Noise properties of the EM algorithm. II. Monte Carlo simulations
In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependen...
Saved in:
| Published in | Physics in medicine & biology Vol. 39; no. 5; pp. 847 - 871 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.05.1994
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 |
| DOI | 10.1088/0031-9155/39/5/005 |
Cover
| Abstract | In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms. |
|---|---|
| AbstractList | In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms. In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms. |
| Author | Wilson, D W Tsui, B M W Barrett, H H |
| Author_xml | – sequence: 1 fullname: Wilson, D W – sequence: 2 fullname: Tsui, B M W – sequence: 3 fullname: Barrett, H H |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15552089$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE1PAjEQhhuDkQ_9Ax5MTyYeFvpB2fZICCoJ6EXPTXeZlZrd7dqWg__eRZCDJMbTZCbPM5l5-6hTuxoQuqZkSImUI0I4TRQVYsTVSLStOEM9yic0mYgJ6aDeEeiifgjvhFAq2fgCdduRYESqHpo-ORsAN9414KOFgF2B4wbwfIVN-ea8jZtqiBeLIV65OgKeGV86HGy1LU20rg6X6LwwZYCrQx2g1_v5y-wxWT4_LGbTZZJzwWJC11TI1BhOBcgxECPzgmS84IViaSp4yphRHKRa5yojirBMMQqZpCyXmWTAB-h2v7e99WMLIerKhhzK0tTgtkGnKW01wVvw5gBuswrWuvG2Mv5T_zzdAnIP5N6F4KHQuY3fz0RvbKkp0bt89S4-vYtPc6VF24pWZb_U4_a_pGQvWdf8j7875U853awL_gXbypS9 |
| CitedBy_id | crossref_primary_10_1117_1_JMI_7_1_012702 crossref_primary_10_1118_1_598559 crossref_primary_10_1016_j_media_2018_07_011 crossref_primary_10_1109_TNS_2014_2360176 crossref_primary_10_1109_TNS_2005_858198 crossref_primary_10_1109_TMI_2017_2770147 crossref_primary_10_1109_79_560323 crossref_primary_10_1109_TMI_2024_3357659 crossref_primary_10_1155_2016_3067123 crossref_primary_10_1088_0031_9155_60_18_7007 crossref_primary_10_1109_TMI_2007_902802 crossref_primary_10_1109_23_940165 crossref_primary_10_1088_0031_9155_58_12_4175 crossref_primary_10_1109_JPROC_2003_817882 crossref_primary_10_1016_j_mednuc_2007_02_004 crossref_primary_10_1088_0031_9155_55_24_005 crossref_primary_10_2967_jnumed_118_211094 crossref_primary_10_1016_j_nima_2016_11_046 crossref_primary_10_1088_1361_6560_ab7971 crossref_primary_10_1088_0031_9155_47_10_311 crossref_primary_10_1109_TMI_2004_829333 crossref_primary_10_1016_S1071_3581_98_90182_9 crossref_primary_10_1088_0031_9155_42_11_015 crossref_primary_10_1364_JOSAA_12_000834 crossref_primary_10_1088_0031_9155_42_11_014 crossref_primary_10_1007_s11886_013_0387_x crossref_primary_10_1109_23_632738 crossref_primary_10_1088_0031_9155_55_11_012 crossref_primary_10_1371_journal_pone_0229560 crossref_primary_10_1088_0031_9155_45_1_307 crossref_primary_10_1109_TMI_2013_2292805 crossref_primary_10_1109_TMI_2021_3067169 crossref_primary_10_1088_0031_9155_56_16_013 crossref_primary_10_2967_jnumed_120_261651 crossref_primary_10_1088_1361_6560_ab4495 crossref_primary_10_1109_42_848178 crossref_primary_10_1109_TMI_2005_859716 crossref_primary_10_1088_0031_9155_56_4_013 crossref_primary_10_1109_TMI_2019_2921969 crossref_primary_10_1016_j_remn_2017_10_007 crossref_primary_10_1016_S0969_8051_00_00105_0 crossref_primary_10_1118_1_2239165 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_6009_jjrt_2024_2353 crossref_primary_10_1007_s10851_013_0477_9 crossref_primary_10_1109_TNS_2012_2226911 crossref_primary_10_2967_jnumed_119_238113 crossref_primary_10_1088_1742_6596_317_1_012002 crossref_primary_10_1088_0031_9155_55_17_005 crossref_primary_10_1016_j_compmedimag_2007_05_002 crossref_primary_10_1109_TMI_2009_2012705 crossref_primary_10_1088_0031_9155_48_21_004 crossref_primary_10_1088_1361_6560_aa6911 crossref_primary_10_1364_JOSAA_15_001520 crossref_primary_10_1002_mp_12883 crossref_primary_10_1088_0031_9155_53_16_012 crossref_primary_10_1109_TNS_2007_901198 crossref_primary_10_1088_0031_9155_58_6_1759 crossref_primary_10_1109_83_535846 crossref_primary_10_1088_0031_9155_48_13_308 crossref_primary_10_1088_0031_9155_41_10_025 crossref_primary_10_1007_s00259_012_2326_2 crossref_primary_10_1124_jpet_110_172916 crossref_primary_10_1109_TNS_2004_835784 crossref_primary_10_1007_BF02988345 crossref_primary_10_1007_s11517_015_1284_9 crossref_primary_10_1016_j_jenvrad_2017_07_007 crossref_primary_10_1109_23_256736 crossref_primary_10_1016_j_remnie_2017_10_025 crossref_primary_10_1109_42_768839 crossref_primary_10_1109_TNS_2012_2227340 crossref_primary_10_1109_TNS_2008_2006267 crossref_primary_10_1109_TNS_2012_2190096 crossref_primary_10_1016_S1071_3581_96_90024_0 crossref_primary_10_1088_1361_6560_aa9ea6 crossref_primary_10_1109_TMI_2006_887368 crossref_primary_10_1016_j_neuroimage_2021_117821 crossref_primary_10_1088_0031_9155_47_24_304 crossref_primary_10_1186_1471_2342_5_3 crossref_primary_10_1088_0031_9155_58_20_7209 crossref_primary_10_1016_j_mri_2013_06_011 crossref_primary_10_1109_23_708339 crossref_primary_10_1186_s40658_023_00595_y crossref_primary_10_1364_JOSAA_449218 crossref_primary_10_1088_1361_6560_aa6b44 crossref_primary_10_1016_j_ymeth_2009_03_015 crossref_primary_10_1088_0031_9155_59_14_3925 crossref_primary_10_1109_42_870259 crossref_primary_10_1109_TNS_2002_1039553 crossref_primary_10_1088_0031_9155_58_5_1283 crossref_primary_10_1088_0031_9155_46_5_315 crossref_primary_10_1109_TRPMS_2019_2900244 crossref_primary_10_1186_s40658_022_00455_1 crossref_primary_10_1109_23_856558 crossref_primary_10_1088_0031_9155_43_3_016 crossref_primary_10_1109_TMI_2010_2048119 crossref_primary_10_1002_mp_13783 crossref_primary_10_1088_0031_9155_54_10_008 crossref_primary_10_1016_j_neuroimage_2007_07_038 crossref_primary_10_1088_0031_9155_60_2_R1 crossref_primary_10_1088_1361_6560_aa52aa crossref_primary_10_1109_23_790855 crossref_primary_10_1088_1748_0221_12_08_P08009 crossref_primary_10_1109_TMI_2004_836876 crossref_primary_10_1007_s00259_008_0842_x crossref_primary_10_1088_0031_9155_39_5_004 crossref_primary_10_1088_1402_4896_ad081e crossref_primary_10_1088_0031_9155_51_13_R09 crossref_primary_10_1088_0031_9155_55_5_013 crossref_primary_10_1088_0031_9155_39_3_015 crossref_primary_10_1016_j_cmpb_2005_09_004 crossref_primary_10_1109_TNS_2002_998681 crossref_primary_10_1109_TNS_2002_998680 crossref_primary_10_1109_TMI_2005_846850 crossref_primary_10_1016_j_compmedimag_2011_01_002 crossref_primary_10_1051_0004_6361_20042513 crossref_primary_10_3389_fnume_2022_1028928 crossref_primary_10_1016_j_media_2016_06_019 crossref_primary_10_1109_TRPMS_2024_3441526 crossref_primary_10_1063_5_0015022 crossref_primary_10_1109_83_491322 crossref_primary_10_1007_s10043_006_0129_z crossref_primary_10_1088_0031_9155_55_20_016 crossref_primary_10_1088_2057_1976_ab6996 |
| Cites_doi | 10.1088/0031-9155/39/5/004 10.1109/42.232250 10.1088/0031-9155/30/6/001 10.1364/JOSAA.4.000945 10.1109/23.106686 10.1109/42.108591 10.1364/JOSAA.3.000717 10.1109/23.256736 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/0031-9155/39/5/005 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| EndPage | 871 |
| ExternalDocumentID | 15552089 10_1088_0031_9155_39_5_005 |
| Genre | Validation Studies Research Support, U.S. Gov't, P.H.S Comparative Study Evaluation Studies Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA52643 – fundername: NCI NIH HHS grantid: R01 CA39463 – fundername: NCI NIH HHS grantid: P01 CA23417 |
| GroupedDBID | - 02O 08R 123 1JI 1PV 1WK 29O 3O- 53G 5RE 5VS 7.M 8RP 9BW AAGCD AAGCF AAJIO AALHV AAPBV ABFLS ABHWH ABPTK ABUFD ACCAO ACGFS AEFHF AENEX AFYNE AHGVY AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 DZ EBS EDWGO EJD EQZZN F5P FEDTE GJ HAK HVGLF IHE IOP IZVLO KC5 KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 R4D RIN RKQ RNS RO9 ROL RPA RW3 S3P T37 TN5 UCJ UNR X X7L XPP ZA5 ZMT ZXP --- -DZ -~X .GJ AATNI AAYXX ABJNI ABLJU ABVAM ACAFW ACARI ACHIP ADEQX AEINN AERVB AETNG AGQPQ AKPSB AOAED ARNYC CITATION CRLBU IJHAN PJBAE .HR 4.4 5B3 5ZH 5ZI 7.Q AAJKP ABCXL ABQJV ABTAH ACWPO AFFNX CBCFC CEBXE CGR CUY CVF ECM EIF EMSAF EPQRW H~9 J5H JCGBZ NPM PKN SY9 W28 ZGI ZY4 7X8 |
| ID | FETCH-LOGICAL-c352t-1d1587aa315e84e0a8cf0b3f3f927753722a93e89dc9b0902b921eb812c8b82e3 |
| IEDL.DBID | IOP |
| ISSN | 0031-9155 |
| IngestDate | Fri Sep 05 11:08:47 EDT 2025 Wed Feb 19 02:33:06 EST 2025 Wed Oct 01 01:55:48 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Mon May 13 15:48:21 EDT 2019 Tue Nov 10 14:21:55 EST 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-1d1587aa315e84e0a8cf0b3f3f927753722a93e89dc9b0902b921eb812c8b82e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| PMID | 15552089 |
| PQID | 77109053 |
| PQPubID | 23479 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1088_0031_9155_39_5_005 proquest_miscellaneous_77109053 pubmed_primary_15552089 crossref_primary_10_1088_0031_9155_39_5_005 iop_primary_10_1088_0031_9155_39_5_005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1994-May |
| PublicationDateYYYYMMDD | 1994-05-01 |
| PublicationDate_xml | – month: 05 year: 1994 text: 1994-May |
| PublicationDecade | 1990 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAlternate | Phys Med Biol |
| PublicationYear | 1994 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Huesman R H (7) 1977 13 Smith W E (11) 1986; 3 Fiete R D (3) 1987; 4 Wagner R F (12) 1985; 30 Wilson D W (14) 1991 Papoulis A (10) 1965 Frey E C (4) 1991 Barrett H H (2) 1994; 39 6 8 9 Frieden B R (5) 1983 Barrett H H (1) 1981 |
| References_xml | – start-page: 1777 year: 1991 ident: 4 – volume: 39 start-page: 833 issn: 0031-9155 year: 1994 ident: 2 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/39/5/004 – ident: 9 doi: 10.1109/42.232250 – volume: 30 start-page: 489 issn: 0031-9155 year: 1985 ident: 12 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/30/6/001 – volume: 4 start-page: 945 issn: 0740-3232 year: 1987 ident: 3 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.4.000945 – year: 1981 ident: 1 – year: 1983 ident: 5 – start-page: 1736 year: 1991 ident: 14 – year: 1977 ident: 7 – ident: 6 doi: 10.1109/23.106686 – ident: 8 doi: 10.1109/42.108591 – year: 1965 ident: 10 – volume: 3 start-page: 717 issn: 0740-3232 year: 1986 ident: 11 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.3.000717 – ident: 13 doi: 10.1109/23.256736 |
| SSID | ssj0011824 |
| Score | 1.8469039 |
| Snippet | In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm.... |
| SourceID | proquest pubmed crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 847 |
| SubjectTerms | Algorithms Brain - diagnostic imaging Computer Simulation Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Likelihood Functions Models, Biological Models, Statistical Monte Carlo Method Phantoms, Imaging Positron-Emission Tomography - instrumentation Positron-Emission Tomography - methods Reproducibility of Results Sensitivity and Specificity Stochastic Processes |
| Title | Noise properties of the EM algorithm. II. Monte Carlo simulations |
| URI | http://iopscience.iop.org/0031-9155/39/5/005 https://www.ncbi.nlm.nih.gov/pubmed/15552089 https://www.proquest.com/docview/77109053 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGEogLj_EazwghLqhdH8uaHBEa2pAKHEDiViVpChNjndbuAL8ep-0GaIC4tZXrqJETf6ntzwCnjubSc5S0hJbSaqmWMEsqtmiM8FoJQ-FmCoXDm3b3oXX9SB9rMG0l109H1c5v42URyTdmZxkW86bPm7RZEpYax2-q9W7vZiEDBMol5XIlXlXI4Cr6QcU3L7SAQ_0OMAtHc7UG4bRcp8wvebEnubTV-zx747--YR1WK8RJLkoT2YCaHtZhqexB-VaH5bCKruPDIh1UZZtwcZP2M01G5k_92FCukjQhCBVJJyRi8JSO-_nzq016PZuEht6KXIrxICVZ_7XqBpZtwcNV5_6ya1XNFiyFGCy33NilLBDCd6lmLe0IphJH-omfcC_AM03geYL7mvFYcWmSOSX3XC0RHygmmaf9bVgcpkO9C8SNJQ_QO4oED1uCcuG1dduJaZK4qDUWDXCnkx-pioncNMQYREVEnLGCsDQy8xX5PKJ4SxtwPntnVPJw_Cl9glM_E5wXiEZx0oCzr0J_aTue2kaEi89EVMRQp5MsCkwmK25jDdgpTeZTG6XUcxjf--8g-7BS0jSbXMoDWMzHE32IeCeXR4WdfwCkxe9B |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8aTENcYLANOtiwpmmXKWk-6sY-IqCiY-04DGk3y3acUVGaqkkP8NfvOXbLgA1N2i2Onp8df_6c9_x7AB8jw1USaRVIo1TQ0R1pp1Qe0BzhtZaWws1eFB4Mu6cXnS8_6MKbsLkLU0790h_ioyMKdk3oHeKYDT8WB5bWvJ3yNsUkbU_zYgWe05RyG8Sg_-18aUhA-OyImH0ef2_mz3ru7U0rWP7fYWez_fQ2QS0q7rxOrsJ5rUJ9-4DT8b--7CVseHBKDl2GLXhmJtvwwoWrvNmGtYE3xOPLxnNUV6_gcFiOKkOm9qf-zLKzkrIgiCrJyYDI8c9yNqovr0PS74dkYJmwyJGcjUtSja594LDqNVz0Tr4fnQY-LkOgEa7VQZzHlGVSpjE1rGMiyXQRqbRIC55kePzJkkTy1DCea66s36fiSWwUQgnNFEtM-gZWJ-XE7AKJc8Uz3EhlgecySblMuqYb5bQoYtSayxbEix4R2pOW29gZY9EYzxlruE2FbTORckExSVvweZln6ig7npT-gN2xFHwsILALWvDpd6GntB0sBozAeWqNL3JiynklMuv0iiteC3bcOLrTRilNIsbf_mshB7B2ftwTX_vDsz1Yd-TO1gNzH1br2dy8Q5RUq_fNPPgFDTf_Lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+properties+of+the+EM+algorithm.+II.+Monte+Carlo+simulations&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Wilson%2C+D+W&rft.au=Tsui%2C+B+M+W&rft.au=Barrett%2C+H+H&rft.date=1994-05-01&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=39&rft.issue=5&rft.spage=847&rft.epage=871&rft_id=info:doi/10.1088%2F0031-9155%2F39%2F5%2F005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0031_9155_39_5_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |