Noise properties of the EM algorithm. II. Monte Carlo simulations

In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependen...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 39; no. 5; pp. 847 - 871
Main Authors Wilson, D W, Tsui, B M W, Barrett, H H
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.05.1994
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
DOI10.1088/0031-9155/39/5/005

Cover

Abstract In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.
AbstractList In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.
In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.
Author Wilson, D W
Tsui, B M W
Barrett, H H
Author_xml – sequence: 1
  fullname: Wilson, D W
– sequence: 2
  fullname: Tsui, B M W
– sequence: 3
  fullname: Barrett, H H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15552089$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1PAjEQhhuDkQ_9Ax5MTyYeFvpB2fZICCoJ6EXPTXeZlZrd7dqWg__eRZCDJMbTZCbPM5l5-6hTuxoQuqZkSImUI0I4TRQVYsTVSLStOEM9yic0mYgJ6aDeEeiifgjvhFAq2fgCdduRYESqHpo-ORsAN9414KOFgF2B4wbwfIVN-ea8jZtqiBeLIV65OgKeGV86HGy1LU20rg6X6LwwZYCrQx2g1_v5y-wxWT4_LGbTZZJzwWJC11TI1BhOBcgxECPzgmS84IViaSp4yphRHKRa5yojirBMMQqZpCyXmWTAB-h2v7e99WMLIerKhhzK0tTgtkGnKW01wVvw5gBuswrWuvG2Mv5T_zzdAnIP5N6F4KHQuY3fz0RvbKkp0bt89S4-vYtPc6VF24pWZb_U4_a_pGQvWdf8j7875U853awL_gXbypS9
CitedBy_id crossref_primary_10_1117_1_JMI_7_1_012702
crossref_primary_10_1118_1_598559
crossref_primary_10_1016_j_media_2018_07_011
crossref_primary_10_1109_TNS_2014_2360176
crossref_primary_10_1109_TNS_2005_858198
crossref_primary_10_1109_TMI_2017_2770147
crossref_primary_10_1109_79_560323
crossref_primary_10_1109_TMI_2024_3357659
crossref_primary_10_1155_2016_3067123
crossref_primary_10_1088_0031_9155_60_18_7007
crossref_primary_10_1109_TMI_2007_902802
crossref_primary_10_1109_23_940165
crossref_primary_10_1088_0031_9155_58_12_4175
crossref_primary_10_1109_JPROC_2003_817882
crossref_primary_10_1016_j_mednuc_2007_02_004
crossref_primary_10_1088_0031_9155_55_24_005
crossref_primary_10_2967_jnumed_118_211094
crossref_primary_10_1016_j_nima_2016_11_046
crossref_primary_10_1088_1361_6560_ab7971
crossref_primary_10_1088_0031_9155_47_10_311
crossref_primary_10_1109_TMI_2004_829333
crossref_primary_10_1016_S1071_3581_98_90182_9
crossref_primary_10_1088_0031_9155_42_11_015
crossref_primary_10_1364_JOSAA_12_000834
crossref_primary_10_1088_0031_9155_42_11_014
crossref_primary_10_1007_s11886_013_0387_x
crossref_primary_10_1109_23_632738
crossref_primary_10_1088_0031_9155_55_11_012
crossref_primary_10_1371_journal_pone_0229560
crossref_primary_10_1088_0031_9155_45_1_307
crossref_primary_10_1109_TMI_2013_2292805
crossref_primary_10_1109_TMI_2021_3067169
crossref_primary_10_1088_0031_9155_56_16_013
crossref_primary_10_2967_jnumed_120_261651
crossref_primary_10_1088_1361_6560_ab4495
crossref_primary_10_1109_42_848178
crossref_primary_10_1109_TMI_2005_859716
crossref_primary_10_1088_0031_9155_56_4_013
crossref_primary_10_1109_TMI_2019_2921969
crossref_primary_10_1016_j_remn_2017_10_007
crossref_primary_10_1016_S0969_8051_00_00105_0
crossref_primary_10_1118_1_2239165
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_6009_jjrt_2024_2353
crossref_primary_10_1007_s10851_013_0477_9
crossref_primary_10_1109_TNS_2012_2226911
crossref_primary_10_2967_jnumed_119_238113
crossref_primary_10_1088_1742_6596_317_1_012002
crossref_primary_10_1088_0031_9155_55_17_005
crossref_primary_10_1016_j_compmedimag_2007_05_002
crossref_primary_10_1109_TMI_2009_2012705
crossref_primary_10_1088_0031_9155_48_21_004
crossref_primary_10_1088_1361_6560_aa6911
crossref_primary_10_1364_JOSAA_15_001520
crossref_primary_10_1002_mp_12883
crossref_primary_10_1088_0031_9155_53_16_012
crossref_primary_10_1109_TNS_2007_901198
crossref_primary_10_1088_0031_9155_58_6_1759
crossref_primary_10_1109_83_535846
crossref_primary_10_1088_0031_9155_48_13_308
crossref_primary_10_1088_0031_9155_41_10_025
crossref_primary_10_1007_s00259_012_2326_2
crossref_primary_10_1124_jpet_110_172916
crossref_primary_10_1109_TNS_2004_835784
crossref_primary_10_1007_BF02988345
crossref_primary_10_1007_s11517_015_1284_9
crossref_primary_10_1016_j_jenvrad_2017_07_007
crossref_primary_10_1109_23_256736
crossref_primary_10_1016_j_remnie_2017_10_025
crossref_primary_10_1109_42_768839
crossref_primary_10_1109_TNS_2012_2227340
crossref_primary_10_1109_TNS_2008_2006267
crossref_primary_10_1109_TNS_2012_2190096
crossref_primary_10_1016_S1071_3581_96_90024_0
crossref_primary_10_1088_1361_6560_aa9ea6
crossref_primary_10_1109_TMI_2006_887368
crossref_primary_10_1016_j_neuroimage_2021_117821
crossref_primary_10_1088_0031_9155_47_24_304
crossref_primary_10_1186_1471_2342_5_3
crossref_primary_10_1088_0031_9155_58_20_7209
crossref_primary_10_1016_j_mri_2013_06_011
crossref_primary_10_1109_23_708339
crossref_primary_10_1186_s40658_023_00595_y
crossref_primary_10_1364_JOSAA_449218
crossref_primary_10_1088_1361_6560_aa6b44
crossref_primary_10_1016_j_ymeth_2009_03_015
crossref_primary_10_1088_0031_9155_59_14_3925
crossref_primary_10_1109_42_870259
crossref_primary_10_1109_TNS_2002_1039553
crossref_primary_10_1088_0031_9155_58_5_1283
crossref_primary_10_1088_0031_9155_46_5_315
crossref_primary_10_1109_TRPMS_2019_2900244
crossref_primary_10_1186_s40658_022_00455_1
crossref_primary_10_1109_23_856558
crossref_primary_10_1088_0031_9155_43_3_016
crossref_primary_10_1109_TMI_2010_2048119
crossref_primary_10_1002_mp_13783
crossref_primary_10_1088_0031_9155_54_10_008
crossref_primary_10_1016_j_neuroimage_2007_07_038
crossref_primary_10_1088_0031_9155_60_2_R1
crossref_primary_10_1088_1361_6560_aa52aa
crossref_primary_10_1109_23_790855
crossref_primary_10_1088_1748_0221_12_08_P08009
crossref_primary_10_1109_TMI_2004_836876
crossref_primary_10_1007_s00259_008_0842_x
crossref_primary_10_1088_0031_9155_39_5_004
crossref_primary_10_1088_1402_4896_ad081e
crossref_primary_10_1088_0031_9155_51_13_R09
crossref_primary_10_1088_0031_9155_55_5_013
crossref_primary_10_1088_0031_9155_39_3_015
crossref_primary_10_1016_j_cmpb_2005_09_004
crossref_primary_10_1109_TNS_2002_998681
crossref_primary_10_1109_TNS_2002_998680
crossref_primary_10_1109_TMI_2005_846850
crossref_primary_10_1016_j_compmedimag_2011_01_002
crossref_primary_10_1051_0004_6361_20042513
crossref_primary_10_3389_fnume_2022_1028928
crossref_primary_10_1016_j_media_2016_06_019
crossref_primary_10_1109_TRPMS_2024_3441526
crossref_primary_10_1063_5_0015022
crossref_primary_10_1109_83_491322
crossref_primary_10_1007_s10043_006_0129_z
crossref_primary_10_1088_0031_9155_55_20_016
crossref_primary_10_1088_2057_1976_ab6996
Cites_doi 10.1088/0031-9155/39/5/004
10.1109/42.232250
10.1088/0031-9155/30/6/001
10.1364/JOSAA.4.000945
10.1109/23.106686
10.1109/42.108591
10.1364/JOSAA.3.000717
10.1109/23.256736
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/0031-9155/39/5/005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
EndPage 871
ExternalDocumentID 15552089
10_1088_0031_9155_39_5_005
Genre Validation Studies
Research Support, U.S. Gov't, P.H.S
Comparative Study
Evaluation Studies
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA52643
– fundername: NCI NIH HHS
  grantid: R01 CA39463
– fundername: NCI NIH HHS
  grantid: P01 CA23417
GroupedDBID -
02O
08R
123
1JI
1PV
1WK
29O
3O-
53G
5RE
5VS
7.M
8RP
9BW
AAGCD
AAGCF
AAJIO
AALHV
AAPBV
ABFLS
ABHWH
ABPTK
ABUFD
ACCAO
ACGFS
AEFHF
AENEX
AFYNE
AHGVY
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
DZ
EBS
EDWGO
EJD
EQZZN
F5P
FEDTE
GJ
HAK
HVGLF
IHE
IOP
IZVLO
KC5
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
RW3
S3P
T37
TN5
UCJ
UNR
X
X7L
XPP
ZA5
ZMT
ZXP
---
-DZ
-~X
.GJ
AATNI
AAYXX
ABJNI
ABLJU
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AETNG
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
PJBAE
.HR
4.4
5B3
5ZH
5ZI
7.Q
AAJKP
ABCXL
ABQJV
ABTAH
ACWPO
AFFNX
CBCFC
CEBXE
CGR
CUY
CVF
ECM
EIF
EMSAF
EPQRW
H~9
J5H
JCGBZ
NPM
PKN
SY9
W28
ZGI
ZY4
7X8
ID FETCH-LOGICAL-c352t-1d1587aa315e84e0a8cf0b3f3f927753722a93e89dc9b0902b921eb812c8b82e3
IEDL.DBID IOP
ISSN 0031-9155
IngestDate Fri Sep 05 11:08:47 EDT 2025
Wed Feb 19 02:33:06 EST 2025
Wed Oct 01 01:55:48 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Mon May 13 15:48:21 EDT 2019
Tue Nov 10 14:21:55 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1d1587aa315e84e0a8cf0b3f3f927753722a93e89dc9b0902b921eb812c8b82e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 15552089
PQID 77109053
PQPubID 23479
PageCount 25
ParticipantIDs crossref_citationtrail_10_1088_0031_9155_39_5_005
proquest_miscellaneous_77109053
pubmed_primary_15552089
crossref_primary_10_1088_0031_9155_39_5_005
iop_primary_10_1088_0031_9155_39_5_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1994-May
PublicationDateYYYYMMDD 1994-05-01
PublicationDate_xml – month: 05
  year: 1994
  text: 1994-May
PublicationDecade 1990
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAlternate Phys Med Biol
PublicationYear 1994
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Huesman R H (7) 1977
13
Smith W E (11) 1986; 3
Fiete R D (3) 1987; 4
Wagner R F (12) 1985; 30
Wilson D W (14) 1991
Papoulis A (10) 1965
Frey E C (4) 1991
Barrett H H (2) 1994; 39
6
8
9
Frieden B R (5) 1983
Barrett H H (1) 1981
References_xml – start-page: 1777
  year: 1991
  ident: 4
– volume: 39
  start-page: 833
  issn: 0031-9155
  year: 1994
  ident: 2
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/5/004
– ident: 9
  doi: 10.1109/42.232250
– volume: 30
  start-page: 489
  issn: 0031-9155
  year: 1985
  ident: 12
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/30/6/001
– volume: 4
  start-page: 945
  issn: 0740-3232
  year: 1987
  ident: 3
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.4.000945
– year: 1981
  ident: 1
– year: 1983
  ident: 5
– start-page: 1736
  year: 1991
  ident: 14
– year: 1977
  ident: 7
– ident: 6
  doi: 10.1109/23.106686
– ident: 8
  doi: 10.1109/42.108591
– year: 1965
  ident: 10
– volume: 3
  start-page: 717
  issn: 0740-3232
  year: 1986
  ident: 11
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.3.000717
– ident: 13
  doi: 10.1109/23.256736
SSID ssj0011824
Score 1.8469039
Snippet In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm....
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 847
SubjectTerms Algorithms
Brain - diagnostic imaging
Computer Simulation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Likelihood Functions
Models, Biological
Models, Statistical
Monte Carlo Method
Phantoms, Imaging
Positron-Emission Tomography - instrumentation
Positron-Emission Tomography - methods
Reproducibility of Results
Sensitivity and Specificity
Stochastic Processes
Title Noise properties of the EM algorithm. II. Monte Carlo simulations
URI http://iopscience.iop.org/0031-9155/39/5/005
https://www.ncbi.nlm.nih.gov/pubmed/15552089
https://www.proquest.com/docview/77109053
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGEogLj_EazwghLqhdH8uaHBEa2pAKHEDiViVpChNjndbuAL8ep-0GaIC4tZXrqJETf6ntzwCnjubSc5S0hJbSaqmWMEsqtmiM8FoJQ-FmCoXDm3b3oXX9SB9rMG0l109H1c5v42URyTdmZxkW86bPm7RZEpYax2-q9W7vZiEDBMol5XIlXlXI4Cr6QcU3L7SAQ_0OMAtHc7UG4bRcp8wvebEnubTV-zx747--YR1WK8RJLkoT2YCaHtZhqexB-VaH5bCKruPDIh1UZZtwcZP2M01G5k_92FCukjQhCBVJJyRi8JSO-_nzq016PZuEht6KXIrxICVZ_7XqBpZtwcNV5_6ya1XNFiyFGCy33NilLBDCd6lmLe0IphJH-omfcC_AM03geYL7mvFYcWmSOSX3XC0RHygmmaf9bVgcpkO9C8SNJQ_QO4oED1uCcuG1dduJaZK4qDUWDXCnkx-pioncNMQYREVEnLGCsDQy8xX5PKJ4SxtwPntnVPJw_Cl9glM_E5wXiEZx0oCzr0J_aTue2kaEi89EVMRQp5MsCkwmK25jDdgpTeZTG6XUcxjf--8g-7BS0jSbXMoDWMzHE32IeCeXR4WdfwCkxe9B
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8aTENcYLANOtiwpmmXKWk-6sY-IqCiY-04DGk3y3acUVGaqkkP8NfvOXbLgA1N2i2Onp8df_6c9_x7AB8jw1USaRVIo1TQ0R1pp1Qe0BzhtZaWws1eFB4Mu6cXnS8_6MKbsLkLU0790h_ioyMKdk3oHeKYDT8WB5bWvJ3yNsUkbU_zYgWe05RyG8Sg_-18aUhA-OyImH0ef2_mz3ru7U0rWP7fYWez_fQ2QS0q7rxOrsJ5rUJ9-4DT8b--7CVseHBKDl2GLXhmJtvwwoWrvNmGtYE3xOPLxnNUV6_gcFiOKkOm9qf-zLKzkrIgiCrJyYDI8c9yNqovr0PS74dkYJmwyJGcjUtSja594LDqNVz0Tr4fnQY-LkOgEa7VQZzHlGVSpjE1rGMiyXQRqbRIC55kePzJkkTy1DCea66s36fiSWwUQgnNFEtM-gZWJ-XE7AKJc8Uz3EhlgecySblMuqYb5bQoYtSayxbEix4R2pOW29gZY9EYzxlruE2FbTORckExSVvweZln6ig7npT-gN2xFHwsILALWvDpd6GntB0sBozAeWqNL3JiynklMuv0iiteC3bcOLrTRilNIsbf_mshB7B2ftwTX_vDsz1Yd-TO1gNzH1br2dy8Q5RUq_fNPPgFDTf_Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+properties+of+the+EM+algorithm.+II.+Monte+Carlo+simulations&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Wilson%2C+D+W&rft.au=Tsui%2C+B+M+W&rft.au=Barrett%2C+H+H&rft.date=1994-05-01&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=39&rft.issue=5&rft.spage=847&rft.epage=871&rft_id=info:doi/10.1088%2F0031-9155%2F39%2F5%2F005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0031_9155_39_5_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon