Ensemble Control of Finite-Dimensional Time-Varying Linear Systems

In this article, we investigate the problem of simultaneously steering an uncountable family of finite-dimensional time-varying linear systems with the same control signal. This class of control problems motivates further research in the new subject of control theory called Ensemble Control, a notio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 56; no. 2; pp. 345 - 357
Main Author Li, Jr-Shin
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2010.2060259

Cover

More Information
Summary:In this article, we investigate the problem of simultaneously steering an uncountable family of finite-dimensional time-varying linear systems with the same control signal. This class of control problems motivates further research in the new subject of control theory called Ensemble Control, a notion coming from the study of complex spin dynamics in nuclear magnetic resonance spectroscopy and imaging. We derive the necessary and sufficient controllability conditions and an accompanying analytical optimal control law for an ensemble of finite-dimensional time-varying linear systems. We show that ensemble controllability is in connection with singular values of the operator characterizing the system dynamics. In addition, the problem of optimal ensemble control of harmonic oscillators is studied to demonstrate the controllability results. We show that the optimal solutions are pertinent to the study of time-frequency limited signals and prolate spheroidal wave functions. A systematic study of ensemble control systems has immediate applications to dynamical systems with parameter uncertainty as well as to wide-ranging areas such as neuroscience and quantum control. The work in ensemble control will foster further developments in mathematical control and systems theory.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2060259