Invertible Residual Blocks in Deep Learning Networks

Residual blocks have been widely used in deep learning networks. However, information may be lost in residual blocks due to the relinquishment of information in rectifier linear units (ReLUs). To address this issue, invertible residual networks have been proposed recently but are generally under str...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 7; pp. 10167 - 10173
Main Authors Wang, Ruhua, An, Senjian, Liu, Wanquan, Li, Ling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3238397

Cover

Abstract Residual blocks have been widely used in deep learning networks. However, information may be lost in residual blocks due to the relinquishment of information in rectifier linear units (ReLUs). To address this issue, invertible residual networks have been proposed recently but are generally under strict restrictions which limit their applications. In this brief, we investigate the conditions under which a residual block is invertible. A sufficient and necessary condition is presented for the invertibility of residual blocks with one layer of ReLU inside the block. In particular, for widely used residual blocks with convolutions, we show that such residual blocks are invertible under weak conditions if the convolution is implemented with certain zero-padding methods. Inverse algorithms are also proposed, and experiments are conducted to show the effectiveness of the proposed inverse algorithms and prove the correctness of the theoretical results.
AbstractList Residual blocks have been widely used in deep learning networks. However, information may be lost in residual blocks due to the relinquishment of information in rectifier linear units (ReLUs). To address this issue, invertible residual networks have been proposed recently but are generally under strict restrictions which limit their applications. In this brief, we investigate the conditions under which a residual block is invertible. A sufficient and necessary condition is presented for the invertibility of residual blocks with one layer of ReLU inside the block. In particular, for widely used residual blocks with convolutions, we show that such residual blocks are invertible under weak conditions if the convolution is implemented with certain zero-padding methods. Inverse algorithms are also proposed, and experiments are conducted to show the effectiveness of the proposed inverse algorithms and prove the correctness of the theoretical results.
Residual blocks have been widely used in deep learning networks. However, information may be lost in residual blocks due to the relinquishment of information in rectifier linear units (ReLUs). To address this issue, invertible residual networks have been proposed recently but are generally under strict restrictions which limit their applications. In this brief, we investigate the conditions under which a residual block is invertible. A sufficient and necessary condition is presented for the invertibility of residual blocks with one layer of ReLU inside the block. In particular, for widely used residual blocks with convolutions, we show that such residual blocks are invertible under weak conditions if the convolution is implemented with certain zero-padding methods. Inverse algorithms are also proposed, and experiments are conducted to show the effectiveness of the proposed inverse algorithms and prove the correctness of the theoretical results.Residual blocks have been widely used in deep learning networks. However, information may be lost in residual blocks due to the relinquishment of information in rectifier linear units (ReLUs). To address this issue, invertible residual networks have been proposed recently but are generally under strict restrictions which limit their applications. In this brief, we investigate the conditions under which a residual block is invertible. A sufficient and necessary condition is presented for the invertibility of residual blocks with one layer of ReLU inside the block. In particular, for widely used residual blocks with convolutions, we show that such residual blocks are invertible under weak conditions if the convolution is implemented with certain zero-padding methods. Inverse algorithms are also proposed, and experiments are conducted to show the effectiveness of the proposed inverse algorithms and prove the correctness of the theoretical results.
Author An, Senjian
Liu, Wanquan
Li, Ling
Wang, Ruhua
Author_xml – sequence: 1
  givenname: Ruhua
  orcidid: 0000-0001-5798-8118
  surname: Wang
  fullname: Wang, Ruhua
  email: ruhua.wang@curtin.edu.au
  organization: School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia
– sequence: 2
  givenname: Senjian
  surname: An
  fullname: An, Senjian
  organization: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, WA, Australia
– sequence: 3
  givenname: Wanquan
  orcidid: 0000-0003-4910-353X
  surname: Liu
  fullname: Liu, Wanquan
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Ling
  orcidid: 0000-0001-9722-9503
  surname: Li
  fullname: Li, Ling
  email: l.li@curtin.edu.au
  organization: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, WA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022256$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1rGzEQQEVJaNw0fyCUstBLL3alGe1qdUzdfIFxofWhN6FdzwbFa60j7Sb030eOnRByiC6S4L1heJ_Yge88MXYq-EQIrn8s5vPZ3wlwwAkClqjVBzYCUcA4_cqDl7f6d8ROYrzl6RQ8L6T-yI5QcQDIixGT1_6eQu-qlrI_FN1ysG32s-3qVcycz34RbbIZ2eCdv8nm1D90YRU_s8PGtpFO9vcxW1ycL6ZX49nvy-vp2WxcYw79GC0plKIBBJ1jWdiqygXUDXICnuMSpKo1FARlKTRVKBqZiLrgy6oBaPCYfd-N3YTubqDYm7WLNbWt9dQN0YDSSkjNJSb02xv0thuCT8sZ5KrkWiolE_V1Tw3VmpZmE9zahv_mOUcCyh1Qhy7GQI2pXW971_k-WNcawc02vnmKb7bxzT5-UuGN-jz9XenLTnJE9ErgmLqV-AiU1IzV
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_ani14030499
crossref_primary_10_1038_s41598_025_93718_7
crossref_primary_10_1007_s11760_023_02981_6
crossref_primary_10_3390_pr13010151
Cites_doi 10.1109/ICASSP40776.2020.9053723
10.1007/978-3-030-58520-4_35
10.1109/TNNLS.2020.3042395
10.1007/978-3-319-46493-0_38
10.1016/0024-3795(90)90058-K
10.1109/TNNLS.2021.3084757
10.1109/CVPR.2017.195
10.1007/0-306-48332-7_258
10.1145/3422622
10.1007/978-3-030-32248-9_78
10.1109/CVPR42600.2020.00924
10.1109/tnnls.2021.3105543
10.1109/5.726791
10.1109/tpami.2022.3181070
10.1109/TNNLS.2018.2875194
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2023.3238397
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10173
ExternalDocumentID 37022256
10_1109_TNNLS_2023_3238397
10033418
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council Discovery Projects “AI Assisted Probabilistic Structural Health Monitoring with Uncertain Data”
  grantid: DP210103631
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c352t-3ae7341f23295386abb512cf30e2053d247c926e28819eb31f4bb5c60dbf22f3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 18:51:49 EDT 2025
Mon Jun 30 04:53:19 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Wed Oct 01 00:45:11 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Wed Aug 27 02:05:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-3ae7341f23295386abb512cf30e2053d247c926e28819eb31f4bb5c60dbf22f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9722-9503
0000-0003-4910-353X
0000-0001-5798-8118
PMID 37022256
PQID 3078094774
PQPubID 85436
PageCount 7
ParticipantIDs pubmed_primary_37022256
proquest_journals_3078094774
crossref_citationtrail_10_1109_TNNLS_2023_3238397
proquest_miscellaneous_2797149043
crossref_primary_10_1109_TNNLS_2023_3238397
ieee_primary_10033418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
Chen (ref3)
ref14
ref31
ref11
Dinh (ref2) 2016
ref17
ref16
Ardizzone (ref9) 2019
ref19
ref18
Kingma (ref25)
Dolatabadi (ref6)
Schneider (ref27) 2012
Behrmann (ref23)
Dinh (ref1) 2014
Whang (ref10)
Madhawa (ref13) 2019
ref24
ref26
Xiao (ref29) 2017
ref20
Glorot (ref32)
ref22
Kruse (ref4)
ref21
ref28
ref8
Howard (ref30) 2017
Bai (ref7) 2020
Song (ref5)
Nalisnick (ref12)
Abadi (ref33) 2015
References_xml – ident: ref8
  doi: 10.1109/ICASSP40776.2020.9053723
– ident: ref20
  doi: 10.1007/978-3-030-58520-4_35
– year: 2017
  ident: ref30
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– year: 2020
  ident: ref7
  article-title: Exploring adversarial examples via invertible neural networks
  publication-title: arXiv:2012.13111
– start-page: 1
  volume-title: Proc. NeurIPS Workshop Deep Learn. Inverse Problems
  ident: ref10
  article-title: Compressed sensing with invertible generative models and dependent noise
– ident: ref14
  doi: 10.1109/TNNLS.2020.3042395
– ident: ref22
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref26
  doi: 10.1016/0024-3795(90)90058-K
– start-page: 11002
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: MintNet: Building invertible neural networks with masked convolutions
– ident: ref21
  doi: 10.1109/TNNLS.2021.3084757
– year: 2017
  ident: ref29
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv:1708.07747
– year: 2016
  ident: ref2
  article-title: Density estimation using real NVP
  publication-title: arXiv:1605.08803
– start-page: 9913
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Residual flows for invertible generative modeling
– ident: ref31
  doi: 10.1109/CVPR.2017.195
– volume-title: Matrices and Linear Algebra
  year: 2012
  ident: ref27
– start-page: 1
  volume-title: Proc. ICML
  ident: ref4
  article-title: Benchmarking invertible architectures on inverse problems
– ident: ref24
  doi: 10.1007/0-306-48332-7_258
– year: 2019
  ident: ref9
  article-title: Guided image generation with conditional invertible neural networks
  publication-title: arXiv:1907.02392
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: ref33
– ident: ref16
  doi: 10.1145/3422622
– ident: ref11
  doi: 10.1007/978-3-030-32248-9_78
– start-page: 573
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Invertible residual networks
– start-page: 10215
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Glow: Generative flow with invertible 1 × 1 convolutions
– start-page: 249
  volume-title: Proc. AISTATS
  ident: ref32
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. 33rd Annu. Conf. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref6
  article-title: AdvFlow: Inconspicuous black-box adversarial attacks using normalizing flows
– year: 2019
  ident: ref13
  article-title: GraphNVP: An invertible flow model for generating molecular graphs
  publication-title: arXiv:1905.11600
– start-page: 4723
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref12
  article-title: Hybrid models with deep and invertible features
– ident: ref19
  doi: 10.1109/CVPR42600.2020.00924
– ident: ref15
  doi: 10.1109/tnnls.2021.3105543
– ident: ref28
  doi: 10.1109/5.726791
– ident: ref17
  doi: 10.1109/tpami.2022.3181070
– ident: ref18
  doi: 10.1109/TNNLS.2018.2875194
– year: 2014
  ident: ref1
  article-title: NICE: Non-linear independent components estimation
  publication-title: arXiv:1410.8516
SSID ssj0000605649
Score 2.4899392
Snippet Residual blocks have been widely used in deep learning networks. However, information may be lost in residual blocks due to the relinquishment of information...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10167
SubjectTerms Algorithms
Deep learning
Invertible neural networks
invertible residual networks
linear complementarity problem
Networks
Neural networks
Rectifiers
Residual neural networks
Sufficient conditions
Transforms
Unsupervised learning
Title Invertible Residual Blocks in Deep Learning Networks
URI https://ieeexplore.ieee.org/document/10033418
https://www.ncbi.nlm.nih.gov/pubmed/37022256
https://www.proquest.com/docview/3078094774
https://www.proquest.com/docview/2797149043
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oB_HivtSNCN6kNZNk0uboioj2oCPMrbRpIjLSETtz8df7kraDCoq3QtOmzdu-l7wF4JjJxKJjZUOb900oylKHrrdVqJ05Ebnifd9F4T6VN0_idtgftsnqPhfGGOODz0zkLv1ZfjnWU7dVhhJOOWrdZB7m40Q2yVqzDRWKwFx6uMt6koWMx8MuSYaq00Ga3j1Grld4xNFKoRVegkUee3dHfrNJvsnK73jT253rFUi7L27CTUbRdFJE-uNHMcd__9IqLLcIlJw1LLMGc6Zah5WuuwNphX0DhCvBgYOKV0MeTO2Ttsg52r5RTV4qcmnMG2mrsz6TtIkmrzdhcH01uLgJ2x4LoUboNQl5bmKc3yKwUqj7ZF4UCAG05dQwlM-SiVgrJg1LEDqg492zAkdoScvCMmb5FixU48rsALGqsAi_cl0oi4qhzBOLcE44xMioimkAvW6RM93WH3dtMF4z74dQlXkaZY5GWUujAE5mz7w11Tf-HL3pFvjLyGZtA9jviJm1ElpnqNsSdG0R_QZwNLuNsuUOTPLKjKd1xmIVowdJBQ9gu2GC2cs73tn9ZdI9WMJvE01k7z4sTN6n5gDxy6Q49Hz7CSPs5Ts
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH4qIFEuZSktYSlG4lYleGxn8ZFV0zLkQAdpblbi2FUFyiAyc-mv59lJRhSJilukOHHit33PfgvAMUsyi46VDW0Rm1BUlQ5db6tQO3MiCslj30XhJk-Gd-LnJJ50yeo-F8YY44PPTOQu_Vl-NdVzt1WGEk45at1sCVZiIUTcpmsttlQoQvPEA142SFjIeDrp02SoPBnn-ehX5LqFRxztFNrhNVjlqXd4kn-skm-z8jbi9Jbnah3y_pvbgJP7aD4rI_33VTnHd__UBnzqMCg5bZlmEz6YegvW-_4OpBP3zyBcEQ4cVD4Ycmsan7ZFztD63TfkT00ujHkkXX3W3yRv48mbbRhfXY7Ph2HXZSHUCL5mIS9MivNbhFYStV9SlCWCAG05NQwltGIi1ZIlhmUIHtD1HliBI3RCq9IyZvkXWK6ntdkBYmVpEYAVupQWVUNVZBYBnXCYkVGZ0gAG_SIr3VUgd40wHpT3RKhUnkbK0Uh1NArg--KZx7b-xn9Hb7sFfjGyXdsA9ntiqk5GG4XaLUPnFvFvAEeL2yhd7sikqM103iiWyhR9SCp4AF9bJli8vOed3TcmPYSPw_HNSI1-5Nd7sIbfKdo4331Ynj3NzQGimVn5zfPwM1HN6Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invertible+Residual+Blocks+in+Deep+Learning+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Ruhua&rft.au=An%2C+Senjian&rft.au=Liu%2C+Wanquan&rft.au=Li%2C+Ling&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=35&rft.issue=7&rft.spage=10167&rft.epage=10173&rft_id=info:doi/10.1109%2FTNNLS.2023.3238397&rft_id=info%3Apmid%2F37022256&rft.externalDocID=10033418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon