Artificial Intelligence Generated Synthetic Datasets as the Remedy for Data Scarcity in Water Quality Index Estimation

Water quality index (WQI) has been utilised in many countries and regions as a numeric representation of the condition of water resources. However, the computation of the WQI involves a host of water quality variables. Although machine learning models are proven to be a promising tool to estimate WQ...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 37; no. 15; pp. 6183 - 6198
Main Authors Chia, Min Yan, Koo, Chai Hoon, Huang, Yuk Feng, Di Chan, Wei, Pang, Jia Yin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-023-03650-6

Cover

Abstract Water quality index (WQI) has been utilised in many countries and regions as a numeric representation of the condition of water resources. However, the computation of the WQI involves a host of water quality variables. Although machine learning models are proven to be a promising tool to estimate WQI with lesser inputs, sufficient data or samples must be collected so that the machine learning models can be trained well. This exhibits a great challenge in places where there has been a lack of data collection infrastructure to meet the needs of machine learning models. Data scarcity is a major issue to be tackled. This study covered two major rivers that served as water intakes in Peninsular Malaysia (Selangor River and Skudai River), where four synthetic data generation methods, namely the conditional tabular generative adversarial network (CTGAN), the tabular variational autoencoder (TVAE), the Gaussian copula (GC) and the copula generative adversarial network (CopulaGAN), were used to synthesise datasets based on the real dataset. By using the pairwise correlation difference (PCD), Kullback-Leibler divergence (KLD) and the Kolmogorov-Smirnov (KS) test, the best synthetic datasets were selected for the two rivers. The CopulaGAN1 and the CopulaGAN2 yielded the best small and large synthetic datasets at Selangor River, scoring the lowest PCD, KLD and KS statistics. For the Skudai River, the TVAE1 and TVAE2 were chosen. The real and synthetic datasets were used to train the back-propagation neural network (BPNN) for the WQI estimation. Based on the various evaluation metrics, it was proven that increasing the size of training data using the synthetic data method had a positive impact on the performance of the BPNN. The BPNN trained with the CopulaGAN2 (at Selangor River) and the TVAE2 (at Skudai River) yielded more accurate estimations compared to those derived from the actual and smaller datasets. Highlights Data were insufficient to train machine learning model well in developing regions. Synthetic data methods can overcome the data scarcity issue in Malaysia. CopulaGAN and TVAE outperformed other methods at Selangor River and Skudai River. BPNN trained with synthetic datasets estimated WQI with higher accuracy.
AbstractList Water quality index (WQI) has been utilised in many countries and regions as a numeric representation of the condition of water resources. However, the computation of the WQI involves a host of water quality variables. Although machine learning models are proven to be a promising tool to estimate WQI with lesser inputs, sufficient data or samples must be collected so that the machine learning models can be trained well. This exhibits a great challenge in places where there has been a lack of data collection infrastructure to meet the needs of machine learning models. Data scarcity is a major issue to be tackled. This study covered two major rivers that served as water intakes in Peninsular Malaysia (Selangor River and Skudai River), where four synthetic data generation methods, namely the conditional tabular generative adversarial network (CTGAN), the tabular variational autoencoder (TVAE), the Gaussian copula (GC) and the copula generative adversarial network (CopulaGAN), were used to synthesise datasets based on the real dataset. By using the pairwise correlation difference (PCD), Kullback-Leibler divergence (KLD) and the Kolmogorov-Smirnov (KS) test, the best synthetic datasets were selected for the two rivers. The CopulaGAN1 and the CopulaGAN2 yielded the best small and large synthetic datasets at Selangor River, scoring the lowest PCD, KLD and KS statistics. For the Skudai River, the TVAE1 and TVAE2 were chosen. The real and synthetic datasets were used to train the back-propagation neural network (BPNN) for the WQI estimation. Based on the various evaluation metrics, it was proven that increasing the size of training data using the synthetic data method had a positive impact on the performance of the BPNN. The BPNN trained with the CopulaGAN2 (at Selangor River) and the TVAE2 (at Skudai River) yielded more accurate estimations compared to those derived from the actual and smaller datasets.HighlightsData were insufficient to train machine learning model well in developing regions.Synthetic data methods can overcome the data scarcity issue in Malaysia.CopulaGAN and TVAE outperformed other methods at Selangor River and Skudai River.BPNN trained with synthetic datasets estimated WQI with higher accuracy.
Water quality index (WQI) has been utilised in many countries and regions as a numeric representation of the condition of water resources. However, the computation of the WQI involves a host of water quality variables. Although machine learning models are proven to be a promising tool to estimate WQI with lesser inputs, sufficient data or samples must be collected so that the machine learning models can be trained well. This exhibits a great challenge in places where there has been a lack of data collection infrastructure to meet the needs of machine learning models. Data scarcity is a major issue to be tackled. This study covered two major rivers that served as water intakes in Peninsular Malaysia (Selangor River and Skudai River), where four synthetic data generation methods, namely the conditional tabular generative adversarial network (CTGAN), the tabular variational autoencoder (TVAE), the Gaussian copula (GC) and the copula generative adversarial network (CopulaGAN), were used to synthesise datasets based on the real dataset. By using the pairwise correlation difference (PCD), Kullback-Leibler divergence (KLD) and the Kolmogorov-Smirnov (KS) test, the best synthetic datasets were selected for the two rivers. The CopulaGAN1 and the CopulaGAN2 yielded the best small and large synthetic datasets at Selangor River, scoring the lowest PCD, KLD and KS statistics. For the Skudai River, the TVAE1 and TVAE2 were chosen. The real and synthetic datasets were used to train the back-propagation neural network (BPNN) for the WQI estimation. Based on the various evaluation metrics, it was proven that increasing the size of training data using the synthetic data method had a positive impact on the performance of the BPNN. The BPNN trained with the CopulaGAN2 (at Selangor River) and the TVAE2 (at Skudai River) yielded more accurate estimations compared to those derived from the actual and smaller datasets. Highlights Data were insufficient to train machine learning model well in developing regions. Synthetic data methods can overcome the data scarcity issue in Malaysia. CopulaGAN and TVAE outperformed other methods at Selangor River and Skudai River. BPNN trained with synthetic datasets estimated WQI with higher accuracy.
Water quality index (WQI) has been utilised in many countries and regions as a numeric representation of the condition of water resources. However, the computation of the WQI involves a host of water quality variables. Although machine learning models are proven to be a promising tool to estimate WQI with lesser inputs, sufficient data or samples must be collected so that the machine learning models can be trained well. This exhibits a great challenge in places where there has been a lack of data collection infrastructure to meet the needs of machine learning models. Data scarcity is a major issue to be tackled. This study covered two major rivers that served as water intakes in Peninsular Malaysia (Selangor River and Skudai River), where four synthetic data generation methods, namely the conditional tabular generative adversarial network (CTGAN), the tabular variational autoencoder (TVAE), the Gaussian copula (GC) and the copula generative adversarial network (CopulaGAN), were used to synthesise datasets based on the real dataset. By using the pairwise correlation difference (PCD), Kullback-Leibler divergence (KLD) and the Kolmogorov-Smirnov (KS) test, the best synthetic datasets were selected for the two rivers. The CopulaGAN1 and the CopulaGAN2 yielded the best small and large synthetic datasets at Selangor River, scoring the lowest PCD, KLD and KS statistics. For the Skudai River, the TVAE1 and TVAE2 were chosen. The real and synthetic datasets were used to train the back-propagation neural network (BPNN) for the WQI estimation. Based on the various evaluation metrics, it was proven that increasing the size of training data using the synthetic data method had a positive impact on the performance of the BPNN. The BPNN trained with the CopulaGAN2 (at Selangor River) and the TVAE2 (at Skudai River) yielded more accurate estimations compared to those derived from the actual and smaller datasets.
Author Huang, Yuk Feng
Koo, Chai Hoon
Chia, Min Yan
Di Chan, Wei
Pang, Jia Yin
Author_xml – sequence: 1
  givenname: Min Yan
  surname: Chia
  fullname: Chia, Min Yan
  organization: Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman
– sequence: 2
  givenname: Chai Hoon
  orcidid: 0000-0001-7287-3394
  surname: Koo
  fullname: Koo, Chai Hoon
  email: kooch@utar.edu.my
  organization: Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman
– sequence: 3
  givenname: Yuk Feng
  surname: Huang
  fullname: Huang, Yuk Feng
  organization: Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman
– sequence: 4
  givenname: Wei
  surname: Di Chan
  fullname: Di Chan, Wei
  organization: Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman
– sequence: 5
  givenname: Jia Yin
  surname: Pang
  fullname: Pang, Jia Yin
  organization: Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman
BookMark eNp9kU1LAzEQhoMoWD_-gKeAFy-rmWST3T2KH7VQEK3iMaTZWY1ss5qkYv-9sRUED57CzLxPmHfePbLtB4-EHAE7BcaqswjAVVMwLgomlGSF2iIjkJUoIFfbZMQazoqyKmGX7MX4yljGGjYiH-chuc5ZZ3o68Qn73j2jt0jH6DGYhC2drXx6weQsvTTJREyRmkhzi97jAtsV7YawHtGZNcG6tKLO06fMBnq3NP13Y-Jb_KRXMbmFSW7wB2SnM33Ew593nzxeXz1c3BTT2_Hk4nxaWCF5KkouJQJI1Zatkaxiao4tVBXKOTaNYOU8-5ZYg2pqLrmQFhAEdh2WElQNYp-cbP59C8P7EmPSCxdtdmk8DsuoBUghlSx5naXHf6SvwzL4vJ3mddNwxTkrs6reqGwYYgzY6Wx4bSkF43oNTH8HojeB6ByIXgeiVUb5H_Qt5HOE1f-Q2EAxi_0zht-t_qG-AM0Fnsc
CitedBy_id crossref_primary_10_1016_j_jwpe_2025_106941
crossref_primary_10_2166_wqrj_2024_049
crossref_primary_10_3390_electronics13101965
crossref_primary_10_1007_s11269_023_03669_9
crossref_primary_10_1016_j_dwt_2024_100689
crossref_primary_10_1007_s11269_024_03760_9
crossref_primary_10_1016_j_compag_2024_109721
crossref_primary_10_1038_s41598_024_68366_y
crossref_primary_10_3390_app14199030
Cites_doi 10.1016/j.watres.2020.115788
10.3390/w10020098
10.1007/s10661-020-08543-4
10.3390/info12090375
10.1007/s00477-019-01762-3
10.1007/s11269-022-03126-z
10.1007/s40710-017-0261-8
10.1016/j.jclepro.2020.122576
10.1109/ACCESS.2020.3037063
10.1016/j.jhydrol.2020.124974
10.1007/s11269-022-03238-6
10.2139/ssrn.4014276
10.1051/e3sconf/202234704004
10.1109/ICDMW53433.2021.00014
10.1007/s13762-021-03139-y
10.1109/ICDMW51313.2020.00082
10.1109/CogMI52975.2021.00016
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-023-03650-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global (ProQuest)
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1573-1650
EndPage 6198
ExternalDocumentID 10_1007_s11269_023_03650_6
GeographicLocations Selangor River
Malaysia
GeographicLocations_xml – name: Selangor River
– name: Malaysia
GrantInformation_xml – fundername: Universiti Tunku Abdul Rahman
  grantid: IPSR/RMC/UTARRF/2020-C2/K03
  funderid: http://dx.doi.org/10.13039/501100002671
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-4255e1156d4da50706bed177e5be99304b1125e8169825235c1e13effe4516813
IEDL.DBID BENPR
ISSN 0920-4741
IngestDate Thu Sep 04 14:33:53 EDT 2025
Sat Aug 23 13:25:22 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Wed Oct 01 01:10:54 EDT 2025
Fri Feb 21 02:41:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords water quality index
synthetic data
artificial intelligence
back-propagation neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-4255e1156d4da50706bed177e5be99304b1125e8169825235c1e13effe4516813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7287-3394
PQID 2899262204
PQPubID 54174
PageCount 16
ParticipantIDs proquest_miscellaneous_3153565428
proquest_journals_2899262204
crossref_citationtrail_10_1007_s11269_023_03650_6
crossref_primary_10_1007_s11269_023_03650_6
springer_journals_10_1007_s11269_023_03650_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Bourou, El Saer, Velivassaki, Voulkidis, Zahariadis (CR3) 2021; 12
CR4
Bertholdo, Silva, De Aragão Umbuzeiro, Camolesi Júnior (CR2) 2017; 4
CR6
Xia, Zeng (CR19) 2022; 36
CR8
Moon, Jung, Park, Hwang (CR10) 2020; 8
Xu, Coco, Neale (CR21) 2020; 177
Rezaie-Balf, Attar, Mohammadzadeh, Murti, Ahmed, Fai, Nabipour, Alaghmand, El-Shafie (CR15) 2020; 271
CR9
CR16
CR13
CR11
CR20
Othman, Alaaeldin, Seyam, Ahmed, Teo, Fai, Afan, Sherif, Sefelnasr, El-Shafie (CR12) 2020; 14
Withanachchi, Ghambashidze, Kunchulia, Urushadze, Ploeger (CR17) 2018; 10
Kadkhodazadeh, Farzin (CR7) 2022; 36
Wong, Shimizu, He, Nik Sulaiman (CR18) 2020; 192
Hong, Baik (CR5) 2021; 19
Abba, Hadi, Sammen, Salih, Abdulkadir, Pham, Yaseen (CR1) 2020; 587
Raseman, Rajagopalan, Kasprzyk, Kleiber (CR14) 2020; 34
3650_CR20
M Kadkhodazadeh (3650_CR7) 2022; 36
WJ Raseman (3650_CR14) 2020; 34
3650_CR9
3650_CR8
3650_CR4
L Bertholdo (3650_CR2) 2017; 4
3650_CR6
M Rezaie-Balf (3650_CR15) 2020; 271
S Bourou (3650_CR3) 2021; 12
J Moon (3650_CR10) 2020; 8
D Hong (3650_CR5) 2021; 19
T Xu (3650_CR21) 2020; 177
SI Abba (3650_CR1) 2020; 587
YJ Wong (3650_CR18) 2020; 192
S Withanachchi (3650_CR17) 2018; 10
F Othman (3650_CR12) 2020; 14
3650_CR16
3650_CR13
J Xia (3650_CR19) 2022; 36
3650_CR11
References_xml – volume: 177
  start-page: 115788
  year: 2020
  ident: CR21
  article-title: A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115788
– volume: 10
  start-page: 98
  year: 2018
  ident: CR17
  article-title: A paradigm shift in Water Quality Governance in a transitional context: a critical study about the empowerment of local governance in Georgia
  publication-title: Water
  doi: 10.3390/w10020098
– volume: 192
  start-page: 644
  year: 2020
  ident: CR18
  article-title: Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08543-4
– ident: CR4
– ident: CR16
– volume: 12
  start-page: 375
  year: 2021
  ident: CR3
  article-title: A review of Tabular Data Synthesis using GANs on an IDS dataset
  publication-title: Information
  doi: 10.3390/info12090375
– volume: 34
  start-page: 23
  year: 2020
  end-page: 31
  ident: CR14
  article-title: Nearest neighbor time series bootstrap for generating influent water quality scenarios
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-019-01762-3
– volume: 19
  start-page: 228
  year: 2021
  end-page: 233
  ident: CR5
  article-title: Generating and validating synthetic training data for predicting bankruptcy of individual businesses
  publication-title: J Inform Communication Convergence Eng
– ident: CR13
– ident: CR11
– volume: 36
  start-page: 2045
  year: 2022
  end-page: 2060
  ident: CR19
  article-title: Environmental Factors Assisted the Evaluation of Entropy Water Quality Indices with efficient machine learning technique
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-022-03126-z
– volume: 4
  start-page: 813
  year: 2017
  end-page: 831
  ident: CR2
  article-title: Classification, Association and Clustering of Water Body Data: application to Water Quality Monitoring
  publication-title: Environ Processes
  doi: 10.1007/s40710-017-0261-8
– ident: CR9
– ident: CR6
– volume: 271
  start-page: 122576
  year: 2020
  ident: CR15
  article-title: Physicochemical parameters data assimilation for efficient improvement of water quality index prediction: comparative assessment of a noise suppression hybridization approach
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122576
– volume: 14
  start-page: 751
  year: 2020
  end-page: 763
  ident: CR12
  article-title: Efficient river water quality index prediction considering minimal number of inputs variables
  publication-title: Eng Appl Comput Fluid Mech
– ident: CR8
– volume: 8
  start-page: 205327
  year: 2020
  end-page: 205339
  ident: CR10
  article-title: Conditional tabular GAN-Based two-Stage Data Generation Scheme for short-term load forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037063
– volume: 587
  start-page: 124974
  year: 2020
  ident: CR1
  article-title: Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124974
– volume: 36
  start-page: 3901
  year: 2022
  end-page: 3927
  ident: CR7
  article-title: Introducing a Novel Hybrid Machine Learning Model and developing its performance in estimating Water Quality parameters
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-022-03238-6
– ident: CR20
– volume: 36
  start-page: 2045
  year: 2022
  ident: 3650_CR19
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-022-03126-z
– ident: 3650_CR20
– ident: 3650_CR6
  doi: 10.2139/ssrn.4014276
– volume: 14
  start-page: 751
  year: 2020
  ident: 3650_CR12
  publication-title: Eng Appl Comput Fluid Mech
– volume: 192
  start-page: 644
  year: 2020
  ident: 3650_CR18
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08543-4
– ident: 3650_CR16
  doi: 10.1051/e3sconf/202234704004
– volume: 12
  start-page: 375
  year: 2021
  ident: 3650_CR3
  publication-title: Information
  doi: 10.3390/info12090375
– volume: 271
  start-page: 122576
  year: 2020
  ident: 3650_CR15
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122576
– volume: 19
  start-page: 228
  year: 2021
  ident: 3650_CR5
  publication-title: J Inform Communication Convergence Eng
– ident: 3650_CR13
  doi: 10.1109/ICDMW53433.2021.00014
– volume: 4
  start-page: 813
  year: 2017
  ident: 3650_CR2
  publication-title: Environ Processes
  doi: 10.1007/s40710-017-0261-8
– volume: 36
  start-page: 3901
  year: 2022
  ident: 3650_CR7
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-022-03238-6
– volume: 8
  start-page: 205327
  year: 2020
  ident: 3650_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037063
– ident: 3650_CR11
  doi: 10.1007/s13762-021-03139-y
– ident: 3650_CR8
  doi: 10.1109/ICDMW51313.2020.00082
– ident: 3650_CR4
  doi: 10.1109/CogMI52975.2021.00016
– volume: 177
  start-page: 115788
  year: 2020
  ident: 3650_CR21
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115788
– ident: 3650_CR9
– volume: 34
  start-page: 23
  year: 2020
  ident: 3650_CR14
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-019-01762-3
– volume: 10
  start-page: 98
  year: 2018
  ident: 3650_CR17
  publication-title: Water
  doi: 10.3390/w10020098
– volume: 587
  start-page: 124974
  year: 2020
  ident: 3650_CR1
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124974
SSID ssj0010090
Score 2.443907
Snippet Water quality index (WQI) has been utilised in many countries and regions as a numeric representation of the condition of water resources. However, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6183
SubjectTerms Artificial intelligence
Artificial neural networks
Atmospheric Sciences
Back propagation networks
Civil Engineering
Computation
Data collection
Datasets
Earth and Environmental Science
Earth Sciences
Environment
Generative adversarial networks
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
infrastructure
Learning algorithms
Machine learning
Malaysia
Neural networks
Rivers
statistics
Synthetic data
water
Water intakes
Water quality
Water resources
Water scarcity
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPrG6SgRvGugjybbHRXdRQQ_q4t5CHykI0pVtV9x_75c-tquo4LVpppBJZr7pZL4h5Ewm2nYTETA3jASDh_BZFESIeTyuBQ_jOOWmUPjuXl6P-O1YjOuisLy57d6kJEtL3Ra7Oa4MGHwMg9UVCHpWyZowdF7YxSO3v8gdADWUf1YCBEYcDrMulflZxld31GLMb2nR0tsMt8hmDRNpv9LrNlnR2Q7ZWCIP3CXvZrDif6A3S8SatGKSBpKkj_MM-A4i6FVYwF0VOQ1zikf0QcMLzikQazlETR4mBiCnLxl9xtwprcg15hCd6A86gCWoihz3yGg4eLq8ZnUXBRYDXBUMh1Jo4D6Z8CQE-rNlpBOn19Mi0gAnNo-wKEL7jgwQLbqeiB3teOY2ienh6zvePulkk0wfEBqkdpjINIaCHR5qCa324GOBOKSXCulZxGkWU8U1xbjpdPGqWnJkowAFBahSAUpa5Hwx560i2Pjz7W6jI1UftlyZmNGVrmtzi5wuhnFMTO4jzPRklisPll2Y5ly-RS4a3bYifv_i4f9ePyLrpiF9deGlSzrFdKaPAVuK6KTcpZ9az-Jd
  priority: 102
  providerName: Springer Nature
Title Artificial Intelligence Generated Synthetic Datasets as the Remedy for Data Scarcity in Water Quality Index Estimation
URI https://link.springer.com/article/10.1007/s11269-023-03650-6
https://www.proquest.com/docview/2899262204
https://www.proquest.com/docview/3153565428
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7Qs8oP0AUbZVRuJtWCSO7SYPEyqs3ca0Cg0qxlPkxK40CaVjzSb63-9zfrQDib3GsS357LvvfL7viN5p6wJhVcKFyRSHhYh5lmTweSLplDR5PpM-Ufhiok-n8suVutqgSZsL459VtjqxUtR2nvs78g_eMRBaiEB-vPnNfdUoH11tS2iYprSCPaooxjapKzwzVoe6n0aTr5eruAIQRXXrksBpkjCmTRpNnUwXCp1w2DAOra7gVP1tqtb485-QaWWJxlv0ooGQbFjLfJs2XLFDzx8RC-7SvW-suSHY2SPSTVazTANlsm_LAtgPQ7BjU8KUlQtmFgyf2KWDhVwyoNmqifkYTQ6wzq4L9gN9b1lNvLHE0Nb9YSNoiToB8iVNx6Pvn095U2GB5wBeJceBVQ6YUFtpDZBhoDNnw8HAqcwBuAQyw6IoF4c6gScpIpWHLoz8SxNf3zcOo1fUKeaFe00smQXG6lkO4YfSOA2JD2B_gUZ0NFM66lHYLmaaN_TjvgrGr3RNnOwFkEIAaSWAVPfocNXnpibfePLv_VZGaXMQF-l62_To7aoZR8jHRUzh5neLNILWV75wV9yj961s10P8f8Y3T8-4R898cfr68cs-dcrbO3cACFNmfdqMxyd96g5Pfp6P-s0uxdepGD4AaUrvYg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAcKj7F0gJGghNYJI7t3RyqCuhWu7RdodKK3lwn9kpIKFuaFNg_x2_rcz52CxK99RonjpQZ-73JeN4QvdLOR8KplAubKQ6EGPAszRDzJNIrafN8KkOh8MFEj47lpxN1skJ_ulqYcKyy2xPrjdrN8vCP_F0IDIQWIpLbZz946BoVsqtdCw3btlZwW7XEWFvYsefnvxDClVvjHdj7tRC7w6OPI952GeA5yEfF4bTKgxdpJ50FO4p05l3c73uVeYB3JDNQEuUHsU4RTYlE5bGPk3DaIvS4HcQJ5r1FazKRKYK_tQ_DyefDRR4DDKb-y5MiSJMA77Zspynei4VOOTCTA0UUgri_oXHJd_9J0dbIt3uP1lvKyt43PnafVnzxgO5eETJ8SD_DYKNFwcZXRD5Zo2oNVsu-zAtwTUzBdmwF6KxKZkuGS-zQA5HnDOy5HmIhJ5QjOGDfCvYVz56zRuhjjqmd_82G2JWagstHdHwj3_oxrRazwj8hlk4j6_Q0h7PF0noND-sD78F-dDJVOulR3H1Mk7dy56HrxnezFGoOBjAwgKkNYHSP3iyeOWvEPq69e7OzkWkXfmmWbtqjl4thLNmQh7GFn12UJgHKqNAobNCjt51tl1P8_41Pr3_jC7o9OjrYN_vjyd4G3RHBteqDN5u0Wp1f-GegT1X2vPVRRqc3vSwuAcAdJoI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVkL0UFE-xEIBI5UTWE0c27s5IITYLl1aKgRU9Gby4UiVULY0aWH_Gr-ON_nYLUj01mucOFJm7Pcm43lDtG1zH6jcxFIlqZFAiJFM4xQxT6S90UmWFZoLhT8c2r0j_f7YHK_Q774Who9V9ntis1Hns4z_ke9wYKCsUoHeKbpjER_Hk9enPyR3kOJMa99Oo3WRfT__ifCtejUdw9bPlZrsfnm7J7sOAzID8aglHNZ4cCKb6zwBMwps6vNwOPQm9QDuQKegI8aPQhsjklKRyUIfRnzSgvvbjsII896gtSGruHOV-uTdIoMB7tL834kRnmnAdlew05bthcrGEmgpgR8G4dvfoLhkuv8kZxvMm9ymjY6sijetd23Sii_v0PolCcO7dMGDrQqFmF6S9xStnjX4rPg8L8EyMYUYJzVAs65EUglcEp88sHguwJubIcHZoAxhgTgpxVc8eyZaiY85ps79L7GL_agttbxHR9fype_Tajkr_QMScREkuS0yuFmoE2_hW0MgPXiPjQpjowGF_cd0WSd0zv02vrulRDMbwMEArjGAswN6sXjmtJX5uPLurd5GrlvylVs66ICeLYaxWDkDk5R-dl65CPhiuEXYaEAve9sup_j_Gx9e_candBOLwR1MD_cf0S3FntWcuNmi1frs3D8Gb6rTJ42DCvp23SviD5arJBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Generated+Synthetic+Datasets+as+the+Remedy+for+Data+Scarcity+in+Water+Quality+Index+Estimation&rft.jtitle=Water+resources+management&rft.au=Chia%2C+Min+Yan&rft.au=Koo%2C+Chai+Hoon&rft.au=Huang%2C+Yuk+Feng&rft.au=Di+Chan%2C+Wei&rft.date=2023-12-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=37&rft.issue=15&rft.spage=6183&rft.epage=6198&rft_id=info:doi/10.1007%2Fs11269-023-03650-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_023_03650_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon