Groundwater quality evaluation using hybrid model of the multi-layer perceptron combined with neural-evolutionary regression techniques: case study of Shiraz plain
In recent decades, qualitative and quantitative assessments of groundwater sources reveal that efficient and accurate optimization approaches may assist in solving the multiple problems in evaluating groundwater quality. Hybrid models have been accepted and used in recent decades as a potentially us...
Saved in:
| Published in | Stochastic environmental research and risk assessment Vol. 37; no. 8; pp. 2961 - 2976 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1436-3240 1436-3259 |
| DOI | 10.1007/s00477-023-02429-w |
Cover
| Abstract | In recent decades, qualitative and quantitative assessments of groundwater sources reveal that efficient and accurate optimization approaches may assist in solving the multiple problems in evaluating groundwater quality. Hybrid models have been accepted and used in recent decades as a potentially useful approach for modeling water resource management processes in many different fields. Combined prediction models have more accurate outcomes than conventional methods. For this objective, three optimization meta-heuristic approaches, including Grey Wolf Optimizer (GWO), Harris Hawks Optimization (HHO), and Artificial Bee Colony (ABC), as well as intelligent models of Artificial Neural Networks (ANN), were employed to mimic groundwater quality. The input variables were Cl, SO
4
2−
, HCO
3
−
, Na
+
, Mg
2+
, Ca
2+
, Na percent, K
+
, pH, and total hardness (TH) as one of the water’s necessary quality factors for drinking/irrigation was output. To reach this purpose, the data on groundwater quality for the Shiraz plain were employed for a period of 16 years (2002–2018). As a result, for the training RMSE and R
2
databases, the estimated accuracy indices for the suggested hybrid HHO-ANN, GWO-ANN, and ABC-ANN models were (0.03907, 0.00427
,
0.1078) and (0.99258, 0.99991
,
0.94451), respectively, also for the testing RMSE and R
2
databases, these models were determined to be (0.03592, 0.00365, and 0.11944) and (0.99416, 0.99995, and 0.92628), respectively, for the testing datasets. Finally, the outcomes illustrated the high accuracy and capability of the GWO-ANN approach in simulating and appraising the quality of groundwater. |
|---|---|
| AbstractList | In recent decades, qualitative and quantitative assessments of groundwater sources reveal that efficient and accurate optimization approaches may assist in solving the multiple problems in evaluating groundwater quality. Hybrid models have been accepted and used in recent decades as a potentially useful approach for modeling water resource management processes in many different fields. Combined prediction models have more accurate outcomes than conventional methods. For this objective, three optimization meta-heuristic approaches, including Grey Wolf Optimizer (GWO), Harris Hawks Optimization (HHO), and Artificial Bee Colony (ABC), as well as intelligent models of Artificial Neural Networks (ANN), were employed to mimic groundwater quality. The input variables were Cl, SO
4
2−
, HCO
3
−
, Na
+
, Mg
2+
, Ca
2+
, Na percent, K
+
, pH, and total hardness (TH) as one of the water’s necessary quality factors for drinking/irrigation was output. To reach this purpose, the data on groundwater quality for the Shiraz plain were employed for a period of 16 years (2002–2018). As a result, for the training RMSE and R
2
databases, the estimated accuracy indices for the suggested hybrid HHO-ANN, GWO-ANN, and ABC-ANN models were (0.03907, 0.00427
,
0.1078) and (0.99258, 0.99991
,
0.94451), respectively, also for the testing RMSE and R
2
databases, these models were determined to be (0.03592, 0.00365, and 0.11944) and (0.99416, 0.99995, and 0.92628), respectively, for the testing datasets. Finally, the outcomes illustrated the high accuracy and capability of the GWO-ANN approach in simulating and appraising the quality of groundwater. In recent decades, qualitative and quantitative assessments of groundwater sources reveal that efficient and accurate optimization approaches may assist in solving the multiple problems in evaluating groundwater quality. Hybrid models have been accepted and used in recent decades as a potentially useful approach for modeling water resource management processes in many different fields. Combined prediction models have more accurate outcomes than conventional methods. For this objective, three optimization meta-heuristic approaches, including Grey Wolf Optimizer (GWO), Harris Hawks Optimization (HHO), and Artificial Bee Colony (ABC), as well as intelligent models of Artificial Neural Networks (ANN), were employed to mimic groundwater quality. The input variables were Cl, SO42−, HCO3−, Na+, Mg2+, Ca2+, Na percent, K+, pH, and total hardness (TH) as one of the water’s necessary quality factors for drinking/irrigation was output. To reach this purpose, the data on groundwater quality for the Shiraz plain were employed for a period of 16 years (2002–2018). As a result, for the training RMSE and R2 databases, the estimated accuracy indices for the suggested hybrid HHO-ANN, GWO-ANN, and ABC-ANN models were (0.03907, 0.00427, 0.1078) and (0.99258, 0.99991, 0.94451), respectively, also for the testing RMSE and R2 databases, these models were determined to be (0.03592, 0.00365, and 0.11944) and (0.99416, 0.99995, and 0.92628), respectively, for the testing datasets. Finally, the outcomes illustrated the high accuracy and capability of the GWO-ANN approach in simulating and appraising the quality of groundwater. |
| Author | Le, Binh Nguyen Dehrashid, Atefeh Ahmadi Moayedi, Hossein Salari, Marjan |
| Author_xml | – sequence: 1 givenname: Hossein surname: Moayedi fullname: Moayedi, Hossein email: hosseinmoayedi@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, School of Engineering and Technology, Duy Tan University – sequence: 2 givenname: Marjan surname: Salari fullname: Salari, Marjan organization: Department of Civil Engineering, Sirjan University of Technology – sequence: 3 givenname: Atefeh Ahmadi surname: Dehrashid fullname: Dehrashid, Atefeh Ahmadi organization: Faculty of Natural Resources, Department of Climatology, University of Kurdistan – sequence: 4 givenname: Binh Nguyen surname: Le fullname: Le, Binh Nguyen organization: Institute of Research and Development, Duy Tan University, School of Engineering and Technology, Duy Tan University |
| BookMark | eNp9kc1q3TAQhUVJoUmaF8hK0LUbWfKP3F0JbRIIdNF2Lcb2-FpBV3L0k4v7On3RyLmlhS6yEKPFfOcM55yRE-ssEnJZso8lY-1VYKxq24JxkV_Fu-LwhpyWlWgKwevu5O-_Yu_IWQgPjJVtW1en5PeNd8mOB4jo6WMCo-NK8QlMgqidpSlou6Pz2ns90r0b0VA30Tgj3ScTdWFgzeCCfsAl-gwMbt9riyM96DhTi8mDKfDJmbTpgV-px53HEDb1iMNs9WPC8IkOEJCGmMZ1c_g-aw-_6GJA2_fk7QQm4MWfeU5-fv3y4_q2uP92c3f9-b4YRM1jUYkRWN1UJchSiHKSI_BeMN73QgKCYDXClBPqBxCN7LuRd61gbSNZ1yAXrTgnH466i3fbTVE9uORttlRcVmUjayFl3pLHrcG7EDxOatDxJazoQRtVMrVVoo6VqGyoXipRh4zy_9DF633O5HVIHKGQl-0O_b-rXqGeAW0opcw |
| CitedBy_id | crossref_primary_10_1007_s11356_023_28133_4 crossref_primary_10_3390_w15132453 crossref_primary_10_1016_j_pce_2024_103563 crossref_primary_10_1007_s12145_023_01182_6 crossref_primary_10_1007_s00477_024_02727_x crossref_primary_10_1007_s12665_024_11618_x crossref_primary_10_1007_s11269_023_03684_w crossref_primary_10_1080_19942060_2023_2300456 crossref_primary_10_1007_s00477_024_02690_7 crossref_primary_10_1007_s11356_023_30762_8 crossref_primary_10_1007_s10668_023_04117_9 crossref_primary_10_1007_s40996_024_01501_x crossref_primary_10_1007_s40996_024_01721_1 crossref_primary_10_1007_s10661_023_12181_x crossref_primary_10_3390_app14177813 crossref_primary_10_1016_j_ecoleng_2024_107214 crossref_primary_10_3390_w15183199 crossref_primary_10_1007_s12145_023_01209_y crossref_primary_10_17491_jgsi_2024_174002 crossref_primary_10_1016_j_heliyon_2024_e29182 crossref_primary_10_1007_s10668_023_03356_0 crossref_primary_10_61186_jehe_11_1_29 |
| Cites_doi | 10.1080/10298436.2022.2147672 10.3390/en15239187 10.1007/s40948-022-00518-8 10.1016/j.infoecopol.2019.05.002 10.1016/j.jclepro.2014.11.056 10.1016/j.jhydrol.2019.123913 10.1007/s12665-020-09228-4 10.1016/j.watres.2022.118551 10.1177/030913330102500104 10.1007/s11269-018-2147-6 10.1071/MF22135 10.1016/j.resourpol.2020.101604 10.1371/journal.pone.0233280 10.1016/j.coldregions.2021.103335 10.1109/ACCESS.2020.3004692 10.1016/j.engfracmech.2023.109054 10.1016/j.trgeo.2022.100875 10.1007/s00521-014-1685-y 10.1007/s00477-022-02361-5 10.2139/ssrn.4196723 10.1109/ACCESS.2019.2948949 10.1007/s42452-019-1108-x 10.3390/w11040860 10.1016/j.jhydrol.2011.06.019 10.1007/s00366-019-00882-2 10.1016/j.jhydrol.2020.125440 10.1016/j.ecolind.2020.107179 10.1007/978-3-030-36841-8_5 10.1016/j.rse.2020.111980 10.1029/2018JG004589 10.1007/s11356-022-24660-8 10.1007/s12206-013-0327-0 10.1016/j.asoc.2012.10.023 10.3390/ijgi8090391 10.3390/w14040610 10.2166/nh.2022.035 10.1016/j.gsd.2020.100435 10.3390/en15197323 10.1109/ACCESS.2021.3056568 10.1016/j.jhydrol.2020.124974 10.1016/j.scitotenv.2020.138316 10.1007/s00603-022-02924-6 10.3390/land12010242 10.1016/j.coal.2022.104097 10.3390/w11112210 10.1016/j.scitotenv.2017.06.157 10.3390/su13031483 10.1016/j.uclim.2021.101043 10.1016/j.jhydrol.2020.124670 10.1016/j.future.2019.02.028 10.1016/j.gsd.2021.100643 10.5004/dwt.2021.26709 10.3390/rs13061196 10.1007/s10489-014-0645-7 10.1007/s11269-016-1547-8 10.1109/TGRS.2019.2949797 10.1016/j.scitotenv.2022.155939 10.1007/978-981-16-4629-4_29 10.1016/j.jhydrol.2021.127146 10.3390/en12071301 10.1007/s11356-021-16300-4 10.3390/w15020363 10.1007/s10898-007-9149-x 10.2166/nh.2019.059 10.1007/s11356-021-17084-3 10.1109/TIP.2020.3031184 10.1007/s10668-017-9971-3 10.1007/s12517-017-2867-6 10.1016/j.ecolind.2020.107218 10.1007/s10533-017-0315-z 10.1016/j.gsd.2019.100292 10.1016/j.jhydrol.2012.01.026 10.1016/j.gsd.2020.100334 10.1016/j.ecolind.2020.106229 10.1155/2021/4531212 10.4249/scholarpedia.6915 10.1007/s10957-018-1396-0 10.1155/2021/6618841 10.1109/ACCESS.2022.3162932 10.1007/s13369-012-0291-5 10.1080/10256016.2015.1032960 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W SOI |
| DOI | 10.1007/s00477-023-02429-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics Computer Science Environmental Sciences |
| EISSN | 1436-3259 |
| EndPage | 2976 |
| ExternalDocumentID | 10_1007_s00477_023_02429_w |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z8M Z8S Z8T Z8U Z8W ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7ST 7XB 8FD 8FK C1K FR3 KR7 PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-c352t-43da05641a81331f8da2b302bb38aea305eaf023bca368b9d29730768096e2373 |
| IEDL.DBID | BENPR |
| ISSN | 1436-3240 |
| IngestDate | Sat Aug 23 14:19:30 EDT 2025 Wed Oct 01 02:18:03 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Fri Feb 21 02:42:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Prediction performance Artificial bee colony (ABC) Grey wolf optimizer (GWO) Groundwater quality Artificial neural network (ANN) Harris hawks optimization (HHO) Shiraz plain |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-43da05641a81331f8da2b302bb38aea305eaf023bca368b9d29730768096e2373 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| PQID | 2841685388 |
| PQPubID | 31669 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2841685388 crossref_citationtrail_10_1007_s00477_023_02429_w crossref_primary_10_1007_s00477_023_02429_w springer_journals_10_1007_s00477_023_02429_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230800 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Stochastic environmental research and risk assessment |
| PublicationTitleAbbrev | Stoch Environ Res Risk Assess |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Dos Santos, Adams, Neville, Wada, De Sherbinin, Bernhardt, Adamo (CR16) 2017; 607 Chakma, Bhowmik, Mallik, Mishra (CR12) 2022; 2021 Sammen, Mohamed, Ghazali, El-Shafie, Sidek (CR71) 2017; 31 Schweidtmann, Mitsos (CR72) 2019; 180 Zhang, Nguyen, Bui, Nguyen-Thoi, Bui, Nguyen, Vu, Mahesh, Moayedi (CR89) 2020; 66 Quan, Liang, Yan, Lei (CR65) 2022; 41 Oliver, Esteban, López-Gutiérrez, Negro, Neves (CR62) 2021; 13 CR36 CR79 Ahmed, Mumtaz, Anwar, Shah, Irfan, García-Nieto (CR4) 2019; 11 Mirjalili (CR51) 2015; 43 CR75 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR26) 2019; 97 CR73 Li, Wang, Nguyen, Zhuang, Li, Querol, Li, Moreno, Hoang, Cordoba (CR40) 2022; 261 Nordin, Mohd, Koting, Ismail, Sherif, El-Shafie (CR61) 2021; 14 Uddin, Nash, Olbert (CR78) 2021; 122 Gerey, Sarraf, Ahmadi (CR21) 2021; 2021 Tung, Yaseen (CR77) 2020; 585 Zhao, Zhou, Li, Zhou, Cheng, Li, Huang (CR90) 2019; 58 Fadhillah, Lee, Lee, Park (CR19) 2021; 13 CR3 CR7 Mahadeva, Manik, Verma, Goel, Kumar (CR44) 2020; 2018 Li, Wu, Tian, Yu, Wang (CR41) 2022; 60 Wu, Wang (CR81) 2022; 14 CR87 CR85 Mahadeva, Kumar, Patole, Manik (CR45) 2022; 10 CR84 Islam, Shen, Haque, Bodrud-Doza, Maw, Habib (CR28) 2018; 20 Zhou, Sun, Fu, Liu, Zhou, Zhou (CR92) 2019; 7 Abba, Hadi, Sammen, Salih, Abdulkadir, Pham, Yaseen (CR1) 2020; 587 Egbueri (CR17) 2020; 10 Rani, Verma, Nguyen (CR68) 2020; 8 Moayedi, Nguyen, Kok Foong (CR55) 2021; 37 Mosavi, Salimi, Faizollahzadeh Ardabili, Rabczuk, Shamshirband, Varkonyi-Koczy (CR60) 2019; 12 Piotrowski, Napiorkowski (CR63) 2011; 407 Salari, Teymouri, Nassaj (CR70) 2021; 9 Jafarian, Taghipour, Amirabadi (CR30) 2013; 27 Kisi, Ozkan, Akay (CR34) 2012; 428 Zhang, Ali, Antonarakis, Moghaddam, Saatchi, Tabatabaeenejad, Chen, Jaruwatanadilok, Cuenca, Crow (CR88) 2019; 124 Moayedi, Canatalay, Ahmadi Dehrashid, Cifci, Salari, Le (CR57) 2023; 12 Saha, Bodrud-Doza, Islam, Begum, Rahman (CR69) 2020; 79 Mallik, Mishra (CR48) 2020; 2018 Li, Yu, Wang, Liu, Cai, Wang (CR38) 2020; 60 Momeneh, Nourani (CR59) 2022; 53 Qi, Xu, Wu (CR64) 2023; 15 Rakhshandehroo, Vaghefi, Aghbolaghi (CR67) 2012; 37 Islam, Al Mamun, Rahman, Zahid (CR29) 2020; 113 Li, Lu, Zheng, Yang, Li (CR37) 2019; 11 Moayedi, Yildizhan, Aungkulanon, Escorcia, Al-Bahrani, Le (CR58) 2023; 55 CR14 Milad, Adwan, Majeed, Yusoff, Al-Ansari, Yaseen (CR50) 2021; 9 Wu, Wang, Ma, Zhang, Wu, Wen, Zha, Wu (CR82) 2022; 55 Malik, Kumar, Ghorbani, Kashani, Kisi, Kim (CR46) 2019; 50 Moayedi, Varamini, Mosallanezhad, Foong, Le (CR56) 2022; 37 Wu, Ma, Wang, Zhang (CR83) 2022; 8 Emami, Emami, Choopan, Parsa, Jahandideh (CR18) 2020; 6 CR93 Li, Chan, Lun (CR39) 2020; 30 Mallik, Mishra, Paul (CR49) 2021; 121 Xu, Lan, Ren, Zhou, Wang, Yuan (CR86) 2021; 189 Amiri, Zare, Widory (CR6) 2015; 51 Fang, Wang, Wang, Xiang, Wu, Zhang (CR20) 2021; 603 Moayedi, Le Van (CR53) 2022; 15 Azeiteiro, Bacelar-Nicolau, Caetano, Caeiro (CR10) 2015; 106 Gu, Xu, Moayedi, Zhao, Le (CR25) 2022; 31 Tian, Yang, Yu, Jia, Rosso, Dedman, Zhu, Xia, Zhang, Yang (CR76) 2022; 219 Alamdar, Kumar, Moghtaderi, Naghibi (CR5) 2019; 1 Adimalla, Dhakate, Kasarla, Taloor (CR2) 2020; 10 Shahid, Salari, Ehteshami, Sheibani (CR74) 2020; 8 Naseri, Jahanbakhsh, Foomajd, Galustanian, Karimi, Waygood (CR94) 2022 Awan, Aslam, Khan, Saeed (CR9) 2014; 25 Charulatha, Srinivasalu, Uma Maheswari, Venugopal, Giridharan (CR13) 2017; 10 Karaboga, Basturk (CR32) 2007; 39 Malik, Kumar, Salih, Kim, Kim, Yaseen, Singh (CR47) 2020; 15 Askarzadeh, Rezazadeh (CR8) 2013; 13 CR27 Liu, Zhang, Li, Liu, Wang, Huang (CR42) 2020; 590 CR24 Loecke, Burgin, Riveros-Iregui, Ward, Thomas, Davis, Clair (CR43) 2017; 133 CR22 Badeenezhad, Tabatabaee, Nikbakht, Radfard, Abbasnia, Baghapour, Alhamd (CR11) 2020; 11 Moayedi, Le Van (CR52) 2022; 15 Zhao, Zhou, Li, Cheng, Zhou, Ma, Li, Huang (CR91) 2020; 248 Kisi, Azad, Kashi, Saeedian, Hashemi, Ghorbani (CR35) 2019; 33 Wang, Chen, Yan, Chang (CR80) 2018; 28 Kim, Han, Johnson, Lim, Cifelli (CR33) 2019; 577 Dawson, Wilby (CR15) 2001; 25 Rahman, Bodrud-Doza, Siddiqua, Zahid, Islam (CR66) 2020; 724 Moayedi, Tien Bui, Gör, Pradhan, Jaafari (CR54) 2019; 8 Gonçalves, Ribeiro, Pereira, Rocha (CR23) 2019; 47 Karaboga (CR31) 2010; 5 H Amiri (2429_CR6) 2015; 51 NFC Nordin (2429_CR61) 2021; 14 TM Tung (2429_CR77) 2020; 585 MF Fadhillah (2429_CR19) 2021; 13 X Wang (2429_CR80) 2018; 28 Y Tian (2429_CR76) 2022; 219 R Li (2429_CR41) 2022; 60 AP Piotrowski (2429_CR63) 2011; 407 A Askarzadeh (2429_CR8) 2013; 13 AA Heidari (2429_CR26) 2019; 97 SS Sammen (2429_CR71) 2017; 31 H Moayedi (2429_CR56) 2022; 37 MG Uddin (2429_CR78) 2021; 122 2429_CR3 2429_CR93 T Li (2429_CR39) 2020; 30 AM Schweidtmann (2429_CR72) 2019; 180 2429_CR84 2429_CR7 C Dawson (2429_CR15) 2001; 25 H Li (2429_CR37) 2019; 11 R Li (2429_CR38) 2020; 60 2429_CR85 2429_CR87 A Milad (2429_CR50) 2021; 9 Y-t Gu (2429_CR25) 2022; 31 A Chakma (2429_CR12) 2022; 2021 J Li (2429_CR40) 2022; 261 K Zhang (2429_CR88) 2019; 124 JC Egbueri (2429_CR17) 2020; 10 S Momeneh (2429_CR59) 2022; 53 LY Wu (2429_CR83) 2022; 8 S Mallik (2429_CR48) 2020; 2018 O Kisi (2429_CR35) 2019; 33 2429_CR73 2429_CR75 L-y Wu (2429_CR82) 2022; 55 TD Loecke (2429_CR43) 2017; 133 R Mahadeva (2429_CR44) 2020; 2018 S Emami (2429_CR18) 2020; 6 2429_CR79 2429_CR36 R Mahadeva (2429_CR45) 2022; 10 D Karaboga (2429_CR31) 2010; 5 M Salari (2429_CR70) 2021; 9 H Naseri (2429_CR94) 2022 H Moayedi (2429_CR57) 2023; 12 GR Rakhshandehroo (2429_CR67) 2012; 37 N Saha (2429_CR69) 2020; 79 J Kim (2429_CR33) 2019; 577 J Xu (2429_CR86) 2021; 189 O Kisi (2429_CR34) 2012; 428 Y Liu (2429_CR42) 2020; 590 S Dos Santos (2429_CR16) 2017; 607 JM Oliver (2429_CR62) 2021; 13 A Badeenezhad (2429_CR11) 2020; 11 S Mirjalili (2429_CR51) 2015; 43 M Zhao (2429_CR90) 2019; 58 2429_CR22 H Moayedi (2429_CR55) 2021; 37 2429_CR24 N Adimalla (2429_CR2) 2020; 10 M Zhao (2429_CR91) 2020; 248 H Moayedi (2429_CR53) 2022; 15 H Moayedi (2429_CR54) 2019; 8 R Alamdar (2429_CR5) 2019; 1 2429_CR27 UM Azeiteiro (2429_CR10) 2015; 106 U Ahmed (2429_CR4) 2019; 11 ES Shahid (2429_CR74) 2020; 8 H Moayedi (2429_CR58) 2023; 55 Q Quan (2429_CR65) 2022; 41 H Zhang (2429_CR89) 2020; 66 G Charulatha (2429_CR13) 2017; 10 X Fang (2429_CR20) 2021; 603 A Mosavi (2429_CR60) 2019; 12 R Gonçalves (2429_CR23) 2019; 47 D Karaboga (2429_CR32) 2007; 39 MM Rahman (2429_CR66) 2020; 724 F Jafarian (2429_CR30) 2013; 27 A Gerey (2429_CR21) 2021; 2021 J Wu (2429_CR81) 2022; 14 S Abba (2429_CR1) 2020; 587 A Malik (2429_CR47) 2020; 15 SM Awan (2429_CR9) 2014; 25 A Malik (2429_CR46) 2019; 50 H Moayedi (2429_CR52) 2022; 15 H Zhou (2429_CR92) 2019; 7 S Mallik (2429_CR49) 2021; 121 A Islam (2429_CR28) 2018; 20 P Rani (2429_CR68) 2020; 8 2429_CR14 ARMT Islam (2429_CR29) 2020; 113 B Qi (2429_CR64) 2023; 15 |
| References_xml | – volume: 587 start-page: 124974 year: 2020 ident: CR1 article-title: Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination publication-title: J Hydrol – ident: CR22 – volume: 53 start-page: 914 issue: 6 year: 2022 end-page: 944 ident: CR59 article-title: Forecasting of groundwater level fluctuations using a hybrid of multi-discrete wavelet transforms with artificial intelligence models publication-title: Hydrol Res – volume: 55 start-page: 4963 issue: 8 year: 2022 end-page: 4978 ident: CR82 article-title: A continuous damage statistical constitutive model for sandstone and mudstone based on triaxial compression tests publication-title: Rock Mech Rock Eng – volume: 10 start-page: 100292 year: 2020 ident: CR17 article-title: Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): a case study publication-title: Groundw Sustain Dev – volume: 60 start-page: 1 year: 2022 end-page: 20 ident: CR41 article-title: Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion publication-title: IEEE Trans Geosci Remote Sens – volume: 9 start-page: 23840 year: 2021 end-page: 23849 ident: CR50 article-title: Emerging technologies of deep learning models development for pavement temperature prediction publication-title: IEEE Access – ident: CR93 – volume: 15 start-page: 9187 issue: 23 year: 2022 ident: CR53 article-title: Feasibility of harris hawks optimization in combination with fuzzy inference system predicting heating load energy inside buildings publication-title: Energies – ident: CR87 – volume: 1 start-page: 1367 issue: 11 year: 2019 ident: CR5 article-title: Groundwater quality evaluation of Shiraz city, Iran using multivariate and geostatistical techniques publication-title: SN Appl Sci – volume: 121 start-page: 107179 year: 2021 ident: CR49 article-title: Groundwater suitability analysis for drinking using GIS based fuzzy logic publication-title: Ecol Ind – volume: 47 start-page: 38 year: 2019 end-page: 51 ident: CR23 article-title: Deep learning in exchange markets publication-title: Inf Econ Policy – volume: 14 start-page: 610 issue: 4 year: 2022 ident: CR81 article-title: A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memory publication-title: Water – volume: 261 start-page: 104097 year: 2022 ident: CR40 article-title: First insights into mineralogy, geochemistry, and isotopic signatures of the Upper Triassic high-sulfur coals from the Thai Nguyen Coal field, NE Vietnam publication-title: Int J Coal Geol – ident: CR84 – volume: 37 start-page: 1265 year: 2021 end-page: 1275 ident: CR55 article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network publication-title: Eng Comput – volume: 41 start-page: 101043 year: 2022 ident: CR65 article-title: Influences of joint action of natural and social factors on atmospheric process of hydrological cycle in Inner Mongolia publication-title: China Urban Climate – volume: 10 start-page: 1 year: 2017 end-page: 9 ident: CR13 article-title: Evaluation of ground water quality contaminants using linear regression and artificial neural network models publication-title: Arab J Geosci – volume: 10 start-page: 100334 year: 2020 ident: CR2 article-title: Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana publication-title: India Groundw Sustain Dev – volume: 724 start-page: 138316 year: 2020 ident: CR66 article-title: Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region publication-title: Bangladesh Sci Total Environ – ident: CR75 – volume: 7 start-page: 154035 year: 2019 end-page: 154043 ident: CR92 article-title: A big data mining approach of PSO-based BP neural network for financial risk management with IoT publication-title: IEEE Access – volume: 14 start-page: 100643 year: 2021 ident: CR61 article-title: Groundwater quality forecasting modelling using artificial intelligence: a review publication-title: Groundw Sustain Dev – volume: 37 start-page: 1871 year: 2012 end-page: 1883 ident: CR67 article-title: Forecasting groundwater level in Shiraz plain using artificial neural networks publication-title: Arab J Sci Eng – volume: 106 start-page: 308 year: 2015 end-page: 319 ident: CR10 article-title: Education for sustainable development through e-learning in higher education: experiences from Portugal publication-title: J Clean Prod – volume: 25 start-page: 1967 issue: 7 year: 2014 end-page: 1978 ident: CR9 article-title: An efficient model based on artificial bee colony optimization algorithm with Neural Networks for electric load forecasting publication-title: Neural Comput Appl – volume: 60 start-page: 1 year: 2020 end-page: 14 ident: CR38 article-title: Model-based synthetic geoelectric sampling for magnetotelluric inversion with deep neural networks publication-title: IEEE Trans Geosci Remote Sens – volume: 30 start-page: 68 year: 2020 end-page: 79 ident: CR39 article-title: Improved multiple-image-based reflection removal algorithm using deep neural networks publication-title: IEEE Trans Image Process – volume: 8 start-page: 121755 year: 2020 end-page: 121764 ident: CR68 article-title: Mitigation of black hole and gray hole attack using swarm inspired algorithm with artificial neural network publication-title: IEEE Access – volume: 2018 start-page: 1209 year: 2020 end-page: 1219 ident: CR44 article-title: Modelling and simulation of reverse osmosis system using PSO-ANN prediction technique publication-title: Soft Comput Theor Appl Proc SoCTA – ident: CR36 – ident: CR85 – volume: 39 start-page: 459 issue: 3 year: 2007 end-page: 471 ident: CR32 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Global Optim – volume: 11 start-page: 2210 issue: 11 year: 2019 ident: CR4 article-title: Efficient water quality prediction using supervised machine learning publication-title: Water – volume: 27 start-page: 1469 issue: 5 year: 2013 end-page: 1477 ident: CR30 article-title: Application of artificial neural network and optimization algorithms for optimizing surface roughness, tool life and cutting forces in turning operation publication-title: J Mech Sci Technol – volume: 25 start-page: 80 issue: 1 year: 2001 end-page: 108 ident: CR15 article-title: Hydrological modelling using artificial neural networks publication-title: Prog Phys Geogr – volume: 13 start-page: 1206 issue: 2 year: 2013 end-page: 1213 ident: CR8 article-title: Artificial neural network training using a new efficient optimization algorithm publication-title: Appl Soft Comput – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR26 article-title: Harris hawks optimization: Algorithm and applications publication-title: Futur Gener Comput Syst – volume: 12 start-page: 1301 issue: 7 year: 2019 ident: CR60 article-title: State of the art of machine learning models in energy systems, a systematic review publication-title: Energies – volume: 79 start-page: 1 issue: 20 year: 2020 end-page: 18 ident: CR69 article-title: Hydrogeochemical evolution of shallow and deeper aquifers in central Bangladesh: arsenic mobilization process and health risk implications from the potable use of groundwater publication-title: Environ Earth Sci – volume: 55 start-page: 102951 year: 2023 ident: CR58 article-title: Green building’s heat loss reduction analysis through two novel hybrid approaches publication-title: Sustain Energy Technol Assess – volume: 9 start-page: 720 issue: 4 year: 2021 end-page: 727 ident: CR70 article-title: Application of an artificial neural network model for estimating of water quality parameters in the karun river publication-title: Iran J Environ Treat Tech – volume: 13 start-page: 1196 issue: 6 year: 2021 ident: CR19 article-title: Application of support vector regression and metaheuristic optimization algorithms for groundwater potential mapping in Gangneung-si publication-title: South Korea Remote Sens – volume: 2018 start-page: 273 year: 2020 end-page: 288 ident: CR48 article-title: Assessment of spatial variations in groundwater quality of agartala, tripura for drinking employing GIS and MCDA techniques publication-title: Appl Geomat Civil Eng Sel Proc ICGCE – volume: 180 start-page: 925 issue: 3 year: 2019 end-page: 948 ident: CR72 article-title: Deterministic global optimization with artificial neural networks embedded publication-title: J Optim Theory Appl – volume: 189 start-page: 103335 year: 2021 ident: CR86 article-title: Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization publication-title: Cold Reg Sci Technol – volume: 124 start-page: 3208 issue: 11 year: 2019 end-page: 3231 ident: CR88 article-title: The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: an analysis using radar-derived estimates of root-zone soil moisture publication-title: J Geophys Res Biogeosci – volume: 407 start-page: 12 issue: 1–4 year: 2011 end-page: 27 ident: CR63 article-title: Optimizing neural networks for river flow forecasting–evolutionary computation methods versus the Levenberg–Marquardt approach publication-title: J Hydrol – ident: CR14 – volume: 43 start-page: 150 issue: 1 year: 2015 end-page: 161 ident: CR51 article-title: How effective is the Grey wolf optimizer in training multi-layer perceptrons publication-title: Appl Intell – volume: 6 start-page: 99 issue: 2 year: 2020 end-page: 110 ident: CR18 article-title: Modeling groundwater quality using three novel hybrid support vector regression models publication-title: Adv Environ Technol – volume: 2021 start-page: 1 year: 2021 end-page: 16 ident: CR21 article-title: Groundwater single-and multiobjective optimization using Harris Hawks and Multiobjective Billiards-inspired algorithm publication-title: Shock Vib – volume: 248 start-page: 111980 year: 2020 ident: CR91 article-title: Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS publication-title: Remote Sens Environ – volume: 33 start-page: 847 issue: 2 year: 2019 end-page: 861 ident: CR35 article-title: Modeling groundwater quality parameters using hybrid neuro-fuzzy methods publication-title: Water Resour Manage – volume: 28 start-page: 517 issue: 5 year: 2018 end-page: 525 ident: CR80 article-title: Constitutive model for ratcheting behavior of Z2CND18 12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network publication-title: Steel Compos Struct Int J – volume: 8 start-page: 625 year: 2020 end-page: 633 ident: CR74 article-title: Artificial neural network (ANN) modeling of cavitation mechanism by ultrasonic irradiation for cyanobacteria growth inhibition publication-title: J Environ Treat Tech – volume: 8 start-page: 391 issue: 9 year: 2019 ident: CR54 article-title: The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes publication-title: ISPRS Int J Geo Inf – year: 2022 ident: CR94 article-title: A newly developed hybrid method on pavement maintenance and rehabilitation optimization applying Whale Optimization Algorithm and random forest regression publication-title: Int J Pavement Eng doi: 10.1080/10298436.2022.2147672 – volume: 219 start-page: 118551 year: 2022 ident: CR76 article-title: Can we quantify the aquatic environmental plastic load from aquaculture? publication-title: Water Res – volume: 577 start-page: 123913 year: 2019 ident: CR33 article-title: Hybrid machine learning framework for hydrological assessment publication-title: J Hydrol – volume: 13 start-page: 1483 issue: 3 year: 2021 ident: CR62 article-title: Optimizing wave overtopping energy converters by ANN modelling: evaluating the overtopping rate forecasting as the first step publication-title: Sustainability – volume: 11 start-page: 100435 year: 2020 ident: CR11 article-title: Estimation of the groundwater quality index and investigation of the affecting factors their changes in Shiraz drinking groundwater publication-title: Iran Groundw Sustain Dev – ident: CR79 – volume: 5 start-page: 6915 issue: 3 year: 2010 ident: CR31 article-title: Artificial bee colony algorithm publication-title: Scholarpedia – volume: 20 start-page: 1935 issue: 5 year: 2018 end-page: 1959 ident: CR28 article-title: Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches publication-title: Environ Dev Sustain – volume: 8 start-page: 202 issue: 6 year: 2022 ident: CR83 article-title: Prediction and prevention of mining-induced water inrush from rock strata separation space by 3D similarity simulation testing: a case study of Yuan Zigou coal mine, China publication-title: Geomech Geophys Geo-Energy Geo-Resour – volume: 133 start-page: 7 issue: 1 year: 2017 end-page: 15 ident: CR43 article-title: Weather whiplash in agricultural regions drives deterioration of water quality publication-title: Biogeochemistry – ident: CR27 – volume: 590 start-page: 125440 year: 2020 ident: CR42 article-title: A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds publication-title: J Hydrol – volume: 51 start-page: 392 issue: 3 year: 2015 end-page: 410 ident: CR6 article-title: Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ15N and δ18O dual-isotope approach publication-title: Isot Environ Health Stud – volume: 37 start-page: 100875 year: 2022 ident: CR56 article-title: Applicability and comparison of four nature-inspired hybrid techniques in predicting driven piles’ friction capacity publication-title: Trans Geotech – volume: 31 start-page: 339 issue: 4 year: 2022 end-page: 352 ident: CR25 article-title: Slope stability prediction using ANFIS models optimized with metaheuristic science publication-title: Geomech Eng – volume: 12 start-page: 242 issue: 1 year: 2023 ident: CR57 article-title: Multilayer perceptron and their comparison with two nature-inspired hybrid techniques of biogeography-based optimization (BBO) and backtracking search algorithm (BSA) for assessment of landslide susceptibility publication-title: Land – volume: 585 start-page: 124670 year: 2020 ident: CR77 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J Hydrol – volume: 31 start-page: 549 issue: 1 year: 2017 end-page: 562 ident: CR71 article-title: Generalized regression neural network for prediction of peak outflow from dam breach publication-title: Water Resour Manage – volume: 607 start-page: 497 year: 2017 end-page: 508 ident: CR16 article-title: Urban growth and water access in sub-Saharan Africa: progress, challenges, and emerging research directions publication-title: Sci Total Environ – ident: CR73 – volume: 15 start-page: 363 issue: 2 year: 2023 ident: CR64 article-title: Analysis of the infiltration and water storage performance of recycled brick mix aggregates in sponge city construction publication-title: Water – volume: 113 start-page: 106229 year: 2020 ident: CR29 article-title: Simultaneous comparison of modified-integrated water quality and entropy weighted indices: implication for safe drinking water in the coastal region of Bangladesh publication-title: Ecol Ind – ident: CR3 – volume: 428 start-page: 94 year: 2012 end-page: 103 ident: CR34 article-title: Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm publication-title: J Hydrol – volume: 58 start-page: 1843 issue: 3 year: 2019 end-page: 1856 ident: CR90 article-title: Building a series of consistent night-time light data (1992–2018) in Southeast Asia by integrating DMSP-OLS and NPP-VIIRS publication-title: IEEE Trans Geosci Remote Sens – volume: 15 start-page: 7323 issue: 19 year: 2022 ident: CR52 article-title: The applicability of biogeography-based optimization and earthworm optimization algorithm hybridized with anfis as reliable solutions in estimation of cooling load in buildings publication-title: Energies – volume: 2021 start-page: 419 year: 2022 end-page: 428 ident: CR12 article-title: Application of GIS and geostatistical interpolation method for groundwater mapping publication-title: Adv Modelling Innov Water Resour Eng Sel Proc AMIWRE – volume: 11 start-page: 860 issue: 4 year: 2019 ident: CR37 article-title: Groundwater level prediction for the arid oasis of Northwest China based on the artificial bee colony algorithm and a back-propagation neural network with double hidden layers publication-title: Water – volume: 50 start-page: 1623 issue: 6 year: 2019 end-page: 1644 ident: CR46 article-title: The viability of co-active fuzzy inference system model for monthly reference evapotranspiration estimation: case study of Uttarakhand State publication-title: Hydrol Res – volume: 66 start-page: 101604 year: 2020 ident: CR89 article-title: Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm publication-title: Resour Policy – ident: CR7 – volume: 10 start-page: 34550 year: 2022 end-page: 34561 ident: CR45 article-title: Desalination plant performance prediction model using grey wolf optimizer based ANN approach publication-title: IEEE Access – volume: 603 start-page: 127146 year: 2021 ident: CR20 article-title: Employing extreme value theory to establish nutrient criteria in bay waters: a case study of Xiangshan Bay publication-title: J Hydrol – ident: CR24 – volume: 122 start-page: 107218 year: 2021 ident: CR78 article-title: A review of water quality index models and their use for assessing surface water quality publication-title: Ecol Ind – volume: 15 start-page: e0233280 issue: 5 year: 2020 ident: CR47 article-title: Drought index prediction using advanced fuzzy logic model: regional case study over Kumaon in India publication-title: PLoS ONE – volume: 15 start-page: 9187 issue: 23 year: 2022 ident: 2429_CR53 publication-title: Energies doi: 10.3390/en15239187 – volume: 55 start-page: 102951 year: 2023 ident: 2429_CR58 publication-title: Sustain Energy Technol Assess – volume: 8 start-page: 202 issue: 6 year: 2022 ident: 2429_CR83 publication-title: Geomech Geophys Geo-Energy Geo-Resour doi: 10.1007/s40948-022-00518-8 – volume: 47 start-page: 38 year: 2019 ident: 2429_CR23 publication-title: Inf Econ Policy doi: 10.1016/j.infoecopol.2019.05.002 – volume: 106 start-page: 308 year: 2015 ident: 2429_CR10 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.11.056 – volume: 577 start-page: 123913 year: 2019 ident: 2429_CR33 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123913 – volume: 79 start-page: 1 issue: 20 year: 2020 ident: 2429_CR69 publication-title: Environ Earth Sci doi: 10.1007/s12665-020-09228-4 – volume: 60 start-page: 1 year: 2022 ident: 2429_CR41 publication-title: IEEE Trans Geosci Remote Sens – volume: 219 start-page: 118551 year: 2022 ident: 2429_CR76 publication-title: Water Res doi: 10.1016/j.watres.2022.118551 – volume: 25 start-page: 80 issue: 1 year: 2001 ident: 2429_CR15 publication-title: Prog Phys Geogr doi: 10.1177/030913330102500104 – volume: 33 start-page: 847 issue: 2 year: 2019 ident: 2429_CR35 publication-title: Water Resour Manage doi: 10.1007/s11269-018-2147-6 – ident: 2429_CR93 doi: 10.1071/MF22135 – volume: 66 start-page: 101604 year: 2020 ident: 2429_CR89 publication-title: Resour Policy doi: 10.1016/j.resourpol.2020.101604 – volume: 15 start-page: e0233280 issue: 5 year: 2020 ident: 2429_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0233280 – volume: 189 start-page: 103335 year: 2021 ident: 2429_CR86 publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2021.103335 – volume: 8 start-page: 121755 year: 2020 ident: 2429_CR68 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004692 – ident: 2429_CR84 doi: 10.1016/j.engfracmech.2023.109054 – volume: 37 start-page: 100875 year: 2022 ident: 2429_CR56 publication-title: Trans Geotech doi: 10.1016/j.trgeo.2022.100875 – volume: 25 start-page: 1967 issue: 7 year: 2014 ident: 2429_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1685-y – ident: 2429_CR27 doi: 10.1007/s00477-022-02361-5 – ident: 2429_CR85 doi: 10.2139/ssrn.4196723 – volume: 7 start-page: 154035 year: 2019 ident: 2429_CR92 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948949 – volume: 1 start-page: 1367 issue: 11 year: 2019 ident: 2429_CR5 publication-title: SN Appl Sci doi: 10.1007/s42452-019-1108-x – volume: 11 start-page: 860 issue: 4 year: 2019 ident: 2429_CR37 publication-title: Water doi: 10.3390/w11040860 – volume: 407 start-page: 12 issue: 1–4 year: 2011 ident: 2429_CR63 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.06.019 – volume: 28 start-page: 517 issue: 5 year: 2018 ident: 2429_CR80 publication-title: Steel Compos Struct Int J – volume: 37 start-page: 1265 year: 2021 ident: 2429_CR55 publication-title: Eng Comput doi: 10.1007/s00366-019-00882-2 – volume: 590 start-page: 125440 year: 2020 ident: 2429_CR42 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125440 – volume: 121 start-page: 107179 year: 2021 ident: 2429_CR49 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2020.107179 – ident: 2429_CR7 doi: 10.1007/978-3-030-36841-8_5 – volume: 248 start-page: 111980 year: 2020 ident: 2429_CR91 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111980 – volume: 124 start-page: 3208 issue: 11 year: 2019 ident: 2429_CR88 publication-title: J Geophys Res Biogeosci doi: 10.1029/2018JG004589 – ident: 2429_CR73 doi: 10.1007/s11356-022-24660-8 – volume: 27 start-page: 1469 issue: 5 year: 2013 ident: 2429_CR30 publication-title: J Mech Sci Technol doi: 10.1007/s12206-013-0327-0 – ident: 2429_CR79 – volume: 13 start-page: 1206 issue: 2 year: 2013 ident: 2429_CR8 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.10.023 – volume: 8 start-page: 391 issue: 9 year: 2019 ident: 2429_CR54 publication-title: ISPRS Int J Geo Inf doi: 10.3390/ijgi8090391 – volume: 14 start-page: 610 issue: 4 year: 2022 ident: 2429_CR81 publication-title: Water doi: 10.3390/w14040610 – volume: 53 start-page: 914 issue: 6 year: 2022 ident: 2429_CR59 publication-title: Hydrol Res doi: 10.2166/nh.2022.035 – volume: 11 start-page: 100435 year: 2020 ident: 2429_CR11 publication-title: Iran Groundw Sustain Dev doi: 10.1016/j.gsd.2020.100435 – volume: 15 start-page: 7323 issue: 19 year: 2022 ident: 2429_CR52 publication-title: Energies doi: 10.3390/en15197323 – volume: 9 start-page: 23840 year: 2021 ident: 2429_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056568 – volume: 587 start-page: 124974 year: 2020 ident: 2429_CR1 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124974 – ident: 2429_CR3 – volume: 724 start-page: 138316 year: 2020 ident: 2429_CR66 publication-title: Bangladesh Sci Total Environ doi: 10.1016/j.scitotenv.2020.138316 – volume: 55 start-page: 4963 issue: 8 year: 2022 ident: 2429_CR82 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-022-02924-6 – volume: 6 start-page: 99 issue: 2 year: 2020 ident: 2429_CR18 publication-title: Adv Environ Technol – volume: 12 start-page: 242 issue: 1 year: 2023 ident: 2429_CR57 publication-title: Land doi: 10.3390/land12010242 – volume: 261 start-page: 104097 year: 2022 ident: 2429_CR40 publication-title: Int J Coal Geol doi: 10.1016/j.coal.2022.104097 – volume: 60 start-page: 1 year: 2020 ident: 2429_CR38 publication-title: IEEE Trans Geosci Remote Sens – volume: 11 start-page: 2210 issue: 11 year: 2019 ident: 2429_CR4 publication-title: Water doi: 10.3390/w11112210 – volume: 607 start-page: 497 year: 2017 ident: 2429_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.06.157 – volume: 13 start-page: 1483 issue: 3 year: 2021 ident: 2429_CR62 publication-title: Sustainability doi: 10.3390/su13031483 – volume: 41 start-page: 101043 year: 2022 ident: 2429_CR65 publication-title: China Urban Climate doi: 10.1016/j.uclim.2021.101043 – volume: 585 start-page: 124670 year: 2020 ident: 2429_CR77 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124670 – volume: 97 start-page: 849 year: 2019 ident: 2429_CR26 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 14 start-page: 100643 year: 2021 ident: 2429_CR61 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2021.100643 – ident: 2429_CR75 doi: 10.5004/dwt.2021.26709 – volume: 13 start-page: 1196 issue: 6 year: 2021 ident: 2429_CR19 publication-title: South Korea Remote Sens doi: 10.3390/rs13061196 – volume: 43 start-page: 150 issue: 1 year: 2015 ident: 2429_CR51 publication-title: Appl Intell doi: 10.1007/s10489-014-0645-7 – volume: 31 start-page: 549 issue: 1 year: 2017 ident: 2429_CR71 publication-title: Water Resour Manage doi: 10.1007/s11269-016-1547-8 – volume: 58 start-page: 1843 issue: 3 year: 2019 ident: 2429_CR90 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2949797 – ident: 2429_CR87 doi: 10.1016/j.scitotenv.2022.155939 – volume: 2021 start-page: 419 year: 2022 ident: 2429_CR12 publication-title: Adv Modelling Innov Water Resour Eng Sel Proc AMIWRE doi: 10.1007/978-981-16-4629-4_29 – volume: 603 start-page: 127146 year: 2021 ident: 2429_CR20 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127146 – volume: 12 start-page: 1301 issue: 7 year: 2019 ident: 2429_CR60 publication-title: Energies doi: 10.3390/en12071301 – ident: 2429_CR22 doi: 10.1007/s11356-021-16300-4 – volume: 15 start-page: 363 issue: 2 year: 2023 ident: 2429_CR64 publication-title: Water doi: 10.3390/w15020363 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 2429_CR32 publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – volume: 50 start-page: 1623 issue: 6 year: 2019 ident: 2429_CR46 publication-title: Hydrol Res doi: 10.2166/nh.2019.059 – ident: 2429_CR36 doi: 10.1007/s11356-021-17084-3 – volume: 30 start-page: 68 year: 2020 ident: 2429_CR39 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3031184 – volume: 2018 start-page: 273 year: 2020 ident: 2429_CR48 publication-title: Appl Geomat Civil Eng Sel Proc ICGCE – volume: 8 start-page: 625 year: 2020 ident: 2429_CR74 publication-title: J Environ Treat Tech – volume: 31 start-page: 339 issue: 4 year: 2022 ident: 2429_CR25 publication-title: Geomech Eng – volume: 20 start-page: 1935 issue: 5 year: 2018 ident: 2429_CR28 publication-title: Environ Dev Sustain doi: 10.1007/s10668-017-9971-3 – volume: 10 start-page: 1 year: 2017 ident: 2429_CR13 publication-title: Arab J Geosci doi: 10.1007/s12517-017-2867-6 – volume: 122 start-page: 107218 year: 2021 ident: 2429_CR78 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2020.107218 – volume: 133 start-page: 7 issue: 1 year: 2017 ident: 2429_CR43 publication-title: Biogeochemistry doi: 10.1007/s10533-017-0315-z – volume: 10 start-page: 100292 year: 2020 ident: 2429_CR17 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2019.100292 – volume: 428 start-page: 94 year: 2012 ident: 2429_CR34 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.01.026 – volume: 10 start-page: 100334 year: 2020 ident: 2429_CR2 publication-title: India Groundw Sustain Dev doi: 10.1016/j.gsd.2020.100334 – volume: 113 start-page: 106229 year: 2020 ident: 2429_CR29 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2020.106229 – volume: 2018 start-page: 1209 year: 2020 ident: 2429_CR44 publication-title: Soft Comput Theor Appl Proc SoCTA – volume: 2021 start-page: 1 year: 2021 ident: 2429_CR21 publication-title: Shock Vib doi: 10.1155/2021/4531212 – volume: 5 start-page: 6915 issue: 3 year: 2010 ident: 2429_CR31 publication-title: Scholarpedia doi: 10.4249/scholarpedia.6915 – volume: 180 start-page: 925 issue: 3 year: 2019 ident: 2429_CR72 publication-title: J Optim Theory Appl doi: 10.1007/s10957-018-1396-0 – ident: 2429_CR14 doi: 10.1155/2021/6618841 – volume: 10 start-page: 34550 year: 2022 ident: 2429_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3162932 – volume: 9 start-page: 720 issue: 4 year: 2021 ident: 2429_CR70 publication-title: Iran J Environ Treat Tech – ident: 2429_CR24 – volume: 37 start-page: 1871 year: 2012 ident: 2429_CR67 publication-title: Arab J Sci Eng doi: 10.1007/s13369-012-0291-5 – year: 2022 ident: 2429_CR94 publication-title: Int J Pavement Eng doi: 10.1080/10298436.2022.2147672 – volume: 51 start-page: 392 issue: 3 year: 2015 ident: 2429_CR6 publication-title: Isot Environ Health Stud doi: 10.1080/10256016.2015.1032960 |
| SSID | ssj0017754 ssib007539910 ssib057179955 ssib001127189 |
| Score | 2.4828346 |
| Snippet | In recent decades, qualitative and quantitative assessments of groundwater sources reveal that efficient and accurate optimization approaches may assist in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2961 |
| SubjectTerms | Accuracy Aquatic Pollution Artificial neural networks Calcium ions Chemistry and Earth Sciences Computational Intelligence Computer Science Earth and Environmental Science Earth Sciences Environment Groundwater Groundwater data Groundwater quality Heuristic methods Hydrologic data Magnesium Math. Appl. in Environmental Science Multilayer perceptrons Multilayers Neural networks Optimization Original Paper Physics Prediction models Probability Theory and Stochastic Processes Quality assessment Resource management Statistics for Engineering Swarm intelligence Waste Water Technology Water Management Water Pollution Control Water quality Water resources management |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7alNJe-tg2dNu0zKG3VmBbWlubWygJodBemoXcjCzJ2cDiLOtNls3fyR_NjCx7SWkLvdp6gGak-aSZ-Qbgs00rr2qvReL8VKhcSlFV0osiMz5XfqJU4O788TM_nanv55PzmBTW9tHuvUsynNRDshsTGxaCbIxguzIVm8fwZMJ0XqTFs-xo8B0wp1vIKZK5YLq5mCrz5zEemqMdxvzNLRqszckreBFhIh51cn0Nj3wzgpd9CQaMO3IE-8e7RDVqH7-3I3gWq5vPtyN4GsI8bfsG7vipqXEbw4N0-ZRb3BF-I0fBX-B8y2lcGIrk4FWNhBExBB6KhSGEjssuGIamRVo6ulp7h_yei0yOaRbC30R9NqstrvxFF2rb4MAX2x6iJeuJgduWZ_g1v1yZW1wuzGXzFmYnx2ffTkUs0yAsobe1UNIZglEqNZouvGmtnckqmWQkc228oQPFm5qWvLJG5rqaOi6XxQ5Auj35TBZyH_aaq8a_A7RaKVckiSusUzpXhp9E6lT5NLGFsWYMaS-t0kYOcy6lsSgH9uUg4ZKmK4OEy80Yvgx9lh2Dxz9bH_RKUMbd3JYZ-2YJ12g9hq-9Yux-_3209__X_AM8z4JucnzhAeytV9f-I2GedfUpqPg9FOf8aQ priority: 102 providerName: Springer Nature |
| Title | Groundwater quality evaluation using hybrid model of the multi-layer perceptron combined with neural-evolutionary regression techniques: case study of Shiraz plain |
| URI | https://link.springer.com/article/10.1007/s00477-023-02429-w https://www.proquest.com/docview/2841685388 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-3259 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: 8FG dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: U2A dateStart: 19990404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QO8IDaY6DYqP_AGFvnwEncSQmVqN4GoEFBpPEWO7ayTqrSk3ary7_CPcuc4jUBir3FiS7mz73wfvx_AKx3mVhRW8sDYARdJHPM8jy1PI2UTYc-EcNidnyfJ1VR8vD673oNJ0wtDZZXNmegOarPQFCN_G1F-DG2LlO-XPzmxRlF2taHQUJ5awbxzEGP70I0IGasD3Q-jyZevu7wC4b25fqM44QRF59toXDMdASemHG0YJ7s14Ju_TVXrf_6TMnWWaPwUnngXkg1rmR_Ani0P4WjUdqzhoN-yq0N45GnOZ9tn8JsiTaXZoH9ZsbqdcstavG9GRfA3bLalLi7mOHLYomDoIjJXd8jnCh10tqxrYXAxhr8Ob9bWMArnMsLGVHNu7706q2rLKntTV9qWbAcXuzpnGo0nc9C2tMK32W2lfrHlXN2Wz2E6Hn2_uOKepYFrdN7WXMRGoRclQiXxvhsW0qgoj4MIRS6VVXieWFXgX821ihOZDwyxZVH-Dy9PNorT-Ag65aK0L4BpKYRJg8Ck2giZCEURkSIUNgx0qrTqQdgIJNMewpyYNObZDnzZCTHD5TInxGzTg9e7b5Y1gMeDb582cs78Zl5lrer14E0j-3b4_7MdPzzbCTyOnLpROeEpdNbVnX2JLs4678O-HF_2oTu8_PFp1PdajE-n0fAP-8__sQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9lAuqBQqUgrMAU6wwvZubQepQvykSmkbIWil3sx6d91UipzUCUTmdXgPno2Z9ToWSPTWs-1ZSzM7__MNY891mFtZ2JQHxva5jIXgeS4sTyJlY2n3pXTYnaejeHguP13sX6yx3-0sDLVVtjrRKWoz1ZQjfx1RfQxtS5q-nV1z2hpF1dV2hYbyqxXMgYMY84Mdx7ZeYgg3Pzj6iPx-EUWHg7MPQ-63DHCNzseCS2EUegEyVCnGa2GRGhXlIojwl1NlFd4Hqwq0bLlWIk7zvqFtT1S_QuffRiIRSPcO25BC9jH423g_GH3-sqpjEL6cm28SMSfoOz-244b3CKgx4UiZk53s8-XfprHzd_8p0TrLd7jF7nmXFd41Mnafrdlym-0Mugk5fOhVxHybbfq16uP6AftFma3SLNGfraAZ36yhwxcHarq_hHFNU2PgdvLAtAB0ScH1OfKJwoAAZk3vDR4GyCqM5K0BSh8DYXGqCbc__PVRVQ2VvWw6e0tYwdPO34BGYw0OSpdO-Dq-qtRPmE3UVfmQnd8Kv3bYejkt7SMGOpXSJEFgEm1kGktFGZgilDYMdKK06rGwZUimPWQ6be6YZCuwZ8fEDI_LHBOzZY-9XH0zawBDbnx7r-Vz5pXHPOtEvcdetbzvHv-f2u7N1J6xzeHZ6Ul2cjQ6fszuRk70qJVxj60vqu_2CbpXi_ypl2Fg32772vwBrF03vQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB9qBfVFtFo8rToP-qSLSXab5IRSxPZsrRZBC32Lm91Nr3DkztzpEb9Ov0U_nTOb5IKCfetzktnA_N-Z-Q3ACxPmThUuFYF1Q6FiKUWeSyeSSLtYuW2lPHbn5-P44ER9PN0-XYPLbhaG2yo7m-gNtZ0aviN_E3F9jHwLJWxF2xbxZW-0O_sheIMUV1q7dRqNiBy5eknp23zncI94_TKKRvvf3h-IdsOAMBR4LISSVlMEoEKdUq4WFqnVUS6DiH431U6TLjhdkFfLjZZxmg8tb3ri2hUF_i6SiSS6N-BmwijuPKU--rCqYDCynJ9skrFg0Lt2YMeP7TFEYyKIrmAPORTLv51iH-n-U5z1Pm90D-62wSq-a6TrPqy5cgM29_vZOHrYGof5BtxuF6qP6wdwwXdapV1SJFthM7hZY48sjtxuf4bjmufF0G_jwWmBFIyi73AUE02pAM6arhs6DIlJlMM7i3xxjIzCqSfC_WoVR1c1Vu6s6ektcQVMO3-Lhtw0ehBdPuHr-LzSv3E20eflQzi5Fm5twno5Ld0jQJMqZZMgsImxKo2V5ruXIlQuDEyijR5A2DEkMy1YOu_smGQrmGfPxIyOyzwTs-UAXq2-mTVQIVe-vdXxOWvNxjzrhXwArzve94__T-3x1dSewy1SluzT4fHRE7gTecnjHsYtWF9UP91TiqsW-TMvwAjfr1tj_gAkvzVX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+quality+evaluation+using+hybrid+model+of+the+multi-layer+perceptron+combined+with+neural-evolutionary+regression+techniques%3A+case+study+of+Shiraz+plain&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Moayedi%2C+Hossein&rft.au=Salari%2C+Marjan&rft.au=Dehrashid%2C+Atefeh+Ahmadi&rft.au=Le%2C+Binh+Nguyen&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=37&rft.issue=8&rft.spage=2961&rft.epage=2976&rft_id=info:doi/10.1007%2Fs00477-023-02429-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |