Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies

The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the im...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 33; no. 8; pp. 2741 - 2760
Main Authors Karami, Hojat, Farzin, Saeed, Jahangiri, Aylin, Ehteram, Mohammad, Kisi, Ozgur, El-Shafie, Ahmed
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-019-02238-3

Cover

Abstract The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the impact of droughts. However, all of these algorithms suffer from some weaknesses or drawbacks – notably early convergence, a low rate of convergence, or trapping in local optimizations – that limit their effectiveness and efficiency in seeking to determine the global optima for the operation of water systems. Against this background, the present study seeks to introduce and test a Hybrid Algorithm (HA) which integrates the Gravitational Search Algorithm (GSA) with the Particle Swarm Optimization Algorithm (PSOA) with the goal of minimizing irrigation deficiencies in a multi-reservoir system. The proposed algorithm was tested for a specific important multi-reservoir system in Iran: namely the Golestan Dam and Voshmgir Dam system. The results showed that applying the HA could reduce average irrigation deficiencies for the Golestan Dam substantially, to only 2 million cubic meters (MCM), compared to deficiency values for the Genetic Algorithm (GA), PSOA and GSA of 15.1, 6.7 and 5.8 MCM respectively. In addition, the HA performed very efficiently, reducing substantially the computational time needed to achieve the global optimal when compared with the other algorithms tested. Furthermore, the HA showed itself capable of assuring a high volumetric reliability index (VRI) to meet the pattern of water demand downstream from the dams, as well as clearly outperforming the other algorithms on other important indices. In conclusion, the proposed HA seems to offer considerable potential as an optimizer for dam and reservoir operations world-wide.
AbstractList The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the impact of droughts. However, all of these algorithms suffer from some weaknesses or drawbacks – notably early convergence, a low rate of convergence, or trapping in local optimizations – that limit their effectiveness and efficiency in seeking to determine the global optima for the operation of water systems. Against this background, the present study seeks to introduce and test a Hybrid Algorithm (HA) which integrates the Gravitational Search Algorithm (GSA) with the Particle Swarm Optimization Algorithm (PSOA) with the goal of minimizing irrigation deficiencies in a multi-reservoir system. The proposed algorithm was tested for a specific important multi-reservoir system in Iran: namely the Golestan Dam and Voshmgir Dam system. The results showed that applying the HA could reduce average irrigation deficiencies for the Golestan Dam substantially, to only 2 million cubic meters (MCM), compared to deficiency values for the Genetic Algorithm (GA), PSOA and GSA of 15.1, 6.7 and 5.8 MCM respectively. In addition, the HA performed very efficiently, reducing substantially the computational time needed to achieve the global optimal when compared with the other algorithms tested. Furthermore, the HA showed itself capable of assuring a high volumetric reliability index (VRI) to meet the pattern of water demand downstream from the dams, as well as clearly outperforming the other algorithms on other important indices. In conclusion, the proposed HA seems to offer considerable potential as an optimizer for dam and reservoir operations world-wide.
Author Farzin, Saeed
Ehteram, Mohammad
Kisi, Ozgur
El-Shafie, Ahmed
Karami, Hojat
Jahangiri, Aylin
Author_xml – sequence: 1
  givenname: Hojat
  surname: Karami
  fullname: Karami, Hojat
  organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University
– sequence: 2
  givenname: Saeed
  surname: Farzin
  fullname: Farzin, Saeed
  email: saeed.farzin@semnan.ac.ir
  organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University
– sequence: 3
  givenname: Aylin
  surname: Jahangiri
  fullname: Jahangiri, Aylin
  organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University
– sequence: 4
  givenname: Mohammad
  surname: Ehteram
  fullname: Ehteram, Mohammad
  organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University
– sequence: 5
  givenname: Ozgur
  surname: Kisi
  fullname: Kisi, Ozgur
  organization: School of Natural Sciences and Engineering, Ilia State University
– sequence: 6
  givenname: Ahmed
  surname: El-Shafie
  fullname: El-Shafie, Ahmed
  organization: Department of Civil Engineering, Faculty of Engineering, University of Malaya
BookMark eNp9kU1LHTEUhoNY6NX6B7oKdNNNar4mkyyttSrci1BbXIbMzBmNzEzGJCPc_vrmeoWCCxeHBPI8OTl5j9DhFCZA6DOj3xil9WlijCtDKCvFudBEHKAVq2pBmKroIVpRwymRtWQf0VFKj5QWzdAVetosQ_bkFySIz8FHfLtNGUZ8M2c_-r8u-zDh7y5Bh8vmattE3-HL6J59fjlzAz4b7kP0-WHEOeCNn3Ye4DuXIZLbZZ6HLf4BvW89TKXSJ_Shd0OCk9f1GP35efH7_Iqsby6vz8_WpBUVz4SZWlRaStVqB7xzQnSuabQWpuuN7BvVMKmU7sCBblzV1mVAKljNwEAtKymO0df9vXMMTwukbEefWhgGN0FYkuVcK22E4qagX96gj2GJZbYdJbjRismqUHxPtTGkFKG3c_Sji1vLqN2lYPcp2JKCfUnBiiLpN1L7-nM5Oj-8r4q9mkqf6R7i_1e9Y_0DqYOe-A
CitedBy_id crossref_primary_10_1007_s11269_020_02500_z
crossref_primary_10_1016_j_rineng_2024_102610
crossref_primary_10_3390_w13192740
crossref_primary_10_1016_j_esr_2022_100883
crossref_primary_10_3390_w12061628
crossref_primary_10_1007_s11269_021_02802_w
crossref_primary_10_1016_j_pce_2023_103415
crossref_primary_10_1515_ijeeps_2024_0164
crossref_primary_10_2166_hydro_2021_043
crossref_primary_10_3390_ijgi10080530
crossref_primary_10_2166_aqua_2023_106
crossref_primary_10_1007_s00500_019_04577_0
crossref_primary_10_1007_s11053_020_09634_2
crossref_primary_10_1038_s41598_024_73002_w
crossref_primary_10_3390_su13115900
crossref_primary_10_2166_ws_2020_188
crossref_primary_10_1016_j_agwat_2020_106688
crossref_primary_10_3390_app131810203
crossref_primary_10_3390_su142316205
crossref_primary_10_1007_s10668_022_02497_y
crossref_primary_10_1007_s11269_022_03183_4
crossref_primary_10_1007_s11269_023_03510_3
crossref_primary_10_1007_s40333_023_0035_2
Cites_doi 10.1016/j.scitotenv.2016.09.165
10.2166/ws.2017.217
10.1061/(ASCE)WR.1943-5452.0000746
10.1007/s11269-013-0510-1
10.1007/s11269-016-1506-4
10.1007/978-3-319-47054-2_8
10.1061/(ASCE)WR.1943-5452.0000558
10.1061/(ASCE)IR.1943-4774.0000832
10.1016/j.knosys.2017.01.026
10.1061/(ASCE)IR.1943-4774.0001256
10.1016/j.advwatres.2016.11.001
10.1007/s11269-018-1911-y
10.1016/j.asoc.2017.01.008
10.1007/s11269-015-1143-3
10.1680/wama.13.00021
10.1016/j.jclepro.2017.09.099
10.1016/j.energy.2017.05.013
10.1016/j.asoc.2016.12.005
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Water Resources Management is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Water Resources Management is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-019-02238-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection (ProQuest)
ProQuest Central
Business Premium Collection
ProQuest Technology Collection (LUT)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database (ProQuest)
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection (ProQuest)
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 2760
ExternalDocumentID 10_1007_s11269_019_02238_3
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID -5A
-5G
-5~
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
4P2
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CCPQU
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCK
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
3V.
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-197358446c8ae2da33dabb8839df94fb6b14668deae8ba5c792003171e9e74543
IEDL.DBID U2A
ISSN 0920-4741
IngestDate Thu Sep 04 18:28:54 EDT 2025
Fri Jul 25 19:11:19 EDT 2025
Wed Oct 01 01:44:56 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
Fri Feb 21 02:26:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords PSOA
Water resources management
GSA
Hybrid algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-197358446c8ae2da33dabb8839df94fb6b14668deae8ba5c792003171e9e74543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2232986145
PQPubID 54174
PageCount 20
ParticipantIDs proquest_miscellaneous_2286893629
proquest_journals_2232986145
crossref_primary_10_1007_s11269_019_02238_3
crossref_citationtrail_10_1007_s11269_019_02238_3
springer_journals_10_1007_s11269_019_02238_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Bolouri-YazdeliYHaddadOBFallah-MehdipourEMariñoMAEvaluation of real-time operation rules in reservoir systems operationWater Resour Manag201428371572910.1007/s11269-013-0510-1
EhteramMKaramiHMousaviSFEl-ShafieAAminiZOptimizing dam and reservoirs operation based model utilizing shark algorithm approachKnowl-Based Syst2017122263810.1016/j.knosys.2017.01.026
Qaderi K, Akbarifard S, Madadi M. R, Bakhtiari B (2017) Optimal operation of multi-reservoirs by water cycle algorithm. In Proceedings of the Institutionof Civil Engineers-Water Management 171(4):179–190
HaddadOBMoravejMLoáicigaHAApplication of the water cycle algorithm to the optimal operation of reservoir systemsJ Irrig Drain Eng2014141510.1061/(ASCE)IR.1943-4774.0000832
Bozorg-HaddadOJanbazMLoáicigaHAApplication of the gravity search algorithm to multi-reservoir operation optimizationAdv Water Resour20169817318510.1016/j.advwatres.2016.11.001
MansouriAAminnejadBAhmadiHIntroducing modified version of penguins search optimization algorithm (PeSOA) and its application in optimal operation of reservoir systemsWater Sci Technol Water Supply20181841484149610.2166/ws.2017.217
MirjaliliSGandomiAHChaotic gravitational constants for the gravitational search algorithmAppl Soft Comput20175340741910.1016/j.asoc.2017.01.008
Bustince H, Minárová M, Fernandez J, Sesma-Sara M, Marco-Detchart C, Ruiz-Aranguren J (2017) A generalization of the gravitational search algorithm. In: International summer school on aggregation operators. Springer, Cham, pp 162–171
Gonzalez B, Valdez F, Melin P (2017) A gravitational search algorithm using Type-2 fuzzy logic for parameter adaptation. In: Nature-inspired design of hybrid intelligent systems. Springer International Publishing, pp 127–138
LiYCuiQLiCWangXCaiYCuiGYangZAn improved multi-objective optimization model for supporting reservoir operation of China's south-to-north water diversion projectSci Total Environ201757597098110.1016/j.scitotenv.2016.09.165
Bashiri-AtrabiHQaderiKRheinheimerDESharifiEApplication of harmony search algorithm to reservoir operation optimizationWater Resour Manag201529155729574810.1007/s11269-015-1143-3
BaiTKanYBChangJXHuangQChangFJFusing feasible search space into PSO for multi-objective cascade reservoir optimizationAppl Soft Comput20175132834010.1016/j.asoc.2016.12.005
FengZKNiuWJChengCTMulti-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system schedulingEnergy201713116517810.1016/j.energy.2017.05.013
BahramiMBozorg-HaddadOChuXApplication of cat swarm optimization algorithm for optimal reservoir operationJ Irrig Drain Eng2017144110.1061/(ASCE)IR.1943-4774.0001256
EhteramMKaramiHMousaviSFFarzinSKisiOOptimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithmsJ Clean Prod20171681132114210.1016/j.jclepro.2017.09.099
HaddadOBHosseini-MoghariSMLoáicigaHABiogeography-based optimization algorithm for optimal operation of reservoir systemsJ Water Resour Plan Manag2015142110.1061/(ASCE)WR.1943-5452.0000558
Akbari-Alashti H, Bozorg Haddad O, Fallah-Mehdipour E, Marino M.A (2014) Multi-reservoir real-time operation rules: A new genetic programming approach. In Proceedings of the Institution of Civil Engineers-Water Management 167(10):561–576
RasoLMalaterrePOBaderJCEffective stream flow process modeling for optimal reservoir operation using stochastic dual dynamic programmingJ Water Resour Plan Manag2017143410.1061/(ASCE)WR.1943-5452.0000746
SrinivasanKKumarKMulti-objective simulation-optimization model for long-term reservoir operation using piecewise linear hedging ruleWater Resour Manag20183251901191110.1007/s11269-018-1911-y
Li YH, Zeng ZY (2017) Particle swarm optimization-differential evolution algorithm and its application in the optimal reservoir operation. In: New energy and sustainable development: proceedings of 2017 international conference on new energy and sustainable development, pp 688–698
PengYPengAZhangXZhouHZhangLWangWZhangZMulti-Core parallel particle swarm optimization for the operation of Inter-Basin water transfer-supply systemsWater Resour Manag2017311274110.1007/s11269-016-1506-4
A Mansouri (2238_CR16) 2018; 18
M Ehteram (2238_CR8) 2017; 122
OB Haddad (2238_CR13) 2015; 142
2238_CR11
K Srinivasan (2238_CR21) 2018; 32
2238_CR15
M Bahrami (2238_CR2) 2017; 144
2238_CR19
2238_CR1
Y Li (2238_CR14) 2017; 575
ZK Feng (2238_CR10) 2017; 131
OB Haddad (2238_CR12) 2014; 141
2238_CR7
Y Bolouri-Yazdeli (2238_CR5) 2014; 28
M Ehteram (2238_CR9) 2017; 168
H Bashiri-Atrabi (2238_CR4) 2015; 29
L Raso (2238_CR20) 2017; 143
S Mirjalili (2238_CR17) 2017; 53
Y Peng (2238_CR18) 2017; 31
T Bai (2238_CR3) 2017; 51
O Bozorg-Haddad (2238_CR6) 2016; 98
References_xml – reference: EhteramMKaramiHMousaviSFFarzinSKisiOOptimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithmsJ Clean Prod20171681132114210.1016/j.jclepro.2017.09.099
– reference: Li YH, Zeng ZY (2017) Particle swarm optimization-differential evolution algorithm and its application in the optimal reservoir operation. In: New energy and sustainable development: proceedings of 2017 international conference on new energy and sustainable development, pp 688–698
– reference: PengYPengAZhangXZhouHZhangLWangWZhangZMulti-Core parallel particle swarm optimization for the operation of Inter-Basin water transfer-supply systemsWater Resour Manag2017311274110.1007/s11269-016-1506-4
– reference: Gonzalez B, Valdez F, Melin P (2017) A gravitational search algorithm using Type-2 fuzzy logic for parameter adaptation. In: Nature-inspired design of hybrid intelligent systems. Springer International Publishing, pp 127–138
– reference: MirjaliliSGandomiAHChaotic gravitational constants for the gravitational search algorithmAppl Soft Comput20175340741910.1016/j.asoc.2017.01.008
– reference: Qaderi K, Akbarifard S, Madadi M. R, Bakhtiari B (2017) Optimal operation of multi-reservoirs by water cycle algorithm. In Proceedings of the Institutionof Civil Engineers-Water Management 171(4):179–190
– reference: FengZKNiuWJChengCTMulti-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system schedulingEnergy201713116517810.1016/j.energy.2017.05.013
– reference: HaddadOBMoravejMLoáicigaHAApplication of the water cycle algorithm to the optimal operation of reservoir systemsJ Irrig Drain Eng2014141510.1061/(ASCE)IR.1943-4774.0000832
– reference: Bashiri-AtrabiHQaderiKRheinheimerDESharifiEApplication of harmony search algorithm to reservoir operation optimizationWater Resour Manag201529155729574810.1007/s11269-015-1143-3
– reference: SrinivasanKKumarKMulti-objective simulation-optimization model for long-term reservoir operation using piecewise linear hedging ruleWater Resour Manag20183251901191110.1007/s11269-018-1911-y
– reference: LiYCuiQLiCWangXCaiYCuiGYangZAn improved multi-objective optimization model for supporting reservoir operation of China's south-to-north water diversion projectSci Total Environ201757597098110.1016/j.scitotenv.2016.09.165
– reference: Bolouri-YazdeliYHaddadOBFallah-MehdipourEMariñoMAEvaluation of real-time operation rules in reservoir systems operationWater Resour Manag201428371572910.1007/s11269-013-0510-1
– reference: BaiTKanYBChangJXHuangQChangFJFusing feasible search space into PSO for multi-objective cascade reservoir optimizationAppl Soft Comput20175132834010.1016/j.asoc.2016.12.005
– reference: HaddadOBHosseini-MoghariSMLoáicigaHABiogeography-based optimization algorithm for optimal operation of reservoir systemsJ Water Resour Plan Manag2015142110.1061/(ASCE)WR.1943-5452.0000558
– reference: MansouriAAminnejadBAhmadiHIntroducing modified version of penguins search optimization algorithm (PeSOA) and its application in optimal operation of reservoir systemsWater Sci Technol Water Supply20181841484149610.2166/ws.2017.217
– reference: BahramiMBozorg-HaddadOChuXApplication of cat swarm optimization algorithm for optimal reservoir operationJ Irrig Drain Eng2017144110.1061/(ASCE)IR.1943-4774.0001256
– reference: EhteramMKaramiHMousaviSFEl-ShafieAAminiZOptimizing dam and reservoirs operation based model utilizing shark algorithm approachKnowl-Based Syst2017122263810.1016/j.knosys.2017.01.026
– reference: Bozorg-HaddadOJanbazMLoáicigaHAApplication of the gravity search algorithm to multi-reservoir operation optimizationAdv Water Resour20169817318510.1016/j.advwatres.2016.11.001
– reference: RasoLMalaterrePOBaderJCEffective stream flow process modeling for optimal reservoir operation using stochastic dual dynamic programmingJ Water Resour Plan Manag2017143410.1061/(ASCE)WR.1943-5452.0000746
– reference: Akbari-Alashti H, Bozorg Haddad O, Fallah-Mehdipour E, Marino M.A (2014) Multi-reservoir real-time operation rules: A new genetic programming approach. In Proceedings of the Institution of Civil Engineers-Water Management 167(10):561–576
– reference: Bustince H, Minárová M, Fernandez J, Sesma-Sara M, Marco-Detchart C, Ruiz-Aranguren J (2017) A generalization of the gravitational search algorithm. In: International summer school on aggregation operators. Springer, Cham, pp 162–171
– ident: 2238_CR19
– volume: 575
  start-page: 970
  year: 2017
  ident: 2238_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.09.165
– volume: 18
  start-page: 1484
  issue: 4
  year: 2018
  ident: 2238_CR16
  publication-title: Water Sci Technol Water Supply
  doi: 10.2166/ws.2017.217
– volume: 143
  issue: 4
  year: 2017
  ident: 2238_CR20
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000746
– volume: 28
  start-page: 715
  issue: 3
  year: 2014
  ident: 2238_CR5
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-013-0510-1
– volume: 31
  start-page: 27
  issue: 1
  year: 2017
  ident: 2238_CR18
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1506-4
– ident: 2238_CR7
– ident: 2238_CR11
  doi: 10.1007/978-3-319-47054-2_8
– volume: 142
  issue: 1
  year: 2015
  ident: 2238_CR13
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000558
– volume: 141
  issue: 5
  year: 2014
  ident: 2238_CR12
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000832
– ident: 2238_CR15
– volume: 122
  start-page: 26
  year: 2017
  ident: 2238_CR8
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.01.026
– volume: 144
  issue: 1
  year: 2017
  ident: 2238_CR2
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0001256
– volume: 98
  start-page: 173
  year: 2016
  ident: 2238_CR6
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2016.11.001
– volume: 32
  start-page: 1901
  issue: 5
  year: 2018
  ident: 2238_CR21
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1911-y
– volume: 53
  start-page: 407
  year: 2017
  ident: 2238_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.01.008
– volume: 29
  start-page: 5729
  issue: 15
  year: 2015
  ident: 2238_CR4
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1143-3
– ident: 2238_CR1
  doi: 10.1680/wama.13.00021
– volume: 168
  start-page: 1132
  year: 2017
  ident: 2238_CR9
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.09.099
– volume: 131
  start-page: 165
  year: 2017
  ident: 2238_CR10
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.013
– volume: 51
  start-page: 328
  year: 2017
  ident: 2238_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.005
SSID ssj0010090
Score 2.3612552
Snippet The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2741
SubjectTerms Algorithms
Atmospheric Sciences
Civil Engineering
Computer applications
Computing time
Convergence
Dams
dams (hydrology)
Drought
Earth and Environmental Science
Earth Sciences
Environment
Environmental impact
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Gravitation
Gravity
Hybrid systems
Hydrogeology
Hydrology/Water Resources
Iran
Irrigation
issues and policy
Measuring instruments
Particle swarm optimization
Policies
Reservoir operation
Reservoirs
Search algorithms
system optimization
Water demand
Water scarcity
water shortages
Water supply
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_0fKkPxX6I19qSgm82aDa7SfZBpLbao-C1iKJvSzbJ2QPd1XUV_O-d2cvetYX6sBDYfJDMJPPLx_wGYEviLNjV2nPUlsBT5XYxJSUPQqE9z4wzKXkjH4_V6Cz9cZFdLMG494WhZ5X9mtgt1L52dEa-g2YsyQ0ak2z_5pZT1Ci6Xe1DaNgYWsHvdRRjy7CSEDPWAFYODse_Tub3CogoulOXHDdNKRrT6EYzc6YTiaK3Q_hhY4bLv03VAn_-c2XaWaKjNXgZIST7MpP5K1gK1WtY_YNY8A3cdn61nJ7VNQ_1tGEzYnL2ExeI6-h5yQ7QgHmGidEjuW2x7419iIzdVP3VJXa__X3N2podTysqF9g5QtOGd6FAH9m3QPQTgcL73r2Fs6PD068jHoMrcIeYq-Ui1xLBB0rH2JB4K6W3ZWkQL_lJnk5KVeIaqowPNpjSZk7n9IxNaBHyoNMsleswqOoqbACTuXBBl0KbicTtorfKBKuxASJ0Es4NQfTjWLjYDwqAcVUsOJNp7Asc-6Ib-0IOYXte5mbGu_Fs7s1ePEWcg3fFQmOG8Gn-G2cPXYnYKtT3lMcoRGwqyYfwuRfroor_t_ju-Rbfw4uk0yQ6rtmEQdvchw-IXtryY1TJJ7T_6fs
  priority: 102
  providerName: ProQuest
Title Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies
URI https://link.springer.com/article/10.1007/s11269-019-02238-3
https://www.proquest.com/docview/2232986145
https://www.proquest.com/docview/2286893629
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50fdEH8cT1WCL4pgHTtEn6uOoeKB6Ii_pU0jarC26r3Sr47510210VFXwoLeSiM5PMl8wRgD2Os-BQypiitBjqiugQvzinhgnU556KlGujkc8vRLfnnt55d2VQ2Kjydq9MksVKPQ12Y46wvj34oE5TlM_CnGfTeaEU95zmxHaAqKE4WfFxY-SiwixDZX7u46s6mmLMb2bRQtu0l2CxhImkOebrMsyYZAUWPiUPXIWXInaWWte57C0dZGScfJxc4iIwLKMryREqqZjgR_fdhmaRTqbfyqzctvunhzQb5I9DkqfkfJDYdobcIvzMaHHd5zs5MTbFhLFX-I7WoNdu3Rx3aXmBAo0QV-WU-ZIjwEAOKG2cWHMe6zBUiInivu_2QxHiOilUbLRRofYi6VtXNSaZ8Y10PZevQy1JE7MBhPssMjJkUvU5bgljLZTREgewSZtYFNWBVXQMovI_7CUXT8E0L7KlfYC0DwraB7wO-5M2z-PcGn_W3q7YE5TzbBRgkeMrhBheHXYnxThDrNlDJyZ9tXWUQFQmHL8OBxVbp138PuLm_6pvwbxTSJY9otmGWp69mh1ELHnYgFnV7jRgrtm5P2vh-6h1cXXdKMT2AwKJ5Hc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9RA9AXhoB6In3EFdUz0pBOZznQ6PRADAi7CrsZA5FannVklgRa6BbN_jt_me93prprIjUOTJp2Pzpv3NfO-AF5JpIK1JHEcscVzpYs1fJOSe6FRnsemMIqikQdD3T9Un47iowW46mJhyK2y44kto3ZVQXfk71CMRalBYRK_PzvnVDWKrKtdCQ0bSiu49TbFWAjs2POTX3iEG6_vbuF-v46ine2DD30eqgzwApWPhos0kSiF8TeN9ZGzUjqb5wYVBzdK1SjXOTITbZy33uQ2LpKU_LlEInzqExUriePegiUlVYqHv6XN7eGXrzM7Bmow7S0P9uEKhXcI25kG74lIk68SPrg4w-XfonGu7_5jom0l3849WA4qK9uY4th9WPDlA7j7RyLDh3DexvFycuOrL6vjmk0TobPPyJBOQ6Qn20SB6Ri-9CcUJsY-1vYyZAin4U9-ILibn6esqdjguKR-nn1DVbjmbenRCdvylO7CUznh8SM4vBEwP4bFsir9E2AyFYVPcpGYkcTjqbPaeJvgBJRAShRFD0QHx6wI66CCGyfZPEczwT5D2Gct7DPZgzezPmfTPB_Xtl7tticLND_O5hjag5ezz0itZIKxpa8uqI3RqCHqKO3B225b50P8f8an18_4Am73Dwb72f7ucG8F7kQtVtFV0SosNvWFf4aaU5M_D-jJ4PtNU8RvDc0mjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bTtRA9AQhMfpAADWuchkTfdIJTKedmT4QoyzLAoI-SOStTKezSgItdAtmf82v85xedtVE3nho0qRz6Zw5t5lzA3gtkQq2tM44YovnoXJb-CYl90KhPI-MMyFFIx8dq-FJeHAanc7Bry4WhtwqO55YM-qscHRHvoliLIgNCpNoc9S6RXzpD95fXXOqIEWW1q6cRoMih37yE49v4-39Pu71myAY7H7dGfK2wgB3qHhUXMRaogTGXzTWB5mVMrNpalBpyEZxOEpVioxEmcxbb1IbOR2TL5fQwsdeh1EocdwHsKApiztFqQ_2phYM1F3q-x3swUMU223AThO2JwJFXkr44LIMl38LxZmm-49xtpZ5gyVYbJVV9qHBrmWY8_kKPP4jheETuK4jeDk58JW3xXnJmhTo7DOyoss2xpN9RFGZMXwZTihAjO2V9rbNDU7DX3xH4FY_LllVsKPznPp59g2V4JLXRUcnrO8p0YWnQsLjp3ByL0B-BvN5kfvnwGQsnNep0GYk8WCaWWW81TgBpY4SzvVAdHBMXLsOKrVxkcyyMxPsE4R9UsM-kT14O-1z1WT4uLP1arc9SUvt42SGmz14Nf2MdErGF5v74obaGIW6oQriHrzrtnU2xP9nfHH3jBvwEOkg-bR_fPgSHgU1UtEd0SrMV-WNX0OVqUrXa9xkcHbfxPAb848kJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Reservoir+System+Optimization+Based+on+Hybrid+Gravitational+Algorithm+to+Minimize+Water-Supply+Deficiencies&rft.jtitle=Water+resources+management&rft.au=Karami%2C+Hojat&rft.au=Farzin%2C+Saeed&rft.au=Jahangiri%2C+Aylin&rft.au=Ehteram%2C+Mohammad&rft.date=2019-06-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=33&rft.issue=8&rft.spage=2741&rft.epage=2760&rft_id=info:doi/10.1007%2Fs11269-019-02238-3&rft.externalDocID=10_1007_s11269_019_02238_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon