Wheat Hardness Prediction Research Based on NIR Hyperspectral Analysis Combined with Ant Colony Optimization Algorithm

This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection. The method is applied to the prediction research of wheat grain hardness, and tries to detect the feasibility of the forecasting ability. The...

Full description

Saved in:
Bibliographic Details
Published inProcedia engineering Vol. 174; pp. 648 - 656
Main Authors Zhang, Hongtao, Gu, Bo, Mu, Jianru, Ruan, Pengju, Li, Dewei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2017
Subjects
Online AccessGet full text
ISSN1877-7058
1877-7058
DOI10.1016/j.proeng.2017.01.202

Cover

Abstract This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection. The method is applied to the prediction research of wheat grain hardness, and tries to detect the feasibility of the forecasting ability. The optimized selection of characteristic wave band is the key link of the near infrared (NIR) hyperspectral analysis technology of wheat hardness. Experimental results showed that eleven characteristic wave band sub-intervals were selected from thirty spectral intervals by the algorithm, including 86 wave points. The selected wave band sub-interval were respectively 902.1 to 931.8 nm, 968.7 to 1027.5 nm, 1119.0 to 1143.4 nm, 1174.1 to 1275.5 nm, 1174.1 to 1275.5 nm, 1626.0 to 1647.6 nm and 1626.0 to 1647.6 nm. After using the optimized parameter in the spectral information forecasts and analyzes by the support vector regression. Prediction performances of regression models are assessed by calculating the estimated root mean square errors of cross-validation(RMSECV) the root mean square errors of prediction (RMSEP) and the correlation coefficient(R). The results showed that the estimated RMSECV and Rcv values were respectively 0.0382, and 0.9810 for the training set, the estimated RMSEP and RP values were respectively 0.0590, and 0.9544 for the validation set. Compared with the full spectrum of partial least squares (PLS), interval partial least squares (IPLS) algorithm, it simultaneously reduces the number of certain variables used in the model and increases in the prediction ability and the precision, and it can better reflect optimization model of the wave band. It is confirmed that the ACO method applied to the prediction research of the grain kernels is feasible.
AbstractList This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection. The method is applied to the prediction research of wheat grain hardness, and tries to detect the feasibility of the forecasting ability. The optimized selection of characteristic wave band is the key link of the near infrared (NIR) hyperspectral analysis technology of wheat hardness. Experimental results showed that eleven characteristic wave band sub-intervals were selected from thirty spectral intervals by the algorithm, including 86 wave points. The selected wave band sub-interval were respectively 902.1 to 931.8 nm, 968.7 to 1027.5 nm, 1119.0 to 1143.4 nm, 1174.1 to 1275.5 nm, 1174.1 to 1275.5 nm, 1626.0 to 1647.6 nm and 1626.0 to 1647.6 nm. After using the optimized parameter in the spectral information forecasts and analyzes by the support vector regression. Prediction performances of regression models are assessed by calculating the estimated root mean square errors of cross-validation(RMSECV) the root mean square errors of prediction (RMSEP) and the correlation coefficient(R). The results showed that the estimated RMSECV and Rcv values were respectively 0.0382, and 0.9810 for the training set, the estimated RMSEP and RP values were respectively 0.0590, and 0.9544 for the validation set. Compared with the full spectrum of partial least squares (PLS), interval partial least squares (IPLS) algorithm, it simultaneously reduces the number of certain variables used in the model and increases in the prediction ability and the precision, and it can better reflect optimization model of the wave band. It is confirmed that the ACO method applied to the prediction research of the grain kernels is feasible.
Author Gu, Bo
Zhang, Hongtao
Ruan, Pengju
Li, Dewei
Mu, Jianru
Author_xml – sequence: 1
  givenname: Hongtao
  surname: Zhang
  fullname: Zhang, Hongtao
  email: 39583633@qq.com
– sequence: 2
  givenname: Bo
  surname: Gu
  fullname: Gu, Bo
– sequence: 3
  givenname: Jianru
  surname: Mu
  fullname: Mu, Jianru
– sequence: 4
  givenname: Pengju
  surname: Ruan
  fullname: Ruan, Pengju
– sequence: 5
  givenname: Dewei
  surname: Li
  fullname: Li, Dewei
BookMark eNqNUdFOwjAUbQwmIvIHPvQHwNtuY8wHEyQqJEQN0fjYdN0dlIxuaSdkfr2F-WB8UPtyek_uOTf33HPSMaVBQi4ZDBmw0dVmWNkSzWrIgcVDYB75CemycRwPYojGnW__M9J3bgOHFwOPWJfs3tYoazqTNjPoHH22mGlV69LQJTqUVq3prXSYUc88zpd01lRoXYWqtrKgEyOLxmlHp-U21ca37XW99nTtmaI0DX2qar3VH_JoOSlWpfUN2wtymsvCYf8Le-T1_u5lOhssnh7m08lioIKI1wOm0hCTNAuVjDFJMhbkgDLEPIGQZzIJOchxAnkcBZCPfA2cJ-M4DQB4CghBj0St77upZLOXRSEqq7fSNoKBOOQnNqLNTxzyE8A8cq-7bnXKls5ZzIXS9XEHv7Yu_hKHP8T_nHnTytAHstNohVMajfIHsT5ukZX6d4NPwJqjeA
CitedBy_id crossref_primary_10_1155_2020_8851509
crossref_primary_10_1016_j_gaost_2021_12_001
crossref_primary_10_1007_s11042_021_10777_4
crossref_primary_10_1016_j_tifs_2021_02_044
crossref_primary_10_1016_j_jfca_2023_105398
crossref_primary_10_3390_rs14122777
crossref_primary_10_1016_j_infrared_2019_03_033
crossref_primary_10_1007_s00779_019_01270_9
crossref_primary_10_3390_agriculture14020224
crossref_primary_10_1111_1541_4337_12958
crossref_primary_10_1080_10942912_2022_2098972
crossref_primary_10_1111_1541_4337_13150
Cites_doi 10.1016/j.foodcont.2015.11.002
10.1016/j.jngse.2016.05.067
10.1016/j.jfoodeng.2013.09.023
10.1016/j.biosystemseng.2013.01.011
10.1016/j.microc.2013.03.015
10.1016/j.saa.2010.02.045
10.1016/j.asoc.2015.06.012
10.1016/j.jcs.2016.03.008
ContentType Journal Article
Copyright 2017 The Authors
Copyright_xml – notice: 2017 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.proeng.2017.01.202
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-7058
EndPage 656
ExternalDocumentID 10.1016/j.proeng.2017.01.202
10_1016_j_proeng_2017_01_202
S1877705817302023
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c352t-1cb4e9bd4ca7e99d13f0ea4ef9042da9420a890f7530f6a94022987b3002b0e03
IEDL.DBID UNPAY
ISSN 1877-7058
IngestDate Tue Aug 19 18:31:54 EDT 2025
Wed Oct 01 01:44:04 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 23 02:47:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords hardness prediction
the near infrared (NIR) hyperspectral
Ant Colony Optimization(ACO)
the optimized selection of wave band
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1cb4e9bd4ca7e99d13f0ea4ef9042da9420a890f7530f6a94022987b3002b0e03
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.proeng.2017.01.202
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_proeng_2017_01_202
crossref_citationtrail_10_1016_j_proeng_2017_01_202
crossref_primary_10_1016_j_proeng_2017_01_202
elsevier_sciencedirect_doi_10_1016_j_proeng_2017_01_202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Ji, Gao (bib0065) 2014; 34
Huang, Tian, Liu (bib0010) 2013; 22
Verdú, Vásquez, Grau (bib0025) 2016; 62
Fu, Kim, Chao (bib0055) 2014; 124
Chen, Jiang, Zhao (bib0020) 2010; 1
Silvia, Daniela, Giuseppe (bib0050) 2013; 115
Sanz-Garcia, Fernandez-Ceniceros, Antonanzas-Torres (bib0040) 2015; 35
Wang, Zhang, Chen (bib0070) 2012; 39
Guindo, Davrieux, Teme (bib0015) 2016; 69
Yaralidarani, Shahverdi (bib0035) 2016; 33
Hu, Zhang, Luo (bib0045) 2012; 40
Zhang, Tian, Sun (bib0005) 2015; 44
Mo, Huang, Chen (bib0060) 2008; 6
Gomes, Galvão, Araújo, Véras, Silva (bib0030) 2013; 110
Chen (10.1016/j.proeng.2017.01.202_bib0020) 2010; 1
Yaralidarani (10.1016/j.proeng.2017.01.202_bib0035) 2016; 33
Sanz-Garcia (10.1016/j.proeng.2017.01.202_bib0040) 2015; 35
Huang (10.1016/j.proeng.2017.01.202_bib0010) 2013; 22
Mo (10.1016/j.proeng.2017.01.202_bib0060) 2008; 6
Verdú (10.1016/j.proeng.2017.01.202_bib0025) 2016; 62
Wang (10.1016/j.proeng.2017.01.202_bib0070) 2012; 39
Fu (10.1016/j.proeng.2017.01.202_bib0055) 2014; 124
Zhang (10.1016/j.proeng.2017.01.202_bib0005) 2015; 44
Gomes (10.1016/j.proeng.2017.01.202_bib0030) 2013; 110
Guindo (10.1016/j.proeng.2017.01.202_bib0015) 2016; 69
Wang (10.1016/j.proeng.2017.01.202_bib0065) 2014; 34
Hu (10.1016/j.proeng.2017.01.202_bib0045) 2012; 40
Silvia (10.1016/j.proeng.2017.01.202_bib0050) 2013; 115
References_xml – volume: 35
  start-page: 13
  year: 2015
  end-page: 28
  ident: bib0040
  article-title: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace
  publication-title: Applied Soft Computing.
– volume: 62
  start-page: 373
  year: 2016
  end-page: 380
  ident: bib0025
  article-title: Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread
  publication-title: Food Control
– volume: 124
  start-page: 97
  year: 2014
  end-page: 104
  ident: bib0055
  article-title: Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses
  publication-title: Journal of food Engineering.
– volume: 1
  start-page: 50
  year: 2010
  end-page: 55
  ident: bib0020
  article-title: Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm
  publication-title: Spectrochimica Acta Part A.
– volume: 34
  start-page: 2387
  year: 2014
  end-page: 2390
  ident: bib0065
  article-title: Multiple scattering correction pretreatment band's influence on the near infrared calibration models
  publication-title: Spectroscopy and spectral analysis.
– volume: 69
  start-page: 218
  year: 2016
  end-page: 227
  ident: bib0015
  article-title: Pericarp thickness of sorghum whole grain is accurately predicted by NIRS and can affect the prediction of other grain quality parameters
  publication-title: Journal of Cereal Science
– volume: 44
  start-page: 181
  year: 2015
  end-page: 184
  ident: bib0005
  article-title: Research on the classification of wheat grain hardness based of the near infrared hyperspectral imaging analysis
  publication-title: Journal of Henan agricultural sciences
– volume: 110
  start-page: 202
  year: 2013
  end-page: 208
  ident: bib0030
  article-title: The successive projections algorithm for interval selection in PLS
  publication-title: Microchemical Journal.
– volume: 39
  start-page: 28
  year: 2012
  end-page: 29
  ident: bib0070
  article-title: The parameters optimization of SVM based on improved grid search method
  publication-title: Journal of applied science and technology
– volume: 115
  start-page: 20
  year: 2013
  end-page: 30
  ident: bib0050
  article-title: The development of a hyperspectral imaging method for the detection of Fusarium-damaged, yellow berry and vitreous Italian durum wheat kernels
  publication-title: Biosystems Engineering
– volume: 22
  start-page: 133
  year: 2013
  end-page: 137
  ident: bib0010
  article-title: Protein analysis on the bamboo shoots of the near infrared spectral characteristic wave band selection based on the different PLS algorithm
  publication-title: Journal of food science
– volume: 6
  start-page: 22
  year: 2008
  end-page: 23
  ident: bib0060
  article-title: Test on the new national standard of wheat hardness index
  publication-title: Journal of flour
– volume: 40
  start-page: 3781
  year: 2012
  end-page: 3782
  ident: bib0045
  article-title: Research on feature extraction of grain insect based on ACO-SVM
  publication-title: Journal of Anhui agricultural science
– volume: 33
  start-page: 624
  year: 2016
  end-page: 633
  ident: bib0035
  article-title: An improved Ant Colony Optimization (ACO) technique for estimation of flow functions (kr and Pc) from core-flood experiments
  publication-title: Journal of Natural Gas Science and Engineering
– volume: 62
  start-page: 373
  year: 2016
  ident: 10.1016/j.proeng.2017.01.202_bib0025
  article-title: Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.11.002
– volume: 44
  start-page: 181
  year: 2015
  ident: 10.1016/j.proeng.2017.01.202_bib0005
  article-title: Research on the classification of wheat grain hardness based of the near infrared hyperspectral imaging analysis
  publication-title: Journal of Henan agricultural sciences
– volume: 33
  start-page: 624
  year: 2016
  ident: 10.1016/j.proeng.2017.01.202_bib0035
  article-title: An improved Ant Colony Optimization (ACO) technique for estimation of flow functions (kr and Pc) from core-flood experiments
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2016.05.067
– volume: 124
  start-page: 97
  year: 2014
  ident: 10.1016/j.proeng.2017.01.202_bib0055
  article-title: Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses
  publication-title: Journal of food Engineering.
  doi: 10.1016/j.jfoodeng.2013.09.023
– volume: 22
  start-page: 133
  year: 2013
  ident: 10.1016/j.proeng.2017.01.202_bib0010
  article-title: Protein analysis on the bamboo shoots of the near infrared spectral characteristic wave band selection based on the different PLS algorithm
  publication-title: Journal of food science
– volume: 115
  start-page: 20
  year: 2013
  ident: 10.1016/j.proeng.2017.01.202_bib0050
  article-title: The development of a hyperspectral imaging method for the detection of Fusarium-damaged, yellow berry and vitreous Italian durum wheat kernels
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2013.01.011
– volume: 6
  start-page: 22
  year: 2008
  ident: 10.1016/j.proeng.2017.01.202_bib0060
  article-title: Test on the new national standard of wheat hardness index
  publication-title: Journal of flour
– volume: 39
  start-page: 28
  year: 2012
  ident: 10.1016/j.proeng.2017.01.202_bib0070
  article-title: The parameters optimization of SVM based on improved grid search method
  publication-title: Journal of applied science and technology
– volume: 110
  start-page: 202
  year: 2013
  ident: 10.1016/j.proeng.2017.01.202_bib0030
  article-title: The successive projections algorithm for interval selection in PLS
  publication-title: Microchemical Journal.
  doi: 10.1016/j.microc.2013.03.015
– volume: 1
  start-page: 50
  year: 2010
  ident: 10.1016/j.proeng.2017.01.202_bib0020
  article-title: Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm
  publication-title: Spectrochimica Acta Part A.
  doi: 10.1016/j.saa.2010.02.045
– volume: 40
  start-page: 3781
  year: 2012
  ident: 10.1016/j.proeng.2017.01.202_bib0045
  article-title: Research on feature extraction of grain insect based on ACO-SVM
  publication-title: Journal of Anhui agricultural science
– volume: 35
  start-page: 13
  year: 2015
  ident: 10.1016/j.proeng.2017.01.202_bib0040
  article-title: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace
  publication-title: Applied Soft Computing.
  doi: 10.1016/j.asoc.2015.06.012
– volume: 34
  start-page: 2387
  year: 2014
  ident: 10.1016/j.proeng.2017.01.202_bib0065
  article-title: Multiple scattering correction pretreatment band's influence on the near infrared calibration models
  publication-title: Spectroscopy and spectral analysis.
– volume: 69
  start-page: 218
  year: 2016
  ident: 10.1016/j.proeng.2017.01.202_bib0015
  article-title: Pericarp thickness of sorghum whole grain is accurately predicted by NIRS and can affect the prediction of other grain quality parameters
  publication-title: Journal of Cereal Science
  doi: 10.1016/j.jcs.2016.03.008
SSID ssj0000070251
Score 2.1434205
Snippet This paper presents a new and improved method that ant colony optimization (ACO) algorithm is combined with the support vector regression for band selection....
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 648
SubjectTerms Ant Colony Optimization(ACO)
hardness prediction
the near infrared (NIR) hyperspectral
the optimized selection of wave band
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jL-qDeMV5Iw--1rVNesnjNhyb4BR1sLfSNumYdN0onbJ_7zltOiYIE59KDklTkvQ7l5wLIXde6AITkNJgiZUY3MNLQoUuVtJnoQXyqV9GuT6N3MGYP06cSYP06lgYdKvU2F9heonWmtLWq9lezmbtNwtT2ZmOb8EhxSLggMOM-1i-YTjpbuwsmM_GLqswYn8DB9QRdKWbF-CUyqbo4-Vh_k5b21d-4VB7q2wZrr_CNN3iQP0jcqhFR9qpvu6YNFR2Qg62Egqeks8SWylexyOE0Zcc72Fw7WntYke7wLckBcpo-EoHoIZW0ZY5vlpnKKGAEqAxQzc00wK5AEq6yNb0GRBmrkM3aSedLnLoMD8j4_7De29g6MoKRgwCV2FYccSViCSPQ08JIS2WmCrkKhHwD8tQcNsMfWEmoMuYiQtt4PTC9yIG-BmZymTnpJktMnVBKPeEncSAkpFU3AP9Rzog0qFUIZzIZaxFWL2aQazTjmP1izSo_cs-gmoPAtyDwLTgabeIsRm1rNJu7Ojv1RsV_Dg-AXCGHSPvN_v6p6ku_z3VFdnHVmXAuSbNIl-pGxBpiui2PLPf7zz0HA
  priority: 102
  providerName: Elsevier
Title Wheat Hardness Prediction Research Based on NIR Hyperspectral Analysis Combined with Ant Colony Optimization Algorithm
URI https://dx.doi.org/10.1016/j.proeng.2017.01.202
https://doi.org/10.1016/j.proeng.2017.01.202
UnpaywallVersion publishedVersion
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: KQ8
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: IXB
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-7058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: AKRWK
  dateStart: 20090701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QDsaD30aMkh48OrKxbl2PYCBgAhIjCZ6Wdu1MdAyyDA0e_Nt9ZRtBEwJetqzpW5u-7r3f2_soQreUu6AEpDTs0AoNQrWTUOkQK-nZ3AJ86i2zXPsDtzsiD2NnXEJ3RS7ML__9Mg4LBImKX3UQFtUFNhu6cmTFdQB5l1FlNBg2X7RN5cEg1HS8IjtuA-km7bM_j2d88cmjaE27dI5Qv5hXFlTyXp-noh58_SnZuOvEj9FhDjNxM9sXJ6ik4lN0sFZ88Ax9LOUw1q57Le7wMNE-G80nXITj4RboOImhZdB7wl0wWbPMzES_Oq9mgkGigHUN3fQvXWhOoSWaxgv8CNJokqd54mb0Ok2gw-QcjTrt5_uukZ_CYAQAzlLDCgRRTEgScKoYk5YdmooTFTL43iVnpGFyj5kh2D1m6MIzoALmUWGDrBWmMu0LVI6nsbpEmFDWCAOQqEIqQsFWkg7AP41AmCNc264iu-COH-QlyvVJGZFfxKK9-dmq-npVfdOCe6OKjBXVLCvRsaU_LRjv5zAjgw8-8HALZX21T3Ya6uq_BNeonCZzdQNAJxU1tNcbt-Da_27X8r3-A5-t_mk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtCD8RnxuQevlT62jz0CkaACGoWEW9N2twRTCiGg4d87024JJiYYT02nO91mZ_vN7O48CLlzAweUgBCaFRuxxlw8JJToYiU8KzDAPvWyKNduz2kP2NPQHpZIs4iFQbdKhf05pmdorSg1NZq12XhcezcwlZ1uewZMUiwCvkN2mQ3WCUbxDRvrjRZMaGNmZRiRQUOOIoQu8_MCoJLpCJ28XEzgaaoNll9UVGWZzoLVV5AkGyqodUgOlO1I6_nnHZGSTI_J_kZGwRPymYErxfN4xDD6OseDGBx8WvjY0QYoLkGB0nt8o21Yh-bhlnN8tUpRQgEmYMkMzXCfFsgLoCTTdEVfAGImKnaT1pPRdA4NJqdk0HroN9uaKq2gRWBxLTQjCpnkoWBR4ErOhWHFugyYjDn8xCLgzNQDj-sxLGb02IF7UPXcc0MLADTUpW6dkXI6TeU5oczlZhwBTIZCMhcWQMIGmw7NCm6HjmVViVWMph-pvONY_iLxCwezDz-XgY8y8HUDrmaVaGuuWZ53Y0t7txCU_2P--KAatnDer-X6p64u_t3VLam0-92O33nsPV-SPXyS7-ZckfJivpTXYN8swpts_n4DTAP3Qg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO4gHv8WJSg4e7UibtGmOUxxT2BziYJ5K06QD7bpROmX-9b6s7ZjCmJ5KQ14T8tL3fi_vIwhd89ADJaCURWM7thg3TkJtQqyUT0Mb8Km_zHLt9b3ukD2O3FEN3VS5MD_898s4LBAkOh2bICxuCmw6pnJkw3MBeddRY9gftF-NTeXDIJy4fpUdt4F0k_bZmaezcPEZJsmadunso141ryKo5L01z2Ur-vpVsvGvEz9AeyXMxO1iXxyimk6P0O5a8cFj9LGUw9i47o24w4PM-GwMn3AVjodvQccpDC39h2fcBZO1yMzMzKfLaiYYJApY19DNHOlCcw4tyTRd4CeQRpMyzRO3k_E0gw6TEzTs3L_cda3yFgYrAnCWW3YkmRZSsSjkWghl05jokOlYwP-uQsEcEvqCxGD3kNiDd0AFwueSgqyVRBN6iurpNNVnCDMunDgCiSqVZhxsJeUC_DMIRLjSo7SJaMWdICpLlJubMpKgikV7C4pVDcyqBsSGp9NE1opqVpTo2NKfV4wPSphRwIcAeLiFsrXaJ38a6vy_BBeonmdzfQlAJ5dX5f7-BsOU_DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wheat+Hardness+Prediction+Research+Based+on+NIR+Hyperspectral+Analysis+Combined+with+Ant+Colony+Optimization+Algorithm&rft.jtitle=Procedia+engineering&rft.au=Zhang%2C+Hongtao&rft.au=Gu%2C+Bo&rft.au=Mu%2C+Jianru&rft.au=Ruan%2C+Pengju&rft.date=2017&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=174&rft.spage=648&rft.epage=656&rft_id=info:doi/10.1016%2Fj.proeng.2017.01.202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2017_01_202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon