Wheat Hardness Prediction Research Based on NIR Hyperspectral Analysis Combined with Ant Colony Optimization Algorithm
This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection. The method is applied to the prediction research of wheat grain hardness, and tries to detect the feasibility of the forecasting ability. The...
Saved in:
| Published in | Procedia engineering Vol. 174; pp. 648 - 656 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-7058 1877-7058 |
| DOI | 10.1016/j.proeng.2017.01.202 |
Cover
| Abstract | This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection. The method is applied to the prediction research of wheat grain hardness, and tries to detect the feasibility of the forecasting ability. The optimized selection of characteristic wave band is the key link of the near infrared (NIR) hyperspectral analysis technology of wheat hardness. Experimental results showed that eleven characteristic wave band sub-intervals were selected from thirty spectral intervals by the algorithm, including 86 wave points. The selected wave band sub-interval were respectively 902.1 to 931.8 nm, 968.7 to 1027.5 nm, 1119.0 to 1143.4 nm, 1174.1 to 1275.5 nm, 1174.1 to 1275.5 nm, 1626.0 to 1647.6 nm and 1626.0 to 1647.6 nm. After using the optimized parameter in the spectral information forecasts and analyzes by the support vector regression. Prediction performances of regression models are assessed by calculating the estimated root mean square errors of cross-validation(RMSECV) the root mean square errors of prediction (RMSEP) and the correlation coefficient(R). The results showed that the estimated RMSECV and Rcv values were respectively 0.0382, and 0.9810 for the training set, the estimated RMSEP and RP values were respectively 0.0590, and 0.9544 for the validation set. Compared with the full spectrum of partial least squares (PLS), interval partial least squares (IPLS) algorithm, it simultaneously reduces the number of certain variables used in the model and increases in the prediction ability and the precision, and it can better reflect optimization model of the wave band. It is confirmed that the ACO method applied to the prediction research of the grain kernels is feasible. |
|---|---|
| AbstractList | This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection. The method is applied to the prediction research of wheat grain hardness, and tries to detect the feasibility of the forecasting ability. The optimized selection of characteristic wave band is the key link of the near infrared (NIR) hyperspectral analysis technology of wheat hardness. Experimental results showed that eleven characteristic wave band sub-intervals were selected from thirty spectral intervals by the algorithm, including 86 wave points. The selected wave band sub-interval were respectively 902.1 to 931.8 nm, 968.7 to 1027.5 nm, 1119.0 to 1143.4 nm, 1174.1 to 1275.5 nm, 1174.1 to 1275.5 nm, 1626.0 to 1647.6 nm and 1626.0 to 1647.6 nm. After using the optimized parameter in the spectral information forecasts and analyzes by the support vector regression. Prediction performances of regression models are assessed by calculating the estimated root mean square errors of cross-validation(RMSECV) the root mean square errors of prediction (RMSEP) and the correlation coefficient(R). The results showed that the estimated RMSECV and Rcv values were respectively 0.0382, and 0.9810 for the training set, the estimated RMSEP and RP values were respectively 0.0590, and 0.9544 for the validation set. Compared with the full spectrum of partial least squares (PLS), interval partial least squares (IPLS) algorithm, it simultaneously reduces the number of certain variables used in the model and increases in the prediction ability and the precision, and it can better reflect optimization model of the wave band. It is confirmed that the ACO method applied to the prediction research of the grain kernels is feasible. |
| Author | Gu, Bo Zhang, Hongtao Ruan, Pengju Li, Dewei Mu, Jianru |
| Author_xml | – sequence: 1 givenname: Hongtao surname: Zhang fullname: Zhang, Hongtao email: 39583633@qq.com – sequence: 2 givenname: Bo surname: Gu fullname: Gu, Bo – sequence: 3 givenname: Jianru surname: Mu fullname: Mu, Jianru – sequence: 4 givenname: Pengju surname: Ruan fullname: Ruan, Pengju – sequence: 5 givenname: Dewei surname: Li fullname: Li, Dewei |
| BookMark | eNqNUdFOwjAUbQwmIvIHPvQHwNtuY8wHEyQqJEQN0fjYdN0dlIxuaSdkfr2F-WB8UPtyek_uOTf33HPSMaVBQi4ZDBmw0dVmWNkSzWrIgcVDYB75CemycRwPYojGnW__M9J3bgOHFwOPWJfs3tYoazqTNjPoHH22mGlV69LQJTqUVq3prXSYUc88zpd01lRoXYWqtrKgEyOLxmlHp-U21ca37XW99nTtmaI0DX2qar3VH_JoOSlWpfUN2wtymsvCYf8Le-T1_u5lOhssnh7m08lioIKI1wOm0hCTNAuVjDFJMhbkgDLEPIGQZzIJOchxAnkcBZCPfA2cJ-M4DQB4CghBj0St77upZLOXRSEqq7fSNoKBOOQnNqLNTxzyE8A8cq-7bnXKls5ZzIXS9XEHv7Yu_hKHP8T_nHnTytAHstNohVMajfIHsT5ukZX6d4NPwJqjeA |
| CitedBy_id | crossref_primary_10_1155_2020_8851509 crossref_primary_10_1016_j_gaost_2021_12_001 crossref_primary_10_1007_s11042_021_10777_4 crossref_primary_10_1016_j_tifs_2021_02_044 crossref_primary_10_1016_j_jfca_2023_105398 crossref_primary_10_3390_rs14122777 crossref_primary_10_1016_j_infrared_2019_03_033 crossref_primary_10_1007_s00779_019_01270_9 crossref_primary_10_3390_agriculture14020224 crossref_primary_10_1111_1541_4337_12958 crossref_primary_10_1080_10942912_2022_2098972 crossref_primary_10_1111_1541_4337_13150 |
| Cites_doi | 10.1016/j.foodcont.2015.11.002 10.1016/j.jngse.2016.05.067 10.1016/j.jfoodeng.2013.09.023 10.1016/j.biosystemseng.2013.01.011 10.1016/j.microc.2013.03.015 10.1016/j.saa.2010.02.045 10.1016/j.asoc.2015.06.012 10.1016/j.jcs.2016.03.008 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors |
| Copyright_xml | – notice: 2017 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.proeng.2017.01.202 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1877-7058 |
| EndPage | 656 |
| ExternalDocumentID | 10.1016/j.proeng.2017.01.202 10_1016_j_proeng_2017_01_202 S1877705817302023 |
| GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FEDTE FNPLU HVGLF HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 OZT P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c352t-1cb4e9bd4ca7e99d13f0ea4ef9042da9420a890f7530f6a94022987b3002b0e03 |
| IEDL.DBID | UNPAY |
| ISSN | 1877-7058 |
| IngestDate | Tue Aug 19 18:31:54 EDT 2025 Wed Oct 01 01:44:04 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 23 02:47:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | hardness prediction the near infrared (NIR) hyperspectral Ant Colony Optimization(ACO) the optimized selection of wave band |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-1cb4e9bd4ca7e99d13f0ea4ef9042da9420a890f7530f6a94022987b3002b0e03 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.proeng.2017.01.202 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_proeng_2017_01_202 crossref_citationtrail_10_1016_j_proeng_2017_01_202 crossref_primary_10_1016_j_proeng_2017_01_202 elsevier_sciencedirect_doi_10_1016_j_proeng_2017_01_202 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017 2017-00-00 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Procedia engineering |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Ji, Gao (bib0065) 2014; 34 Huang, Tian, Liu (bib0010) 2013; 22 Verdú, Vásquez, Grau (bib0025) 2016; 62 Fu, Kim, Chao (bib0055) 2014; 124 Chen, Jiang, Zhao (bib0020) 2010; 1 Silvia, Daniela, Giuseppe (bib0050) 2013; 115 Sanz-Garcia, Fernandez-Ceniceros, Antonanzas-Torres (bib0040) 2015; 35 Wang, Zhang, Chen (bib0070) 2012; 39 Guindo, Davrieux, Teme (bib0015) 2016; 69 Yaralidarani, Shahverdi (bib0035) 2016; 33 Hu, Zhang, Luo (bib0045) 2012; 40 Zhang, Tian, Sun (bib0005) 2015; 44 Mo, Huang, Chen (bib0060) 2008; 6 Gomes, Galvão, Araújo, Véras, Silva (bib0030) 2013; 110 Chen (10.1016/j.proeng.2017.01.202_bib0020) 2010; 1 Yaralidarani (10.1016/j.proeng.2017.01.202_bib0035) 2016; 33 Sanz-Garcia (10.1016/j.proeng.2017.01.202_bib0040) 2015; 35 Huang (10.1016/j.proeng.2017.01.202_bib0010) 2013; 22 Mo (10.1016/j.proeng.2017.01.202_bib0060) 2008; 6 Verdú (10.1016/j.proeng.2017.01.202_bib0025) 2016; 62 Wang (10.1016/j.proeng.2017.01.202_bib0070) 2012; 39 Fu (10.1016/j.proeng.2017.01.202_bib0055) 2014; 124 Zhang (10.1016/j.proeng.2017.01.202_bib0005) 2015; 44 Gomes (10.1016/j.proeng.2017.01.202_bib0030) 2013; 110 Guindo (10.1016/j.proeng.2017.01.202_bib0015) 2016; 69 Wang (10.1016/j.proeng.2017.01.202_bib0065) 2014; 34 Hu (10.1016/j.proeng.2017.01.202_bib0045) 2012; 40 Silvia (10.1016/j.proeng.2017.01.202_bib0050) 2013; 115 |
| References_xml | – volume: 35 start-page: 13 year: 2015 end-page: 28 ident: bib0040 article-title: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace publication-title: Applied Soft Computing. – volume: 62 start-page: 373 year: 2016 end-page: 380 ident: bib0025 article-title: Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread publication-title: Food Control – volume: 124 start-page: 97 year: 2014 end-page: 104 ident: bib0055 article-title: Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses publication-title: Journal of food Engineering. – volume: 1 start-page: 50 year: 2010 end-page: 55 ident: bib0020 article-title: Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm publication-title: Spectrochimica Acta Part A. – volume: 34 start-page: 2387 year: 2014 end-page: 2390 ident: bib0065 article-title: Multiple scattering correction pretreatment band's influence on the near infrared calibration models publication-title: Spectroscopy and spectral analysis. – volume: 69 start-page: 218 year: 2016 end-page: 227 ident: bib0015 article-title: Pericarp thickness of sorghum whole grain is accurately predicted by NIRS and can affect the prediction of other grain quality parameters publication-title: Journal of Cereal Science – volume: 44 start-page: 181 year: 2015 end-page: 184 ident: bib0005 article-title: Research on the classification of wheat grain hardness based of the near infrared hyperspectral imaging analysis publication-title: Journal of Henan agricultural sciences – volume: 110 start-page: 202 year: 2013 end-page: 208 ident: bib0030 article-title: The successive projections algorithm for interval selection in PLS publication-title: Microchemical Journal. – volume: 39 start-page: 28 year: 2012 end-page: 29 ident: bib0070 article-title: The parameters optimization of SVM based on improved grid search method publication-title: Journal of applied science and technology – volume: 115 start-page: 20 year: 2013 end-page: 30 ident: bib0050 article-title: The development of a hyperspectral imaging method for the detection of Fusarium-damaged, yellow berry and vitreous Italian durum wheat kernels publication-title: Biosystems Engineering – volume: 22 start-page: 133 year: 2013 end-page: 137 ident: bib0010 article-title: Protein analysis on the bamboo shoots of the near infrared spectral characteristic wave band selection based on the different PLS algorithm publication-title: Journal of food science – volume: 6 start-page: 22 year: 2008 end-page: 23 ident: bib0060 article-title: Test on the new national standard of wheat hardness index publication-title: Journal of flour – volume: 40 start-page: 3781 year: 2012 end-page: 3782 ident: bib0045 article-title: Research on feature extraction of grain insect based on ACO-SVM publication-title: Journal of Anhui agricultural science – volume: 33 start-page: 624 year: 2016 end-page: 633 ident: bib0035 article-title: An improved Ant Colony Optimization (ACO) technique for estimation of flow functions (kr and Pc) from core-flood experiments publication-title: Journal of Natural Gas Science and Engineering – volume: 62 start-page: 373 year: 2016 ident: 10.1016/j.proeng.2017.01.202_bib0025 article-title: Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread publication-title: Food Control doi: 10.1016/j.foodcont.2015.11.002 – volume: 44 start-page: 181 year: 2015 ident: 10.1016/j.proeng.2017.01.202_bib0005 article-title: Research on the classification of wheat grain hardness based of the near infrared hyperspectral imaging analysis publication-title: Journal of Henan agricultural sciences – volume: 33 start-page: 624 year: 2016 ident: 10.1016/j.proeng.2017.01.202_bib0035 article-title: An improved Ant Colony Optimization (ACO) technique for estimation of flow functions (kr and Pc) from core-flood experiments publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.05.067 – volume: 124 start-page: 97 year: 2014 ident: 10.1016/j.proeng.2017.01.202_bib0055 article-title: Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses publication-title: Journal of food Engineering. doi: 10.1016/j.jfoodeng.2013.09.023 – volume: 22 start-page: 133 year: 2013 ident: 10.1016/j.proeng.2017.01.202_bib0010 article-title: Protein analysis on the bamboo shoots of the near infrared spectral characteristic wave band selection based on the different PLS algorithm publication-title: Journal of food science – volume: 115 start-page: 20 year: 2013 ident: 10.1016/j.proeng.2017.01.202_bib0050 article-title: The development of a hyperspectral imaging method for the detection of Fusarium-damaged, yellow berry and vitreous Italian durum wheat kernels publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2013.01.011 – volume: 6 start-page: 22 year: 2008 ident: 10.1016/j.proeng.2017.01.202_bib0060 article-title: Test on the new national standard of wheat hardness index publication-title: Journal of flour – volume: 39 start-page: 28 year: 2012 ident: 10.1016/j.proeng.2017.01.202_bib0070 article-title: The parameters optimization of SVM based on improved grid search method publication-title: Journal of applied science and technology – volume: 110 start-page: 202 year: 2013 ident: 10.1016/j.proeng.2017.01.202_bib0030 article-title: The successive projections algorithm for interval selection in PLS publication-title: Microchemical Journal. doi: 10.1016/j.microc.2013.03.015 – volume: 1 start-page: 50 year: 2010 ident: 10.1016/j.proeng.2017.01.202_bib0020 article-title: Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm publication-title: Spectrochimica Acta Part A. doi: 10.1016/j.saa.2010.02.045 – volume: 40 start-page: 3781 year: 2012 ident: 10.1016/j.proeng.2017.01.202_bib0045 article-title: Research on feature extraction of grain insect based on ACO-SVM publication-title: Journal of Anhui agricultural science – volume: 35 start-page: 13 year: 2015 ident: 10.1016/j.proeng.2017.01.202_bib0040 article-title: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace publication-title: Applied Soft Computing. doi: 10.1016/j.asoc.2015.06.012 – volume: 34 start-page: 2387 year: 2014 ident: 10.1016/j.proeng.2017.01.202_bib0065 article-title: Multiple scattering correction pretreatment band's influence on the near infrared calibration models publication-title: Spectroscopy and spectral analysis. – volume: 69 start-page: 218 year: 2016 ident: 10.1016/j.proeng.2017.01.202_bib0015 article-title: Pericarp thickness of sorghum whole grain is accurately predicted by NIRS and can affect the prediction of other grain quality parameters publication-title: Journal of Cereal Science doi: 10.1016/j.jcs.2016.03.008 |
| SSID | ssj0000070251 |
| Score | 2.1434205 |
| Snippet | This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection.... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 648 |
| SubjectTerms | Ant Colony Optimization(ACO) hardness prediction the near infrared (NIR) hyperspectral the optimized selection of wave band |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jL-qDeMV5Iw--1rVNesnjNhyb4BR1sLfSNumYdN0onbJ_7zltOiYIE59KDklTkvQ7l5wLIXde6AITkNJgiZUY3MNLQoUuVtJnoQXyqV9GuT6N3MGYP06cSYP06lgYdKvU2F9heonWmtLWq9lezmbtNwtT2ZmOb8EhxSLggMOM-1i-YTjpbuwsmM_GLqswYn8DB9QRdKWbF-CUyqbo4-Vh_k5b21d-4VB7q2wZrr_CNN3iQP0jcqhFR9qpvu6YNFR2Qg62Egqeks8SWylexyOE0Zcc72Fw7WntYke7wLckBcpo-EoHoIZW0ZY5vlpnKKGAEqAxQzc00wK5AEq6yNb0GRBmrkM3aSedLnLoMD8j4_7De29g6MoKRgwCV2FYccSViCSPQ08JIS2WmCrkKhHwD8tQcNsMfWEmoMuYiQtt4PTC9yIG-BmZymTnpJktMnVBKPeEncSAkpFU3AP9Rzog0qFUIZzIZaxFWL2aQazTjmP1izSo_cs-gmoPAtyDwLTgabeIsRm1rNJu7Ojv1RsV_Dg-AXCGHSPvN_v6p6ku_z3VFdnHVmXAuSbNIl-pGxBpiui2PLPf7zz0HA priority: 102 providerName: Elsevier |
| Title | Wheat Hardness Prediction Research Based on NIR Hyperspectral Analysis Combined with Ant Colony Optimization Algorithm |
| URI | https://dx.doi.org/10.1016/j.proeng.2017.01.202 https://doi.org/10.1016/j.proeng.2017.01.202 |
| UnpaywallVersion | publishedVersion |
| Volume | 174 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-7058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: KQ8 dateStart: 20090701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 1877-7058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: IXB dateStart: 20090701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-7058 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-7058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: AKRWK dateStart: 20090701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QDsaD30aMkh48OrKxbl2PYCBgAhIjCZ6Wdu1MdAyyDA0e_Nt9ZRtBEwJetqzpW5u-7r3f2_soQreUu6AEpDTs0AoNQrWTUOkQK-nZ3AJ86i2zXPsDtzsiD2NnXEJ3RS7ML__9Mg4LBImKX3UQFtUFNhu6cmTFdQB5l1FlNBg2X7RN5cEg1HS8IjtuA-km7bM_j2d88cmjaE27dI5Qv5hXFlTyXp-noh58_SnZuOvEj9FhDjNxM9sXJ6ik4lN0sFZ88Ax9LOUw1q57Le7wMNE-G80nXITj4RboOImhZdB7wl0wWbPMzES_Oq9mgkGigHUN3fQvXWhOoSWaxgv8CNJokqd54mb0Ok2gw-QcjTrt5_uukZ_CYAQAzlLDCgRRTEgScKoYk5YdmooTFTL43iVnpGFyj5kh2D1m6MIzoALmUWGDrBWmMu0LVI6nsbpEmFDWCAOQqEIqQsFWkg7AP41AmCNc264iu-COH-QlyvVJGZFfxKK9-dmq-npVfdOCe6OKjBXVLCvRsaU_LRjv5zAjgw8-8HALZX21T3Ya6uq_BNeonCZzdQNAJxU1tNcbt-Da_27X8r3-A5-t_mk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtCD8RnxuQevlT62jz0CkaACGoWEW9N2twRTCiGg4d87024JJiYYT02nO91mZ_vN7O48CLlzAweUgBCaFRuxxlw8JJToYiU8KzDAPvWyKNduz2kP2NPQHpZIs4iFQbdKhf05pmdorSg1NZq12XhcezcwlZ1uewZMUiwCvkN2mQ3WCUbxDRvrjRZMaGNmZRiRQUOOIoQu8_MCoJLpCJ28XEzgaaoNll9UVGWZzoLVV5AkGyqodUgOlO1I6_nnHZGSTI_J_kZGwRPymYErxfN4xDD6OseDGBx8WvjY0QYoLkGB0nt8o21Yh-bhlnN8tUpRQgEmYMkMzXCfFsgLoCTTdEVfAGImKnaT1pPRdA4NJqdk0HroN9uaKq2gRWBxLTQjCpnkoWBR4ErOhWHFugyYjDn8xCLgzNQDj-sxLGb02IF7UPXcc0MLADTUpW6dkXI6TeU5oczlZhwBTIZCMhcWQMIGmw7NCm6HjmVViVWMph-pvONY_iLxCwezDz-XgY8y8HUDrmaVaGuuWZ53Y0t7txCU_2P--KAatnDer-X6p64u_t3VLam0-92O33nsPV-SPXyS7-ZckfJivpTXYN8swpts_n4DTAP3Qg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO4gHv8WJSg4e7UibtGmOUxxT2BziYJ5K06QD7bpROmX-9b6s7ZjCmJ5KQ14T8tL3fi_vIwhd89ADJaCURWM7thg3TkJtQqyUT0Mb8Km_zHLt9b3ukD2O3FEN3VS5MD_898s4LBAkOh2bICxuCmw6pnJkw3MBeddRY9gftF-NTeXDIJy4fpUdt4F0k_bZmaezcPEZJsmadunso141ryKo5L01z2Ur-vpVsvGvEz9AeyXMxO1iXxyimk6P0O5a8cFj9LGUw9i47o24w4PM-GwMn3AVjodvQccpDC39h2fcBZO1yMzMzKfLaiYYJApY19DNHOlCcw4tyTRd4CeQRpMyzRO3k_E0gw6TEzTs3L_cda3yFgYrAnCWW3YkmRZSsSjkWghl05jokOlYwP-uQsEcEvqCxGD3kNiDd0AFwueSgqyVRBN6iurpNNVnCDMunDgCiSqVZhxsJeUC_DMIRLjSo7SJaMWdICpLlJubMpKgikV7C4pVDcyqBsSGp9NE1opqVpTo2NKfV4wPSphRwIcAeLiFsrXaJ38a6vy_BBeonmdzfQlAJ5dX5f7-BsOU_DQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wheat+Hardness+Prediction+Research+Based+on+NIR+Hyperspectral+Analysis+Combined+with+Ant+Colony+Optimization+Algorithm&rft.jtitle=Procedia+engineering&rft.au=Zhang%2C+Hongtao&rft.au=Gu%2C+Bo&rft.au=Mu%2C+Jianru&rft.au=Ruan%2C+Pengju&rft.date=2017&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=174&rft.spage=648&rft.epage=656&rft_id=info:doi/10.1016%2Fj.proeng.2017.01.202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2017_01_202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon |