DzAIℕ: Deep learning based generative design
Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined criteria and limitations. It is mainly used as a designer assistive tool for the creation of prototypes in sectors like product manufacturing,...
Saved in:
| Published in | Procedia manufacturing Vol. 44; pp. 591 - 598 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2351-9789 2351-9789 |
| DOI | 10.1016/j.promfg.2020.02.251 |
Cover
| Abstract | Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined criteria and limitations. It is mainly used as a designer assistive tool for the creation of prototypes in sectors like product manufacturing, automotive and aerospace industry while there are also references of use of Generative Design in architecture [1]. The algorithms used are mainly originating from nature-mimicking procedures [2]. Generative Design differentiates from shape optimization due to the fact that it does not focus on finding the optimal design but on being able to propose a large variety of designs that satisfy all designer-defined constraints in an automated procedure. Thus, it can be said that it focuses on proposing initial designs for inspiring the designer. In this work, a methodology for Generative Design called DzAIℕ is proposed. DzAIℕ is based on an algorithmic architecture that combines topology optimization and deep learning methods. Deep learning and specifically Deep Belief Networks (DBN) [3] are used for diversifying through stochasticity, designs generated by topology optimization method Solid Isotropic Material with Penalization (SIMP) [4]. SIMP is used for guiding the design procedure towards a local optimum. The response time for DzAIℕ to propose a series of shapes is minimal as only a small population of SIMP iterations is needed while the time needed for application of a series of DBNs is insignificant. In the current work, a series of examples of computer-generated designs with the use of DzAIℕ are presented in order to validate the proposed methodology. |
|---|---|
| AbstractList | Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined criteria and limitations. It is mainly used as a designer assistive tool for the creation of prototypes in sectors like product manufacturing, automotive and aerospace industry while there are also references of use of Generative Design in architecture [1]. The algorithms used are mainly originating from nature-mimicking procedures [2]. Generative Design differentiates from shape optimization due to the fact that it does not focus on finding the optimal design but on being able to propose a large variety of designs that satisfy all designer-defined constraints in an automated procedure. Thus, it can be said that it focuses on proposing initial designs for inspiring the designer. In this work, a methodology for Generative Design called DzAIℕ is proposed. DzAIℕ is based on an algorithmic architecture that combines topology optimization and deep learning methods. Deep learning and specifically Deep Belief Networks (DBN) [3] are used for diversifying through stochasticity, designs generated by topology optimization method Solid Isotropic Material with Penalization (SIMP) [4]. SIMP is used for guiding the design procedure towards a local optimum. The response time for DzAIℕ to propose a series of shapes is minimal as only a small population of SIMP iterations is needed while the time needed for application of a series of DBNs is insignificant. In the current work, a series of examples of computer-generated designs with the use of DzAIℕ are presented in order to validate the proposed methodology. |
| Author | Kallioras, Nikos Ath Lagaros, Nikos D. |
| Author_xml | – sequence: 1 givenname: Nikos Ath surname: Kallioras fullname: Kallioras, Nikos Ath email: nkallioras@yahoo.com – sequence: 2 givenname: Nikos D. surname: Lagaros fullname: Lagaros, Nikos D. |
| BookMark | eNqN0L1OwzAQwHELFYlS-gYMeYEE27GTugNS1fJRqRILzJZjXyJXqRPZoajMvAIvyJOQKgyIAZjult9J_ztHI9c4QOiS4IRgkl1tk9Y3u7JKKKY4wTShnJygMU05iUU-E6Nv-xmahrDFuHc0y3IxRsnqdbH-eHufRyuANqpBeWddFRUqgIkqcOBVZ_cQGQi2chfotFR1gOnXnKCn25vH5X28ebhbLxebWKecdnHKODUiLzDB2GgMOWOCQ0kpU1yDKUoBTOTZrOAEUlCZUdwwQZQwhvO00OkE8eHus2vV4UXVtWy93Sl_kATLY7fcyqFbHrslprLv7h0bnPZNCB7K_7L5D6Zt13c3rvPK1n_h6wFD_5C9BS-DtuD6TutBd9I09vcDnwpcidM |
| CitedBy_id | crossref_primary_10_3390_su16135821 crossref_primary_10_1016_j_jobe_2024_110972 crossref_primary_10_1016_j_autcon_2023_105187 crossref_primary_10_1007_s00158_021_02953_9 crossref_primary_10_1016_j_aei_2022_101826 crossref_primary_10_1016_j_cscm_2024_e03781 crossref_primary_10_1016_j_cad_2024_103707 crossref_primary_10_2139_ssrn_4199804 crossref_primary_10_1002_adem_202200483 crossref_primary_10_1016_j_engappai_2022_105715 crossref_primary_10_1080_10447318_2022_2153320 crossref_primary_10_1007_s00158_022_03386_8 crossref_primary_10_3390_mi13030367 crossref_primary_10_3390_computers9040080 crossref_primary_10_1007_s40430_023_04322_7 crossref_primary_10_1007_s00004_024_00802_y crossref_primary_10_1016_j_enbuild_2021_111033 crossref_primary_10_1016_j_cad_2022_103225 crossref_primary_10_1016_j_dibe_2023_100238 crossref_primary_10_1093_jcde_qwad072 crossref_primary_10_1615_JMachLearnModelComput_2023049518 crossref_primary_10_1080_17452759_2022_2092760 crossref_primary_10_51483_IJARP_3_2_2023_12_48 crossref_primary_10_3390_buildings14051342 crossref_primary_10_1371_journal_pone_0308004 crossref_primary_10_1007_s00158_022_03369_9 crossref_primary_10_1007_s00170_024_13714_5 crossref_primary_10_1016_j_aei_2022_101793 crossref_primary_10_1080_0305215X_2024_2434188 crossref_primary_10_3390_geosciences14090244 crossref_primary_10_1016_j_engstruct_2022_115564 crossref_primary_10_1007_s40964_024_00887_4 crossref_primary_10_32972_dms_2022_013 crossref_primary_10_1016_j_mechmat_2022_104386 crossref_primary_10_1017_S0890060423000203 crossref_primary_10_3390_ma15144753 |
| Cites_doi | 10.1111/mice.12263 10.1016/j.destud.2011.06.001 10.1109/ROBOT.2001.933266 10.1111/j.1432-0436.1976.tb01478.x 10.1007/11888598_12 10.1016/j.tics.2007.09.004 10.1002/nme.3218 10.1007/s00158-020-02545-z 10.1007/978-981-10-6611-5_36 10.1007/s00158-013-0978-6 10.1068/b070343 10.1016/j.csbj.2014.11.005 10.1016/S0022-5193(75)80051-8 10.1007/s11831-015-9151-2 10.1007/BF01650949 10.1109/TRO.2011.2172702 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.promfg.2020.02.251 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2351-9789 |
| EndPage | 598 |
| ExternalDocumentID | 10.1016/j.promfg.2020.02.251 10_1016_j_promfg_2020_02_251 S2351978920308386 |
| GroupedDBID | 0R~ 0SF 457 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB KQ8 M~E NCXOZ O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c352t-3452d97b0100dc0e74495ef224a5cedbf9e49768b51e3ea6da5d491a9dd553bc3 |
| IEDL.DBID | UNPAY |
| ISSN | 2351-9789 |
| IngestDate | Sun Oct 26 04:10:55 EDT 2025 Tue Jul 01 00:35:47 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed May 17 02:06:50 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Deep learning deep belief networks Solid isotropic material with penalization Machine learning Topology optimization Generative design restricted boltzmann machines Reduced order models |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-3452d97b0100dc0e74495ef224a5cedbf9e49768b51e3ea6da5d491a9dd553bc3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S2351978920308386?via%3Dihub |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_promfg_2020_02_251 crossref_primary_10_1016_j_promfg_2020_02_251 crossref_citationtrail_10_1016_j_promfg_2020_02_251 elsevier_sciencedirect_doi_10_1016_j_promfg_2020_02_251 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia manufacturing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | N.A. Kallioras, G. Kazakis, N.D. Lagaros, Accelerated topology optimization by means of deep learning. Structural and multidisciplinary optimization, (to appear) (2020). Accessed: 2019-03-15. M.P. (bib0004) 1989; 1 Lindenmayer (bib0005) 1975; 54 Hinton (bib0003) 2007; 11 H.-T.C., Kobayashi (bib00011) 2011; 88 Caldas, L. (2006). Gene_arch: an evolution-based generative design system for sustainable architecture. In Intelligent computing in engineering and architecture, pages 109–118. Springer. Stiny (bib00014) 1980; 7 Hiller, Lipson (bib0009) 2012; 28 Meinhardt (bib0006) 1976; 6 Kazakis, Kanellopoulos, Sotiropoulos, Lagaros (bib00020) 2017; 3 Singh, Gu (bib0002) 2012; 33 Autodesk (2018b). Space-planning. Meinhardt (bib0001) 1976; 6 Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., and Khan, A. (2009). Physics-based generative design. Hornby, G. S., Lipson, H., and Pollack, J. B. (2001). Evolution of generative design systems for modular physical robots. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 4146–4151. IEEE. Villaggi, L., Stoddart, J., Nagy, D., and Benjamin, D. (2018). Survey-based simulation of user satisfaction for generative design in architecture. In Humanizing Digital Reality, pages 417–430. Springer. Wolfram, S. (2002). A new kind of science, volume 5. Wolfram media Champaign, IL. Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib00021) 2015; 13 Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951, pages 1–41. Autodesk (2018a). Customer stories: Airbus. Zhu, Zhang, Xia (bib00019) 2016; 23 Cha, Choi, Büyüköztürk (bib00022) 2017; 32 Sigmund, Maute (bib00018) 2013; 48 Meinhardt (10.1016/j.promfg.2020.02.251_bib0006) 1976; 6 Stiny (10.1016/j.promfg.2020.02.251_bib00014) 1980; 7 Hinton (10.1016/j.promfg.2020.02.251_bib0003) 2007; 11 10.1016/j.promfg.2020.02.251_bib00017 Cha (10.1016/j.promfg.2020.02.251_bib00022) 2017; 32 10.1016/j.promfg.2020.02.251_bib00016 10.1016/j.promfg.2020.02.251_bib00015 Singh (10.1016/j.promfg.2020.02.251_bib0002) 2012; 33 10.1016/j.promfg.2020.02.251_bib0007 10.1016/j.promfg.2020.02.251_bib0008 10.1016/j.promfg.2020.02.251_bib00013 10.1016/j.promfg.2020.02.251_bib00012 10.1016/j.promfg.2020.02.251_bib00023 10.1016/j.promfg.2020.02.251_bib00010 Hiller (10.1016/j.promfg.2020.02.251_bib0009) 2012; 28 Kourou (10.1016/j.promfg.2020.02.251_bib00021) 2015; 13 H.-T.C. (10.1016/j.promfg.2020.02.251_bib00011) 2011; 88 Sigmund (10.1016/j.promfg.2020.02.251_bib00018) 2013; 48 Meinhardt (10.1016/j.promfg.2020.02.251_bib0001) 1976; 6 M.P. (10.1016/j.promfg.2020.02.251_bib0004) 1989; 1 Zhu (10.1016/j.promfg.2020.02.251_bib00019) 2016; 23 Kazakis (10.1016/j.promfg.2020.02.251_bib00020) 2017; 3 Lindenmayer (10.1016/j.promfg.2020.02.251_bib0005) 1975; 54 |
| References_xml | – volume: 6 start-page: 117 year: 1976 end-page: 123 ident: bib0001 article-title: Morphogenesis of lines and nets publication-title: Differentiation – reference: Autodesk (2018b). Space-planning. – reference: Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951, pages 1–41. – reference: Hornby, G. S., Lipson, H., and Pollack, J. B. (2001). Evolution of generative design systems for modular physical robots. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 4146–4151. IEEE. – volume: 7 start-page: 343 year: 1980 end-page: 351 ident: bib00014 article-title: Introduction to shape and shape grammars publication-title: Environment and planning B: planning and design – volume: 23 start-page: 595 year: 2016 end-page: 622 ident: bib00019 article-title: Topology optimization in aircraft and aerospace structures design publication-title: Archives of Computational Methods in Engineering – volume: 3 start-page: e00431 year: 2017 ident: bib00020 article-title: Topology optimization aided structural design: Interpretation publication-title: computational aspects and 3d printing. Heliyon – volume: 54 start-page: 3 year: 1975 end-page: 22 ident: bib0005 article-title: Developmental algorithms for multicellular organisms: A survey of l-systems publication-title: Journal of Theoretical Biology – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: bib00021 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Computational and Structural Biotechnology Journal – volume: 28 start-page: 457 year: 2012 end-page: 466 ident: bib0009 article-title: Automatic design and manufacture of soft robots publication-title: IEEE Transactions on Robotics – reference: Wolfram, S. (2002). A new kind of science, volume 5. Wolfram media Champaign, IL. – reference: Autodesk (2018a). Customer stories: Airbus. – volume: 33 start-page: 185 year: 2012 end-page: 207 ident: bib0002 article-title: Towards an integrated generative design framework publication-title: Design studies – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: bib0004 article-title: Optimal shape design as a material distribution problem publication-title: Structural optimization – reference: Caldas, L. (2006). Gene_arch: an evolution-based generative design system for sustainable architecture. In Intelligent computing in engineering and architecture, pages 109–118. Springer. – reference: . Accessed: 2019-03-15. – reference: Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., and Khan, A. (2009). Physics-based generative design. – volume: 32 start-page: 361378 year: 2017 ident: bib00022 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 6 start-page: 117 year: 1976 end-page: 123 ident: bib0006 article-title: Morphogenesis of lines and nets publication-title: Differentiation – volume: 11 start-page: 428 year: 2007 end-page: 434 ident: bib0003 article-title: Learning multiple layers of representation publication-title: Trends in cognitive sciences – volume: 88 start-page: 1175 year: 2011 end-page: 1197 ident: bib00011 article-title: On a cellular division method for topology optimization publication-title: International Journal for Numerical Methods in Engineering – volume: 48 start-page: 1031 year: 2013 end-page: 1055 ident: bib00018 article-title: Topology optimization approaches publication-title: Structural and Multidisciplinary Optimization – reference: Villaggi, L., Stoddart, J., Nagy, D., and Benjamin, D. (2018). Survey-based simulation of user satisfaction for generative design in architecture. In Humanizing Digital Reality, pages 417–430. Springer. – reference: N.A. Kallioras, G. Kazakis, N.D. Lagaros, Accelerated topology optimization by means of deep learning. Structural and multidisciplinary optimization, (to appear) (2020). – volume: 32 start-page: 361378 issue: 5 year: 2017 ident: 10.1016/j.promfg.2020.02.251_bib00022 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12263 – volume: 33 start-page: 185 issue: 2 year: 2012 ident: 10.1016/j.promfg.2020.02.251_bib0002 article-title: Towards an integrated generative design framework publication-title: Design studies doi: 10.1016/j.destud.2011.06.001 – ident: 10.1016/j.promfg.2020.02.251_bib00010 doi: 10.1109/ROBOT.2001.933266 – volume: 3 start-page: e00431 issue: 10 year: 2017 ident: 10.1016/j.promfg.2020.02.251_bib00020 article-title: Topology optimization aided structural design: Interpretation publication-title: computational aspects and 3d printing. Heliyon – volume: 6 start-page: 117 issue: 2 year: 1976 ident: 10.1016/j.promfg.2020.02.251_bib0001 article-title: Morphogenesis of lines and nets publication-title: Differentiation doi: 10.1111/j.1432-0436.1976.tb01478.x – ident: 10.1016/j.promfg.2020.02.251_bib0008 doi: 10.1007/11888598_12 – ident: 10.1016/j.promfg.2020.02.251_bib00016 – volume: 11 start-page: 428 issue: 10 year: 2007 ident: 10.1016/j.promfg.2020.02.251_bib0003 article-title: Learning multiple layers of representation publication-title: Trends in cognitive sciences doi: 10.1016/j.tics.2007.09.004 – volume: 6 start-page: 117 issue: 2 year: 1976 ident: 10.1016/j.promfg.2020.02.251_bib0006 article-title: Morphogenesis of lines and nets publication-title: Differentiation doi: 10.1111/j.1432-0436.1976.tb01478.x – volume: 88 start-page: 1175 issue: 11 year: 2011 ident: 10.1016/j.promfg.2020.02.251_bib00011 article-title: On a cellular division method for topology optimization publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.3218 – ident: 10.1016/j.promfg.2020.02.251_bib00023 doi: 10.1007/s00158-020-02545-z – ident: 10.1016/j.promfg.2020.02.251_bib00015 – ident: 10.1016/j.promfg.2020.02.251_bib00012 – ident: 10.1016/j.promfg.2020.02.251_bib00013 – ident: 10.1016/j.promfg.2020.02.251_bib00017 doi: 10.1007/978-981-10-6611-5_36 – volume: 48 start-page: 1031 issue: 6 year: 2013 ident: 10.1016/j.promfg.2020.02.251_bib00018 article-title: Topology optimization approaches publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-013-0978-6 – volume: 7 start-page: 343 issue: 3 year: 1980 ident: 10.1016/j.promfg.2020.02.251_bib00014 article-title: Introduction to shape and shape grammars publication-title: Environment and planning B: planning and design doi: 10.1068/b070343 – volume: 13 start-page: 8 year: 2015 ident: 10.1016/j.promfg.2020.02.251_bib00021 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2014.11.005 – ident: 10.1016/j.promfg.2020.02.251_bib0007 – volume: 54 start-page: 3 issue: 1 year: 1975 ident: 10.1016/j.promfg.2020.02.251_bib0005 article-title: Developmental algorithms for multicellular organisms: A survey of l-systems publication-title: Journal of Theoretical Biology doi: 10.1016/S0022-5193(75)80051-8 – volume: 23 start-page: 595 issue: 4 year: 2016 ident: 10.1016/j.promfg.2020.02.251_bib00019 article-title: Topology optimization in aircraft and aerospace structures design publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-015-9151-2 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 10.1016/j.promfg.2020.02.251_bib0004 article-title: Optimal shape design as a material distribution problem publication-title: Structural optimization doi: 10.1007/BF01650949 – volume: 28 start-page: 457 issue: 2 year: 2012 ident: 10.1016/j.promfg.2020.02.251_bib0009 article-title: Automatic design and manufacture of soft robots publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2011.2172702 |
| SSID | ssj0001626679 |
| Score | 2.3821068 |
| Snippet | Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 591 |
| SubjectTerms | deep belief networks Deep learning Generative design Machine learning Reduced order models restricted boltzmann machines Solid isotropic material with penalization Topology optimization |
| Title | DzAIℕ: Deep learning based generative design |
| URI | https://dx.doi.org/10.1016/j.promfg.2020.02.251 https://www.sciencedirect.com/science/article/pii/S2351978920308386?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2351-9789 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001626679 issn: 2351-9789 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2351-9789 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001626679 issn: 2351-9789 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2351-9789 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001626679 issn: 2351-9789 databaseCode: AKRWK dateStart: 20150101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1qu3DlAxUVLVnoMm0yk0wSNxKspVosohbrKsxkJjVa2yKNYtf-gj_ol3gnj6KCVMFtmEsmcyb3nAv3gdBe5ISGIILpArhKt0yHwj_nCB1LwwgFFkIQVeB81qGtrnXas3sl1ClqYVRaZe77M5-eeuv8ST0_zfo4juuXWM2Wc1wPq5YrxKWHTzHbJ434NuELqEJt0OZlVOl2zv2bdMKcmicPy4v6uTTJC7zUQ9SHMBEbqnUnts2f-GkxGY7ZyzMbDD7xT3MZjYqdZ2kn97Vkwmvh9FtTx__7tBW0lEtVzc9MVlFJDtdQrTH1T95f3w60hpRjLR860dcUGwqtnzaxVh5UE2lqyDrqNo-vjlp6PnNBD0GKTXRi2Vh4DocwzRChIR0LIigZAdEzG_bNI09aoGBcbpuSSEYFs4XlmcwTADbhIdlA5eFoKDeRhrEHRpS6BpcWoYQRLrkTRiAhMHY53UKkOOkgzBuSq7kYg6DIPLsLMnwChU9g4ADw2UL6zGqcNeSYs94pQAy-nH4AnDHHsjbD_Fev2v6rwQ4qTx4TuQuyZsKrqOK3L67b1fzOfgC8jPwU |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1qu3DlAxUrKlnoMmkyk0wSN1KspQoWQQt1FWYyk1qtaZBEsWt_wR_0S7yTR1FBquA2zCWTOZN7zoX7QOggckNTEMF0AVyl25ZL4Z9zhY6laYYCCyGIKnC-6NPewD4fOsMa6le1MCqtsvT9hU_PvXX5pFWeZisZj1tXWM2Wcz0fq5YrxKPHT2N2SDrj24wvoQZ1QJvXUWPQv2zf5BPm1Dx5WF7Vz-VJXuClHqIRhInYVK07sWP9xE_LWZywl2c2mXzin-4qmlY7L9JO7o0s5UY4-9bU8f8-bQ2tlFJVaxcm66gm4w1kdGbts_fXtyOtI2WilUMnRppiQ6GN8ibWyoNqIk8N2USD7un1SU8vZy7oIUixVCe2g4XvcgjTTBGa0rUhgpIRED1zYN888qUNCsbjjiWJZFQwR9i-xXwBYBMeki1Uj6ex3EYaxj4YUeqZXNqEEka45G4YgYTA2OO0iUh10kFYNiRXczEmQZV5dhcU-AQKn8DEAeDTRPrcKikacixY71YgBl9OPwDOWGBpzDH_1at2_mqwi-rpYyb3QNakfL-8qx_jhvpx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DzAI%E2%84%95%3A+Deep+learning+based+generative+design&rft.jtitle=Procedia+manufacturing&rft.au=Kallioras%2C+Nikos+Ath&rft.au=Lagaros%2C+Nikos+D.&rft.date=2020&rft.issn=2351-9789&rft.eissn=2351-9789&rft.volume=44&rft.spage=591&rft.epage=598&rft_id=info:doi/10.1016%2Fj.promfg.2020.02.251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_promfg_2020_02_251 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2351-9789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2351-9789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2351-9789&client=summon |