume: 10
  start-page: 1421
  year: 1974
  ident: c2nr30126a-(cit25)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.10.1421
– volume: 36
  start-page: 766
  year: 2011
  ident: c2nr30126a-(cit12)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.213
– volume: 4
  start-page: 2955
  year: 2010
  ident: c2nr30126a-(cit18)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1005232
– volume: 40
  start-page: 1067
  year: 2007
  ident: c2nr30126a-(cit24)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar7000974
– volume: 10
  start-page: 499
  year: 2010
  ident: c2nr30126a-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl903281v
– volume: 36
  start-page: 760
  year: 2011
  ident: c2nr30126a-(cit11)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2011.234
– volume: 21
  start-page: 8077
  year: 2005
  ident: c2nr30126a-(cit21)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la050887i
– volume: 327
  start-page: 1603
  year: 2010
  ident: c2nr30126a-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1182383
– volume: 4
  start-page: 7064
  year: 2010
  ident: c2nr30126a-(cit32)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1025803
– volume: 6
  start-page: 4370
  year: 1972
  ident: c2nr30126a-(cit35)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.6.4370
– volume: 12
  start-page: 1169
  year: 1982
  ident: c2nr30126a-(cit37)/*[position()=1]
  publication-title: J. Phys. F: Met. Phys.
  doi: 10.1088/0305-4608/12/6/017
– volume: 25
  start-page: 52
  year: 2000
  ident: c2nr30126a-(cit1)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs2000.151
– volume: 22
  start-page: 4484
  year: 2010
  ident: c2nr30126a-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001811
SSID ssj0069363
Score 2.5553439
Snippet This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1996
SubjectTerms Electric Conductivity
Electric Wiring
Macromolecular Substances - chemistry
Materials Testing
Membranes, Artificial
Molecular Conformation
Nanotubes - chemistry
Nanotubes - ultrastructure
Particle Size
Refractometry
Silver - chemistry
Surface Properties
Title The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films
URI https://www.ncbi.nlm.nih.gov/pubmed/22349106
https://www.proquest.com/docview/926507973
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 2040-3372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069363
  issn: 2040-3364
  databaseCode: AETIL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagu8AB8ZsyQJbggkZGEid2fazQUEGIA-qkcaoc22GT1qTKkgt__d6znR9DnQRcoipx3Crf1-f34s-fCXkHI4gtixyqk0SVUWZ5Ei2UkFGiCyNkoYU1TiD7na9Os69n-dkoG3OrS9riWP_eu67kf1CFc4ArrpL9B2SHTuEEfAZ84QgIw_GvMfaCDKfHUFWNzsNHuDlKWLEG6G9R8BLmBFCOtUMltbeabZ2zOS4Hc6EYSmN0f8WXB0Nf5cVl8DMPGSyE4_oKgB1n423zyxsRBMXY0UQz4IPazy5adRfjlFJ7vg3THUvVwC_7Md6gmgKlN6rz6W07uPaHNxMo8WCRX-58bF0ES1GuyJi4EW6zCaumoRPl0HtjeszQElWnVQPBKOVq2gjw2G0dupDmZJD6_GGr7Qbq_tJdcpAKztMZOVierL9860dsLhlnvXUtkx_Hr0Kr6HDzzbzllmLEJSXrh-RBqCbo0lPjEbljq8fk_sRj8gkpgSTUk4TWJe2BpZ4kFEhCe5LQuqJAEjqSBO-YkOQDHSky9uQo8pScfj5Zf1pFYXONSEPO3UYZ50LH3HCjTAkVlpDS5EUsC0hqjLU5JspKJ7FQZcF0CnVFCZWB5BJKDJYKw56RWVVX9gWhC0jbDZpAiRzyU_iXyzLJFwsd6wxGr9jMyfv-0W10cJ7HDVAuN04BweRmfOJz8nZou_N-K3tb0R6BDYRDnONSla27q41MoeQQUrA5ee6RGbrpkXx565VDcm_k8Ssya5vOvoacsy3eBMpcA4RshKk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+nanowire+length+and+diameter+on+the+properties+of+transparent%2C+conducting+nanowire+films&rft.jtitle=Nanoscale&rft.au=Bergin%2C+Stephen+M&rft.au=Chen%2C+Yu-Hui&rft.au=Rathmell%2C+Aaron+R&rft.au=Charbonneau%2C+Patrick&rft.date=2012-03-21&rft.eissn=2040-3372&rft.volume=4&rft.issue=6&rft.spage=1996&rft_id=info:doi/10.1039%2Fc2nr30126a&rft_id=info%3Apmid%2F22349106&rft.externalDocID=22349106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon