Forecasting urban travel demand with geo-AI: a combination of GIS and machine learning techniques utilizing uber data in New York City

Presently, online ride-hailing firms and municipal transportation systems substantially influence urban traffic management. Considering the increasing use of these services, it is essential to assess and predict travel demand to optimize service efficiency. This study analyzes Uber data from New Yor...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 83; no. 20; p. 594
Main Authors Haery, Sana, Mahpour, Alireza, Vafaeinejad, Alireza
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-6280
1866-6299
DOI10.1007/s12665-024-11900-y

Cover

Abstract Presently, online ride-hailing firms and municipal transportation systems substantially influence urban traffic management. Considering the increasing use of these services, it is essential to assess and predict travel demand to optimize service efficiency. This study analyzes Uber data from New York City, employing automated machine learning algorithms to assess and forecast ride demand inside the city. In conventional transportation planning, forecasting travelers’ destination selections is a crucial stage. Traditional methodologies, such as physical models like gravity models, are constrained in their capacity to encompass the comprehensive array of elements affecting travel behavior, frequently addressing just two or three variables. This study employs machine learning methodologies for predicting passenger destination choices, illustrating that these algorithms can include a wider array of variables, hence providing enhanced forecast accuracy relative to conventional approaches. The utilization of ArcGIS Pro and Python modules for automation enhanced the efficiency of spatial analysis. A range of machine learning methodologies, such as decision trees, Light-GBM, XG-Boost, Cat-Boost, and hybrid models, were utilized to predict demand. The selected source demand forecasting model is an ensemble model, with a R 2 of 0.94 and a Mean Absolute Error of 91.63. The optimal model for predicting destination demand was identified as a composite model comprising eight distinct algorithms. The model’s R 2 is 0.95, while the Mean Absolute Error is 67.12. Moreover, the examination of environmental factors indicated that proximity to recreational activities, median age, and population density had the most substantial influence on predicting travel demand.
AbstractList Presently, online ride-hailing firms and municipal transportation systems substantially influence urban traffic management. Considering the increasing use of these services, it is essential to assess and predict travel demand to optimize service efficiency. This study analyzes Uber data from New York City, employing automated machine learning algorithms to assess and forecast ride demand inside the city. In conventional transportation planning, forecasting travelers’ destination selections is a crucial stage. Traditional methodologies, such as physical models like gravity models, are constrained in their capacity to encompass the comprehensive array of elements affecting travel behavior, frequently addressing just two or three variables. This study employs machine learning methodologies for predicting passenger destination choices, illustrating that these algorithms can include a wider array of variables, hence providing enhanced forecast accuracy relative to conventional approaches. The utilization of ArcGIS Pro and Python modules for automation enhanced the efficiency of spatial analysis. A range of machine learning methodologies, such as decision trees, Light-GBM, XG-Boost, Cat-Boost, and hybrid models, were utilized to predict demand. The selected source demand forecasting model is an ensemble model, with a R 2 of 0.94 and a Mean Absolute Error of 91.63. The optimal model for predicting destination demand was identified as a composite model comprising eight distinct algorithms. The model’s R 2 is 0.95, while the Mean Absolute Error is 67.12. Moreover, the examination of environmental factors indicated that proximity to recreational activities, median age, and population density had the most substantial influence on predicting travel demand.
Presently, online ride-hailing firms and municipal transportation systems substantially influence urban traffic management. Considering the increasing use of these services, it is essential to assess and predict travel demand to optimize service efficiency. This study analyzes Uber data from New York City, employing automated machine learning algorithms to assess and forecast ride demand inside the city. In conventional transportation planning, forecasting travelers’ destination selections is a crucial stage. Traditional methodologies, such as physical models like gravity models, are constrained in their capacity to encompass the comprehensive array of elements affecting travel behavior, frequently addressing just two or three variables. This study employs machine learning methodologies for predicting passenger destination choices, illustrating that these algorithms can include a wider array of variables, hence providing enhanced forecast accuracy relative to conventional approaches. The utilization of ArcGIS Pro and Python modules for automation enhanced the efficiency of spatial analysis. A range of machine learning methodologies, such as decision trees, Light-GBM, XG-Boost, Cat-Boost, and hybrid models, were utilized to predict demand. The selected source demand forecasting model is an ensemble model, with a R² of 0.94 and a Mean Absolute Error of 91.63. The optimal model for predicting destination demand was identified as a composite model comprising eight distinct algorithms. The model’s R² is 0.95, while the Mean Absolute Error is 67.12. Moreover, the examination of environmental factors indicated that proximity to recreational activities, median age, and population density had the most substantial influence on predicting travel demand.
Presently, online ride-hailing firms and municipal transportation systems substantially influence urban traffic management. Considering the increasing use of these services, it is essential to assess and predict travel demand to optimize service efficiency. This study analyzes Uber data from New York City, employing automated machine learning algorithms to assess and forecast ride demand inside the city. In conventional transportation planning, forecasting travelers’ destination selections is a crucial stage. Traditional methodologies, such as physical models like gravity models, are constrained in their capacity to encompass the comprehensive array of elements affecting travel behavior, frequently addressing just two or three variables. This study employs machine learning methodologies for predicting passenger destination choices, illustrating that these algorithms can include a wider array of variables, hence providing enhanced forecast accuracy relative to conventional approaches. The utilization of ArcGIS Pro and Python modules for automation enhanced the efficiency of spatial analysis. A range of machine learning methodologies, such as decision trees, Light-GBM, XG-Boost, Cat-Boost, and hybrid models, were utilized to predict demand. The selected source demand forecasting model is an ensemble model, with a R2 of 0.94 and a Mean Absolute Error of 91.63. The optimal model for predicting destination demand was identified as a composite model comprising eight distinct algorithms. The model’s R2 is 0.95, while the Mean Absolute Error is 67.12. Moreover, the examination of environmental factors indicated that proximity to recreational activities, median age, and population density had the most substantial influence on predicting travel demand.
ArticleNumber 594
Author Vafaeinejad, Alireza
Haery, Sana
Mahpour, Alireza
Author_xml – sequence: 1
  givenname: Sana
  surname: Haery
  fullname: Haery, Sana
  organization: Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University
– sequence: 2
  givenname: Alireza
  surname: Mahpour
  fullname: Mahpour, Alireza
  email: a_mahpour@sbu.ac.ir
  organization: Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University
– sequence: 3
  givenname: Alireza
  surname: Vafaeinejad
  fullname: Vafaeinejad, Alireza
  organization: Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University
BookMark eNp9kc1u1DAUhS1UJErpC7CyxIZNwD-JY7OrRrSMVLULYMHKcpzrGZfELrZDNTwAz41nBoHURb2xJX_n3KN7XqKTEAMg9JqSd5SQ_n2mTIiuIaxtKFWENLtn6JRKIRrBlDr595bkBTrP-Y7UwylXRJyi35cxgTW5-LDBSxpMwCWZnzDhEWYTRvzgyxZvIDYX6w_YYBvnwQdTfAw4Ony1_oz31Gzs1gfAE5gU9lYF7Db4HwtkvBQ_-V8H_wESHk0x2Ad8Aw_4W0zf8cqX3Sv03Jkpw_nf-wx9vfz4ZfWpub69Wq8urhvLO1YaNsjBcMLV2DvmVAtiUMCl6YySrRz7YXT1SzInjHSDdb0cKWFcCW76ToLlZ-jt0fc-xX24omefLUyTCRCXrDntuGx5L0VF3zxC7-KSQk1XKSraTigpK8WOlE0x5wRO3yc_m7TTlOh9O_rYjq7t6EM7eldF8pHI-nLYad29n56W8qM01zlhA-l_qidUfwBuoadi
CitedBy_id crossref_primary_10_1080_03081060_2025_2458606
Cites_doi 10.1145/1015330.1015432
10.1016/j.scs.2023.104889
10.1016/j.tranpol.2023.07.022
10.1016/j.cities.2022.103706
10.1080/10106049.2021.1871669
10.1016/j.cities.2023.104439
10.1016/j.tbs.2018.06.002
10.3390/buildings12091406
10.1016/j.jtrangeo.2020.102661
10.1016/j.trip.2023.100903
10.1016/j.jtrangeo.2021.103172
10.1080/10298436.2020.1858483
10.1016/j.tre.2022.102835
10.1016/j.ajsl.2023.02.003
10.1016/j.trd.2023.103839
10.1016/j.cities.2023.104520
10.1016/j.treng.2020.100013
10.1016/j.icte.2022.02.001
10.1016/j.engappai.2023.106411
10.1016/j.apgeog.2022.102699
10.1007/s42421-021-00041-4
10.1109/I2CT45611.2019.9033922
10.1016/j.conbuildmat.2022.130184
10.1007/978-1-4842-5967-2
10.1016/j.jtrangeo.2019.01.004
10.1016/j.jtrangeo.2022.103310
10.1016/j.jtrangeo.2023.103596
10.1007/978-0-387-84858-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s12665-024-11900-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-6299
EndPage 594
ExternalDocumentID 10_1007_s12665_024_11900_y
GeographicLocations United States--US
New York City New York
New York
GeographicLocations_xml – name: New York City New York
– name: United States--US
– name: New York
GroupedDBID -5A
-5G
-BR
-DZ
-EM
-Y2
-~C
.4S
.DC
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8FE
8FH
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
ML.
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF-
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z85
ZCG
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7ST
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-2b8ba3039d7f2f94e6b9e38a5a9848d7bdf9d782f6a8fbcf78d1023963a758ec3
IEDL.DBID U2A
ISSN 1866-6280
IngestDate Fri Sep 05 08:59:15 EDT 2025
Mon Oct 06 16:32:54 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Oct 01 01:36:24 EDT 2025
Fri Feb 21 02:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords GIS
New York City
Uber
Urban travel demand
Geo-AI
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-2b8ba3039d7f2f94e6b9e38a5a9848d7bdf9d782f6a8fbcf78d1023963a758ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3116456988
PQPubID 54063
PageCount 1
ParticipantIDs proquest_miscellaneous_3153843786
proquest_journals_3116456988
crossref_primary_10_1007_s12665_024_11900_y
crossref_citationtrail_10_1007_s12665_024_11900_y
springer_journals_10_1007_s12665_024_11900_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental earth sciences
PublicationTitleAbbrev Environ Earth Sci
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tayarani YousefabadiAMahpourAJavanshirHModeling share change of non-public vehicles and the rate of emissions due to the implementation of demand management policiesJ Transp Res2020173203216
TsolakiKVafeiadisTNizamisAIoannidisDTzovarasDUtilizing machine learning on freight transportation and logistics applications: a reviewICT Express20239328429510.1016/j.icte.2022.02.001
ChenLThakuriahPAmpountolasKShort-term prediction of demand for ride-hailing services: a deep learning approachJ Big Data Analytics Transp2021317519510.1007/s42421-021-00041-4
HashemiMShafighPAsadiIMahpourASamadianAThe effect of superplasticizer admixture on the engineering characteristics of roller-compacted concrete pavementInt J Pavement Eng20222372432244710.1080/10298436.2020.1858483
Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) July. Ensemble selection from libraries of models. In Proceedings of the twenty-first international conference on Machine learning (p. 18)
WuKXuCYanJWangFLinZZhouTError-distribution-free kernel extreme learning machine for traffic flow forecastingEng Appl Artif Intell202312310641110.1016/j.engappai.2023.106411
Mahpour A, Farzin I, Izadi AR, Ashouri S (2023c) Expanding the VBN theory on succeeding the transportation demand management policies. Transportation Research Interdisciplinary Perspectives, 21, p.100903
Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and Regression Trees
MahpourAForsiHVafaeenejadASaffarzadehAAn improvement on the topological map matching algorithm at junctions: a heuristic approachInt J Transp Eng202294749761
SahebiSMirbahaBMahpourANoruz AliaeiMHPredicting pedestrian accidents in rural roads using ordered logit modelQ J Transp Eng201563581592
Zhang X, Zhao X (2022) Machine learning approach for spatial modeling of ridesourcing demand. J Transp Geogr 100(C)
HastieTTibshiraniRFriedmanJHFriedmanJHThe elements of statistical learning: data mining, inference, and prediction2009New Yorkspringer1758
SilaparasettyNMachine learning concepts with python and the jupyter notebook environment: using tensorflow 2.02020Berkeley, CAA10.1007/978-1-4842-5967-2
MahpourAFarzinIBaghestaniAAshouriSJavadiZAsgariLModeling the impact of logistic performance, economic features, and demographic factors of countries on the seaborne tradeAsian J Shipping Logistics2023392606610.1016/j.ajsl.2023.02.003
SanayeiRVafaeinejadAKaramiJAghamohammadi ZanjirabadHA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial neural network (ANN) algorithms; case study: Tehran-Qazvin freewayGeocarto Int202237144141415710.1080/10106049.2021.1871669
JinTChengLWangSCaoJSchwanenTWitloxFDo built environment factors have different effects on ridesourcing usage before and after the COVID-19 pandemic?Cities202314110452010.1016/j.cities.2023.104520
Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) CatBoost: unbiased boosting with categorical features. Adv Neural Inf Process Syst 31
Shi M, Shen W (2022) Automatic modeling for concrete compressive strength prediction using auto-sklearn. Buildings, 12(9), p.1406
Zhao B, Deng M, Shi Y (2023) Inferring nonwork travel semantics and revealing the nonlinear relationships with the community-built environment. Sustain Cities Soc 99:104889.
Deb B, Khan SR, Hasan KT, Khan AH, Alam MA (2019) March. Travel time prediction using machine learning and weather impact on traffic conditions. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) (pp. 1–8). IEEE
KaramiZKashefRSmart transportation planning: data, models, and algorithmsTransp Eng2020210001310.1016/j.treng.2020.100013
YoungMFarberSThe who, why, and when of Uber and other ride-hailing trips: an examination of a large sample household travel surveyTransp Res Part A: Policy Pract2019119383392
Mahpour AR, Amiri A, Ebrahimi ES (2019) Do drivers have a good understanding of distraction by wrap advertisements? Investigating the impact of wrap advertisement on distraction-related driver’s accidents. Adv Transp Stud 48.
BorowskiESoriaJSchoferJStathopoulosADoes ridesourcing respond to unplanned rail disruptions? A natural experiment analysis of mobility resilience and disparityCities202314010443910.1016/j.cities.2023.104439
LoaPOngFHawkinsJHabibKNUnravelling the relationship between ride-sourcing services and conventional modes in the city of Toronto: a stated preference studyTransp Policy202314120922010.1016/j.tranpol.2023.07.022
ChenCFengTDingCYuBYaoBExamining the spatial-temporal relationship between urban built environment and taxi ridership: results of a semi-parametric GWPR modelJ Transp Geogr20219610317210.1016/j.jtrangeo.2021.103172
HasnineMSHawkinsJHabibKNEffects of built environment and weather on demands for transportation network company tripsTransp Res Part A: Policy Pract2021150171185
Mahpour A, Alipour S, Khodadadi M, Khodaii A, Absi J (2023a) Leaching and mechanical performance of rubberized warm mix asphalt modified through the chemical treatment of hazardous waste materials. Construction and Building Materials, 366, p.130184
GöddeJRuhrortLAllertVScheinerJUser characteristics and spatial correlates of ride-pooling demand–evidence from Berlin and MunichJ Transp Geogr2023109p10359610.1016/j.jtrangeo.2023.103596
YangHHuoJPanRXieKZhangWLuoXExploring built environment factors that influence the market share of ridesourcing serviceAppl Geogr202214210269910.1016/j.apgeog.2022.102699
Alemi F, Circella G, Handy S, Mokhtarian P (2018) What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California. Travel Behav Soc 13:88-104.
ZhengZZhangJZhangLLiMRongPQinYUnderstanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: a fine-scale empirical study from ChinaCities202212610370610.1016/j.cities.2022.103706
Mamdoohi A, Axhausen KW, Mahpour A, Rashidi TH, Saffarzadeh M (2016) Are there latent effects in shopping destination choice? survey methods and response behavior. In 16th Swiss Transport Research Conference (STRC 2016). Swiss Transport Research Conference (STRC)
Yu H, Peng ZR (2019) Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression. J Transp Geogr 5:147–63.
Tayarani YousefabadiAMahpourAFarzinIMohammadian AmiriAThe Assessment of the change in the share of Public Transportation by applying transportation demand management policiesAUT J Civil Eng202152199212
Bongiovanni C, Kaspi M, Cordeau JF, Geroliminis N (2022) A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations. Transp Res Part E Logist Transp Rev 165:102835
YanXLiuXZhaoXUsing machine learning for direct demand modeling of ridesourcing services in ChicagoJ Transp Geogr20208310266110.1016/j.jtrangeo.2020.102661
WuJJiaPFengTLiHKuangHSpatiotemporal analysis of built environment restrained traffic carbon emissions and policy implicationsTransp Res Part D: Transp Environ202312110383910.1016/j.trd.2023.103839
H Yang (11900_CR37) 2022; 142
11900_CR39
C Chen (11900_CR5) 2021; 96
A Mahpour (11900_CR22) 2022; 9
11900_CR19
R Sanayei (11900_CR28) 2022; 37
T Jin (11900_CR14) 2023; 141
Z Zheng (11900_CR42) 2022; 126
J Gödde (11900_CR9) 2023; 109
P Loa (11900_CR17) 2023; 141
A Mahpour (11900_CR20) 2023; 39
A Tayarani Yousefabadi (11900_CR31) 2020; 17
E Borowski (11900_CR2) 2023; 140
11900_CR4
11900_CR3
M Hashemi (11900_CR11) 2022; 23
N Silaparasetty (11900_CR30) 2020
K Tsolaki (11900_CR33) 2023; 9
J Wu (11900_CR34) 2023; 121
11900_CR1
M Young (11900_CR38) 2019; 119
11900_CR25
S Sahebi (11900_CR27) 2015; 6
L Chen (11900_CR6) 2021; 3
11900_CR29
X Yan (11900_CR36) 2020; 83
11900_CR40
11900_CR41
11900_CR8
11900_CR43
11900_CR21
11900_CR24
11900_CR23
T Hastie (11900_CR13) 2009
K Wu (11900_CR35) 2023; 123
MS Hasnine (11900_CR12) 2021; 150
A Tayarani Yousefabadi (11900_CR32) 2021; 5
Z Karami (11900_CR15) 2020; 2
References_xml – reference: Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) CatBoost: unbiased boosting with categorical features. Adv Neural Inf Process Syst 31
– reference: SahebiSMirbahaBMahpourANoruz AliaeiMHPredicting pedestrian accidents in rural roads using ordered logit modelQ J Transp Eng201563581592
– reference: HashemiMShafighPAsadiIMahpourASamadianAThe effect of superplasticizer admixture on the engineering characteristics of roller-compacted concrete pavementInt J Pavement Eng20222372432244710.1080/10298436.2020.1858483
– reference: HasnineMSHawkinsJHabibKNEffects of built environment and weather on demands for transportation network company tripsTransp Res Part A: Policy Pract2021150171185
– reference: YangHHuoJPanRXieKZhangWLuoXExploring built environment factors that influence the market share of ridesourcing serviceAppl Geogr202214210269910.1016/j.apgeog.2022.102699
– reference: Mahpour A, Farzin I, Izadi AR, Ashouri S (2023c) Expanding the VBN theory on succeeding the transportation demand management policies. Transportation Research Interdisciplinary Perspectives, 21, p.100903
– reference: Bongiovanni C, Kaspi M, Cordeau JF, Geroliminis N (2022) A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations. Transp Res Part E Logist Transp Rev 165:102835
– reference: ChenCFengTDingCYuBYaoBExamining the spatial-temporal relationship between urban built environment and taxi ridership: results of a semi-parametric GWPR modelJ Transp Geogr20219610317210.1016/j.jtrangeo.2021.103172
– reference: SanayeiRVafaeinejadAKaramiJAghamohammadi ZanjirabadHA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial neural network (ANN) algorithms; case study: Tehran-Qazvin freewayGeocarto Int202237144141415710.1080/10106049.2021.1871669
– reference: Zhao B, Deng M, Shi Y (2023) Inferring nonwork travel semantics and revealing the nonlinear relationships with the community-built environment. Sustain Cities Soc 99:104889.
– reference: MahpourAForsiHVafaeenejadASaffarzadehAAn improvement on the topological map matching algorithm at junctions: a heuristic approachInt J Transp Eng202294749761
– reference: Mamdoohi A, Axhausen KW, Mahpour A, Rashidi TH, Saffarzadeh M (2016) Are there latent effects in shopping destination choice? survey methods and response behavior. In 16th Swiss Transport Research Conference (STRC 2016). Swiss Transport Research Conference (STRC)
– reference: Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and Regression Trees
– reference: Deb B, Khan SR, Hasan KT, Khan AH, Alam MA (2019) March. Travel time prediction using machine learning and weather impact on traffic conditions. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) (pp. 1–8). IEEE
– reference: YanXLiuXZhaoXUsing machine learning for direct demand modeling of ridesourcing services in ChicagoJ Transp Geogr20208310266110.1016/j.jtrangeo.2020.102661
– reference: HastieTTibshiraniRFriedmanJHFriedmanJHThe elements of statistical learning: data mining, inference, and prediction2009New Yorkspringer1758
– reference: Mahpour A, Alipour S, Khodadadi M, Khodaii A, Absi J (2023a) Leaching and mechanical performance of rubberized warm mix asphalt modified through the chemical treatment of hazardous waste materials. Construction and Building Materials, 366, p.130184
– reference: Tayarani YousefabadiAMahpourAFarzinIMohammadian AmiriAThe Assessment of the change in the share of Public Transportation by applying transportation demand management policiesAUT J Civil Eng202152199212
– reference: TsolakiKVafeiadisTNizamisAIoannidisDTzovarasDUtilizing machine learning on freight transportation and logistics applications: a reviewICT Express20239328429510.1016/j.icte.2022.02.001
– reference: MahpourAFarzinIBaghestaniAAshouriSJavadiZAsgariLModeling the impact of logistic performance, economic features, and demographic factors of countries on the seaborne tradeAsian J Shipping Logistics2023392606610.1016/j.ajsl.2023.02.003
– reference: Tayarani YousefabadiAMahpourAJavanshirHModeling share change of non-public vehicles and the rate of emissions due to the implementation of demand management policiesJ Transp Res2020173203216
– reference: WuKXuCYanJWangFLinZZhouTError-distribution-free kernel extreme learning machine for traffic flow forecastingEng Appl Artif Intell202312310641110.1016/j.engappai.2023.106411
– reference: Mahpour AR, Amiri A, Ebrahimi ES (2019) Do drivers have a good understanding of distraction by wrap advertisements? Investigating the impact of wrap advertisement on distraction-related driver’s accidents. Adv Transp Stud 48.
– reference: ChenLThakuriahPAmpountolasKShort-term prediction of demand for ride-hailing services: a deep learning approachJ Big Data Analytics Transp2021317519510.1007/s42421-021-00041-4
– reference: BorowskiESoriaJSchoferJStathopoulosADoes ridesourcing respond to unplanned rail disruptions? A natural experiment analysis of mobility resilience and disparityCities202314010443910.1016/j.cities.2023.104439
– reference: KaramiZKashefRSmart transportation planning: data, models, and algorithmsTransp Eng2020210001310.1016/j.treng.2020.100013
– reference: SilaparasettyNMachine learning concepts with python and the jupyter notebook environment: using tensorflow 2.02020Berkeley, CAA10.1007/978-1-4842-5967-2
– reference: Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) July. Ensemble selection from libraries of models. In Proceedings of the twenty-first international conference on Machine learning (p. 18)
– reference: Yu H, Peng ZR (2019) Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression. J Transp Geogr 5:147–63.
– reference: ZhengZZhangJZhangLLiMRongPQinYUnderstanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: a fine-scale empirical study from ChinaCities202212610370610.1016/j.cities.2022.103706
– reference: LoaPOngFHawkinsJHabibKNUnravelling the relationship between ride-sourcing services and conventional modes in the city of Toronto: a stated preference studyTransp Policy202314120922010.1016/j.tranpol.2023.07.022
– reference: WuJJiaPFengTLiHKuangHSpatiotemporal analysis of built environment restrained traffic carbon emissions and policy implicationsTransp Res Part D: Transp Environ202312110383910.1016/j.trd.2023.103839
– reference: YoungMFarberSThe who, why, and when of Uber and other ride-hailing trips: an examination of a large sample household travel surveyTransp Res Part A: Policy Pract2019119383392
– reference: Zhang X, Zhao X (2022) Machine learning approach for spatial modeling of ridesourcing demand. J Transp Geogr 100(C)
– reference: JinTChengLWangSCaoJSchwanenTWitloxFDo built environment factors have different effects on ridesourcing usage before and after the COVID-19 pandemic?Cities202314110452010.1016/j.cities.2023.104520
– reference: Shi M, Shen W (2022) Automatic modeling for concrete compressive strength prediction using auto-sklearn. Buildings, 12(9), p.1406
– reference: GöddeJRuhrortLAllertVScheinerJUser characteristics and spatial correlates of ride-pooling demand–evidence from Berlin and MunichJ Transp Geogr2023109p10359610.1016/j.jtrangeo.2023.103596
– reference: Alemi F, Circella G, Handy S, Mokhtarian P (2018) What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California. Travel Behav Soc 13:88-104.
– ident: 11900_CR4
  doi: 10.1145/1015330.1015432
– ident: 11900_CR41
  doi: 10.1016/j.scs.2023.104889
– volume: 6
  start-page: 581
  issue: 3
  year: 2015
  ident: 11900_CR27
  publication-title: Q J Transp Eng
– volume: 141
  start-page: 209
  year: 2023
  ident: 11900_CR17
  publication-title: Transp Policy
  doi: 10.1016/j.tranpol.2023.07.022
– ident: 11900_CR25
– volume: 119
  start-page: 383
  year: 2019
  ident: 11900_CR38
  publication-title: Transp Res Part A: Policy Pract
– volume: 126
  start-page: 103706
  year: 2022
  ident: 11900_CR42
  publication-title: Cities
  doi: 10.1016/j.cities.2022.103706
– volume: 37
  start-page: 4141
  issue: 14
  year: 2022
  ident: 11900_CR28
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1871669
– volume: 140
  start-page: 104439
  year: 2023
  ident: 11900_CR2
  publication-title: Cities
  doi: 10.1016/j.cities.2023.104439
– ident: 11900_CR1
  doi: 10.1016/j.tbs.2018.06.002
– ident: 11900_CR29
  doi: 10.3390/buildings12091406
– volume: 83
  start-page: 102661
  year: 2020
  ident: 11900_CR36
  publication-title: J Transp Geogr
  doi: 10.1016/j.jtrangeo.2020.102661
– ident: 11900_CR21
  doi: 10.1016/j.trip.2023.100903
– ident: 11900_CR23
– volume: 17
  start-page: 203
  issue: 3
  year: 2020
  ident: 11900_CR31
  publication-title: J Transp Res
– volume: 96
  start-page: 103172
  year: 2021
  ident: 11900_CR5
  publication-title: J Transp Geogr
  doi: 10.1016/j.jtrangeo.2021.103172
– volume: 23
  start-page: 2432
  issue: 7
  year: 2022
  ident: 11900_CR11
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2020.1858483
– volume: 9
  start-page: 749
  issue: 4
  year: 2022
  ident: 11900_CR22
  publication-title: Int J Transp Eng
– ident: 11900_CR43
  doi: 10.1016/j.tre.2022.102835
– ident: 11900_CR3
– volume: 39
  start-page: 60
  issue: 2
  year: 2023
  ident: 11900_CR20
  publication-title: Asian J Shipping Logistics
  doi: 10.1016/j.ajsl.2023.02.003
– volume: 121
  start-page: 103839
  year: 2023
  ident: 11900_CR34
  publication-title: Transp Res Part D: Transp Environ
  doi: 10.1016/j.trd.2023.103839
– volume: 141
  start-page: 104520
  year: 2023
  ident: 11900_CR14
  publication-title: Cities
  doi: 10.1016/j.cities.2023.104520
– volume: 2
  start-page: 100013
  year: 2020
  ident: 11900_CR15
  publication-title: Transp Eng
  doi: 10.1016/j.treng.2020.100013
– volume: 9
  start-page: 284
  issue: 3
  year: 2023
  ident: 11900_CR33
  publication-title: ICT Express
  doi: 10.1016/j.icte.2022.02.001
– volume: 123
  start-page: 106411
  year: 2023
  ident: 11900_CR35
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106411
– volume: 142
  start-page: 102699
  year: 2022
  ident: 11900_CR37
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2022.102699
– volume: 3
  start-page: 175
  year: 2021
  ident: 11900_CR6
  publication-title: J Big Data Analytics Transp
  doi: 10.1007/s42421-021-00041-4
– ident: 11900_CR8
  doi: 10.1109/I2CT45611.2019.9033922
– ident: 11900_CR19
  doi: 10.1016/j.conbuildmat.2022.130184
– volume-title: Machine learning concepts with python and the jupyter notebook environment: using tensorflow 2.0
  year: 2020
  ident: 11900_CR30
  doi: 10.1007/978-1-4842-5967-2
– volume: 5
  start-page: 199
  issue: 2
  year: 2021
  ident: 11900_CR32
  publication-title: AUT J Civil Eng
– volume: 150
  start-page: 171
  year: 2021
  ident: 11900_CR12
  publication-title: Transp Res Part A: Policy Pract
– ident: 11900_CR39
  doi: 10.1016/j.jtrangeo.2019.01.004
– ident: 11900_CR24
– ident: 11900_CR40
  doi: 10.1016/j.jtrangeo.2022.103310
– volume: 109
  start-page: p103596
  year: 2023
  ident: 11900_CR9
  publication-title: J Transp Geogr
  doi: 10.1016/j.jtrangeo.2023.103596
– start-page: 1
  volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 11900_CR13
  doi: 10.1007/978-0-387-84858-7
SSID ssj0000313906
Score 2.434847
Snippet Presently, online ride-hailing firms and municipal transportation systems substantially influence urban traffic management. Considering the increasing use of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 594
SubjectTerms Algorithms
Arrays
Automation
Biogeosciences
Decision trees
Earth and Environmental Science
Earth Sciences
Environmental factors
Environmental Science and Engineering
Forecast accuracy
Forecasting
Forecasting models
Geochemistry
Geographical information systems
Geology
gravity
Hydrology/Water Resources
Learning algorithms
Machine learning
New York
Optimization
Original Article
Population density
Recreation demand
Spatial analysis
Terrestrial Pollution
traffic
Traffic management
Transportation planning
Transportation systems
Travel
Travel demand
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bahRBEC3iBsEX8YobEynBN22cnWu3IJKE3AQXUQN5G_oaApuZuJeH9QP8bqt6Z3ZJwDxPTzf0qe6q7q46B-CdSVywyifCk3cVucqsUJYAoXDfepcYlWquHf42Lk_P868XxcUWjPtaGE6r7PfEuFG71vId-cdsRIF9USopv9z8Fqwaxa-rvYSG7qQV3OdIMfYAtlNmxhrA9sHR-PuP9a0LMxWqKLjJRG-iTGXSVdKs6unIXXHBci5G5CgTsbztrTYh6J1X0-iMjp_A4y6KxP0V7E9hyzfP4OFJVOldPoe_LLhp9YxTmnExNbrBOcsMTdD5a9045NtXvPSt2D_7hBppBuiAHDHCNuDJ2U_kVtcx0dJjpyxxiWvC1xmSvU6u_sT-jZ8iJ5riVYO0ZyKzQOEhRfcv4Pz46NfhqegEF4SlOGwuUiONJp-mXBXSoHJfGuUzqQutZC5dZVygTzINpZbB2FBJx8wPtIY1HTu8zV7CoGkb_wrQO5OWWQjKVqPc2kybglxhYXKlM-V9NYRRP7G17djIWRRjUm94lBmMmsCoIxj1cgjv1__crLg47m292-NVd-tyVm-saAhv159pRfEziW58u-A25ATyrJLlED70OG-6-P-IO_eP-BoepdG0OBNwFwbz6cLvUUQzN286M_0HBDry8A
  priority: 102
  providerName: ProQuest
Title Forecasting urban travel demand with geo-AI: a combination of GIS and machine learning techniques utilizing uber data in New York City
URI https://link.springer.com/article/10.1007/s12665-024-11900-y
https://www.proquest.com/docview/3116456988
https://www.proquest.com/docview/3153843786
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AFBBN
  dateStart: 20091101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: U2A
  dateStart: 20091101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA_aIvhS1CperWUE3zSwt5-Jb2e5XluxSOtBfVryMSmF6165j4fzD_DvdibdvaOiQp_2IbNZNr9JZpLM_EaI9zbxwWlMJJJ1lbnOnNSOACF336FPrE4N5w5_PSuPx_npZXHZJoXNu2j37koyrtSbZDeyJZxNnMs-WbFErh6L7YLpvEiLx-lgfbLCbIQ6FtVkMjdZpipps2X-3s19i7RxM_-4GY0G5-iZ2Gk9RRjcQftcPMLmhXgyipV4V7viFxfVdGbOYcuwnFnTwIJLCU3A441pPPAJK1zhVA5OPoEB-knaBEccYBpgdHIBLHUTgykR2uoRV7AmdZ0D6eTk-mfs3-IMOJgUrhugdRGY6QkOyYN_KcZHw--Hx7ItqiAd-VoLmVplDdkt7auQBp1jaTVmyhRGq1z5yvpATSoNpVHBulApz-wONE8NbS3QZa_EVjNt8LUA9DYtsxC0q_q5c5mxBZm7wubaZBqx6ol-N7C1axnHufDFpN5wJTMYNYFRRzDqVU98WL9ze8e38V_p_Q6vup178zrr0xawKLVSPfFu3Uyzhq9CTIPTJcvQQp9nlSp74mOH86aLf39x72Hib8TTNKoaR__ti63FbIlvyYtZ2AOxPRj9-DKk5-fh2bfzg6jEvwF-Nuzy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKKwQviKtYKDBI8AQW2cRJbKSqKqXtLm1XCFqpb6lvqSptk7IXoeUD-Kx-GzPeZFcg0bc-x7Elz3gu9sw5jL0xkSut8hH36F25UInlyqJAMNy33kVGxZp6hw8HWe9YfDlJT1bYVdsLQ2WVrU0MhtrVlu7IPyRdDOzTTEm5efmDE2sUva62FBq6oVZwGwFirGns2Pezn5jCjTf6n1Heb-N4d-dou8cblgFuMfiY8NhIo9GQK5eXcamEz4zyidSpVlJIlxtX4icZl5mWpbFlLh3BHaDiaoy1vU1w3ltsTSRCYfK39mln8PXb4paHkBFVIPgkYDmexTJqOnfm_XvoHqlBWvAuOuaIz_72jsuQ959X2uD8du-ze03UCltzNXvAVnz1kN3eC6zAs0fsNxF8Wj2mEmqYjoyuYEK0RkNw_kJXDui2F858zbf6H0ED7jgm5EEnoC5hr_8daNRFKOz00DBZnMECYHYMeD6G57_C_MaPgApb4bwCtNFAqFOwjdnEY3Z8I1v_hK1WdeWfMvDOxFlSlsrmXWFtok2Krjc1QulEeZ93WLfd2MI26OdEwjEslrjNJIwChVEEYRSzDnu3-Odyjv1x7ej1Vl5FYwfGxVJrO-z14jOeYHqW0ZWvpzQGnY5Icpl12PtWzssp_r_is-tXfMXu9I4OD4qD_mD_ObsbBzWjKsR1tjoZTf0LjKYm5mWjssBOb_qU_AGgMzDR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61RfFFvOJq1SPokwZn5x6hlNp227W6FLXQtzHXUtjO1L0g6w_oj-uv6jnZzC4K9q3Pk0kg55rknO9j7I2KjNPCRtxidOWpSDQXGgWC6b62JlIiltQ7_HWQ7x-ln4-z4xV22fbCUFll6xO9ozaNpjvyD0kXE_ssF3hgc6Es4nCnt3n-ixODFL20tnQaMtAsmA0PNxaaPA7s7Dce58Yb_R2U_ds47u3-2N7ngXGAa0xEJjxWpZLo1IUpXOxEanMlbFLKTIoyLU2hjMNPZexyWTqlXVEagj5AJZaYd1ud4Ly32Bo9fqGTWPu0Ozj8trjxIZRE4ck-CWSO53EZhS6eeS8fhkpqlk55F4N0xGd_R8pl-vvPi60PhL377F7IYGFrrnIP2IqtH7Lbe54hePaIXRDZp5ZjKqeG6UjJGiZEcTQEY89kbYBufuHENnyr_xEk4O7j4dzrBzQO9vrfgUad-SJPC4HV4gQWYLNjQFsZnv7x8ys7AipyhdMa0F8DIVDBNp4sHrOjG9n6J2y1bmr7lIE1Ks4T54QuuqnWiVQZhuFMpUImwtqiw7rtxlY6IKETIcewWmI4kzAqFEblhVHNOuzd4p_zOQ7ItaPXW3lVwSeMq6UGd9jrxWe0ZnqikbVtpjQGA1CaFGXeYe9bOS-n-P-Kz65f8RW7g9ZSfekPDp6zu7HXMipIXGerk9HUvsDEaqJeBo0F9vOmjeQKu1s1AA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+urban+travel+demand+with+geo-AI%3A+a+combination+of+GIS+and+machine+learning+techniques+utilizing+uber+data+in+New+York+City&rft.jtitle=Environmental+earth+sciences&rft.au=Haery%2C+Sana&rft.au=Mahpour%2C+Alireza&rft.au=Vafaeinejad%2C+Alireza&rft.date=2024-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=83&rft.issue=20&rft_id=info:doi/10.1007%2Fs12665-024-11900-y&rft.externalDocID=10_1007_s12665_024_11900_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon