Active Broadband Absorber Based on Phase-Change Materials Optimized via Evolutionary Algorithm
This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a circular hole VO2 array, a SiO2 layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorbe...
        Saved in:
      
    
          | Published in | Coatings (Basel) Vol. 13; no. 9; p. 1604 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.09.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2079-6412 2079-6412  | 
| DOI | 10.3390/coatings13091604 | 
Cover
| Abstract | This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a circular hole VO2 array, a SiO2 layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal parameters for the top-to-bottom four-layer thicknesses were 0.183 μm, 0.452 μm, 0.557 μm and 1.994 μm. At this point, our absorber reached the optimal absorption parameters, and we plotted the absorption spectrum under these conditions. We found that the absorption rate at 29.1–47.2 THz was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band covers most of the atmospheric window area (23–37.5 THz), so it will have good practicality. At 30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and 99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and then we studied the change in the absorption curve of the absorber when the temperature of VO2 changed, and we can directly observe the changes in the electric field to explain this. Finally, we can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO2 pattern. After comparing with other absorbers developed in recent years, our absorber still has good competitiveness, and we believe that our solution is expected to have outstanding performance in fields such as photothermal conversion and thermal stealth in the future. | 
    
|---|---|
| AbstractList | This article proposes a temperature-controlled absorber based on VO[sub.2], which consists of five layers: a disk-shaped VO[sub.2] layer array, a dielectric layer, a circular hole VO[sub.2] array, a SiO[sub.2] layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal parameters for the top-to-bottom four-layer thicknesses were 0.183 μm, 0.452 μm, 0.557 μm and 1.994 μm. At this point, our absorber reached the optimal absorption parameters, and we plotted the absorption spectrum under these conditions. We found that the absorption rate at 29.1–47.2 THz was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band covers most of the atmospheric window area (23–37.5 THz), so it will have good practicality. At 30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and 99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and then we studied the change in the absorption curve of the absorber when the temperature of VO[sub.2] changed, and we can directly observe the changes in the electric field to explain this. Finally, we can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO[sub.2] pattern. After comparing with other absorbers developed in recent years, our absorber still has good competitiveness, and we believe that our solution is expected to have outstanding performance in fields such as photothermal conversion and thermal stealth in the future. This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a circular hole VO2 array, a SiO2 layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal parameters for the top-to-bottom four-layer thicknesses were 0.183 μm, 0.452 μm, 0.557 μm and 1.994 μm. At this point, our absorber reached the optimal absorption parameters, and we plotted the absorption spectrum under these conditions. We found that the absorption rate at 29.1–47.2 THz was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band covers most of the atmospheric window area (23–37.5 THz), so it will have good practicality. At 30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and 99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and then we studied the change in the absorption curve of the absorber when the temperature of VO2 changed, and we can directly observe the changes in the electric field to explain this. Finally, we can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO2 pattern. After comparing with other absorbers developed in recent years, our absorber still has good competitiveness, and we believe that our solution is expected to have outstanding performance in fields such as photothermal conversion and thermal stealth in the future.  | 
    
| Audience | Academic | 
    
| Author | Cheng, Jingyi Cheng, Shubo Ma, Jing Yi, Yougen Tian, Yonghong Yi, Zao Wu, Pinghui Sun, Tangyou Tang, Bin Chen, Jing  | 
    
| Author_xml | – sequence: 1 givenname: Jing surname: Ma fullname: Ma, Jing – sequence: 2 givenname: Yonghong surname: Tian fullname: Tian, Yonghong – sequence: 3 givenname: Jingyi surname: Cheng fullname: Cheng, Jingyi – sequence: 4 givenname: Shubo orcidid: 0000-0002-2565-6669 surname: Cheng fullname: Cheng, Shubo – sequence: 5 givenname: Bin orcidid: 0000-0001-6871-1966 surname: Tang fullname: Tang, Bin – sequence: 6 givenname: Jing orcidid: 0000-0001-8568-8390 surname: Chen fullname: Chen, Jing – sequence: 7 givenname: Yougen surname: Yi fullname: Yi, Yougen – sequence: 8 givenname: Pinghui orcidid: 0000-0002-6049-9021 surname: Wu fullname: Wu, Pinghui – sequence: 9 givenname: Zao orcidid: 0000-0002-7019-7481 surname: Yi fullname: Yi, Zao – sequence: 10 givenname: Tangyou orcidid: 0000-0002-9971-3793 surname: Sun fullname: Sun, Tangyou  | 
    
| BookMark | eNqFkUtPxCAUhYnRxNfsXZK4rvJoKV3Wia9Eowvd2txSmMF0YARmjP56MePCzEK5C24u5yOHwyHadd5phE4oOeO8IefKQ7JuFiknDRWk3EEHjNRNIUrKdn_1-2gS4yvJq6Fc0uYAvbQq2bXGF8HD0IMbcNtHH3od8AVEPWDv8OM8d8V0Dm6m8T0kHSyMET8sk13Yz6xZW8CXaz-ukvUOwgdux5kPNs0Xx2jPZK2e_OxH6Pnq8ml6U9w9XN9O27tC8YqlgspeSigJA2OGmikghJek4lIqJqSoaA20p1rWSmQZG6A0tcnnFS97w0XJjxDd3LtyS_h4h3HslsEuspeOku47o247o8ycbphl8G8rHVP36lfBZZsdk6JhjSBMZNXZRjWDUXfWGZ8CqFyDXliVv8HYPG9rIVlFSNlkQGwAFXyMQZtO2QTfyWTQjn_5IVvgv0_4AnfznAs | 
    
| CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111234 crossref_primary_10_1016_j_ijthermalsci_2024_109172 crossref_primary_10_1088_1572_9494_ad3b8d crossref_primary_10_1088_1572_9494_ad3b8f crossref_primary_10_1016_j_surfin_2024_103849 crossref_primary_10_1002_adpr_202300305 crossref_primary_10_1016_j_physe_2024_115954 crossref_primary_10_3390_coatings14040478 crossref_primary_10_1016_j_mtcomm_2024_109229 crossref_primary_10_1016_j_diamond_2023_110535 crossref_primary_10_3390_s24082658 crossref_primary_10_1016_j_optlaseng_2024_108368 crossref_primary_10_1016_j_diamond_2025_111986 crossref_primary_10_1039_D4DT00657G crossref_primary_10_3390_mi15010145 crossref_primary_10_1039_D3CP05095E crossref_primary_10_1016_j_ijleo_2023_171523 crossref_primary_10_1016_j_ijthermalsci_2024_108999 crossref_primary_10_1016_j_optcom_2024_130816 crossref_primary_10_3389_fchem_2024_1435562 crossref_primary_10_1016_j_diamond_2024_110843 crossref_primary_10_1016_j_physb_2024_415708 crossref_primary_10_1016_j_cjph_2024_10_037 crossref_primary_10_1016_j_diamond_2023_110481 crossref_primary_10_1007_s11468_023_02070_x crossref_primary_10_1016_j_materresbull_2024_112751 crossref_primary_10_1039_D4DT01158A crossref_primary_10_1016_j_materresbull_2023_112635 crossref_primary_10_1016_j_ceramint_2024_04_085 crossref_primary_10_1016_j_optlastec_2024_111210 crossref_primary_10_1016_j_sna_2024_115053 crossref_primary_10_1109_JSEN_2024_3454156 crossref_primary_10_1016_j_optmat_2024_115612 crossref_primary_10_1016_j_optmat_2024_114923 crossref_primary_10_3389_fchem_2024_1378332 crossref_primary_10_3390_mi15020208 crossref_primary_10_1016_j_diamond_2023_110713 crossref_primary_10_1016_j_surfin_2024_104248 crossref_primary_10_1016_j_diamond_2024_110793 crossref_primary_10_1142_S1793292023501060 crossref_primary_10_1109_LAWP_2024_3368610 crossref_primary_10_3390_photonics10111198 crossref_primary_10_1016_j_diamond_2023_110607 crossref_primary_10_1016_j_diamond_2023_110728 crossref_primary_10_1039_D3CP03709F crossref_primary_10_1016_j_materresbull_2023_112572 crossref_primary_10_1016_j_optlastec_2024_110650 crossref_primary_10_1016_j_rinp_2025_108229 crossref_primary_10_1016_j_jsamd_2025_100878  | 
    
| Cites_doi | 10.1016/j.applthermaleng.2023.121074 10.1103/PhysRevLett.100.207402 10.1103/PhysRevApplied.16.044064 10.1039/D2TA03550B 10.1016/j.ijhydene.2017.11.102 10.1116/1.572462 10.1016/j.tsf.2003.11.118 10.1039/D2CP05664J 10.1109/TAP.2021.3083806 10.2528/PIER07021103 10.29026/oea.2022.210147 10.1016/j.optcom.2023.129573 10.1016/j.jpowsour.2021.230891 10.3390/mi14050985 10.1016/j.apt.2020.01.015 10.1039/D3CP03072E 10.1063/1.4896525 10.1016/j.cej.2022.139831 10.3390/s22166117 10.1002/adfm.202213818 10.3390/app13020878 10.1002/ente.201900022 10.3390/nano11010114 10.29026/oea.2022.210086 10.1016/j.applthermaleng.2023.120841 10.1364/JOSAB.480755 10.1016/j.optcom.2023.129602 10.1016/j.electacta.2022.140145 10.1016/j.jpowsour.2016.10.053 10.1364/OE.391066 10.29026/oea.2021.200077 10.1016/j.rinp.2023.106365 10.3390/mi14050953 10.3390/coatings11010067 10.1016/j.ijthermalsci.2023.108580 10.1002/andp.202200661 10.1016/j.optlastec.2021.106930 10.1016/j.jpowsour.2015.09.096 10.3390/mi14061231 10.3390/electronics12122655 10.1039/D3CP01475D 10.1002/er.6220 10.3390/coatings13071261 10.1016/j.cej.2019.122248 10.3390/coatings11050553 10.3390/coatings13061123 10.3390/coatings11121499 10.1016/j.solener.2023.111796 10.1016/j.carbon.2020.12.001 10.3390/photonics9020089 10.29026/oea.2022.200082 10.3390/s23177569 10.1016/j.ensm.2022.07.033 10.29026/oea.2023.220174 10.3390/coatings12111653 10.29026/oea.2021.200006 10.1007/s11276-021-02866-x 10.3390/app13169323 10.3390/coatings11030343 10.3390/coatings13010059 10.3390/mi14081597 10.1364/OE.500554 10.29026/oea.2022.220058 10.1103/PhysRevLett.3.34 10.1007/s00340-022-07763-5 10.3389/fphy.2020.00231 10.3389/fmats.2021.766889  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY  | 
    
| DOI | 10.3390/coatings13091604 | 
    
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Collection (ProQuest) Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2079-6412 | 
    
| ExternalDocumentID | 10.3390/coatings13091604 A768250049 10_3390_coatings13091604  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | .4S .DC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR BGLVJ CCPQU CITATION D1I HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c352t-18b88a402affd72ca003405388c2686517a1b1e87c68a42da4f7f053534bf3643 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2079-6412 | 
    
| IngestDate | Tue Aug 19 23:21:47 EDT 2025 Fri Jul 25 12:01:01 EDT 2025 Mon Oct 20 16:53:29 EDT 2025 Thu Oct 16 04:34:55 EDT 2025 Thu Apr 24 22:53:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-18b88a402affd72ca003405388c2686517a1b1e87c68a42da4f7f053534bf3643 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8568-8390 0000-0002-2565-6669 0000-0001-6871-1966 0000-0002-6049-9021 0000-0002-9971-3793 0000-0002-7019-7481  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-6412/13/9/1604/pdf?version=1694681819 | 
    
| PQID | 2869296026 | 
    
| PQPubID | 2032415 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_coatings13091604 proquest_journals_2869296026 gale_infotracacademiconefile_A768250049 crossref_citationtrail_10_3390_coatings13091604 crossref_primary_10_3390_coatings13091604  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-09-01 | 
    
| PublicationDateYYYYMMDD | 2023-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Coatings (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Zhu (ref_49) 2020; 45 Zhang (ref_8) 2022; 5 Valagiannopoulos (ref_3) 2021; 69 Zheng (ref_15) 2023; 6 Kim (ref_41) 2021; 4 ref_13 Liu (ref_22) 2023; 47 ref_12 Han (ref_6) 2021; 8 ref_19 Maksimovic (ref_54) 2022; 5 ref_17 ref_16 Wu (ref_9) 2023; 453 Chen (ref_58) 2023; 25 ref_60 Wu (ref_36) 2022; 520 Qin (ref_10) 2023; 262 Wu (ref_18) 2015; 300 Tang (ref_34) 2022; 52 Zheng (ref_37) 2023; 230 Zhang (ref_63) 2023; 542 ref_67 ref_21 Wang (ref_65) 2014; 116 ref_29 Sui (ref_59) 2023; 535 ref_27 Liang (ref_2) 2023; 232 Valagiannopoulos (ref_5) 2007; 71 He (ref_66) 2023; 31 Shan (ref_50) 2019; 7 Sorathiya (ref_20) 2022; 128 Li (ref_45) 2022; 10 Song (ref_64) 2020; 28 Li (ref_14) 2020; 379 Garry (ref_52) 2004; 453–454 Otair (ref_26) 2022; 28 Zhu (ref_43) 2020; 8 Sharbirin (ref_51) 2021; 4 ref_33 ref_31 Guo (ref_28) 2022; 5 ref_30 Morin (ref_23) 1959; 3 Qi (ref_42) 2023; 40 ref_39 Luo (ref_62) 2023; 25 ref_38 Liu (ref_61) 2021; 174 Ri (ref_25) 2023; 542 Chen (ref_40) 2023; 25 Wang (ref_46) 2023; 33 Liu (ref_57) 2022; 412 Meng (ref_55) 2020; 31 ref_44 Qi (ref_32) 2023; 194 ref_1 Li (ref_47) 2018; 3 Zhong (ref_24) 2021; 139 ref_48 Case (ref_53) 1984; 2 Landy (ref_7) 2008; 100 ref_4 Wu (ref_56) 2016; 336 Krasikov (ref_11) 2022; 5 Fan (ref_35) 2021; 16  | 
    
| References_xml | – volume: 232 start-page: 121074 year: 2023 ident: ref_2 article-title: Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121074 – volume: 100 start-page: 207402 year: 2008 ident: ref_7 article-title: Perfect metamaterial absorber publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 16 start-page: 044064 year: 2021 ident: ref_35 article-title: Optical Brewster metasurfaces exhibiting ultrabroadband reflectionless absorption and extreme angular asymmetry publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.044064 – volume: 10 start-page: 14399 year: 2022 ident: ref_45 article-title: A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03550B – volume: 3 start-page: 1365 year: 2018 ident: ref_47 article-title: An extremely facile route to Co2P encased in N,P-codoped carbon layers: Highly efficient bifunctional electrocatalysts for ORR and OER publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.11.102 – volume: 2 start-page: 1509 year: 1984 ident: ref_53 article-title: Modifications in the phase transition properties of predeposited VO2 films publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film. doi: 10.1116/1.572462 – volume: 453–454 start-page: 427 year: 2004 ident: ref_52 article-title: Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes publication-title: Thin Solid Film. doi: 10.1016/j.tsf.2003.11.118 – volume: 25 start-page: 9273 year: 2023 ident: ref_62 article-title: High-sensitivity long-range surface plasmon resonance sensing assisted by gold nanoring cavity arrays and nanocavity coupling publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP05664J – volume: 69 start-page: 7720 year: 2021 ident: ref_3 article-title: Angular Memory of Photonic Metasurfaces publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2021.3083806 – volume: 71 start-page: 59 year: 2007 ident: ref_5 article-title: Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna publication-title: Prog. Electromagn. Res. PIER doi: 10.2528/PIER07021103 – volume: 5 start-page: 210147 year: 2022 ident: ref_11 article-title: Intelligent metaphotonics empowered by machine learning publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2022.210147 – volume: 542 start-page: 129573 year: 2023 ident: ref_25 article-title: Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring publication-title: Opt. Commun. doi: 10.1016/j.optcom.2023.129573 – volume: 520 start-page: 230891 year: 2022 ident: ref_36 article-title: Strategy for boosting Co-Nx content for oxygen reduction reaction in aqueous metal-air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230891 – ident: ref_44 doi: 10.3390/mi14050985 – volume: 31 start-page: 1359 year: 2020 ident: ref_55 article-title: Synthesis and electrochemical performance of Li1+xTi2−xFex(PO4)3/C anode for aqueous lithium ion battery publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.01.015 – volume: 25 start-page: 21547 year: 2023 ident: ref_58 article-title: High-transmission and large group delay terahertz triple-band electromagnetically induced transparency in a metal-perovskite hybrid metasurface publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP03072E – volume: 116 start-page: 123503 year: 2014 ident: ref_65 article-title: Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition publication-title: J. Appl. Phys. doi: 10.1063/1.4896525 – volume: 453 start-page: 139831 year: 2023 ident: ref_9 article-title: Mixed-valence cobalt oxides bifunctional electrocatalyst with rich oxygen vacancies for aqueous metal-air batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139831 – ident: ref_31 doi: 10.3390/s22166117 – volume: 33 start-page: 2213818 year: 2023 ident: ref_46 article-title: Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functiona applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213818 – ident: ref_4 doi: 10.3390/app13020878 – volume: 7 start-page: 57 year: 2019 ident: ref_50 article-title: Highly Reversible Phase Transition Endows V6O13 with Enhanced Performance as Aqueous Zinc-Ion Battery Cathode publication-title: Energy Technol. doi: 10.1002/ente.201900022 – ident: ref_38 doi: 10.3390/nano11010114 – volume: 5 start-page: 210086 year: 2022 ident: ref_54 article-title: Beyond Lambertian light trapping for large-area silicon solar cells: Fabrication methods publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2022.210086 – volume: 230 start-page: 120841 year: 2023 ident: ref_37 article-title: Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120841 – volume: 40 start-page: 939 year: 2023 ident: ref_42 article-title: Design of a switchable bifunctional terahertz metamaterial absorber from ultra-broadband to 10-band publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.480755 – volume: 542 start-page: 129602 year: 2023 ident: ref_63 article-title: A tunable broadband polarization-independent metamaterial terahertz absorber based on VO2 and Dirac semimetal publication-title: Opt. Commun. doi: 10.1016/j.optcom.2023.129602 – volume: 412 start-page: 140145 year: 2022 ident: ref_57 article-title: Highly efficient quantum-dot-sensitized solar cells with composite semiconductor of ZnO nanorod and oxide inverse opal in photoanode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140145 – volume: 336 start-page: 35 year: 2016 ident: ref_56 article-title: The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.053 – volume: 28 start-page: 12487 year: 2020 ident: ref_64 article-title: Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies publication-title: Opt. Express doi: 10.1364/OE.391066 – volume: 4 start-page: 200077 year: 2021 ident: ref_51 article-title: Light-emitting MXene quantum dots publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2021.200077 – volume: 47 start-page: 106365 year: 2023 ident: ref_22 article-title: Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106365 – ident: ref_17 doi: 10.3390/mi14050953 – ident: ref_30 doi: 10.3390/coatings11010067 – volume: 194 start-page: 108580 year: 2023 ident: ref_32 article-title: A near-perfect metamaterial selective absorber for high-efficiency solar photothermal conversion publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108580 – volume: 535 start-page: 2200661 year: 2023 ident: ref_59 article-title: A Janus Logic Gate with Sensing Function publication-title: Ann. Phys. doi: 10.1002/andp.202200661 – volume: 139 start-page: 106930 year: 2021 ident: ref_24 article-title: A multi-band metamaterial absorber based on VO2 layer publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.106930 – volume: 300 start-page: 453 year: 2015 ident: ref_18 article-title: The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.096 – ident: ref_48 doi: 10.3390/mi14061231 – ident: ref_12 doi: 10.3390/electronics12122655 – volume: 25 start-page: 13393 year: 2023 ident: ref_40 article-title: Tunable and three-dimensional dual-band metamaterial absorber based on electromagnetically induced transparency with vanadium dioxide publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP01475D – volume: 45 start-page: 6002 year: 2020 ident: ref_49 article-title: Enhanced performance of Li-S battery by constructing inner conductive network and outer adsorption layer sulfur-carbon composite publication-title: Int. J. Energy Res. doi: 10.1002/er.6220 – ident: ref_27 doi: 10.3390/coatings13071261 – volume: 379 start-page: 122248 year: 2020 ident: ref_14 article-title: Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122248 – ident: ref_33 doi: 10.3390/coatings11050553 – ident: ref_67 doi: 10.3390/coatings13061123 – ident: ref_19 doi: 10.3390/coatings11121499 – volume: 262 start-page: 111796 year: 2023 ident: ref_10 article-title: Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer publication-title: Sol. Energy doi: 10.1016/j.solener.2023.111796 – volume: 174 start-page: 617 year: 2021 ident: ref_61 article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity publication-title: Carbon. doi: 10.1016/j.carbon.2020.12.001 – ident: ref_39 doi: 10.3390/photonics9020089 – volume: 5 start-page: 200082 year: 2022 ident: ref_28 article-title: Adaptive optics based on machine learning: A review publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2022.200082 – ident: ref_13 doi: 10.3390/s23177569 – volume: 52 start-page: 180 year: 2022 ident: ref_34 article-title: The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.07.033 – volume: 6 start-page: 220174 year: 2023 ident: ref_15 article-title: Third-harmonic generation and imaging with resonant Si membrane metasurface publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2023.220174 – ident: ref_16 doi: 10.3390/coatings12111653 – volume: 4 start-page: 200006 year: 2021 ident: ref_41 article-title: Switchable diurnal radiative cooling by doped VO2 publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2021.200006 – volume: 28 start-page: 721 year: 2022 ident: ref_26 article-title: An enhanced Grey Wolf Optimizer based Particle Swarm Optimizer for intrusion detection system in wireless sensor networks publication-title: Wirel. Netw. doi: 10.1007/s11276-021-02866-x – ident: ref_60 doi: 10.3390/app13169323 – ident: ref_29 doi: 10.3390/coatings11030343 – ident: ref_1 doi: 10.3390/coatings13010059 – ident: ref_21 doi: 10.3390/mi14081597 – volume: 31 start-page: 29627 year: 2023 ident: ref_66 article-title: Light manipulation for all-fiber devices with VCSEL and graphene-based metasurface publication-title: Opt. Express doi: 10.1364/OE.500554 – volume: 5 start-page: 220058 year: 2022 ident: ref_8 article-title: Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2022.220058 – volume: 3 start-page: 34 year: 1959 ident: ref_23 article-title: Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.3.34 – volume: 128 start-page: 40 year: 2022 ident: ref_20 article-title: Graphene-based tunable short band absorber for infrared wavelength publication-title: Appl. Phys. B doi: 10.1007/s00340-022-07763-5 – volume: 8 start-page: 231 year: 2020 ident: ref_43 article-title: Wideband Absorbing Plasmonic Structures via Profile Optimization Based on Genetic Algorithm publication-title: Front. Phys. doi: 10.3389/fphy.2020.00231 – volume: 8 start-page: 766889 year: 2021 ident: ref_6 article-title: Frequency-Diverse Holographic Metasurface Antenna for Near-Field Microwave Computational Imaging publication-title: Front. Mater. doi: 10.3389/fmats.2021.766889  | 
    
| SSID | ssj0000913819 | 
    
| Score | 2.4252307 | 
    
| Snippet | This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a... This article proposes a temperature-controlled absorber based on VO[sub.2], which consists of five layers: a disk-shaped VO[sub.2] layer array, a dielectric...  | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1604 | 
    
| SubjectTerms | Absorbers Absorption spectra Algorithms Arrays Atmospheric windows Bandwidths Broadband Dielectrics Electric fields Evolutionary algorithms Frequencies Genetic algorithms Gold Optimization Parameters Phase change materials Photothermal conversion Silicon dioxide Silicon wafers Substrates Thickness Vanadium oxides Velocity  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_0fFAfSv3Ca23Zh4IoLGe-Nw9FYjkRwauIgk-GyW6iwpmcd_HK9a935rK5ig_2LQ-bzTIzOzO_7M5vAH74viEziEPpZr6RHLGk8jxPejE5zIL8ofa5UPhiEJ7d-Oe3we0SDNpaGL5W2frEuaM2leZ_5D1XhRTJuWHS8ehZctcoPl1tW2igba1gfs4pxpZhxWVmrA6snPQHl1eLvy7MgkkxsDmv9Ajv93SFfL94QkujTMn2a2vj03svvQ6rL-UIZ39wOHwThk4_wyebP4qkUfgGLOXlJqy_YRXcgrtk7sMEIWw0GZZGJNmkGmf5WJxQzDKiKsXlAz3JprRAXGDd2KH4TQ7k6fEvjZk-ouhPrV3ieCaS4T2Jo3542oab0_71rzNp2yhITdlVLR2VKYWEE7EoTORqZE4a2ntKaTdUYeBE6GROriId0jDXoF9EBdO-eH5WeJSx7ECnrMp8F0QQ6yD0TIRBrAjXIRqMjToqHNcowkVuF3qt8FJtOca51cUwJazB4k7fi7sLB4s3Rg2_xgdj91kfKW89mlWjrSCgtTGJVZoQdKKMjjBPF_ZalaV2T07SfxbUhcOFGv_71S8fz_UV1rgDfXPtbA869fgl_0Z5Sp19t8b3CoWJ52U priority: 102 providerName: ProQuest  | 
    
| Title | Active Broadband Absorber Based on Phase-Change Materials Optimized via Evolutionary Algorithm | 
    
| URI | https://www.proquest.com/docview/2869296026 https://www.mdpi.com/2079-6412/13/9/1604/pdf?version=1694681819  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-6412 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913819 issn: 2079-6412 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-6412 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913819 issn: 2079-6412 databaseCode: ADMLS dateStart: 20111001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2079-6412 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913819 issn: 2079-6412 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-6412 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913819 issn: 2079-6412 databaseCode: BENPR dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-6412 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913819 issn: 2079-6412 databaseCode: 8FG dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5B-wB7GL9Fx6j8gIRAytLEjmM_oQy1TEgtFaLSeCE4dsIquqRK06Ltgb-d8-JOow8gxFsinR1Hd767Lzl_B_CCMYNmILkXZsx4NmJ5glLqUYkOs0B_qJk9KDye8JMZe38anbo-pytXVolQfH7lpMNBLD3OgtAPqC_9gA-YvzTFm437lBRwyThGHEv72eURJuMd6M4m0-SzbSm3Hdz-nKQI7n1dKVtMvMJ1SDvbb8Fo1yXvwZ11uVQXP9RicSPmjO7B1-1q21KT70frJjvSlztEjv_xOvdh3-WjJGkN6AHcysuHsHeDpfARfEmufCJBxK5MpkpDkmxV1Vlek2OMgYZUJZme4ZXXHlUgY9W0dk0-oEM6n1-izGauyHDj7FzVFyRZfKvqeXN2_hhmo-Gntyeea8vgaczWGi8QmRAKcacqChOHWlmOG9zLQuiQCx4FsQqyIBex5igWGsWKuLA0MpRlBcUM6Al0yqrMnwKJpI44NbGKpECcqJRR0ohBEYRGIM4Ke-Bv9ZNqx1luW2csUsQuVqPprkZ78Op6xLLl6_iD7Eur8tRuZZxVK3ciAddmSbHSBKEYZoiIoXpwuLWK1O3xVRoKjrmlbeHVg9fXlvLXpx78i_AzuGv727dFbYfQaep1_hyzoCbrw20xeteH7vFwMv2Id-Ofw76z_l-6egS2 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qAm19aFW1krXEzsM5oCq0i5bCblEFEqeGiZ0UpCXZ7gbQ9sf1t3W8cbaIAz1xy8FxopnxzHy25xuAt75vyAzikIvMN9xGLK6klFzG5DAL8ofat4XCg2HYP_a_ngQnS_CnrYWx1ypbnzh31KbSdo-8K1RIkdw2TPo0_sVt1yh7utq20EDXWsFszynGXGHHfj67Jgg33d77Qvp-J8Ru7-hzn7suA1xT8lFzT2VKIcEoLAoTCY2WsoVMUyktQhUGXoRe5uUq0iENEwb9IiosK4r0s0JSQKd5H8CKL_2YwN_KTm94-H2xy2NZNynmNuejUsZbXV2hvc88JVFQZub6w7Xx8HZUWIPVy3KMs2scjW6Evd3H8MjlqyxpDOwJLOXlU1i7wWL4DH4kc5_JCNGjybA0LMmm1STLJ2yHYqRhVckOz-iJN6UMbIB1Y_fsGzmsi_PfNObqHFnvyq0DnMxYMvpJ4q_PLp7D8b0I9AUsl1WZvwQWxDoIpYkwiBXhSESDsVFbhSeMIhwmOtBthZdqx2luW2uMUsI2VtzpbXF34MPijXHD53HH2PdWH6ld6jSrRlexQP9mSbPShKAaZZCEsTqw2aosdT5gmv6z2A58XKjxv19dv3uuN7DaPxocpAd7w_0NeCgo52quvG3Ccj25zF9RjlRnr50hMji9b9v_C8coIpo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BTFQOxi_iKuocNEaTydKZfkwPhlRhBRHkIAknyutMKyRLu-4WyPKn-df53rZdCQc8cethOm3e_OZ9zLz3ewBvfd8RDOJQqsx3ki2WNFprqWNSmAXpQ-tzofDObri57387CA4W4E9XC8NplZ1OnClqV1k-I-8rE5Il54ZJ_aJNi9hbH6yNfkvuIMU3rV07jQYi2_n0gsK3yaetdVrrd0oNNn5-2ZRthwFpyfGopWcyY5BCKCwKFymLTNdCsDTGqtCEgRehl3m5iWxIw5RDv4gKZkTRflZoMuY07x24GzGLO1epD77Oz3eYb5OsbXMzqnW82rcVcibzhIRAPlnbGa6zhNftwRLcPytHOL3A4fCKwRs8goetpyqSBlqPYSEvn8DSFf7Cp3CYzLSloFgeXYalE0k2qcZZPhafyTo6UZVi75ieZFPEIHawbhAvfpCqOj25pDHnJyg2ztsdgOOpSIa_SNj18ekz2L8VcS7DYlmV-XMQQWyDULsIg9hQBInoMHZmtfCUMxSBqR70O-GltmUz56Yaw5SiGhZ3el3cPfgwf2PUMHncMPY9r0fKm5xmtdjWKtC_MV1WmlCQRr4jRVc9WOmWLG13_yT9h9UefJwv43-_-uLmud7APUJ8-n1rd_slPOC2902u2wos1uOz_BU5R3X2eoZCAUe3Dfu_1UEgNA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA9QHmJhbbyAQmB5Gb9iGOfUFq1qpBaemClciH4kdAV22SVzS5qfz3jxlu1ewAhbjmMHUcznpkvHn-D0FshPJiBloRZ4UmIWERxzgnX4DAr8IdOhIvCJ6fyeCw-nafnsc_pPJZVAhSf3DhpNso0kYKyhPJEJ1SORDLz1cdl_JVEpRYSIk6g_dyQKSTjA7QxPj3Lv4aWcqvB_eEkB3CfuMaEYuI5rEOH2e4Fo3WXvIkeLuqZufplptM7MefoCfq-Wm1favJzb9HZPXe9RuT4H5-zhR7HfBTnvQE9RQ_K-hnavMNS-Bx9y298IgbEbrw1tce5nTetLVu8DzHQ46bGZxfwRPqrCvjEdL1d48_gkC4n1yCznBh8uIx2btornE9_NO2ku7h8gcZHh18Ojklsy0AcZGsdocoqZQB3mqryGXMmcNzAXlbKMalkSjNDLS1V5iSIMW9ElVWBRoYLW3HIgF6iQd3U5SuEU-1SyX1mUq0AJxrjjfZqVFHmFeAsNkTJSj-Fi5zloXXGtADsEjRarGt0iN7fjpj1fB1_kH0XVF6ErQyzOhNvJMDaAilWkQMUgwwRMNQQba-sooh7fF4wJSG3DC28hujDraX89a2v_0X4DXoU-tv3RW3baNC1i3IHsqDO7kZL_w2JswEF | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Broadband+Absorber+Based+on+Phase-Change+Materials+Optimized+via+Evolutionary+Algorithm&rft.jtitle=Coatings+%28Basel%29&rft.au=Ma%2C+Jing&rft.au=Tian%2C+Yonghong&rft.au=Cheng%2C+Jingyi&rft.au=Cheng%2C+Shubo&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2079-6412&rft.eissn=2079-6412&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fcoatings13091604&rft.externalDocID=A768250049 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6412&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6412&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6412&client=summon |