DzAIℕ: Deep learning based generative design

Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined criteria and limitations. It is mainly used as a designer assistive tool for the creation of prototypes in sectors like product manufacturing,...

Full description

Saved in:
Bibliographic Details
Published inProcedia manufacturing Vol. 44; pp. 591 - 598
Main Authors Kallioras, Nikos Ath, Lagaros, Nikos D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2020
Subjects
Online AccessGet full text
ISSN2351-9789
2351-9789
DOI10.1016/j.promfg.2020.02.251

Cover

Abstract Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined criteria and limitations. It is mainly used as a designer assistive tool for the creation of prototypes in sectors like product manufacturing, automotive and aerospace industry while there are also references of use of Generative Design in architecture [1]. The algorithms used are mainly originating from nature-mimicking procedures [2]. Generative Design differentiates from shape optimization due to the fact that it does not focus on finding the optimal design but on being able to propose a large variety of designs that satisfy all designer-defined constraints in an automated procedure. Thus, it can be said that it focuses on proposing initial designs for inspiring the designer. In this work, a methodology for Generative Design called DzAIℕ is proposed. DzAIℕ is based on an algorithmic architecture that combines topology optimization and deep learning methods. Deep learning and specifically Deep Belief Networks (DBN) [3] are used for diversifying through stochasticity, designs generated by topology optimization method Solid Isotropic Material with Penalization (SIMP) [4]. SIMP is used for guiding the design procedure towards a local optimum. The response time for DzAIℕ to propose a series of shapes is minimal as only a small population of SIMP iterations is needed while the time needed for application of a series of DBNs is insignificant. In the current work, a series of examples of computer-generated designs with the use of DzAIℕ are presented in order to validate the proposed methodology.
AbstractList Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined criteria and limitations. It is mainly used as a designer assistive tool for the creation of prototypes in sectors like product manufacturing, automotive and aerospace industry while there are also references of use of Generative Design in architecture [1]. The algorithms used are mainly originating from nature-mimicking procedures [2]. Generative Design differentiates from shape optimization due to the fact that it does not focus on finding the optimal design but on being able to propose a large variety of designs that satisfy all designer-defined constraints in an automated procedure. Thus, it can be said that it focuses on proposing initial designs for inspiring the designer. In this work, a methodology for Generative Design called DzAIℕ is proposed. DzAIℕ is based on an algorithmic architecture that combines topology optimization and deep learning methods. Deep learning and specifically Deep Belief Networks (DBN) [3] are used for diversifying through stochasticity, designs generated by topology optimization method Solid Isotropic Material with Penalization (SIMP) [4]. SIMP is used for guiding the design procedure towards a local optimum. The response time for DzAIℕ to propose a series of shapes is minimal as only a small population of SIMP iterations is needed while the time needed for application of a series of DBNs is insignificant. In the current work, a series of examples of computer-generated designs with the use of DzAIℕ are presented in order to validate the proposed methodology.
Author Kallioras, Nikos Ath
Lagaros, Nikos D.
Author_xml – sequence: 1
  givenname: Nikos Ath
  surname: Kallioras
  fullname: Kallioras, Nikos Ath
  email: nkallioras@yahoo.com
– sequence: 2
  givenname: Nikos D.
  surname: Lagaros
  fullname: Lagaros, Nikos D.
BookMark eNqN0L1OwzAQwHELFYlS-gYMeYEE27GTugNS1fJRqRILzJZjXyJXqRPZoajMvAIvyJOQKgyIAZjult9J_ztHI9c4QOiS4IRgkl1tk9Y3u7JKKKY4wTShnJygMU05iUU-E6Nv-xmahrDFuHc0y3IxRsnqdbH-eHufRyuANqpBeWddFRUqgIkqcOBVZ_cQGQi2chfotFR1gOnXnKCn25vH5X28ebhbLxebWKecdnHKODUiLzDB2GgMOWOCQ0kpU1yDKUoBTOTZrOAEUlCZUdwwQZQwhvO00OkE8eHus2vV4UXVtWy93Sl_kATLY7fcyqFbHrslprLv7h0bnPZNCB7K_7L5D6Zt13c3rvPK1n_h6wFD_5C9BS-DtuD6TutBd9I09vcDnwpcidM
CitedBy_id crossref_primary_10_3390_su16135821
crossref_primary_10_1016_j_jobe_2024_110972
crossref_primary_10_1016_j_autcon_2023_105187
crossref_primary_10_1007_s00158_021_02953_9
crossref_primary_10_1016_j_aei_2022_101826
crossref_primary_10_1016_j_cscm_2024_e03781
crossref_primary_10_1016_j_cad_2024_103707
crossref_primary_10_2139_ssrn_4199804
crossref_primary_10_1002_adem_202200483
crossref_primary_10_1016_j_engappai_2022_105715
crossref_primary_10_1080_10447318_2022_2153320
crossref_primary_10_1007_s00158_022_03386_8
crossref_primary_10_3390_mi13030367
crossref_primary_10_3390_computers9040080
crossref_primary_10_1007_s40430_023_04322_7
crossref_primary_10_1007_s00004_024_00802_y
crossref_primary_10_1016_j_enbuild_2021_111033
crossref_primary_10_1016_j_cad_2022_103225
crossref_primary_10_1016_j_dibe_2023_100238
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_1615_JMachLearnModelComput_2023049518
crossref_primary_10_1080_17452759_2022_2092760
crossref_primary_10_51483_IJARP_3_2_2023_12_48
crossref_primary_10_3390_buildings14051342
crossref_primary_10_1371_journal_pone_0308004
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1007_s00170_024_13714_5
crossref_primary_10_1016_j_aei_2022_101793
crossref_primary_10_1080_0305215X_2024_2434188
crossref_primary_10_3390_geosciences14090244
crossref_primary_10_1016_j_engstruct_2022_115564
crossref_primary_10_1007_s40964_024_00887_4
crossref_primary_10_32972_dms_2022_013
crossref_primary_10_1016_j_mechmat_2022_104386
crossref_primary_10_1017_S0890060423000203
crossref_primary_10_3390_ma15144753
Cites_doi 10.1111/mice.12263
10.1016/j.destud.2011.06.001
10.1109/ROBOT.2001.933266
10.1111/j.1432-0436.1976.tb01478.x
10.1007/11888598_12
10.1016/j.tics.2007.09.004
10.1002/nme.3218
10.1007/s00158-020-02545-z
10.1007/978-981-10-6611-5_36
10.1007/s00158-013-0978-6
10.1068/b070343
10.1016/j.csbj.2014.11.005
10.1016/S0022-5193(75)80051-8
10.1007/s11831-015-9151-2
10.1007/BF01650949
10.1109/TRO.2011.2172702
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.promfg.2020.02.251
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2351-9789
EndPage 598
ExternalDocumentID 10.1016/j.promfg.2020.02.251
10_1016_j_promfg_2020_02_251
S2351978920308386
GroupedDBID 0R~
0SF
457
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
KQ8
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c352t-3452d97b0100dc0e74495ef224a5cedbf9e49768b51e3ea6da5d491a9dd553bc3
IEDL.DBID UNPAY
ISSN 2351-9789
IngestDate Sun Oct 26 04:10:55 EDT 2025
Tue Jul 01 00:35:47 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed May 17 02:06:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Deep learning
deep belief networks
Solid isotropic material with penalization
Machine learning
Topology optimization
Generative design
restricted boltzmann machines
Reduced order models
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-3452d97b0100dc0e74495ef224a5cedbf9e49768b51e3ea6da5d491a9dd553bc3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S2351978920308386?via%3Dihub
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_promfg_2020_02_251
crossref_primary_10_1016_j_promfg_2020_02_251
crossref_citationtrail_10_1016_j_promfg_2020_02_251
elsevier_sciencedirect_doi_10_1016_j_promfg_2020_02_251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia manufacturing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References N.A. Kallioras, G. Kazakis, N.D. Lagaros, Accelerated topology optimization by means of deep learning. Structural and multidisciplinary optimization, (to appear) (2020).
Accessed: 2019-03-15.
M.P. (bib0004) 1989; 1
Lindenmayer (bib0005) 1975; 54
Hinton (bib0003) 2007; 11
H.-T.C., Kobayashi (bib00011) 2011; 88
Caldas, L. (2006). Gene_arch: an evolution-based generative design system for sustainable architecture. In Intelligent computing in engineering and architecture, pages 109–118. Springer.
Stiny (bib00014) 1980; 7
Hiller, Lipson (bib0009) 2012; 28
Meinhardt (bib0006) 1976; 6
Kazakis, Kanellopoulos, Sotiropoulos, Lagaros (bib00020) 2017; 3
Singh, Gu (bib0002) 2012; 33
Autodesk (2018b). Space-planning.
Meinhardt (bib0001) 1976; 6
Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., and Khan, A. (2009). Physics-based generative design.
Hornby, G. S., Lipson, H., and Pollack, J. B. (2001). Evolution of generative design systems for modular physical robots. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 4146–4151. IEEE.
Villaggi, L., Stoddart, J., Nagy, D., and Benjamin, D. (2018). Survey-based simulation of user satisfaction for generative design in architecture. In Humanizing Digital Reality, pages 417–430. Springer.
Wolfram, S. (2002). A new kind of science, volume 5. Wolfram media Champaign, IL.
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib00021) 2015; 13
Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951, pages 1–41.
Autodesk (2018a). Customer stories: Airbus.
Zhu, Zhang, Xia (bib00019) 2016; 23
Cha, Choi, Büyüköztürk (bib00022) 2017; 32
Sigmund, Maute (bib00018) 2013; 48
Meinhardt (10.1016/j.promfg.2020.02.251_bib0006) 1976; 6
Stiny (10.1016/j.promfg.2020.02.251_bib00014) 1980; 7
Hinton (10.1016/j.promfg.2020.02.251_bib0003) 2007; 11
10.1016/j.promfg.2020.02.251_bib00017
Cha (10.1016/j.promfg.2020.02.251_bib00022) 2017; 32
10.1016/j.promfg.2020.02.251_bib00016
10.1016/j.promfg.2020.02.251_bib00015
Singh (10.1016/j.promfg.2020.02.251_bib0002) 2012; 33
10.1016/j.promfg.2020.02.251_bib0007
10.1016/j.promfg.2020.02.251_bib0008
10.1016/j.promfg.2020.02.251_bib00013
10.1016/j.promfg.2020.02.251_bib00012
10.1016/j.promfg.2020.02.251_bib00023
10.1016/j.promfg.2020.02.251_bib00010
Hiller (10.1016/j.promfg.2020.02.251_bib0009) 2012; 28
Kourou (10.1016/j.promfg.2020.02.251_bib00021) 2015; 13
H.-T.C. (10.1016/j.promfg.2020.02.251_bib00011) 2011; 88
Sigmund (10.1016/j.promfg.2020.02.251_bib00018) 2013; 48
Meinhardt (10.1016/j.promfg.2020.02.251_bib0001) 1976; 6
M.P. (10.1016/j.promfg.2020.02.251_bib0004) 1989; 1
Zhu (10.1016/j.promfg.2020.02.251_bib00019) 2016; 23
Kazakis (10.1016/j.promfg.2020.02.251_bib00020) 2017; 3
Lindenmayer (10.1016/j.promfg.2020.02.251_bib0005) 1975; 54
References_xml – volume: 6
  start-page: 117
  year: 1976
  end-page: 123
  ident: bib0001
  article-title: Morphogenesis of lines and nets
  publication-title: Differentiation
– reference: Autodesk (2018b). Space-planning.
– reference: Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951, pages 1–41.
– reference: Hornby, G. S., Lipson, H., and Pollack, J. B. (2001). Evolution of generative design systems for modular physical robots. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 4146–4151. IEEE.
– volume: 7
  start-page: 343
  year: 1980
  end-page: 351
  ident: bib00014
  article-title: Introduction to shape and shape grammars
  publication-title: Environment and planning B: planning and design
– volume: 23
  start-page: 595
  year: 2016
  end-page: 622
  ident: bib00019
  article-title: Topology optimization in aircraft and aerospace structures design
  publication-title: Archives of Computational Methods in Engineering
– volume: 3
  start-page: e00431
  year: 2017
  ident: bib00020
  article-title: Topology optimization aided structural design: Interpretation
  publication-title: computational aspects and 3d printing. Heliyon
– volume: 54
  start-page: 3
  year: 1975
  end-page: 22
  ident: bib0005
  article-title: Developmental algorithms for multicellular organisms: A survey of l-systems
  publication-title: Journal of Theoretical Biology
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: bib00021
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Computational and Structural Biotechnology Journal
– volume: 28
  start-page: 457
  year: 2012
  end-page: 466
  ident: bib0009
  article-title: Automatic design and manufacture of soft robots
  publication-title: IEEE Transactions on Robotics
– reference: Wolfram, S. (2002). A new kind of science, volume 5. Wolfram media Champaign, IL.
– reference: Autodesk (2018a). Customer stories: Airbus.
– volume: 33
  start-page: 185
  year: 2012
  end-page: 207
  ident: bib0002
  article-title: Towards an integrated generative design framework
  publication-title: Design studies
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: bib0004
  article-title: Optimal shape design as a material distribution problem
  publication-title: Structural optimization
– reference: Caldas, L. (2006). Gene_arch: an evolution-based generative design system for sustainable architecture. In Intelligent computing in engineering and architecture, pages 109–118. Springer.
– reference: . Accessed: 2019-03-15.
– reference: Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., and Khan, A. (2009). Physics-based generative design.
– volume: 32
  start-page: 361378
  year: 2017
  ident: bib00022
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 6
  start-page: 117
  year: 1976
  end-page: 123
  ident: bib0006
  article-title: Morphogenesis of lines and nets
  publication-title: Differentiation
– volume: 11
  start-page: 428
  year: 2007
  end-page: 434
  ident: bib0003
  article-title: Learning multiple layers of representation
  publication-title: Trends in cognitive sciences
– volume: 88
  start-page: 1175
  year: 2011
  end-page: 1197
  ident: bib00011
  article-title: On a cellular division method for topology optimization
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 48
  start-page: 1031
  year: 2013
  end-page: 1055
  ident: bib00018
  article-title: Topology optimization approaches
  publication-title: Structural and Multidisciplinary Optimization
– reference: Villaggi, L., Stoddart, J., Nagy, D., and Benjamin, D. (2018). Survey-based simulation of user satisfaction for generative design in architecture. In Humanizing Digital Reality, pages 417–430. Springer.
– reference: N.A. Kallioras, G. Kazakis, N.D. Lagaros, Accelerated topology optimization by means of deep learning. Structural and multidisciplinary optimization, (to appear) (2020).
– volume: 32
  start-page: 361378
  issue: 5
  year: 2017
  ident: 10.1016/j.promfg.2020.02.251_bib00022
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12263
– volume: 33
  start-page: 185
  issue: 2
  year: 2012
  ident: 10.1016/j.promfg.2020.02.251_bib0002
  article-title: Towards an integrated generative design framework
  publication-title: Design studies
  doi: 10.1016/j.destud.2011.06.001
– ident: 10.1016/j.promfg.2020.02.251_bib00010
  doi: 10.1109/ROBOT.2001.933266
– volume: 3
  start-page: e00431
  issue: 10
  year: 2017
  ident: 10.1016/j.promfg.2020.02.251_bib00020
  article-title: Topology optimization aided structural design: Interpretation
  publication-title: computational aspects and 3d printing. Heliyon
– volume: 6
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.promfg.2020.02.251_bib0001
  article-title: Morphogenesis of lines and nets
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.1976.tb01478.x
– ident: 10.1016/j.promfg.2020.02.251_bib0008
  doi: 10.1007/11888598_12
– ident: 10.1016/j.promfg.2020.02.251_bib00016
– volume: 11
  start-page: 428
  issue: 10
  year: 2007
  ident: 10.1016/j.promfg.2020.02.251_bib0003
  article-title: Learning multiple layers of representation
  publication-title: Trends in cognitive sciences
  doi: 10.1016/j.tics.2007.09.004
– volume: 6
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.promfg.2020.02.251_bib0006
  article-title: Morphogenesis of lines and nets
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.1976.tb01478.x
– volume: 88
  start-page: 1175
  issue: 11
  year: 2011
  ident: 10.1016/j.promfg.2020.02.251_bib00011
  article-title: On a cellular division method for topology optimization
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.3218
– ident: 10.1016/j.promfg.2020.02.251_bib00023
  doi: 10.1007/s00158-020-02545-z
– ident: 10.1016/j.promfg.2020.02.251_bib00015
– ident: 10.1016/j.promfg.2020.02.251_bib00012
– ident: 10.1016/j.promfg.2020.02.251_bib00013
– ident: 10.1016/j.promfg.2020.02.251_bib00017
  doi: 10.1007/978-981-10-6611-5_36
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  ident: 10.1016/j.promfg.2020.02.251_bib00018
  article-title: Topology optimization approaches
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-013-0978-6
– volume: 7
  start-page: 343
  issue: 3
  year: 1980
  ident: 10.1016/j.promfg.2020.02.251_bib00014
  article-title: Introduction to shape and shape grammars
  publication-title: Environment and planning B: planning and design
  doi: 10.1068/b070343
– volume: 13
  start-page: 8
  year: 2015
  ident: 10.1016/j.promfg.2020.02.251_bib00021
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2014.11.005
– ident: 10.1016/j.promfg.2020.02.251_bib0007
– volume: 54
  start-page: 3
  issue: 1
  year: 1975
  ident: 10.1016/j.promfg.2020.02.251_bib0005
  article-title: Developmental algorithms for multicellular organisms: A survey of l-systems
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(75)80051-8
– volume: 23
  start-page: 595
  issue: 4
  year: 2016
  ident: 10.1016/j.promfg.2020.02.251_bib00019
  article-title: Topology optimization in aircraft and aerospace structures design
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-015-9151-2
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 10.1016/j.promfg.2020.02.251_bib0004
  article-title: Optimal shape design as a material distribution problem
  publication-title: Structural optimization
  doi: 10.1007/BF01650949
– volume: 28
  start-page: 457
  issue: 2
  year: 2012
  ident: 10.1016/j.promfg.2020.02.251_bib0009
  article-title: Automatic design and manufacture of soft robots
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2011.2172702
SSID ssj0001626679
Score 2.3821068
Snippet Generative Design is the methodology for automatic creation of a large number of designs via an iterative algorithmic framework while respecting user-defined...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 591
SubjectTerms deep belief networks
Deep learning
Generative design
Machine learning
Reduced order models
restricted boltzmann machines
Solid isotropic material with penalization
Topology optimization
Title DzAIℕ: Deep learning based generative design
URI https://dx.doi.org/10.1016/j.promfg.2020.02.251
https://www.sciencedirect.com/science/article/pii/S2351978920308386?via%3Dihub
UnpaywallVersion publishedVersion
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2351-9789
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001626679
  issn: 2351-9789
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2351-9789
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001626679
  issn: 2351-9789
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2351-9789
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001626679
  issn: 2351-9789
  databaseCode: AKRWK
  dateStart: 20150101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1qu3DlAxUVLVnoMm0yk0wSNxKspVosohbrKsxkJjVa2yKNYtf-gj_ol3gnj6KCVMFtmEsmcyb3nAv3gdBe5ISGIILpArhKt0yHwj_nCB1LwwgFFkIQVeB81qGtrnXas3sl1ClqYVRaZe77M5-eeuv8ST0_zfo4juuXWM2Wc1wPq5YrxKWHTzHbJ434NuELqEJt0OZlVOl2zv2bdMKcmicPy4v6uTTJC7zUQ9SHMBEbqnUnts2f-GkxGY7ZyzMbDD7xT3MZjYqdZ2kn97Vkwmvh9FtTx__7tBW0lEtVzc9MVlFJDtdQrTH1T95f3w60hpRjLR860dcUGwqtnzaxVh5UE2lqyDrqNo-vjlp6PnNBD0GKTXRi2Vh4DocwzRChIR0LIigZAdEzG_bNI09aoGBcbpuSSEYFs4XlmcwTADbhIdlA5eFoKDeRhrEHRpS6BpcWoYQRLrkTRiAhMHY53UKkOOkgzBuSq7kYg6DIPLsLMnwChU9g4ADw2UL6zGqcNeSYs94pQAy-nH4AnDHHsjbD_Fev2v6rwQ4qTx4TuQuyZsKrqOK3L67b1fzOfgC8jPwU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1qu3DlAxUrKlnoMmkyk0wSN1KspQoWQQt1FWYyk1qtaZBEsWt_wR_0S7yTR1FBquA2zCWTOZN7zoX7QOggckNTEMF0AVyl25ZL4Z9zhY6laYYCCyGIKnC-6NPewD4fOsMa6le1MCqtsvT9hU_PvXX5pFWeZisZj1tXWM2Wcz0fq5YrxKPHT2N2SDrj24wvoQZ1QJvXUWPQv2zf5BPm1Dx5WF7Vz-VJXuClHqIRhInYVK07sWP9xE_LWZywl2c2mXzin-4qmlY7L9JO7o0s5UY4-9bU8f8-bQ2tlFJVaxcm66gm4w1kdGbts_fXtyOtI2WilUMnRppiQ6GN8ibWyoNqIk8N2USD7un1SU8vZy7oIUixVCe2g4XvcgjTTBGa0rUhgpIRED1zYN888qUNCsbjjiWJZFQwR9i-xXwBYBMeki1Uj6ex3EYaxj4YUeqZXNqEEka45G4YgYTA2OO0iUh10kFYNiRXczEmQZV5dhcU-AQKn8DEAeDTRPrcKikacixY71YgBl9OPwDOWGBpzDH_1at2_mqwi-rpYyb3QNakfL-8qx_jhvpx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DzAI%E2%84%95%3A+Deep+learning+based+generative+design&rft.jtitle=Procedia+manufacturing&rft.au=Kallioras%2C+Nikos+Ath&rft.au=Lagaros%2C+Nikos+D.&rft.date=2020&rft.issn=2351-9789&rft.eissn=2351-9789&rft.volume=44&rft.spage=591&rft.epage=598&rft_id=info:doi/10.1016%2Fj.promfg.2020.02.251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_promfg_2020_02_251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2351-9789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2351-9789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2351-9789&client=summon