A review of Machine Learning-based zero-day attack detection: Challenges and future directions

Zero-day attacks exploit unknown vulnerabilities so as to avoid being detected by cybersecurity detection tools. The studies (Bilge and Dumitraş, 2012, Google, 0000, Ponemon Sullivan Privacy Report, 2020) show that zero-day attacks are wide spread and are one of the major threats to computer securit...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 198; pp. 175 - 185
Main Author Guo, Yang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2023
Subjects
Online AccessGet full text
ISSN0140-3664
1873-703X
DOI10.1016/j.comcom.2022.11.001

Cover

Abstract Zero-day attacks exploit unknown vulnerabilities so as to avoid being detected by cybersecurity detection tools. The studies (Bilge and Dumitraş, 2012, Google, 0000, Ponemon Sullivan Privacy Report, 2020) show that zero-day attacks are wide spread and are one of the major threats to computer security. The traditional signature-based detection method is not effective in detecting zero-day attacks as the signatures of zero-day attacks are typically not available beforehand. Machine Learning (ML)-based detection method is capable of capturing attacks’ statistical characteristics and is, hence, promising for zero-day attack detection. In this survey paper, a comprehensive review of ML-based zero-day attack detection approaches is conducted, and their ML models, training and testing data sets used, and evaluation results are compared. While significant efforts have been put forth to develop accurate and robust zero-attack detection tools, the existing methods fall short in accuracy, recall, and uniformity against different types of zero-day attacks. Major challenges toward the ML-based methods are identified and future research directions are recommended at last.
AbstractList Zero-day attacks exploit unknown vulnerabilities so as to avoid being detected by cybersecurity detection tools. The studies (Bilge and Dumitraş, 2012, Google, 0000, Ponemon Sullivan Privacy Report, 2020) show that zero-day attacks are wide spread and are one of the major threats to computer security. The traditional signature-based detection method is not effective in detecting zero-day attacks as the signatures of zero-day attacks are typically not available beforehand. Machine Learning (ML)-based detection method is capable of capturing attacks’ statistical characteristics and is, hence, promising for zero-day attack detection. In this survey paper, a comprehensive review of ML-based zero-day attack detection approaches is conducted, and their ML models, training and testing data sets used, and evaluation results are compared. While significant efforts have been put forth to develop accurate and robust zero-attack detection tools, the existing methods fall short in accuracy, recall, and uniformity against different types of zero-day attacks. Major challenges toward the ML-based methods are identified and future research directions are recommended at last.
Author Guo, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-3245-3069
  surname: Guo
  fullname: Guo, Yang
  email: yang.guo@nist.gov
  organization: NIST, Gaithersburg, MD 20899, United States of America
BookMark eNqFkE1LAzEQhoMo2Fb_gYf8gV3zsZu0PQil-AUVLwqeDLPJbJvaZiXZKvXXu2U9eVAYmMs8L_M-Q3IcmoCEXHCWc8bV5Tq3zbabXDAhcs5zxvgRGfCxlplm8uWYDBgvWCaVKk7JMKU1Y6zQWg7I64xG_PD4SZuaPoBd-YB0gRCDD8usgoSOfmFsMgd7Cm0L9o06bNG2vglTOl_BZoNhiYlCcLTetbuI1PnYH6QzclLDJuH5zx6R55vrp_ldtni8vZ_PFpmVpWgz4TgfqxokA-5KVSnUE1dplIVDZpUAV5aW1RO0pSjRqaKqbKGlFjCedAWFHJGiz7WxSSlibd6j30LcG87MwZFZm96ROTgynJvOUYdNf2HWt3D4vI3gN__BVz2MXbFOYTTJegwW-_rGNf7vgG-ocohF
CitedBy_id crossref_primary_10_3390_fi17010025
crossref_primary_10_1016_j_cose_2025_104438
crossref_primary_10_1109_MCE_2023_3283730
crossref_primary_10_1007_s10586_024_04376_9
crossref_primary_10_1111_exsy_13693
crossref_primary_10_1145_3657647
crossref_primary_10_1007_s41870_024_02299_7
crossref_primary_10_1007_s10207_024_00964_3
crossref_primary_10_1109_ACCESS_2024_3437192
crossref_primary_10_1016_j_vehcom_2025_100887
crossref_primary_10_1049_ntw2_12134
crossref_primary_10_1016_j_engappai_2025_110143
crossref_primary_10_4108_eetsis_6111
crossref_primary_10_3390_info15120764
crossref_primary_10_1109_TIFS_2024_3402055
crossref_primary_10_1016_j_comnet_2024_110828
crossref_primary_10_1109_OJCOMS_2024_3481965
crossref_primary_10_1109_ACCESS_2024_3377658
crossref_primary_10_1016_j_cose_2024_103713
crossref_primary_10_1007_s10207_024_00934_9
crossref_primary_10_1007_s42979_024_02704_9
crossref_primary_10_1145_3654443
crossref_primary_10_1016_j_jisa_2024_103716
crossref_primary_10_1007_s13369_024_08742_y
crossref_primary_10_1016_j_engappai_2025_110031
crossref_primary_10_36548_jitdw_2023_3_003
crossref_primary_10_1109_ACCESS_2024_3387728
crossref_primary_10_1016_j_eswa_2023_123027
crossref_primary_10_3390_atmos15101250
crossref_primary_10_1016_j_heliyon_2024_e37571
crossref_primary_10_3390_s23062974
crossref_primary_10_3390_fi16070256
crossref_primary_10_1109_TVT_2024_3385916
crossref_primary_10_1109_ACCESS_2024_3462295
crossref_primary_10_1038_s41598_025_87615_2
crossref_primary_10_1016_j_jpdc_2024_105010
crossref_primary_10_3390_fi17020093
crossref_primary_10_1007_s10489_024_05290_8
crossref_primary_10_1007_s40860_024_00238_8
crossref_primary_10_3390_s24113375
crossref_primary_10_1007_s10207_024_00851_x
crossref_primary_10_1109_TAES_2024_3418757
crossref_primary_10_32604_cmc_2024_057877
crossref_primary_10_1016_j_cose_2024_103898
crossref_primary_10_1016_j_iswa_2024_200472
crossref_primary_10_1109_TVT_2024_3399219
crossref_primary_10_1145_3687482
crossref_primary_10_1016_j_procs_2024_09_635
crossref_primary_10_7717_peerj_cs_1319
crossref_primary_10_1016_j_cose_2025_104445
crossref_primary_10_1016_j_simpa_2024_100664
crossref_primary_10_56294_dm2024297
crossref_primary_10_1109_TII_2023_3342413
crossref_primary_10_1016_j_iswa_2025_200495
crossref_primary_10_1109_TCE_2023_3335385
crossref_primary_10_32604_cmc_2024_055463
Cites_doi 10.1002/asmb.537
10.1109/JPROC.2020.3004555
10.1109/COMST.2015.2494502
10.1007/s10489-007-0101-z
10.1016/j.patcog.2017.09.012
10.1016/j.ins.2016.09.041
10.3390/electronics9101684
10.1016/j.ins.2018.04.092
10.3390/app9204396
10.1109/ACCESS.2020.3006143
10.1016/j.icte.2020.03.003
10.1109/TKDE.2009.191
10.1145/3073559
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2022.11.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 185
ExternalDocumentID 10_1016_j_comcom_2022_11_001
S0140366422004248
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c352t-2d1186fa30a1d56b6e79db7e34de0c62ad55c0f9ec525ed64bbc47372a8970323
IEDL.DBID AIKHN
ISSN 0140-3664
IngestDate Tue Jul 01 02:43:08 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Fri Feb 23 02:39:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Attack detection
Machine Learning
Zero-day attacks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-2d1186fa30a1d56b6e79db7e34de0c62ad55c0f9ec525ed64bbc47372a8970323
ORCID 0000-0002-3245-3069
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9890381
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_comcom_2022_11_001
crossref_citationtrail_10_1016_j_comcom_2022_11_001
elsevier_sciencedirect_doi_10_1016_j_comcom_2022_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Shetty, Pan (b11) 2017
Zhao, Shetty, Pan, Kamhoua, Kwiat (b12) 2019; 2019
Panigrahi, Borah (b27) 2018; 7
Buczak, Guven (b14) 2016; 18
Wang, Mahadevan (b39) 2011
Sameera, Shashi (b42) 2019
Hu, Chen, Zhu, Liu (b44) 2019
Huda, Miah, Mehedi Hassan, Islam, Yearwood, Alrubaian, Almogren (b9) 2017; 379
Liu, Xu, Xu, Zhang, Sun, Liu (b18) 2020; 8
Reynolds (b31) 2009
Parrend, Navarro, Guigou, Deruyver, Collet (b33) 2018; 2018, Number 1
Abri, Siami-Namini, Khanghah, Soltani, Namin (b32) 2019
Bergstra, Bengio (b28) 2012; 13
Kaggle: Microsoft malware classification challenge (BIG 2015), URL
Hindy, Atkinson, Tachtatzis, Colin, Bayne, Bellekens (b5) 2020; 9
Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b19) 1999
Chen, Lin, Schölkopf (b29) 2005; 21
Hindy, Atkinson, Tachtatzis, Colin, Bayne, Bellekens (b22) 2020
Intrusion detection evaluation dataset (CIC-IDS2017), URL
Mirsky, Doitshman, Elovici, Shabtai (b6) 2018
Bilge, Dumitraş (b1) 2012
Kim, Bu, Cho (b10) 2018; 460–461
Khraisat, Gondal, Vamplew, Kamruzzaman (b15) 2019; 2
NSL-KDD Dataset, URL
Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He (b38) 2021; 109
Taghiyarrenani, Fanian, Mahdavi, Mirzaei, Farsi (b40) 2018
Ponemon Sullivan Privacy Report (b3) 2020
Goodfellow, Bengio, Courville (b24) 2016
Wang, Liu, Zhu, Porikli, Yin (b20) 2018; 74
Musca, Mirica, Deaconescu (b43) 2013
Comar, Liu, Saha, Tan, Nucci (b8) 2013
Ye, Li, Adjeroh, Iyengar (b17) 2017; 50
Kumar, Lal, Sharma (b41) 2016
Zhou, Pezaros (b7) 2021
Liu, Lang (b16) 2019; 9
.
Google, Project Zero, URL
Pan, Yang (b37) 2010; 22
A realistic cyber defense dataset (CSE-CIC-IDS2018), URL
Bridges, Oesch, Verma, Iannacone, Huffer, Jewell, Nichols, Weber, Beaver, Smith, Scofield, Miles, Plummer, Daniell, Tall (b4) 2021
Liu, Ting, Zhou (b30) 2008
Gharib, Mohammadi, Hejareh Dastgerdi, Sabokrou (b23) 2019
Hao, Chiang, Lin (b35) 2009; 30
Sameera, Shashi (b13) 2020; 6
Japkowicz, Myers, Gluck (b21) 1995
Huda (10.1016/j.comcom.2022.11.001_b9) 2017; 379
Gharib (10.1016/j.comcom.2022.11.001_b23) 2019
Bilge (10.1016/j.comcom.2022.11.001_b1) 2012
Buczak (10.1016/j.comcom.2022.11.001_b14) 2016; 18
Panigrahi (10.1016/j.comcom.2022.11.001_b27) 2018; 7
Zhao (10.1016/j.comcom.2022.11.001_b11) 2017
Khraisat (10.1016/j.comcom.2022.11.001_b15) 2019; 2
Abri (10.1016/j.comcom.2022.11.001_b32) 2019
Ye (10.1016/j.comcom.2022.11.001_b17) 2017; 50
Mirsky (10.1016/j.comcom.2022.11.001_b6) 2018
Reynolds (10.1016/j.comcom.2022.11.001_b31) 2009
Goodfellow (10.1016/j.comcom.2022.11.001_b24) 2016
Pan (10.1016/j.comcom.2022.11.001_b37) 2010; 22
Hu (10.1016/j.comcom.2022.11.001_b44) 2019
Hindy (10.1016/j.comcom.2022.11.001_b22) 2020
10.1016/j.comcom.2022.11.001_b34
10.1016/j.comcom.2022.11.001_b36
Kim (10.1016/j.comcom.2022.11.001_b10) 2018; 460–461
Chen (10.1016/j.comcom.2022.11.001_b29) 2005; 21
Taghiyarrenani (10.1016/j.comcom.2022.11.001_b40) 2018
Zhou (10.1016/j.comcom.2022.11.001_b7) 2021
Parrend (10.1016/j.comcom.2022.11.001_b33) 2018; 2018, Number 1
Hao (10.1016/j.comcom.2022.11.001_b35) 2009; 30
Kumar (10.1016/j.comcom.2022.11.001_b41) 2016
Ponemon Sullivan Privacy Report (10.1016/j.comcom.2022.11.001_b3) 2020
Liu (10.1016/j.comcom.2022.11.001_b16) 2019; 9
Zhuang (10.1016/j.comcom.2022.11.001_b38) 2021; 109
10.1016/j.comcom.2022.11.001_b2
Comar (10.1016/j.comcom.2022.11.001_b8) 2013
Sameera (10.1016/j.comcom.2022.11.001_b13) 2020; 6
Schölkopf (10.1016/j.comcom.2022.11.001_b19) 1999
Wang (10.1016/j.comcom.2022.11.001_b20) 2018; 74
Zhao (10.1016/j.comcom.2022.11.001_b12) 2019; 2019
Liu (10.1016/j.comcom.2022.11.001_b30) 2008
Bergstra (10.1016/j.comcom.2022.11.001_b28) 2012; 13
Sameera (10.1016/j.comcom.2022.11.001_b42) 2019
Bridges (10.1016/j.comcom.2022.11.001_b4) 2021
Musca (10.1016/j.comcom.2022.11.001_b43) 2013
Hindy (10.1016/j.comcom.2022.11.001_b5) 2020; 9
Liu (10.1016/j.comcom.2022.11.001_b18) 2020; 8
10.1016/j.comcom.2022.11.001_b25
Japkowicz (10.1016/j.comcom.2022.11.001_b21) 1995
10.1016/j.comcom.2022.11.001_b26
Wang (10.1016/j.comcom.2022.11.001_b39) 2011
References_xml – start-page: 582
  year: 1999
  end-page: 588
  ident: b19
  article-title: Support vector method for novelty detection
  publication-title: Proceedings of the 12th International Conference on Neural Information Processing Systems
– volume: 13
  year: 2012
  ident: b28
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 17
  year: 2017
  end-page: 22
  ident: b11
  article-title: Feature-based transfer learning for network security
  publication-title: MILCOM 2017 - 2017 IEEE Military Communications Conference
– volume: 30
  start-page: 98
  year: 2009
  end-page: 111
  ident: b35
  article-title: A new maximal-margin spherical-structured multi-class support vector machine
  publication-title: Appl. Intell.
– year: 1995
  ident: b21
  article-title: A novelty detection approach to classification
  publication-title: IJCAI
– reference: Intrusion detection evaluation dataset (CIC-IDS2017), URL
– year: 2021
  ident: b7
  article-title: Evaluation of machine learning classifiers for zero-day intrusion detection – an analysis on CIC-aws-2018 dataset
– year: 2019
  ident: b42
  article-title: Transfer learning based prototype for zero-day attack detection
  publication-title: IJCAI
– reference: NSL-KDD Dataset, URL
– volume: 21
  start-page: 111
  year: 2005
  end-page: 136
  ident: b29
  article-title: A tutorial on
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 9
  year: 2020
  ident: b5
  article-title: Utilising deep learning techniques for effective zero-day attack detection
  publication-title: Electronics
– volume: 8
  start-page: 124579
  year: 2020
  end-page: 124607
  ident: b18
  article-title: A review of android malware detection approaches based on machine learning
  publication-title: IEEE Access
– volume: 2
  year: 2019
  ident: b15
  article-title: Survey of intrusion detection systems: techniques, datasets and challenges
  publication-title: Cybersecur
– year: 2016
  ident: b24
  article-title: Deep Learning
– year: 2020
  ident: b3
  article-title: The economic value of prevention in the cybersecurity lifecycle
– reference: A realistic cyber defense dataset (CSE-CIC-IDS2018), URL
– start-page: 92
  year: 2018
  end-page: 97
  ident: b40
  article-title: Transfer learning based intrusion detection
  publication-title: 2018 8th International Conference on Computer and Knowledge Engineering
– start-page: 3252
  year: 2019
  end-page: 3259
  ident: b32
  article-title: Can machine/deep learning classifiers detect zero-day malware with high accuracy?
  publication-title: 2019 IEEE International Conference on Big Data (Big Data)
– volume: 2018, Number 1
  year: 2018
  ident: b33
  article-title: Foundations and applications of artificial intelligence for zero-day and multi-step attack detection
  publication-title: EURASIP J. Inf. Secur.
– volume: 74
  start-page: 198
  year: 2018
  end-page: 211
  ident: b20
  article-title: Hyperparameter selection of one-class support vector machine by self-adaptive data shifting
  publication-title: Pattern Recognit.
– volume: 109
  start-page: 43
  year: 2021
  end-page: 76
  ident: b38
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
– start-page: 1541
  year: 2011
  end-page: 1546
  ident: b39
  article-title: Heterogeneous domain adaptation using manifold alignment
  publication-title: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two
– volume: 50
  year: 2017
  ident: b17
  article-title: A survey on malware detection using data mining techniques
  publication-title: ACM Comput. Surv.
– year: 2018
  ident: b6
  article-title: Kitsune: An ensemble of autoencoders for online network intrusion detection
  publication-title: NDSS
– volume: 6
  start-page: 361
  year: 2020
  end-page: 367
  ident: b13
  article-title: Deep transductive transfer learning framework for zero-day attack detection
  publication-title: ICT Express
– reference: .
– start-page: 2022
  year: 2013
  end-page: 2030
  ident: b8
  article-title: Combining supervised and unsupervised learning for zero-day malware detection
  publication-title: 2013 Proceedings IEEE INFOCOM
– volume: 379
  start-page: 211
  year: 2017
  end-page: 228
  ident: b9
  article-title: Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data
  publication-title: Inform. Sci.
– year: 2020
  ident: b22
  article-title: Towards an effective zero-day attack detection using outlier-based deep learning techniques
– start-page: 833
  year: 2012
  end-page: 844
  ident: b1
  article-title: Before we knew it: An empirical study of zero-day attacks in the real world
  publication-title: Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS ’12)
– volume: 9
  year: 2019
  ident: b16
  article-title: Machine learning and deep learning methods for intrusion detection systems: A survey
  publication-title: Appl. Sci.
– year: 2021
  ident: b4
  article-title: Beyond the hype: A real-world evaluation of the impact and cost of machine learning-based malware detection
– volume: 7
  start-page: 479
  year: 2018
  end-page: 482
  ident: b27
  article-title: A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems
  publication-title: Int. J. Eng. Technol.
– start-page: 54
  year: 2019
  end-page: 93
  ident: b44
  article-title: Reinforcement learning for adaptive cyber defense against zero-day attacks
  publication-title: Adversarial and Uncertain Reasoning for Adaptive Cyber Defense: Control- and Game-Theoretic Approaches To Cyber Security
– volume: 460–461
  start-page: 83
  year: 2018
  end-page: 102
  ident: b10
  article-title: Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
  publication-title: Inform. Sci.
– reference: Kaggle: Microsoft malware classification challenge (BIG 2015), URL
– year: 2019
  ident: b23
  article-title: AutoIDS: Auto-encoder Based Method for Intrusion Detection System
– reference: . Google, Project Zero, URL
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b37
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 309
  year: 2016
  end-page: 316
  ident: b41
  article-title: Detecting denial of service attacks in the cloud
  publication-title: 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech)
– start-page: 659
  year: 2009
  end-page: 663
  ident: b31
  article-title: Gaussian mixture models
  publication-title: Encyclopedia of Biometrics
– volume: 2019
  year: 2019
  ident: b12
  article-title: Transfer learning for detecting unknown network attacks
  publication-title: EURASIP J. Inf. Secur.
– volume: 18
  start-page: 1153
  year: 2016
  end-page: 1176
  ident: b14
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 413
  year: 2008
  end-page: 422
  ident: b30
  article-title: Isolation forest
  publication-title: 2008 Eighth IEEE International Conference on Data Mining
– start-page: 543
  year: 2013
  end-page: 548
  ident: b43
  article-title: Detecting and analyzing zero-day attacks using honeypots
  publication-title: Proceedings of the 2013 19th International Conference on Control Systems and Computer Science
– start-page: 309
  year: 2016
  ident: 10.1016/j.comcom.2022.11.001_b41
  article-title: Detecting denial of service attacks in the cloud
– year: 2021
  ident: 10.1016/j.comcom.2022.11.001_b7
– year: 2021
  ident: 10.1016/j.comcom.2022.11.001_b4
– volume: 21
  start-page: 111
  issue: 2
  year: 2005
  ident: 10.1016/j.comcom.2022.11.001_b29
  article-title: A tutorial on ν-support vector machines
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.537
– volume: 109
  start-page: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.comcom.2022.11.001_b38
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 10.1016/j.comcom.2022.11.001_b14
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– start-page: 543
  year: 2013
  ident: 10.1016/j.comcom.2022.11.001_b43
  article-title: Detecting and analyzing zero-day attacks using honeypots
– year: 1995
  ident: 10.1016/j.comcom.2022.11.001_b21
  article-title: A novelty detection approach to classification
– start-page: 582
  year: 1999
  ident: 10.1016/j.comcom.2022.11.001_b19
  article-title: Support vector method for novelty detection
– start-page: 3252
  year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b32
  article-title: Can machine/deep learning classifiers detect zero-day malware with high accuracy?
– volume: 30
  start-page: 98
  year: 2009
  ident: 10.1016/j.comcom.2022.11.001_b35
  article-title: A new maximal-margin spherical-structured multi-class support vector machine
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0101-z
– volume: 2019
  year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b12
  article-title: Transfer learning for detecting unknown network attacks
  publication-title: EURASIP J. Inf. Secur.
– volume: 74
  start-page: 198
  year: 2018
  ident: 10.1016/j.comcom.2022.11.001_b20
  article-title: Hyperparameter selection of one-class support vector machine by self-adaptive data shifting
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.012
– ident: 10.1016/j.comcom.2022.11.001_b26
– year: 2020
  ident: 10.1016/j.comcom.2022.11.001_b22
– year: 2016
  ident: 10.1016/j.comcom.2022.11.001_b24
– start-page: 54
  year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b44
  article-title: Reinforcement learning for adaptive cyber defense against zero-day attacks
– ident: 10.1016/j.comcom.2022.11.001_b34
– volume: 7
  start-page: 479
  issue: 3.24
  year: 2018
  ident: 10.1016/j.comcom.2022.11.001_b27
  article-title: A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems
  publication-title: Int. J. Eng. Technol.
– year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b23
– start-page: 659
  year: 2009
  ident: 10.1016/j.comcom.2022.11.001_b31
  article-title: Gaussian mixture models
– ident: 10.1016/j.comcom.2022.11.001_b36
– start-page: 92
  year: 2018
  ident: 10.1016/j.comcom.2022.11.001_b40
  article-title: Transfer learning based intrusion detection
– volume: 379
  start-page: 211
  year: 2017
  ident: 10.1016/j.comcom.2022.11.001_b9
  article-title: Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.09.041
– year: 2020
  ident: 10.1016/j.comcom.2022.11.001_b3
  article-title: The economic value of prevention in the cybersecurity lifecycle
– volume: 2
  year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b15
  article-title: Survey of intrusion detection systems: techniques, datasets and challenges
– start-page: 1541
  year: 2011
  ident: 10.1016/j.comcom.2022.11.001_b39
  article-title: Heterogeneous domain adaptation using manifold alignment
– volume: 9
  issue: 10
  year: 2020
  ident: 10.1016/j.comcom.2022.11.001_b5
  article-title: Utilising deep learning techniques for effective zero-day attack detection
  publication-title: Electronics
  doi: 10.3390/electronics9101684
– start-page: 2022
  year: 2013
  ident: 10.1016/j.comcom.2022.11.001_b8
  article-title: Combining supervised and unsupervised learning for zero-day malware detection
– year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b42
  article-title: Transfer learning based prototype for zero-day attack detection
– volume: 460–461
  start-page: 83
  year: 2018
  ident: 10.1016/j.comcom.2022.11.001_b10
  article-title: Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.04.092
– volume: 9
  issue: 20
  year: 2019
  ident: 10.1016/j.comcom.2022.11.001_b16
  article-title: Machine learning and deep learning methods for intrusion detection systems: A survey
  publication-title: Appl. Sci.
  doi: 10.3390/app9204396
– start-page: 413
  year: 2008
  ident: 10.1016/j.comcom.2022.11.001_b30
  article-title: Isolation forest
– volume: 8
  start-page: 124579
  year: 2020
  ident: 10.1016/j.comcom.2022.11.001_b18
  article-title: A review of android malware detection approaches based on machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006143
– ident: 10.1016/j.comcom.2022.11.001_b2
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.comcom.2022.11.001_b28
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 17
  year: 2017
  ident: 10.1016/j.comcom.2022.11.001_b11
  article-title: Feature-based transfer learning for network security
– volume: 6
  start-page: 361
  issue: 4
  year: 2020
  ident: 10.1016/j.comcom.2022.11.001_b13
  article-title: Deep transductive transfer learning framework for zero-day attack detection
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.03.003
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.comcom.2022.11.001_b37
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– year: 2018
  ident: 10.1016/j.comcom.2022.11.001_b6
  article-title: Kitsune: An ensemble of autoencoders for online network intrusion detection
  publication-title: NDSS
– volume: 2018, Number 1
  year: 2018
  ident: 10.1016/j.comcom.2022.11.001_b33
  article-title: Foundations and applications of artificial intelligence for zero-day and multi-step attack detection
  publication-title: EURASIP J. Inf. Secur.
– ident: 10.1016/j.comcom.2022.11.001_b25
– start-page: 833
  year: 2012
  ident: 10.1016/j.comcom.2022.11.001_b1
  article-title: Before we knew it: An empirical study of zero-day attacks in the real world
– volume: 50
  issue: 3
  year: 2017
  ident: 10.1016/j.comcom.2022.11.001_b17
  article-title: A survey on malware detection using data mining techniques
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3073559
SSID ssj0004773
Score 2.63582
SecondaryResourceType review_article
Snippet Zero-day attacks exploit unknown vulnerabilities so as to avoid being detected by cybersecurity detection tools. The studies (Bilge and Dumitraş, 2012, Google,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Attack detection
Machine Learning
Zero-day attacks
Title A review of Machine Learning-based zero-day attack detection: Challenges and future directions
URI https://dx.doi.org/10.1016/j.comcom.2022.11.001
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDywuk2c2EnYqgpUQO1EpU5EfgUVUFqVMMDAb8dOHChCAok1ykXR5fzdOf7uO4AzkkWZpIJjFiccW8AzS4oEmGoeaU9Jobk90R1P2GgaXs_orAHDuhfG0iod9leYXqK1u9J33uwv5_N-SUsKmKmfSXl-FzehTUy2j1vQHlzdjCZf7ZFRddBsmYzWoO6gK2le5vGWNkJMLutZOU83HeZHhlrLOpfbsOXKRTSo3mgHGjrfhc01EcE9uBugqv8ELTI0LrmRGjnZ1Htss5RCb3q1wIq_Il4UXD4ipYuSgpWfo2E9TeUZ8VyhSmMEVV6xIbkP08uL2-EIu6kJWJpiqsBEmT0Dy3jgcV9RJpiOEquhHIRKe5IRriiVXpZoSQnVioVCyNAOq-FxYpY_CQ6glS9yfQjI5ySiipuiSJMwEEIkkU_jWIvMAIH0WAeC2lOpdJLidrLFU1pzxx7Syr-p9a_ZbVgKXQfwp9WyktT44_6o_gjpt9BIDer_ann0b8tj2LBz5e2_Fp-eQKtYvehTU30UogvN3rvfdTH2AXK32g0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvPLCapk7sJGxVRVWg7VQkJiK_gngoRRAG-PX4EgeKkEBijXJRdDnfnePvvg_gmOVxrrmSVCSppJjw3JJiIeVWxjYwWlmJJ7qjsRhcRRfX_HoOes0sDMIqfe6vc3qVrf2Vtvdm--nurl3BkkLh-mdWnd8l87AQoah1Cxa655eD8dd4ZFwfNCOSEQ2aCboK5uUej7AR5mrZCdJ5enWYHxVqpur0V2HFt4ukW7_RGszZYh2WZ0gEN-CmS-r5EzLNyajCRlriaVNvKVYpQ97t85Qa-UZkWUr9QIwtKwhWcUp6jZrKC5GFITXHCKm9giG5CVf9s0lvQL1qAtWumSopM27PIHIZBrJjuFDCxilyKIeRsYEWTBrOdZCnVnPGrRGRUjpCsRqZpG75s3ALWsW0sNtAOpLF3EjXFFkWhUqpNO7wJLEqd4lAB2IHwsZTmfaU4qhs8Zg12LH7rPZvhv51uw2E0O0A_bR6qik1_rg_bj5C9i00Mpf1f7Xc_bflESwOJqNhNjwfX-7BEmrM43-XDt-HVvn8ag9cJ1KqQx9pH5mM2_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+Machine+Learning-based+zero-day+attack+detection%3A+Challenges+and+future+directions&rft.jtitle=Computer+communications&rft.au=Guo%2C+Yang&rft.date=2023-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=198&rft.spage=175&rft.epage=185&rft_id=info:doi/10.1016%2Fj.comcom.2022.11.001&rft.externalDocID=S0140366422004248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon