Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies
The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the im...
Saved in:
| Published in | Water resources management Vol. 33; no. 8; pp. 2741 - 2760 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.06.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-019-02238-3 |
Cover
| Abstract | The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the impact of droughts. However, all of these algorithms suffer from some weaknesses or drawbacks – notably early convergence, a low rate of convergence, or trapping in local optimizations – that limit their effectiveness and efficiency in seeking to determine the global optima for the operation of water systems. Against this background, the present study seeks to introduce and test a Hybrid Algorithm (HA) which integrates the Gravitational Search Algorithm (GSA) with the Particle Swarm Optimization Algorithm (PSOA) with the goal of minimizing irrigation deficiencies in a multi-reservoir system. The proposed algorithm was tested for a specific important multi-reservoir system in Iran: namely the Golestan Dam and Voshmgir Dam system. The results showed that applying the HA could reduce average irrigation deficiencies for the Golestan Dam substantially, to only 2 million cubic meters (MCM), compared to deficiency values for the Genetic Algorithm (GA), PSOA and GSA of 15.1, 6.7 and 5.8 MCM respectively. In addition, the HA performed very efficiently, reducing substantially the computational time needed to achieve the global optimal when compared with the other algorithms tested. Furthermore, the HA showed itself capable of assuring a high volumetric reliability index (VRI) to meet the pattern of water demand downstream from the dams, as well as clearly outperforming the other algorithms on other important indices. In conclusion, the proposed HA seems to offer considerable potential as an optimizer for dam and reservoir operations world-wide. |
|---|---|
| AbstractList | The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the impact of droughts. However, all of these algorithms suffer from some weaknesses or drawbacks – notably early convergence, a low rate of convergence, or trapping in local optimizations – that limit their effectiveness and efficiency in seeking to determine the global optima for the operation of water systems. Against this background, the present study seeks to introduce and test a Hybrid Algorithm (HA) which integrates the Gravitational Search Algorithm (GSA) with the Particle Swarm Optimization Algorithm (PSOA) with the goal of minimizing irrigation deficiencies in a multi-reservoir system. The proposed algorithm was tested for a specific important multi-reservoir system in Iran: namely the Golestan Dam and Voshmgir Dam system. The results showed that applying the HA could reduce average irrigation deficiencies for the Golestan Dam substantially, to only 2 million cubic meters (MCM), compared to deficiency values for the Genetic Algorithm (GA), PSOA and GSA of 15.1, 6.7 and 5.8 MCM respectively. In addition, the HA performed very efficiently, reducing substantially the computational time needed to achieve the global optimal when compared with the other algorithms tested. Furthermore, the HA showed itself capable of assuring a high volumetric reliability index (VRI) to meet the pattern of water demand downstream from the dams, as well as clearly outperforming the other algorithms on other important indices. In conclusion, the proposed HA seems to offer considerable potential as an optimizer for dam and reservoir operations world-wide. |
| Author | Farzin, Saeed Ehteram, Mohammad Kisi, Ozgur El-Shafie, Ahmed Karami, Hojat Jahangiri, Aylin |
| Author_xml | – sequence: 1 givenname: Hojat surname: Karami fullname: Karami, Hojat organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University – sequence: 2 givenname: Saeed surname: Farzin fullname: Farzin, Saeed email: saeed.farzin@semnan.ac.ir organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University – sequence: 3 givenname: Aylin surname: Jahangiri fullname: Jahangiri, Aylin organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University – sequence: 4 givenname: Mohammad surname: Ehteram fullname: Ehteram, Mohammad organization: Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University – sequence: 5 givenname: Ozgur surname: Kisi fullname: Kisi, Ozgur organization: School of Natural Sciences and Engineering, Ilia State University – sequence: 6 givenname: Ahmed surname: El-Shafie fullname: El-Shafie, Ahmed organization: Department of Civil Engineering, Faculty of Engineering, University of Malaya |
| BookMark | eNp9kU1LHTEUhoNY6NX6B7oKdNNNar4mkyyttSrci1BbXIbMzBmNzEzGJCPc_vrmeoWCCxeHBPI8OTl5j9DhFCZA6DOj3xil9WlijCtDKCvFudBEHKAVq2pBmKroIVpRwymRtWQf0VFKj5QWzdAVetosQ_bkFySIz8FHfLtNGUZ8M2c_-r8u-zDh7y5Bh8vmattE3-HL6J59fjlzAz4b7kP0-WHEOeCNn3Ye4DuXIZLbZZ6HLf4BvW89TKXSJ_Shd0OCk9f1GP35efH7_Iqsby6vz8_WpBUVz4SZWlRaStVqB7xzQnSuabQWpuuN7BvVMKmU7sCBblzV1mVAKljNwEAtKymO0df9vXMMTwukbEefWhgGN0FYkuVcK22E4qagX96gj2GJZbYdJbjRismqUHxPtTGkFKG3c_Sji1vLqN2lYPcp2JKCfUnBiiLpN1L7-nM5Oj-8r4q9mkqf6R7i_1e9Y_0DqYOe-A |
| CitedBy_id | crossref_primary_10_1007_s11269_020_02500_z crossref_primary_10_1016_j_rineng_2024_102610 crossref_primary_10_3390_w13192740 crossref_primary_10_1016_j_esr_2022_100883 crossref_primary_10_3390_w12061628 crossref_primary_10_1007_s11269_021_02802_w crossref_primary_10_1016_j_pce_2023_103415 crossref_primary_10_1515_ijeeps_2024_0164 crossref_primary_10_2166_hydro_2021_043 crossref_primary_10_3390_ijgi10080530 crossref_primary_10_2166_aqua_2023_106 crossref_primary_10_1007_s00500_019_04577_0 crossref_primary_10_1007_s11053_020_09634_2 crossref_primary_10_1038_s41598_024_73002_w crossref_primary_10_3390_su13115900 crossref_primary_10_2166_ws_2020_188 crossref_primary_10_1016_j_agwat_2020_106688 crossref_primary_10_3390_app131810203 crossref_primary_10_3390_su142316205 crossref_primary_10_1007_s10668_022_02497_y crossref_primary_10_1007_s11269_022_03183_4 crossref_primary_10_1007_s11269_023_03510_3 crossref_primary_10_1007_s40333_023_0035_2 |
| Cites_doi | 10.1016/j.scitotenv.2016.09.165 10.2166/ws.2017.217 10.1061/(ASCE)WR.1943-5452.0000746 10.1007/s11269-013-0510-1 10.1007/s11269-016-1506-4 10.1007/978-3-319-47054-2_8 10.1061/(ASCE)WR.1943-5452.0000558 10.1061/(ASCE)IR.1943-4774.0000832 10.1016/j.knosys.2017.01.026 10.1061/(ASCE)IR.1943-4774.0001256 10.1016/j.advwatres.2016.11.001 10.1007/s11269-018-1911-y 10.1016/j.asoc.2017.01.008 10.1007/s11269-015-1143-3 10.1680/wama.13.00021 10.1016/j.jclepro.2017.09.099 10.1016/j.energy.2017.05.013 10.1016/j.asoc.2016.12.005 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2019 Water Resources Management is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Water Resources Management is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-019-02238-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection (ProQuest) ProQuest Central Business Premium Collection ProQuest Technology Collection (LUT) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database (ProQuest) Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) Environmental Science Collection (ProQuest) ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 2760 |
| ExternalDocumentID | 10_1007_s11269_019_02238_3 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | -5A -5G -5~ -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 4P2 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CCPQU CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R89 R9I RHV ROL RPX RSV S16 S27 S3B SAP SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB PUEGO R4E RNI RZC RZE RZK S1Z S26 S28 SCK SCLPG T16 TEORI UZXMN VFIZW WK6 3V. 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-197358446c8ae2da33dabb8839df94fb6b14668deae8ba5c792003171e9e74543 |
| IEDL.DBID | U2A |
| ISSN | 0920-4741 |
| IngestDate | Thu Sep 04 18:28:54 EDT 2025 Fri Jul 25 19:11:19 EDT 2025 Wed Oct 01 01:44:56 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 Fri Feb 21 02:26:45 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | PSOA Water resources management GSA Hybrid algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-197358446c8ae2da33dabb8839df94fb6b14668deae8ba5c792003171e9e74543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2232986145 |
| PQPubID | 54174 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2286893629 proquest_journals_2232986145 crossref_primary_10_1007_s11269_019_02238_3 crossref_citationtrail_10_1007_s11269_019_02238_3 springer_journals_10_1007_s11269_019_02238_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2019 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Bolouri-YazdeliYHaddadOBFallah-MehdipourEMariñoMAEvaluation of real-time operation rules in reservoir systems operationWater Resour Manag201428371572910.1007/s11269-013-0510-1 EhteramMKaramiHMousaviSFEl-ShafieAAminiZOptimizing dam and reservoirs operation based model utilizing shark algorithm approachKnowl-Based Syst2017122263810.1016/j.knosys.2017.01.026 Qaderi K, Akbarifard S, Madadi M. R, Bakhtiari B (2017) Optimal operation of multi-reservoirs by water cycle algorithm. In Proceedings of the Institutionof Civil Engineers-Water Management 171(4):179–190 HaddadOBMoravejMLoáicigaHAApplication of the water cycle algorithm to the optimal operation of reservoir systemsJ Irrig Drain Eng2014141510.1061/(ASCE)IR.1943-4774.0000832 Bozorg-HaddadOJanbazMLoáicigaHAApplication of the gravity search algorithm to multi-reservoir operation optimizationAdv Water Resour20169817318510.1016/j.advwatres.2016.11.001 MansouriAAminnejadBAhmadiHIntroducing modified version of penguins search optimization algorithm (PeSOA) and its application in optimal operation of reservoir systemsWater Sci Technol Water Supply20181841484149610.2166/ws.2017.217 MirjaliliSGandomiAHChaotic gravitational constants for the gravitational search algorithmAppl Soft Comput20175340741910.1016/j.asoc.2017.01.008 Bustince H, Minárová M, Fernandez J, Sesma-Sara M, Marco-Detchart C, Ruiz-Aranguren J (2017) A generalization of the gravitational search algorithm. In: International summer school on aggregation operators. Springer, Cham, pp 162–171 Gonzalez B, Valdez F, Melin P (2017) A gravitational search algorithm using Type-2 fuzzy logic for parameter adaptation. In: Nature-inspired design of hybrid intelligent systems. Springer International Publishing, pp 127–138 LiYCuiQLiCWangXCaiYCuiGYangZAn improved multi-objective optimization model for supporting reservoir operation of China's south-to-north water diversion projectSci Total Environ201757597098110.1016/j.scitotenv.2016.09.165 Bashiri-AtrabiHQaderiKRheinheimerDESharifiEApplication of harmony search algorithm to reservoir operation optimizationWater Resour Manag201529155729574810.1007/s11269-015-1143-3 BaiTKanYBChangJXHuangQChangFJFusing feasible search space into PSO for multi-objective cascade reservoir optimizationAppl Soft Comput20175132834010.1016/j.asoc.2016.12.005 FengZKNiuWJChengCTMulti-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system schedulingEnergy201713116517810.1016/j.energy.2017.05.013 BahramiMBozorg-HaddadOChuXApplication of cat swarm optimization algorithm for optimal reservoir operationJ Irrig Drain Eng2017144110.1061/(ASCE)IR.1943-4774.0001256 EhteramMKaramiHMousaviSFFarzinSKisiOOptimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithmsJ Clean Prod20171681132114210.1016/j.jclepro.2017.09.099 HaddadOBHosseini-MoghariSMLoáicigaHABiogeography-based optimization algorithm for optimal operation of reservoir systemsJ Water Resour Plan Manag2015142110.1061/(ASCE)WR.1943-5452.0000558 Akbari-Alashti H, Bozorg Haddad O, Fallah-Mehdipour E, Marino M.A (2014) Multi-reservoir real-time operation rules: A new genetic programming approach. In Proceedings of the Institution of Civil Engineers-Water Management 167(10):561–576 RasoLMalaterrePOBaderJCEffective stream flow process modeling for optimal reservoir operation using stochastic dual dynamic programmingJ Water Resour Plan Manag2017143410.1061/(ASCE)WR.1943-5452.0000746 SrinivasanKKumarKMulti-objective simulation-optimization model for long-term reservoir operation using piecewise linear hedging ruleWater Resour Manag20183251901191110.1007/s11269-018-1911-y Li YH, Zeng ZY (2017) Particle swarm optimization-differential evolution algorithm and its application in the optimal reservoir operation. In: New energy and sustainable development: proceedings of 2017 international conference on new energy and sustainable development, pp 688–698 PengYPengAZhangXZhouHZhangLWangWZhangZMulti-Core parallel particle swarm optimization for the operation of Inter-Basin water transfer-supply systemsWater Resour Manag2017311274110.1007/s11269-016-1506-4 A Mansouri (2238_CR16) 2018; 18 M Ehteram (2238_CR8) 2017; 122 OB Haddad (2238_CR13) 2015; 142 2238_CR11 K Srinivasan (2238_CR21) 2018; 32 2238_CR15 M Bahrami (2238_CR2) 2017; 144 2238_CR19 2238_CR1 Y Li (2238_CR14) 2017; 575 ZK Feng (2238_CR10) 2017; 131 OB Haddad (2238_CR12) 2014; 141 2238_CR7 Y Bolouri-Yazdeli (2238_CR5) 2014; 28 M Ehteram (2238_CR9) 2017; 168 H Bashiri-Atrabi (2238_CR4) 2015; 29 L Raso (2238_CR20) 2017; 143 S Mirjalili (2238_CR17) 2017; 53 Y Peng (2238_CR18) 2017; 31 T Bai (2238_CR3) 2017; 51 O Bozorg-Haddad (2238_CR6) 2016; 98 |
| References_xml | – reference: EhteramMKaramiHMousaviSFFarzinSKisiOOptimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithmsJ Clean Prod20171681132114210.1016/j.jclepro.2017.09.099 – reference: Li YH, Zeng ZY (2017) Particle swarm optimization-differential evolution algorithm and its application in the optimal reservoir operation. In: New energy and sustainable development: proceedings of 2017 international conference on new energy and sustainable development, pp 688–698 – reference: PengYPengAZhangXZhouHZhangLWangWZhangZMulti-Core parallel particle swarm optimization for the operation of Inter-Basin water transfer-supply systemsWater Resour Manag2017311274110.1007/s11269-016-1506-4 – reference: Gonzalez B, Valdez F, Melin P (2017) A gravitational search algorithm using Type-2 fuzzy logic for parameter adaptation. In: Nature-inspired design of hybrid intelligent systems. Springer International Publishing, pp 127–138 – reference: MirjaliliSGandomiAHChaotic gravitational constants for the gravitational search algorithmAppl Soft Comput20175340741910.1016/j.asoc.2017.01.008 – reference: Qaderi K, Akbarifard S, Madadi M. R, Bakhtiari B (2017) Optimal operation of multi-reservoirs by water cycle algorithm. In Proceedings of the Institutionof Civil Engineers-Water Management 171(4):179–190 – reference: FengZKNiuWJChengCTMulti-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system schedulingEnergy201713116517810.1016/j.energy.2017.05.013 – reference: HaddadOBMoravejMLoáicigaHAApplication of the water cycle algorithm to the optimal operation of reservoir systemsJ Irrig Drain Eng2014141510.1061/(ASCE)IR.1943-4774.0000832 – reference: Bashiri-AtrabiHQaderiKRheinheimerDESharifiEApplication of harmony search algorithm to reservoir operation optimizationWater Resour Manag201529155729574810.1007/s11269-015-1143-3 – reference: SrinivasanKKumarKMulti-objective simulation-optimization model for long-term reservoir operation using piecewise linear hedging ruleWater Resour Manag20183251901191110.1007/s11269-018-1911-y – reference: LiYCuiQLiCWangXCaiYCuiGYangZAn improved multi-objective optimization model for supporting reservoir operation of China's south-to-north water diversion projectSci Total Environ201757597098110.1016/j.scitotenv.2016.09.165 – reference: Bolouri-YazdeliYHaddadOBFallah-MehdipourEMariñoMAEvaluation of real-time operation rules in reservoir systems operationWater Resour Manag201428371572910.1007/s11269-013-0510-1 – reference: BaiTKanYBChangJXHuangQChangFJFusing feasible search space into PSO for multi-objective cascade reservoir optimizationAppl Soft Comput20175132834010.1016/j.asoc.2016.12.005 – reference: HaddadOBHosseini-MoghariSMLoáicigaHABiogeography-based optimization algorithm for optimal operation of reservoir systemsJ Water Resour Plan Manag2015142110.1061/(ASCE)WR.1943-5452.0000558 – reference: MansouriAAminnejadBAhmadiHIntroducing modified version of penguins search optimization algorithm (PeSOA) and its application in optimal operation of reservoir systemsWater Sci Technol Water Supply20181841484149610.2166/ws.2017.217 – reference: BahramiMBozorg-HaddadOChuXApplication of cat swarm optimization algorithm for optimal reservoir operationJ Irrig Drain Eng2017144110.1061/(ASCE)IR.1943-4774.0001256 – reference: EhteramMKaramiHMousaviSFEl-ShafieAAminiZOptimizing dam and reservoirs operation based model utilizing shark algorithm approachKnowl-Based Syst2017122263810.1016/j.knosys.2017.01.026 – reference: Bozorg-HaddadOJanbazMLoáicigaHAApplication of the gravity search algorithm to multi-reservoir operation optimizationAdv Water Resour20169817318510.1016/j.advwatres.2016.11.001 – reference: RasoLMalaterrePOBaderJCEffective stream flow process modeling for optimal reservoir operation using stochastic dual dynamic programmingJ Water Resour Plan Manag2017143410.1061/(ASCE)WR.1943-5452.0000746 – reference: Akbari-Alashti H, Bozorg Haddad O, Fallah-Mehdipour E, Marino M.A (2014) Multi-reservoir real-time operation rules: A new genetic programming approach. In Proceedings of the Institution of Civil Engineers-Water Management 167(10):561–576 – reference: Bustince H, Minárová M, Fernandez J, Sesma-Sara M, Marco-Detchart C, Ruiz-Aranguren J (2017) A generalization of the gravitational search algorithm. In: International summer school on aggregation operators. Springer, Cham, pp 162–171 – ident: 2238_CR19 – volume: 575 start-page: 970 year: 2017 ident: 2238_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.165 – volume: 18 start-page: 1484 issue: 4 year: 2018 ident: 2238_CR16 publication-title: Water Sci Technol Water Supply doi: 10.2166/ws.2017.217 – volume: 143 issue: 4 year: 2017 ident: 2238_CR20 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000746 – volume: 28 start-page: 715 issue: 3 year: 2014 ident: 2238_CR5 publication-title: Water Resour Manag doi: 10.1007/s11269-013-0510-1 – volume: 31 start-page: 27 issue: 1 year: 2017 ident: 2238_CR18 publication-title: Water Resour Manag doi: 10.1007/s11269-016-1506-4 – ident: 2238_CR7 – ident: 2238_CR11 doi: 10.1007/978-3-319-47054-2_8 – volume: 142 issue: 1 year: 2015 ident: 2238_CR13 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000558 – volume: 141 issue: 5 year: 2014 ident: 2238_CR12 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000832 – ident: 2238_CR15 – volume: 122 start-page: 26 year: 2017 ident: 2238_CR8 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.01.026 – volume: 144 issue: 1 year: 2017 ident: 2238_CR2 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0001256 – volume: 98 start-page: 173 year: 2016 ident: 2238_CR6 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2016.11.001 – volume: 32 start-page: 1901 issue: 5 year: 2018 ident: 2238_CR21 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1911-y – volume: 53 start-page: 407 year: 2017 ident: 2238_CR17 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.01.008 – volume: 29 start-page: 5729 issue: 15 year: 2015 ident: 2238_CR4 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1143-3 – ident: 2238_CR1 doi: 10.1680/wama.13.00021 – volume: 168 start-page: 1132 year: 2017 ident: 2238_CR9 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.09.099 – volume: 131 start-page: 165 year: 2017 ident: 2238_CR10 publication-title: Energy doi: 10.1016/j.energy.2017.05.013 – volume: 51 start-page: 328 year: 2017 ident: 2238_CR3 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.12.005 |
| SSID | ssj0010090 |
| Score | 2.3612552 |
| Snippet | The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2741 |
| SubjectTerms | Algorithms Atmospheric Sciences Civil Engineering Computer applications Computing time Convergence Dams dams (hydrology) Drought Earth and Environmental Science Earth Sciences Environment Environmental impact Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Gravitation Gravity Hybrid systems Hydrogeology Hydrology/Water Resources Iran Irrigation issues and policy Measuring instruments Particle swarm optimization Policies Reservoir operation Reservoirs Search algorithms system optimization Water demand Water scarcity water shortages Water supply |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_0fKkPxX6I19qSgm82aDa7SfZBpLbao-C1iKJvSzbJ2QPd1XUV_O-d2cvetYX6sBDYfJDMJPPLx_wGYEviLNjV2nPUlsBT5XYxJSUPQqE9z4wzKXkjH4_V6Cz9cZFdLMG494WhZ5X9mtgt1L52dEa-g2YsyQ0ak2z_5pZT1Ci6Xe1DaNgYWsHvdRRjy7CSEDPWAFYODse_Tub3CogoulOXHDdNKRrT6EYzc6YTiaK3Q_hhY4bLv03VAn_-c2XaWaKjNXgZIST7MpP5K1gK1WtY_YNY8A3cdn61nJ7VNQ_1tGEzYnL2ExeI6-h5yQ7QgHmGidEjuW2x7419iIzdVP3VJXa__X3N2podTysqF9g5QtOGd6FAH9m3QPQTgcL73r2Fs6PD068jHoMrcIeYq-Ui1xLBB0rH2JB4K6W3ZWkQL_lJnk5KVeIaqowPNpjSZk7n9IxNaBHyoNMsleswqOoqbACTuXBBl0KbicTtorfKBKuxASJ0Es4NQfTjWLjYDwqAcVUsOJNp7Asc-6Ib-0IOYXte5mbGu_Fs7s1ePEWcg3fFQmOG8Gn-G2cPXYnYKtT3lMcoRGwqyYfwuRfroor_t_ju-Rbfw4uk0yQ6rtmEQdvchw-IXtryY1TJJ7T_6fs priority: 102 providerName: ProQuest |
| Title | Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies |
| URI | https://link.springer.com/article/10.1007/s11269-019-02238-3 https://www.proquest.com/docview/2232986145 https://www.proquest.com/docview/2286893629 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50fdEH8cT1WCL4pgHTtEn6uOoeKB6Ii_pU0jarC26r3Sr47510210VFXwoLeSiM5PMl8wRgD2Os-BQypiitBjqiugQvzinhgnU556KlGujkc8vRLfnnt55d2VQ2Kjydq9MksVKPQ12Y46wvj34oE5TlM_CnGfTeaEU95zmxHaAqKE4WfFxY-SiwixDZX7u46s6mmLMb2bRQtu0l2CxhImkOebrMsyYZAUWPiUPXIWXInaWWte57C0dZGScfJxc4iIwLKMryREqqZjgR_fdhmaRTqbfyqzctvunhzQb5I9DkqfkfJDYdobcIvzMaHHd5zs5MTbFhLFX-I7WoNdu3Rx3aXmBAo0QV-WU-ZIjwEAOKG2cWHMe6zBUiInivu_2QxHiOilUbLRRofYi6VtXNSaZ8Y10PZevQy1JE7MBhPssMjJkUvU5bgljLZTREgewSZtYFNWBVXQMovI_7CUXT8E0L7KlfYC0DwraB7wO-5M2z-PcGn_W3q7YE5TzbBRgkeMrhBheHXYnxThDrNlDJyZ9tXWUQFQmHL8OBxVbp138PuLm_6pvwbxTSJY9otmGWp69mh1ELHnYgFnV7jRgrtm5P2vh-6h1cXXdKMT2AwKJ5Hc |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9RA9AXhoB6In3EFdUz0pBOZznQ6PRADAi7CrsZA5FannVklgRa6BbN_jt_me93prprIjUOTJp2Pzpv3NfO-AF5JpIK1JHEcscVzpYs1fJOSe6FRnsemMIqikQdD3T9Un47iowW46mJhyK2y44kto3ZVQXfk71CMRalBYRK_PzvnVDWKrKtdCQ0bSiu49TbFWAjs2POTX3iEG6_vbuF-v46ine2DD30eqgzwApWPhos0kSiF8TeN9ZGzUjqb5wYVBzdK1SjXOTITbZy33uQ2LpKU_LlEInzqExUriePegiUlVYqHv6XN7eGXrzM7Bmow7S0P9uEKhXcI25kG74lIk68SPrg4w-XfonGu7_5jom0l3849WA4qK9uY4th9WPDlA7j7RyLDh3DexvFycuOrL6vjmk0TobPPyJBOQ6Qn20SB6Ri-9CcUJsY-1vYyZAin4U9-ILibn6esqdjguKR-nn1DVbjmbenRCdvylO7CUznh8SM4vBEwP4bFsir9E2AyFYVPcpGYkcTjqbPaeJvgBJRAShRFD0QHx6wI66CCGyfZPEczwT5D2Gct7DPZgzezPmfTPB_Xtl7tticLND_O5hjag5ezz0itZIKxpa8uqI3RqCHqKO3B225b50P8f8an18_4Am73Dwb72f7ucG8F7kQtVtFV0SosNvWFf4aaU5M_D-jJ4PtNU8RvDc0mjA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bTtRA9AQhMfpAADWuchkTfdIJTKedmT4QoyzLAoI-SOStTKezSgItdAtmf82v85xedtVE3nho0qRz6Zw5t5lzA3gtkQq2tM44YovnoXJb-CYl90KhPI-MMyFFIx8dq-FJeHAanc7Bry4WhtwqO55YM-qscHRHvoliLIgNCpNoc9S6RXzpD95fXXOqIEWW1q6cRoMih37yE49v4-39Pu71myAY7H7dGfK2wgB3qHhUXMRaogTGXzTWB5mVMrNpalBpyEZxOEpVioxEmcxbb1IbOR2TL5fQwsdeh1EocdwHsKApiztFqQ_2phYM1F3q-x3swUMU223AThO2JwJFXkr44LIMl38LxZmm-49xtpZ5gyVYbJVV9qHBrmWY8_kKPP4jheETuK4jeDk58JW3xXnJmhTo7DOyoss2xpN9RFGZMXwZTihAjO2V9rbNDU7DX3xH4FY_LllVsKPznPp59g2V4JLXRUcnrO8p0YWnQsLjp3ByL0B-BvN5kfvnwGQsnNep0GYk8WCaWWW81TgBpY4SzvVAdHBMXLsOKrVxkcyyMxPsE4R9UsM-kT14O-1z1WT4uLP1arc9SUvt42SGmz14Nf2MdErGF5v74obaGIW6oQriHrzrtnU2xP9nfHH3jBvwEOkg-bR_fPgSHgU1UtEd0SrMV-WNX0OVqUrXa9xkcHbfxPAb848kJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Reservoir+System+Optimization+Based+on+Hybrid+Gravitational+Algorithm+to+Minimize+Water-Supply+Deficiencies&rft.jtitle=Water+resources+management&rft.au=Karami%2C+Hojat&rft.au=Farzin%2C+Saeed&rft.au=Jahangiri%2C+Aylin&rft.au=Ehteram%2C+Mohammad&rft.date=2019-06-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=33&rft.issue=8&rft.spage=2741&rft.epage=2760&rft_id=info:doi/10.1007%2Fs11269-019-02238-3&rft.externalDocID=10_1007_s11269_019_02238_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |