Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries

Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related dru...

Full description

Saved in:
Bibliographic Details
Published inDrug safety Vol. 45; no. 8; pp. 853 - 862
Main Authors Tan, Hui Xing, Teo, Chun Hwee Desmond, Ang, Pei San, Loke, Wei Ping Celine, Tham, Mun Yee, Tan, Siew Har, Soh, Bee Leng Sally, Foo, Pei Qin Belinda, Ling, Zheng Jye, Yip, Wei Luen James, Tang, Yixuan, Yang, Jisong, Tung, Kum Hoe Anthony, Dorajoo, Sreemanee Raaj
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0114-5916
1179-1942
DOI10.1007/s40264-022-01196-x

Cover

Abstract Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction. Methods A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations. Results The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively. Conclusions The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12–14% reduction in recall but improves identification of the related drug and adverse event terms.
AbstractList Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction. Methods A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations. Results The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively. Conclusions The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12–14% reduction in recall but improves identification of the related drug and adverse event terms.
Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction. Methods A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations. Results The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively. Conclusions The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12-14% reduction in recall but improves identification of the related drug and adverse event terms.
Author Tung, Kum Hoe Anthony
Tan, Hui Xing
Tham, Mun Yee
Yang, Jisong
Dorajoo, Sreemanee Raaj
Soh, Bee Leng Sally
Teo, Chun Hwee Desmond
Foo, Pei Qin Belinda
Loke, Wei Ping Celine
Ling, Zheng Jye
Tan, Siew Har
Yip, Wei Luen James
Tang, Yixuan
Ang, Pei San
Author_xml – sequence: 1
  givenname: Hui Xing
  surname: Tan
  fullname: Tan, Hui Xing
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 2
  givenname: Chun Hwee Desmond
  surname: Teo
  fullname: Teo, Chun Hwee Desmond
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 3
  givenname: Pei San
  surname: Ang
  fullname: Ang, Pei San
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 4
  givenname: Wei Ping Celine
  surname: Loke
  fullname: Loke, Wei Ping Celine
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 5
  givenname: Mun Yee
  surname: Tham
  fullname: Tham, Mun Yee
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 6
  givenname: Siew Har
  surname: Tan
  fullname: Tan, Siew Har
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 7
  givenname: Bee Leng Sally
  surname: Soh
  fullname: Soh, Bee Leng Sally
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 8
  givenname: Pei Qin Belinda
  surname: Foo
  fullname: Foo, Pei Qin Belinda
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
– sequence: 9
  givenname: Zheng Jye
  surname: Ling
  fullname: Ling, Zheng Jye
  organization: Regional Health System Office, National University of Singapore, National University Health System
– sequence: 10
  givenname: Wei Luen James
  surname: Yip
  fullname: Yip, Wei Luen James
  organization: Department of Cardiology, National University Heart Centre, Academic Informatics Office, National University Health System
– sequence: 11
  givenname: Yixuan
  surname: Tang
  fullname: Tang, Yixuan
  organization: Department of Computer Science, School of Computing, National University of Singapore
– sequence: 12
  givenname: Jisong
  surname: Yang
  fullname: Yang, Jisong
  organization: Department of Computer Science, School of Computing, National University of Singapore
– sequence: 13
  givenname: Kum Hoe Anthony
  surname: Tung
  fullname: Tung, Kum Hoe Anthony
  organization: Department of Computer Science, School of Computing, National University of Singapore
– sequence: 14
  givenname: Sreemanee Raaj
  orcidid: 0000-0002-9613-6994
  surname: Dorajoo
  fullname: Dorajoo, Sreemanee Raaj
  email: sreemanee_dorajoo@hsa.gov.sg
  organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority
BookMark eNp9kc9u1DAQxi1UJLaFF-BkiXPAfzZxciy7hVZahFTgbDn2JOsqsRfbKe3z8KLMdpGQOPRkefz9xvPNd07OQgxAyFvO3nPG1Ie8ZqJZV0yIinHeNdXDC7LiXHUV79bijKywuq7qjjevyHnOd4yxVjTtivzexLn3wYeRfjF27wPQHZj0VPjly54aertMUH00GRy9nMaYsDrTEukWCthCTXD0xkEofniktzCZgsIrvBYPmcaBbqNdZnw_8u4eUga6TcuIWmOLjwFFgV7HfPDFTHTrs92bNAL9tsyzSdjkNXk5mCnDm7_nBfnx6er75rraff18s7ncVVbWoqBTyRUfWMedY73razY4M8imkaKre-lwA9BDLRuAztaq7ftGMMUVA6u4tK28IO9OfQ8p_lwgF30XlxTwSy3UcYFKtQxV7UllU8w5waAtDn40UpLxk-ZMHyPRp0g0RqKfItEPiIr_0EPy6PHxeUieoIziMEL6N9Uz1B_fvKMj
CitedBy_id crossref_primary_10_1007_s10489_022_04346_x
crossref_primary_10_1007_s40264_025_01525_w
crossref_primary_10_1016_j_engappai_2024_109028
crossref_primary_10_1109_TCBB_2024_3492708
crossref_primary_10_1007_s40278_022_19038_9
Cites_doi 10.1136/bmjopen-2019-030515
10.1016/j.bdr.2016.04.001
10.1007/s40264-018-0761-0
10.1038/sdata.2016.35
10.2165/00002018-200629050-00003
10.2196/publichealth.6396
10.3389/fphar.2018.00350
10.1016/j.ijmedinf.2019.04.017
10.1007/s40264-018-0763-y
10.1093/jamia/ocz101
10.1007/s40264-018-0764-x
10.2196/27714
10.1038/s41397-018-0053-1
10.1038/clpt.1981.154
10.1093/jamia/ocw180
10.1007/s40264-018-0762-z
10.1177/003368829202300105
10.2165/00002018-200932010-00002
10.1136/jamia.2001.0080254
10.1136/amiajnl-2011-000116
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
Copyright Springer Nature B.V. Aug 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
– notice: Copyright Springer Nature B.V. Aug 2022
DBID AAYXX
CITATION
3V.
4T-
7RV
7T2
7TK
7U7
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
C1K
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1007/s40264-022-01196-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Docstoc
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Proquest Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Docstoc
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1179-1942
EndPage 862
ExternalDocumentID 10_1007_s40264_022_01196_x
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GrantInformation_xml – fundername: Biomedical Research Council of the Agency for Science, Technology and Research of Singapore
  grantid: SPF2014/001
GroupedDBID ---
-EM
04C
0R~
199
29G
2JY
36B
3V.
4.4
406
53G
5GY
5RE
6I2
6PF
7RV
7X7
88E
8FI
8FJ
8R4
8R5
95.
AAAUJ
AACDK
AADNT
AAIAL
AAIKX
AAJKR
AAKAS
AANZL
AARHV
AASML
AATNV
AAWTL
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABFTV
ABIPD
ABJNI
ABJOX
ABKCH
ABKMS
ABKTR
ABLLE
ABMNI
ABOCM
ABPLI
ABTKH
ABTMW
ABUWG
ABWHX
ABXPI
ACAOD
ACCOQ
ACCUX
ACDTI
ACGFO
ACGFS
ACMJI
ACMLO
ACOKC
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADFZG
ADJJI
ADQRH
ADRFC
ADURQ
ADYOE
ADZCM
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEYRQ
AFBBN
AFKRA
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGQEE
AGQMX
AGRTI
AHIZS
AHMBA
AHSBF
AIAKS
AIGIU
AILAN
AIZAD
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ASPBG
AVWKF
AWSVR
AXYYD
AZFZN
A~4
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
BYPQX
CAG
CCPQU
COF
CS3
DCUDU
DNIVK
DPUIP
DU5
EBLON
EBS
EJD
EMOBN
ESX
EX3
F5P
FERAY
FIGPU
FLLZZ
FNLPD
FSGXE
FYUFA
HMCUK
IAO
IHR
IMOTQ
INH
INR
ITC
IWAJR
J-C
J5H
JZLTJ
L7B
LGEZI
LLZTM
LOTEE
M1P
M4Y
NADUK
NAPCQ
NQJWS
NU0
NXXTH
O9-
OAC
OPC
OVD
P2P
PQQKQ
PROAC
PSQYO
Q2X
ROL
RSV
RZALA
SISQX
SJYHP
SNPRN
SNX
SOHCF
SOJ
SPKJE
SRMVM
SSLCW
TEORI
TSG
U9L
UAX
UG4
UKHRP
UTJUX
VDBLX
VFIZW
W48
WAF
WOW
YFH
YQY
Z0Y
ZGI
ZXP
~JE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
4T-
7T2
7TK
7U7
7XB
8FK
C1K
K9.
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c352t-193171f091dd0bdb50fdaf3663295b3d114ebe536ee9c578bb6207170ec713c83
IEDL.DBID BENPR
ISSN 0114-5916
IngestDate Fri Oct 03 06:40:50 EDT 2025
Wed Oct 01 01:08:18 EDT 2025
Thu Apr 24 23:13:16 EDT 2025
Fri Feb 21 02:46:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-193171f091dd0bdb50fdaf3663295b3d114ebe536ee9c578bb6207170ec713c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9613-6994
PQID 2701147780
PQPubID 32187
PageCount 10
ParticipantIDs proquest_journals_2701147780
crossref_citationtrail_10_1007_s40264_022_01196_x
crossref_primary_10_1007_s40264_022_01196_x
springer_journals_10_1007_s40264_022_01196_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Auckland
PublicationSubtitle The Official Journal of the International Society of Pharmacovigilance [ISoP]
PublicationTitle Drug safety
PublicationTitleAbbrev Drug Saf
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Jagannatha, Liu, Liu, Yu (CR9) 2019; 42
Ang, Tham, Tan, Soh, Foo, Loke (CR8) 2016; 4
Christopoulou, Tran, Sahu, Miwa, Ananiadou (CR20) 2020; 27
Lavertu, Hamamsy, Altman (CR21) 2021; 23
CR17
Alvaro, Miyao, Collier (CR22) 2017; 3
Naranjo, Busto, Sellers, Sandor, Ruiz, Roberts (CR23) 1981; 30
Komagamine, Kobayashi (CR5) 2019; 9
CR15
Chapman, Peterson, Alba, DuVall, Patterson (CR12) 2019; 42
CR14
Nelson, Zeng, Kilbourne, Powell, Moore (CR16) 2011; 18
Giardina, Cutroneo, Mocciaro, Russo, Mandraffino, Basile (CR3) 2018; 9
Hazell, Shakir (CR2) 2006; 29
Chan, Ng, Sung, Chan, Winther, Brunham (CR4) 2019; 19
Yang, Bian, Gong, Hogan, Wu (CR11) 2019; 42
Lopez-Gonzalez, Herdeiro, Figueiras (CR1) 2009; 32
Tang, Yang, Ang, Dorajoo, Foo, Soh (CR7) 2019; 128
Cocos, Fiks, Masino (CR19) 2017; 24
Honigman, Lee, Rothschild, Light, Pulling, Yu (CR6) 2001; 8
Dandala, Joopudi, Devarakonda (CR10) 2019; 42
Johnson, Pollard, Shen, Lehman, Feng, Ghassemi (CR13) 2016; 24
Xuelan, Graeme (CR24) 1992; 23
Bochkarev, Shevlyakova, Solovyev (CR18) 2012; 14
E Lopez-Gonzalez (1196_CR1) 2009; 32
L Hazell (1196_CR2) 2006; 29
1196_CR17
1196_CR14
1196_CR15
SJ Nelson (1196_CR16) 2011; 18
A Cocos (1196_CR19) 2017; 24
F Christopoulou (1196_CR20) 2020; 27
CA Naranjo (1196_CR23) 1981; 30
Y Tang (1196_CR7) 2019; 128
A Jagannatha (1196_CR9) 2019; 42
J Komagamine (1196_CR5) 2019; 9
PS Ang (1196_CR8) 2016; 4
F Xuelan (1196_CR24) 1992; 23
SL Chan (1196_CR4) 2019; 19
B Honigman (1196_CR6) 2001; 8
N Alvaro (1196_CR22) 2017; 3
A Lavertu (1196_CR21) 2021; 23
C Giardina (1196_CR3) 2018; 9
B Dandala (1196_CR10) 2019; 42
AB Chapman (1196_CR12) 2019; 42
X Yang (1196_CR11) 2019; 42
AE Johnson (1196_CR13) 2016; 24
VV Bochkarev (1196_CR18) 2012; 14
References_xml – volume: 9
  issue: 8
  year: 2019
  ident: CR5
  article-title: Prevalence of hospitalisation caused by adverse drug reactions at an internal medicine ward of a single centre in Japan: a cross-sectional study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-030515
– volume: 4
  start-page: 37
  issue: C
  year: 2016
  end-page: 43
  ident: CR8
  article-title: Towards human-machine collaboration in creating an evaluation corpus for adverse drug events in discharge summaries of electronic medical records
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2016.04.001
– volume: 42
  start-page: 123
  issue: 1
  year: 2019
  end-page: 133
  ident: CR11
  article-title: MADEx: a system for detecting medications, adverse drug events, and their relations from clinical notes
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0761-0
– volume: 24
  issue: 3
  year: 2016
  ident: CR13
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci Data.
  doi: 10.1038/sdata.2016.35
– volume: 29
  start-page: 385
  issue: 5
  year: 2006
  end-page: 396
  ident: CR2
  article-title: Under-reporting of adverse drug reactions : a systematic review
  publication-title: Drug Saf
  doi: 10.2165/00002018-200629050-00003
– volume: 3
  issue: 2
  year: 2017
  ident: CR22
  article-title: TwiMed: Twitter and PubMed comparable corpus of drugs, diseases, symptoms, and their relations
  publication-title: JMIR Public Health Surveill
  doi: 10.2196/publichealth.6396
– ident: CR14
– ident: CR15
– ident: CR17
– volume: 9
  start-page: 350
  year: 2018
  ident: CR3
  article-title: Adverse drug reactions in hospitalized patients: results of the FORWARD (Facilitation of Reporting in Hospital Ward) Study
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00350
– volume: 128
  start-page: 62
  year: 2019
  end-page: 70
  ident: CR7
  article-title: Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.04.017
– volume: 42
  start-page: 147
  issue: 1
  year: 2019
  end-page: 156
  ident: CR12
  article-title: Detecting adverse drug events with rapidly trained classification models
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0763-y
– volume: 27
  start-page: 39
  issue: 1
  year: 2020
  end-page: 46
  ident: CR20
  article-title: Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz101
– volume: 42
  start-page: 135
  issue: 1
  year: 2019
  end-page: 146
  ident: CR10
  article-title: Adverse drug events detection in clinical notes by jointly modeling entities and relations using neural networks
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0764-x
– volume: 23
  issue: 10
  year: 2021
  ident: CR21
  article-title: Quantifying the severity of adverse drug reactions using social media: network analysis
  publication-title: J Med Internet Res
  doi: 10.2196/27714
– volume: 19
  start-page: 401
  issue: 4
  year: 2019
  end-page: 410
  ident: CR4
  article-title: Economic burden of adverse drug reactions and potential for pharmacogenomic testing in Singaporean adults
  publication-title: Pharmacogenom J
  doi: 10.1038/s41397-018-0053-1
– volume: 30
  start-page: 239
  issue: 2
  year: 1981
  end-page: 245
  ident: CR23
  article-title: A method for estimating the probability of adverse drug reactions
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1981.154
– volume: 14
  start-page: 153
  issue: 2
  year: 2012
  end-page: 175
  ident: CR18
  article-title: Average word length dynamics as indicator of cultural changes in society
  publication-title: Soc Evol Hist
– volume: 24
  start-page: 813
  issue: 4
  year: 2017
  end-page: 821
  ident: CR19
  article-title: Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw180
– volume: 42
  start-page: 99
  issue: 1
  year: 2019
  end-page: 111
  ident: CR9
  article-title: Overview of the first natural language processing challenge for extracting medication, indication, and adverse drug events from electronic health record notes (MADE 1.0)
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0762-z
– volume: 23
  start-page: 62
  issue: 1
  year: 1992
  end-page: 80
  ident: CR24
  article-title: Expressing causation in written English
  publication-title: RELC J
  doi: 10.1177/003368829202300105
– volume: 32
  start-page: 19
  issue: 1
  year: 2009
  end-page: 31
  ident: CR1
  article-title: Determinants of under-reporting of adverse drug reactions: a systematic review
  publication-title: Drug Saf
  doi: 10.2165/00002018-200932010-00002
– volume: 8
  start-page: 254
  issue: 3
  year: 2001
  end-page: 266
  ident: CR6
  article-title: Using computerized data to identify adverse drug events in outpatients
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2001.0080254
– volume: 18
  start-page: 441
  issue: 4
  year: 2011
  end-page: 448
  ident: CR16
  article-title: Normalized names for clinical drugs: RxNorm at 6 years
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000116
– volume: 14
  start-page: 153
  issue: 2
  year: 2012
  ident: 1196_CR18
  publication-title: Soc Evol Hist
– volume: 3
  issue: 2
  year: 2017
  ident: 1196_CR22
  publication-title: JMIR Public Health Surveill
  doi: 10.2196/publichealth.6396
– volume: 23
  start-page: 62
  issue: 1
  year: 1992
  ident: 1196_CR24
  publication-title: RELC J
  doi: 10.1177/003368829202300105
– volume: 18
  start-page: 441
  issue: 4
  year: 2011
  ident: 1196_CR16
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000116
– volume: 29
  start-page: 385
  issue: 5
  year: 2006
  ident: 1196_CR2
  publication-title: Drug Saf
  doi: 10.2165/00002018-200629050-00003
– volume: 30
  start-page: 239
  issue: 2
  year: 1981
  ident: 1196_CR23
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1981.154
– volume: 4
  start-page: 37
  issue: C
  year: 2016
  ident: 1196_CR8
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2016.04.001
– volume: 9
  issue: 8
  year: 2019
  ident: 1196_CR5
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-030515
– volume: 32
  start-page: 19
  issue: 1
  year: 2009
  ident: 1196_CR1
  publication-title: Drug Saf
  doi: 10.2165/00002018-200932010-00002
– volume: 24
  issue: 3
  year: 2016
  ident: 1196_CR13
  publication-title: Sci Data.
  doi: 10.1038/sdata.2016.35
– volume: 19
  start-page: 401
  issue: 4
  year: 2019
  ident: 1196_CR4
  publication-title: Pharmacogenom J
  doi: 10.1038/s41397-018-0053-1
– volume: 27
  start-page: 39
  issue: 1
  year: 2020
  ident: 1196_CR20
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz101
– volume: 42
  start-page: 99
  issue: 1
  year: 2019
  ident: 1196_CR9
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0762-z
– volume: 42
  start-page: 123
  issue: 1
  year: 2019
  ident: 1196_CR11
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0761-0
– volume: 42
  start-page: 135
  issue: 1
  year: 2019
  ident: 1196_CR10
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0764-x
– volume: 9
  start-page: 350
  year: 2018
  ident: 1196_CR3
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00350
– volume: 24
  start-page: 813
  issue: 4
  year: 2017
  ident: 1196_CR19
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw180
– volume: 42
  start-page: 147
  issue: 1
  year: 2019
  ident: 1196_CR12
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-0763-y
– volume: 23
  issue: 10
  year: 2021
  ident: 1196_CR21
  publication-title: J Med Internet Res
  doi: 10.2196/27714
– volume: 128
  start-page: 62
  year: 2019
  ident: 1196_CR7
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.04.017
– volume: 8
  start-page: 254
  issue: 3
  year: 2001
  ident: 1196_CR6
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2001.0080254
– ident: 1196_CR17
– ident: 1196_CR14
– ident: 1196_CR15
SSID ssj0008268
Score 2.4200983
Snippet Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and...
Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 853
SubjectTerms Adverse events
Algorithms
Annotations
Criteria
Datasets
Dictionaries
Drug Safety and Pharmacovigilance
Hospitals
Learning algorithms
Machine learning
Medicine
Medicine & Public Health
Original Research Article
Pharmacology/Toxicology
Pharmacovigilance
Product safety
Recall
Segments
Side effects
Summaries
Title Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries
URI https://link.springer.com/article/10.1007/s40264-022-01196-x
https://www.proquest.com/docview/2701147780
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1179-1942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008268
  issn: 0114-5916
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1179-1942
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008268
  issn: 0114-5916
  databaseCode: 7X7
  dateStart: 20080601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1179-1942
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008268
  issn: 0114-5916
  databaseCode: BENPR
  dateStart: 20080601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEB0S-1IopU1b6iY1cyi51EstraS1D6XYtU0oxJg0Ad_EfskpuHISyxD_nv7Rzq4kixaas3bnoJmdfbs77w3ARzuMuBQyYOHAhizSgaElJSQTVjiqaGJ57NjIl_Pk4ib6voyXRzCvuTCurLLOiT5Rm412d-SfQ-GguxCD_te7e-a6RrnX1bqFhqxaK5gvXmLsGNqhU8ZqQXs8nS-uDrmZwLTPzWSKxYSMKhqNJ9PRSSqJmKtudzpoCXv8e6tq8Oc_T6Z-J5q9hBcVhMRR6fNXcGTzEzhflBrU-x5eN5SqbQ_PcdGoU-9P4Hl5UYcl_-g1_KaMoHyXCLz0hZUWK83VFbpLWpR4tVtbNqbtzuBovaKfUtz-wmKDE-teIFDmBku-b7ZHX1xHA6eVVituMqSNbOe1P2m-6_-8tTh52K1obMmqoEE51g1McPJz6-WbLP7wxDoy8gZuZtPrbxes6tzANAG6ghEqDESQERYxpq-MivuZkRkndBMOY8UN_X4Knpgn1g415QylktAdLPtW06FZD_hbaOWb3L4DDAMd0xQVCQI-2krFNR9yTUGVEZYayA4EtZNSXcmau-4a6_QgyOwdm5JjU-_Y9LEDnw5z7kpRjydHn9W-T6sFvk2bcOxAr46H5vP_rb1_2topPAt9CLoSwzNoFQ87-4FgT6G6cCyWogvt0Ww8nneryP4DgkMCDQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gBShaCASCkwB-iFrIi9_ogPFWpJqpQ2UVRSqTdj767TSqnT1o5ofg__g9_G7HodCyR669m7Y1kz3nm7O-8NwAcVeTwJE4e5XeUyTziSfqkwYaEKNVU0UNzXbOThKBiced_O_fM1-F1zYXRZZb0mmoVazoU-I__shhq6h2G38-X6humuUfp2tW6hkdjWCnLPSIxZYsexWv6kLVyxd9Qjf3903cP-5OuA2S4DTBD4KBkhGCd0MsqbUnZSmfqdTCYZp0zsRn7KJb2VPtTngVKRoPhO08DVm6COErTBE11Odh_Bhse9iDZ_Gwf90fh0lQsIvJtcQEaYT0jM0nYMeY92boHHdDW91l0L2N3fqbHBu_9c0ZrMd_gMnlrIivtVjD2HNZVvwe640rxetnHSULiKNu7iuFHDXm7BZnUwiBXf6QX8ohUoNV0pcGgKORVajdcp6kNhTPB0MVPsgNKrxP3ZlJxQXlxhOcee0jcemOQSK35xtkRTzEcD-1YbFucZUuJcGK1Rmq_7TRcKe7eLKY2tWBw0KMe6YQr2LgsjF6XwuyHykZGXcPYgPnwF6_k8V68BXUf4NCX1QgJaQiUpFzzigoI4I-zWTVrg1E6KhZVR1908ZvFKANo4NibHxsax8V0LPq3mXFciIveO3ql9H9sFpYib8G9Bu46H5vH_rW3fb-09PB5MhifxydHo-A08cU046vLGHVgvbxfqLUGuMn1n4xrhx0P_Sn8AJUQ77g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NISGkCcEA0THgHmAv1FpjJ3HzgNAgqzbGpgo2qW8hdpwOqaTbkor19_Av-HWcnaQRSOxtz7Uvae7su7Pv-w7gtYl8kcrUY3xoOPO1l9GSkimTRlqoaGhEYNHIxyfhwZn_aRJM1uB3i4WxZZXtnug26myu7Rn5Lpc2dJdyONjNm7KIcTx6f3HJbAcpe9PattOoTeTILH9S-la-O4xJ1284H-2ffjxgTYcBpinwqBhFL570cvKZWTZQmQoGeZbmgrwwjwIlMnoi_clAhMZEmmxbqZDbBGhgNCV3eihI7h24K4WIbDmhnKySPfKsDoZnX5oFFIM1gB0H26OcLfSZraO3jGshu_7bKXaR7j-Xs87njR7CgyZYxb3auh7Bmik2YWdcs10v-3jagbfKPu7guOPBXm7CRn0kiDXS6TH8or1HuX4UeOxKOA027K5TtMfBmOKXxcywD-RYM9ybTemTV-c_sJpjbOxdB6ZFhjWyOF-iK-OjgfsNKyzOcySXuXAsozTfdpouDcZXiymNrfEbNKjAtlUKxt9LRxRl8KuD8JGQJ3B2Kxp8CuvFvDDPALmnA5qifEkhljapElpEQpP55hS1DdMeeK2SEt0QqNs-HrNkRf3sFJuQYhOn2OS6B29Xcy5q-pAbR2-3uk-araRMOsPvQb-1h-7n_0vbulnaK7hHCyj5fHhy9Bzuc2eNtq5xG9arq4V5QbFWpV46o0b4dtur6A93tzmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Machine+Learning+with+a+Rule-Based+Algorithm+to+Detect+and+Identify+Related+Entities+of+Documented+Adverse+Drug+Reactions+on+Hospital+Discharge+Summaries&rft.jtitle=Drug+safety&rft.au=Tan%2C+Hui+Xing&rft.au=Teo%2C+Chun+Hwee+Desmond&rft.au=Ang%2C+Pei+San&rft.au=Loke%2C+Wei+Ping+Celine&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0114-5916&rft.eissn=1179-1942&rft.volume=45&rft.issue=8&rft.spage=853&rft.epage=862&rft_id=info:doi/10.1007%2Fs40264-022-01196-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0114-5916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0114-5916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0114-5916&client=summon