Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries
Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related dru...
Saved in:
| Published in | Drug safety Vol. 45; no. 8; pp. 853 - 862 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.08.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0114-5916 1179-1942 |
| DOI | 10.1007/s40264-022-01196-x |
Cover
| Abstract | Introduction
Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction.
Methods
A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations.
Results
The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively.
Conclusions
The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12–14% reduction in recall but improves identification of the related drug and adverse event terms. |
|---|---|
| AbstractList | Introduction
Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction.
Methods
A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations.
Results
The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively.
Conclusions
The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12–14% reduction in recall but improves identification of the related drug and adverse event terms. Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction. Methods A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations. Results The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively. Conclusions The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12-14% reduction in recall but improves identification of the related drug and adverse event terms. |
| Author | Tung, Kum Hoe Anthony Tan, Hui Xing Tham, Mun Yee Yang, Jisong Dorajoo, Sreemanee Raaj Soh, Bee Leng Sally Teo, Chun Hwee Desmond Foo, Pei Qin Belinda Loke, Wei Ping Celine Ling, Zheng Jye Tan, Siew Har Yip, Wei Luen James Tang, Yixuan Ang, Pei San |
| Author_xml | – sequence: 1 givenname: Hui Xing surname: Tan fullname: Tan, Hui Xing organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 2 givenname: Chun Hwee Desmond surname: Teo fullname: Teo, Chun Hwee Desmond organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 3 givenname: Pei San surname: Ang fullname: Ang, Pei San organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 4 givenname: Wei Ping Celine surname: Loke fullname: Loke, Wei Ping Celine organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 5 givenname: Mun Yee surname: Tham fullname: Tham, Mun Yee organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 6 givenname: Siew Har surname: Tan fullname: Tan, Siew Har organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 7 givenname: Bee Leng Sally surname: Soh fullname: Soh, Bee Leng Sally organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 8 givenname: Pei Qin Belinda surname: Foo fullname: Foo, Pei Qin Belinda organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority – sequence: 9 givenname: Zheng Jye surname: Ling fullname: Ling, Zheng Jye organization: Regional Health System Office, National University of Singapore, National University Health System – sequence: 10 givenname: Wei Luen James surname: Yip fullname: Yip, Wei Luen James organization: Department of Cardiology, National University Heart Centre, Academic Informatics Office, National University Health System – sequence: 11 givenname: Yixuan surname: Tang fullname: Tang, Yixuan organization: Department of Computer Science, School of Computing, National University of Singapore – sequence: 12 givenname: Jisong surname: Yang fullname: Yang, Jisong organization: Department of Computer Science, School of Computing, National University of Singapore – sequence: 13 givenname: Kum Hoe Anthony surname: Tung fullname: Tung, Kum Hoe Anthony organization: Department of Computer Science, School of Computing, National University of Singapore – sequence: 14 givenname: Sreemanee Raaj orcidid: 0000-0002-9613-6994 surname: Dorajoo fullname: Dorajoo, Sreemanee Raaj email: sreemanee_dorajoo@hsa.gov.sg organization: Vigilance and Compliance Branch, Health Products Regulation Group, Health Sciences Authority |
| BookMark | eNp9kc9u1DAQxi1UJLaFF-BkiXPAfzZxciy7hVZahFTgbDn2JOsqsRfbKe3z8KLMdpGQOPRkefz9xvPNd07OQgxAyFvO3nPG1Ie8ZqJZV0yIinHeNdXDC7LiXHUV79bijKywuq7qjjevyHnOd4yxVjTtivzexLn3wYeRfjF27wPQHZj0VPjly54aertMUH00GRy9nMaYsDrTEukWCthCTXD0xkEofniktzCZgsIrvBYPmcaBbqNdZnw_8u4eUga6TcuIWmOLjwFFgV7HfPDFTHTrs92bNAL9tsyzSdjkNXk5mCnDm7_nBfnx6er75rraff18s7ncVVbWoqBTyRUfWMedY73razY4M8imkaKre-lwA9BDLRuAztaq7ftGMMUVA6u4tK28IO9OfQ8p_lwgF30XlxTwSy3UcYFKtQxV7UllU8w5waAtDn40UpLxk-ZMHyPRp0g0RqKfItEPiIr_0EPy6PHxeUieoIziMEL6N9Uz1B_fvKMj |
| CitedBy_id | crossref_primary_10_1007_s10489_022_04346_x crossref_primary_10_1007_s40264_025_01525_w crossref_primary_10_1016_j_engappai_2024_109028 crossref_primary_10_1109_TCBB_2024_3492708 crossref_primary_10_1007_s40278_022_19038_9 |
| Cites_doi | 10.1136/bmjopen-2019-030515 10.1016/j.bdr.2016.04.001 10.1007/s40264-018-0761-0 10.1038/sdata.2016.35 10.2165/00002018-200629050-00003 10.2196/publichealth.6396 10.3389/fphar.2018.00350 10.1016/j.ijmedinf.2019.04.017 10.1007/s40264-018-0763-y 10.1093/jamia/ocz101 10.1007/s40264-018-0764-x 10.2196/27714 10.1038/s41397-018-0053-1 10.1038/clpt.1981.154 10.1093/jamia/ocw180 10.1007/s40264-018-0762-z 10.1177/003368829202300105 10.2165/00002018-200932010-00002 10.1136/jamia.2001.0080254 10.1136/amiajnl-2011-000116 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Copyright Springer Nature B.V. Aug 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 – notice: Copyright Springer Nature B.V. Aug 2022 |
| DBID | AAYXX CITATION 3V. 4T- 7RV 7T2 7TK 7U7 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS |
| DOI | 10.1007/s40264-022-01196-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Docstoc Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Proquest Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Docstoc ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | ProQuest One Academic Middle East (New) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1179-1942 |
| EndPage | 862 |
| ExternalDocumentID | 10_1007_s40264_022_01196_x |
| GeographicLocations | Singapore |
| GeographicLocations_xml | – name: Singapore |
| GrantInformation_xml | – fundername: Biomedical Research Council of the Agency for Science, Technology and Research of Singapore grantid: SPF2014/001 |
| GroupedDBID | --- -EM 04C 0R~ 199 29G 2JY 36B 3V. 4.4 406 53G 5GY 5RE 6I2 6PF 7RV 7X7 88E 8FI 8FJ 8R4 8R5 95. AAAUJ AACDK AADNT AAIAL AAIKX AAJKR AAKAS AANZL AARHV AASML AATNV AAWTL AAYOK AAYQN AAYTO AAYZH ABAKF ABDZT ABFTV ABIPD ABJNI ABJOX ABKCH ABKMS ABKTR ABLLE ABMNI ABOCM ABPLI ABTKH ABTMW ABUWG ABWHX ABXPI ACAOD ACCOQ ACCUX ACDTI ACGFO ACGFS ACMJI ACMLO ACOKC ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADFZG ADJJI ADQRH ADRFC ADURQ ADYOE ADZCM ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AEYRQ AFBBN AFKRA AFRAH AFWTZ AFZKB AGAYW AGDGC AGQEE AGQMX AGRTI AHIZS AHMBA AHSBF AIAKS AIGIU AILAN AIZAD AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ASPBG AVWKF AWSVR AXYYD AZFZN A~4 BENPR BGNMA BKEYQ BPHCQ BVXVI BYPQX CAG CCPQU COF CS3 DCUDU DNIVK DPUIP DU5 EBLON EBS EJD EMOBN ESX EX3 F5P FERAY FIGPU FLLZZ FNLPD FSGXE FYUFA HMCUK IAO IHR IMOTQ INH INR ITC IWAJR J-C J5H JZLTJ L7B LGEZI LLZTM LOTEE M1P M4Y NADUK NAPCQ NQJWS NU0 NXXTH O9- OAC OPC OVD P2P PQQKQ PROAC PSQYO Q2X ROL RSV RZALA SISQX SJYHP SNPRN SNX SOHCF SOJ SPKJE SRMVM SSLCW TEORI TSG U9L UAX UG4 UKHRP UTJUX VDBLX VFIZW W48 WAF WOW YFH YQY Z0Y ZGI ZXP ~JE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO 4T- 7T2 7TK 7U7 7XB 8FK C1K K9. PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c352t-193171f091dd0bdb50fdaf3663295b3d114ebe536ee9c578bb6207170ec713c83 |
| IEDL.DBID | BENPR |
| ISSN | 0114-5916 |
| IngestDate | Fri Oct 03 06:40:50 EDT 2025 Wed Oct 01 01:08:18 EDT 2025 Thu Apr 24 23:13:16 EDT 2025 Fri Feb 21 02:46:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-193171f091dd0bdb50fdaf3663295b3d114ebe536ee9c578bb6207170ec713c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9613-6994 |
| PQID | 2701147780 |
| PQPubID | 32187 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2701147780 crossref_citationtrail_10_1007_s40264_022_01196_x crossref_primary_10_1007_s40264_022_01196_x springer_journals_10_1007_s40264_022_01196_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220800 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Auckland |
| PublicationSubtitle | The Official Journal of the International Society of Pharmacovigilance [ISoP] |
| PublicationTitle | Drug safety |
| PublicationTitleAbbrev | Drug Saf |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Jagannatha, Liu, Liu, Yu (CR9) 2019; 42 Ang, Tham, Tan, Soh, Foo, Loke (CR8) 2016; 4 Christopoulou, Tran, Sahu, Miwa, Ananiadou (CR20) 2020; 27 Lavertu, Hamamsy, Altman (CR21) 2021; 23 CR17 Alvaro, Miyao, Collier (CR22) 2017; 3 Naranjo, Busto, Sellers, Sandor, Ruiz, Roberts (CR23) 1981; 30 Komagamine, Kobayashi (CR5) 2019; 9 CR15 Chapman, Peterson, Alba, DuVall, Patterson (CR12) 2019; 42 CR14 Nelson, Zeng, Kilbourne, Powell, Moore (CR16) 2011; 18 Giardina, Cutroneo, Mocciaro, Russo, Mandraffino, Basile (CR3) 2018; 9 Hazell, Shakir (CR2) 2006; 29 Chan, Ng, Sung, Chan, Winther, Brunham (CR4) 2019; 19 Yang, Bian, Gong, Hogan, Wu (CR11) 2019; 42 Lopez-Gonzalez, Herdeiro, Figueiras (CR1) 2009; 32 Tang, Yang, Ang, Dorajoo, Foo, Soh (CR7) 2019; 128 Cocos, Fiks, Masino (CR19) 2017; 24 Honigman, Lee, Rothschild, Light, Pulling, Yu (CR6) 2001; 8 Dandala, Joopudi, Devarakonda (CR10) 2019; 42 Johnson, Pollard, Shen, Lehman, Feng, Ghassemi (CR13) 2016; 24 Xuelan, Graeme (CR24) 1992; 23 Bochkarev, Shevlyakova, Solovyev (CR18) 2012; 14 E Lopez-Gonzalez (1196_CR1) 2009; 32 L Hazell (1196_CR2) 2006; 29 1196_CR17 1196_CR14 1196_CR15 SJ Nelson (1196_CR16) 2011; 18 A Cocos (1196_CR19) 2017; 24 F Christopoulou (1196_CR20) 2020; 27 CA Naranjo (1196_CR23) 1981; 30 Y Tang (1196_CR7) 2019; 128 A Jagannatha (1196_CR9) 2019; 42 J Komagamine (1196_CR5) 2019; 9 PS Ang (1196_CR8) 2016; 4 F Xuelan (1196_CR24) 1992; 23 SL Chan (1196_CR4) 2019; 19 B Honigman (1196_CR6) 2001; 8 N Alvaro (1196_CR22) 2017; 3 A Lavertu (1196_CR21) 2021; 23 C Giardina (1196_CR3) 2018; 9 B Dandala (1196_CR10) 2019; 42 AB Chapman (1196_CR12) 2019; 42 X Yang (1196_CR11) 2019; 42 AE Johnson (1196_CR13) 2016; 24 VV Bochkarev (1196_CR18) 2012; 14 |
| References_xml | – volume: 9 issue: 8 year: 2019 ident: CR5 article-title: Prevalence of hospitalisation caused by adverse drug reactions at an internal medicine ward of a single centre in Japan: a cross-sectional study publication-title: BMJ Open doi: 10.1136/bmjopen-2019-030515 – volume: 4 start-page: 37 issue: C year: 2016 end-page: 43 ident: CR8 article-title: Towards human-machine collaboration in creating an evaluation corpus for adverse drug events in discharge summaries of electronic medical records publication-title: Big Data Res doi: 10.1016/j.bdr.2016.04.001 – volume: 42 start-page: 123 issue: 1 year: 2019 end-page: 133 ident: CR11 article-title: MADEx: a system for detecting medications, adverse drug events, and their relations from clinical notes publication-title: Drug Saf doi: 10.1007/s40264-018-0761-0 – volume: 24 issue: 3 year: 2016 ident: CR13 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci Data. doi: 10.1038/sdata.2016.35 – volume: 29 start-page: 385 issue: 5 year: 2006 end-page: 396 ident: CR2 article-title: Under-reporting of adverse drug reactions : a systematic review publication-title: Drug Saf doi: 10.2165/00002018-200629050-00003 – volume: 3 issue: 2 year: 2017 ident: CR22 article-title: TwiMed: Twitter and PubMed comparable corpus of drugs, diseases, symptoms, and their relations publication-title: JMIR Public Health Surveill doi: 10.2196/publichealth.6396 – ident: CR14 – ident: CR15 – ident: CR17 – volume: 9 start-page: 350 year: 2018 ident: CR3 article-title: Adverse drug reactions in hospitalized patients: results of the FORWARD (Facilitation of Reporting in Hospital Ward) Study publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00350 – volume: 128 start-page: 62 year: 2019 end-page: 70 ident: CR7 article-title: Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2019.04.017 – volume: 42 start-page: 147 issue: 1 year: 2019 end-page: 156 ident: CR12 article-title: Detecting adverse drug events with rapidly trained classification models publication-title: Drug Saf doi: 10.1007/s40264-018-0763-y – volume: 27 start-page: 39 issue: 1 year: 2020 end-page: 46 ident: CR20 article-title: Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz101 – volume: 42 start-page: 135 issue: 1 year: 2019 end-page: 146 ident: CR10 article-title: Adverse drug events detection in clinical notes by jointly modeling entities and relations using neural networks publication-title: Drug Saf doi: 10.1007/s40264-018-0764-x – volume: 23 issue: 10 year: 2021 ident: CR21 article-title: Quantifying the severity of adverse drug reactions using social media: network analysis publication-title: J Med Internet Res doi: 10.2196/27714 – volume: 19 start-page: 401 issue: 4 year: 2019 end-page: 410 ident: CR4 article-title: Economic burden of adverse drug reactions and potential for pharmacogenomic testing in Singaporean adults publication-title: Pharmacogenom J doi: 10.1038/s41397-018-0053-1 – volume: 30 start-page: 239 issue: 2 year: 1981 end-page: 245 ident: CR23 article-title: A method for estimating the probability of adverse drug reactions publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.1981.154 – volume: 14 start-page: 153 issue: 2 year: 2012 end-page: 175 ident: CR18 article-title: Average word length dynamics as indicator of cultural changes in society publication-title: Soc Evol Hist – volume: 24 start-page: 813 issue: 4 year: 2017 end-page: 821 ident: CR19 article-title: Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocw180 – volume: 42 start-page: 99 issue: 1 year: 2019 end-page: 111 ident: CR9 article-title: Overview of the first natural language processing challenge for extracting medication, indication, and adverse drug events from electronic health record notes (MADE 1.0) publication-title: Drug Saf doi: 10.1007/s40264-018-0762-z – volume: 23 start-page: 62 issue: 1 year: 1992 end-page: 80 ident: CR24 article-title: Expressing causation in written English publication-title: RELC J doi: 10.1177/003368829202300105 – volume: 32 start-page: 19 issue: 1 year: 2009 end-page: 31 ident: CR1 article-title: Determinants of under-reporting of adverse drug reactions: a systematic review publication-title: Drug Saf doi: 10.2165/00002018-200932010-00002 – volume: 8 start-page: 254 issue: 3 year: 2001 end-page: 266 ident: CR6 article-title: Using computerized data to identify adverse drug events in outpatients publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2001.0080254 – volume: 18 start-page: 441 issue: 4 year: 2011 end-page: 448 ident: CR16 article-title: Normalized names for clinical drugs: RxNorm at 6 years publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000116 – volume: 14 start-page: 153 issue: 2 year: 2012 ident: 1196_CR18 publication-title: Soc Evol Hist – volume: 3 issue: 2 year: 2017 ident: 1196_CR22 publication-title: JMIR Public Health Surveill doi: 10.2196/publichealth.6396 – volume: 23 start-page: 62 issue: 1 year: 1992 ident: 1196_CR24 publication-title: RELC J doi: 10.1177/003368829202300105 – volume: 18 start-page: 441 issue: 4 year: 2011 ident: 1196_CR16 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000116 – volume: 29 start-page: 385 issue: 5 year: 2006 ident: 1196_CR2 publication-title: Drug Saf doi: 10.2165/00002018-200629050-00003 – volume: 30 start-page: 239 issue: 2 year: 1981 ident: 1196_CR23 publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.1981.154 – volume: 4 start-page: 37 issue: C year: 2016 ident: 1196_CR8 publication-title: Big Data Res doi: 10.1016/j.bdr.2016.04.001 – volume: 9 issue: 8 year: 2019 ident: 1196_CR5 publication-title: BMJ Open doi: 10.1136/bmjopen-2019-030515 – volume: 32 start-page: 19 issue: 1 year: 2009 ident: 1196_CR1 publication-title: Drug Saf doi: 10.2165/00002018-200932010-00002 – volume: 24 issue: 3 year: 2016 ident: 1196_CR13 publication-title: Sci Data. doi: 10.1038/sdata.2016.35 – volume: 19 start-page: 401 issue: 4 year: 2019 ident: 1196_CR4 publication-title: Pharmacogenom J doi: 10.1038/s41397-018-0053-1 – volume: 27 start-page: 39 issue: 1 year: 2020 ident: 1196_CR20 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz101 – volume: 42 start-page: 99 issue: 1 year: 2019 ident: 1196_CR9 publication-title: Drug Saf doi: 10.1007/s40264-018-0762-z – volume: 42 start-page: 123 issue: 1 year: 2019 ident: 1196_CR11 publication-title: Drug Saf doi: 10.1007/s40264-018-0761-0 – volume: 42 start-page: 135 issue: 1 year: 2019 ident: 1196_CR10 publication-title: Drug Saf doi: 10.1007/s40264-018-0764-x – volume: 9 start-page: 350 year: 2018 ident: 1196_CR3 publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00350 – volume: 24 start-page: 813 issue: 4 year: 2017 ident: 1196_CR19 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocw180 – volume: 42 start-page: 147 issue: 1 year: 2019 ident: 1196_CR12 publication-title: Drug Saf doi: 10.1007/s40264-018-0763-y – volume: 23 issue: 10 year: 2021 ident: 1196_CR21 publication-title: J Med Internet Res doi: 10.2196/27714 – volume: 128 start-page: 62 year: 2019 ident: 1196_CR7 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2019.04.017 – volume: 8 start-page: 254 issue: 3 year: 2001 ident: 1196_CR6 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2001.0080254 – ident: 1196_CR17 – ident: 1196_CR14 – ident: 1196_CR15 |
| SSID | ssj0008268 |
| Score | 2.4200983 |
| Snippet | Introduction
Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and... Introduction Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 853 |
| SubjectTerms | Adverse events Algorithms Annotations Criteria Datasets Dictionaries Drug Safety and Pharmacovigilance Hospitals Learning algorithms Machine learning Medicine Medicine & Public Health Original Research Article Pharmacology/Toxicology Pharmacovigilance Product safety Recall Segments Side effects Summaries |
| Title | Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries |
| URI | https://link.springer.com/article/10.1007/s40264-022-01196-x https://www.proquest.com/docview/2701147780 |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1179-1942 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008268 issn: 0114-5916 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1179-1942 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008268 issn: 0114-5916 databaseCode: 7X7 dateStart: 20080601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1179-1942 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008268 issn: 0114-5916 databaseCode: BENPR dateStart: 20080601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEB0S-1IopU1b6iY1cyi51EstraS1D6XYtU0oxJg0Ad_EfskpuHISyxD_nv7Rzq4kixaas3bnoJmdfbs77w3ARzuMuBQyYOHAhizSgaElJSQTVjiqaGJ57NjIl_Pk4ib6voyXRzCvuTCurLLOiT5Rm412d-SfQ-GguxCD_te7e-a6RrnX1bqFhqxaK5gvXmLsGNqhU8ZqQXs8nS-uDrmZwLTPzWSKxYSMKhqNJ9PRSSqJmKtudzpoCXv8e6tq8Oc_T6Z-J5q9hBcVhMRR6fNXcGTzEzhflBrU-x5eN5SqbQ_PcdGoU-9P4Hl5UYcl_-g1_KaMoHyXCLz0hZUWK83VFbpLWpR4tVtbNqbtzuBovaKfUtz-wmKDE-teIFDmBku-b7ZHX1xHA6eVVituMqSNbOe1P2m-6_-8tTh52K1obMmqoEE51g1McPJz6-WbLP7wxDoy8gZuZtPrbxes6tzANAG6ghEqDESQERYxpq-MivuZkRkndBMOY8UN_X4Knpgn1g415QylktAdLPtW06FZD_hbaOWb3L4DDAMd0xQVCQI-2krFNR9yTUGVEZYayA4EtZNSXcmau-4a6_QgyOwdm5JjU-_Y9LEDnw5z7kpRjydHn9W-T6sFvk2bcOxAr46H5vP_rb1_2topPAt9CLoSwzNoFQ87-4FgT6G6cCyWogvt0Ww8nneryP4DgkMCDQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gBShaCASCkwB-iFrIi9_ogPFWpJqpQ2UVRSqTdj767TSqnT1o5ofg__g9_G7HodCyR669m7Y1kz3nm7O-8NwAcVeTwJE4e5XeUyTziSfqkwYaEKNVU0UNzXbOThKBiced_O_fM1-F1zYXRZZb0mmoVazoU-I__shhq6h2G38-X6humuUfp2tW6hkdjWCnLPSIxZYsexWv6kLVyxd9Qjf3903cP-5OuA2S4DTBD4KBkhGCd0MsqbUnZSmfqdTCYZp0zsRn7KJb2VPtTngVKRoPhO08DVm6COErTBE11Odh_Bhse9iDZ_Gwf90fh0lQsIvJtcQEaYT0jM0nYMeY92boHHdDW91l0L2N3fqbHBu_9c0ZrMd_gMnlrIivtVjD2HNZVvwe640rxetnHSULiKNu7iuFHDXm7BZnUwiBXf6QX8ohUoNV0pcGgKORVajdcp6kNhTPB0MVPsgNKrxP3ZlJxQXlxhOcee0jcemOQSK35xtkRTzEcD-1YbFucZUuJcGK1Rmq_7TRcKe7eLKY2tWBw0KMe6YQr2LgsjF6XwuyHykZGXcPYgPnwF6_k8V68BXUf4NCX1QgJaQiUpFzzigoI4I-zWTVrg1E6KhZVR1908ZvFKANo4NibHxsax8V0LPq3mXFciIveO3ql9H9sFpYib8G9Bu46H5vH_rW3fb-09PB5MhifxydHo-A08cU046vLGHVgvbxfqLUGuMn1n4xrhx0P_Sn8AJUQ77g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NISGkCcEA0THgHmAv1FpjJ3HzgNAgqzbGpgo2qW8hdpwOqaTbkor19_Av-HWcnaQRSOxtz7Uvae7su7Pv-w7gtYl8kcrUY3xoOPO1l9GSkimTRlqoaGhEYNHIxyfhwZn_aRJM1uB3i4WxZZXtnug26myu7Rn5Lpc2dJdyONjNm7KIcTx6f3HJbAcpe9PattOoTeTILH9S-la-O4xJ1284H-2ffjxgTYcBpinwqBhFL570cvKZWTZQmQoGeZbmgrwwjwIlMnoi_clAhMZEmmxbqZDbBGhgNCV3eihI7h24K4WIbDmhnKySPfKsDoZnX5oFFIM1gB0H26OcLfSZraO3jGshu_7bKXaR7j-Xs87njR7CgyZYxb3auh7Bmik2YWdcs10v-3jagbfKPu7guOPBXm7CRn0kiDXS6TH8or1HuX4UeOxKOA027K5TtMfBmOKXxcywD-RYM9ybTemTV-c_sJpjbOxdB6ZFhjWyOF-iK-OjgfsNKyzOcySXuXAsozTfdpouDcZXiymNrfEbNKjAtlUKxt9LRxRl8KuD8JGQJ3B2Kxp8CuvFvDDPALmnA5qifEkhljapElpEQpP55hS1DdMeeK2SEt0QqNs-HrNkRf3sFJuQYhOn2OS6B29Xcy5q-pAbR2-3uk-araRMOsPvQb-1h-7n_0vbulnaK7hHCyj5fHhy9Bzuc2eNtq5xG9arq4V5QbFWpV46o0b4dtur6A93tzmI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Machine+Learning+with+a+Rule-Based+Algorithm+to+Detect+and+Identify+Related+Entities+of+Documented+Adverse+Drug+Reactions+on+Hospital+Discharge+Summaries&rft.jtitle=Drug+safety&rft.au=Tan%2C+Hui+Xing&rft.au=Teo%2C+Chun+Hwee+Desmond&rft.au=Ang%2C+Pei+San&rft.au=Loke%2C+Wei+Ping+Celine&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0114-5916&rft.eissn=1179-1942&rft.volume=45&rft.issue=8&rft.spage=853&rft.epage=862&rft_id=info:doi/10.1007%2Fs40264-022-01196-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0114-5916&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0114-5916&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0114-5916&client=summon |