Active Broadband Absorber Based on Phase-Change Materials Optimized via Evolutionary Algorithm

This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a circular hole VO2 array, a SiO2 layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorbe...

Full description

Saved in:
Bibliographic Details
Published inCoatings (Basel) Vol. 13; no. 9; p. 1604
Main Authors Ma, Jing, Tian, Yonghong, Cheng, Jingyi, Cheng, Shubo, Tang, Bin, Chen, Jing, Yi, Yougen, Wu, Pinghui, Yi, Zao, Sun, Tangyou
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text
ISSN2079-6412
2079-6412
DOI10.3390/coatings13091604

Cover

Abstract This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a circular hole VO2 array, a SiO2 layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal parameters for the top-to-bottom four-layer thicknesses were 0.183 μm, 0.452 μm, 0.557 μm and 1.994 μm. At this point, our absorber reached the optimal absorption parameters, and we plotted the absorption spectrum under these conditions. We found that the absorption rate at 29.1–47.2 THz was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band covers most of the atmospheric window area (23–37.5 THz), so it will have good practicality. At 30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and 99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and then we studied the change in the absorption curve of the absorber when the temperature of VO2 changed, and we can directly observe the changes in the electric field to explain this. Finally, we can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO2 pattern. After comparing with other absorbers developed in recent years, our absorber still has good competitiveness, and we believe that our solution is expected to have outstanding performance in fields such as photothermal conversion and thermal stealth in the future.
AbstractList This article proposes a temperature-controlled absorber based on VO[sub.2], which consists of five layers: a disk-shaped VO[sub.2] layer array, a dielectric layer, a circular hole VO[sub.2] array, a SiO[sub.2] layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal parameters for the top-to-bottom four-layer thicknesses were 0.183 μm, 0.452 μm, 0.557 μm and 1.994 μm. At this point, our absorber reached the optimal absorption parameters, and we plotted the absorption spectrum under these conditions. We found that the absorption rate at 29.1–47.2 THz was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band covers most of the atmospheric window area (23–37.5 THz), so it will have good practicality. At 30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and 99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and then we studied the change in the absorption curve of the absorber when the temperature of VO[sub.2] changed, and we can directly observe the changes in the electric field to explain this. Finally, we can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO[sub.2] pattern. After comparing with other absorbers developed in recent years, our absorber still has good competitiveness, and we believe that our solution is expected to have outstanding performance in fields such as photothermal conversion and thermal stealth in the future.
This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a circular hole VO2 array, a SiO2 layer, and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal parameters for the top-to-bottom four-layer thicknesses were 0.183 μm, 0.452 μm, 0.557 μm and 1.994 μm. At this point, our absorber reached the optimal absorption parameters, and we plotted the absorption spectrum under these conditions. We found that the absorption rate at 29.1–47.2 THz was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band covers most of the atmospheric window area (23–37.5 THz), so it will have good practicality. At 30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and 99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and then we studied the change in the absorption curve of the absorber when the temperature of VO2 changed, and we can directly observe the changes in the electric field to explain this. Finally, we can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO2 pattern. After comparing with other absorbers developed in recent years, our absorber still has good competitiveness, and we believe that our solution is expected to have outstanding performance in fields such as photothermal conversion and thermal stealth in the future.
Audience Academic
Author Cheng, Jingyi
Cheng, Shubo
Ma, Jing
Yi, Yougen
Tian, Yonghong
Yi, Zao
Wu, Pinghui
Sun, Tangyou
Tang, Bin
Chen, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
– sequence: 2
  givenname: Yonghong
  surname: Tian
  fullname: Tian, Yonghong
– sequence: 3
  givenname: Jingyi
  surname: Cheng
  fullname: Cheng, Jingyi
– sequence: 4
  givenname: Shubo
  orcidid: 0000-0002-2565-6669
  surname: Cheng
  fullname: Cheng, Shubo
– sequence: 5
  givenname: Bin
  orcidid: 0000-0001-6871-1966
  surname: Tang
  fullname: Tang, Bin
– sequence: 6
  givenname: Jing
  orcidid: 0000-0001-8568-8390
  surname: Chen
  fullname: Chen, Jing
– sequence: 7
  givenname: Yougen
  surname: Yi
  fullname: Yi, Yougen
– sequence: 8
  givenname: Pinghui
  orcidid: 0000-0002-6049-9021
  surname: Wu
  fullname: Wu, Pinghui
– sequence: 9
  givenname: Zao
  orcidid: 0000-0002-7019-7481
  surname: Yi
  fullname: Yi, Zao
– sequence: 10
  givenname: Tangyou
  orcidid: 0000-0002-9971-3793
  surname: Sun
  fullname: Sun, Tangyou
BookMark eNqFkUtPxCAUhYnRxNfsXZK4rvJoKV3Wia9Eowvd2txSmMF0YARmjP56MePCzEK5C24u5yOHwyHadd5phE4oOeO8IefKQ7JuFiknDRWk3EEHjNRNIUrKdn_1-2gS4yvJq6Fc0uYAvbQq2bXGF8HD0IMbcNtHH3od8AVEPWDv8OM8d8V0Dm6m8T0kHSyMET8sk13Yz6xZW8CXaz-ukvUOwgdux5kPNs0Xx2jPZK2e_OxH6Pnq8ml6U9w9XN9O27tC8YqlgspeSigJA2OGmikghJek4lIqJqSoaA20p1rWSmQZG6A0tcnnFS97w0XJjxDd3LtyS_h4h3HslsEuspeOku47o247o8ycbphl8G8rHVP36lfBZZsdk6JhjSBMZNXZRjWDUXfWGZ8CqFyDXliVv8HYPG9rIVlFSNlkQGwAFXyMQZtO2QTfyWTQjn_5IVvgv0_4AnfznAs
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111234
crossref_primary_10_1016_j_ijthermalsci_2024_109172
crossref_primary_10_1088_1572_9494_ad3b8d
crossref_primary_10_1088_1572_9494_ad3b8f
crossref_primary_10_1016_j_surfin_2024_103849
crossref_primary_10_1002_adpr_202300305
crossref_primary_10_1016_j_physe_2024_115954
crossref_primary_10_3390_coatings14040478
crossref_primary_10_1016_j_mtcomm_2024_109229
crossref_primary_10_1016_j_diamond_2023_110535
crossref_primary_10_3390_s24082658
crossref_primary_10_1016_j_optlaseng_2024_108368
crossref_primary_10_1016_j_diamond_2025_111986
crossref_primary_10_1039_D4DT00657G
crossref_primary_10_3390_mi15010145
crossref_primary_10_1039_D3CP05095E
crossref_primary_10_1016_j_ijleo_2023_171523
crossref_primary_10_1016_j_ijthermalsci_2024_108999
crossref_primary_10_1016_j_optcom_2024_130816
crossref_primary_10_3389_fchem_2024_1435562
crossref_primary_10_1016_j_diamond_2024_110843
crossref_primary_10_1016_j_physb_2024_415708
crossref_primary_10_1016_j_cjph_2024_10_037
crossref_primary_10_1016_j_diamond_2023_110481
crossref_primary_10_1007_s11468_023_02070_x
crossref_primary_10_1016_j_materresbull_2024_112751
crossref_primary_10_1039_D4DT01158A
crossref_primary_10_1016_j_materresbull_2023_112635
crossref_primary_10_1016_j_ceramint_2024_04_085
crossref_primary_10_1016_j_optlastec_2024_111210
crossref_primary_10_1016_j_sna_2024_115053
crossref_primary_10_1109_JSEN_2024_3454156
crossref_primary_10_1016_j_optmat_2024_115612
crossref_primary_10_1016_j_optmat_2024_114923
crossref_primary_10_3389_fchem_2024_1378332
crossref_primary_10_3390_mi15020208
crossref_primary_10_1016_j_diamond_2023_110713
crossref_primary_10_1016_j_surfin_2024_104248
crossref_primary_10_1016_j_diamond_2024_110793
crossref_primary_10_1142_S1793292023501060
crossref_primary_10_1109_LAWP_2024_3368610
crossref_primary_10_3390_photonics10111198
crossref_primary_10_1016_j_diamond_2023_110607
crossref_primary_10_1016_j_diamond_2023_110728
crossref_primary_10_1039_D3CP03709F
crossref_primary_10_1016_j_materresbull_2023_112572
crossref_primary_10_1016_j_optlastec_2024_110650
crossref_primary_10_1016_j_rinp_2025_108229
crossref_primary_10_1016_j_jsamd_2025_100878
Cites_doi 10.1016/j.applthermaleng.2023.121074
10.1103/PhysRevLett.100.207402
10.1103/PhysRevApplied.16.044064
10.1039/D2TA03550B
10.1016/j.ijhydene.2017.11.102
10.1116/1.572462
10.1016/j.tsf.2003.11.118
10.1039/D2CP05664J
10.1109/TAP.2021.3083806
10.2528/PIER07021103
10.29026/oea.2022.210147
10.1016/j.optcom.2023.129573
10.1016/j.jpowsour.2021.230891
10.3390/mi14050985
10.1016/j.apt.2020.01.015
10.1039/D3CP03072E
10.1063/1.4896525
10.1016/j.cej.2022.139831
10.3390/s22166117
10.1002/adfm.202213818
10.3390/app13020878
10.1002/ente.201900022
10.3390/nano11010114
10.29026/oea.2022.210086
10.1016/j.applthermaleng.2023.120841
10.1364/JOSAB.480755
10.1016/j.optcom.2023.129602
10.1016/j.electacta.2022.140145
10.1016/j.jpowsour.2016.10.053
10.1364/OE.391066
10.29026/oea.2021.200077
10.1016/j.rinp.2023.106365
10.3390/mi14050953
10.3390/coatings11010067
10.1016/j.ijthermalsci.2023.108580
10.1002/andp.202200661
10.1016/j.optlastec.2021.106930
10.1016/j.jpowsour.2015.09.096
10.3390/mi14061231
10.3390/electronics12122655
10.1039/D3CP01475D
10.1002/er.6220
10.3390/coatings13071261
10.1016/j.cej.2019.122248
10.3390/coatings11050553
10.3390/coatings13061123
10.3390/coatings11121499
10.1016/j.solener.2023.111796
10.1016/j.carbon.2020.12.001
10.3390/photonics9020089
10.29026/oea.2022.200082
10.3390/s23177569
10.1016/j.ensm.2022.07.033
10.29026/oea.2023.220174
10.3390/coatings12111653
10.29026/oea.2021.200006
10.1007/s11276-021-02866-x
10.3390/app13169323
10.3390/coatings11030343
10.3390/coatings13010059
10.3390/mi14081597
10.1364/OE.500554
10.29026/oea.2022.220058
10.1103/PhysRevLett.3.34
10.1007/s00340-022-07763-5
10.3389/fphy.2020.00231
10.3389/fmats.2021.766889
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/coatings13091604
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Collection (ProQuest)
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-6412
ExternalDocumentID 10.3390/coatings13091604
A768250049
10_3390_coatings13091604
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
.DC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
D1I
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
TUS
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c352t-18b88a402affd72ca003405388c2686517a1b1e87c68a42da4f7f053534bf3643
IEDL.DBID UNPAY
ISSN 2079-6412
IngestDate Tue Aug 19 23:21:47 EDT 2025
Fri Jul 25 12:01:01 EDT 2025
Mon Oct 20 16:53:29 EDT 2025
Thu Oct 16 04:34:55 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-18b88a402affd72ca003405388c2686517a1b1e87c68a42da4f7f053534bf3643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8568-8390
0000-0002-2565-6669
0000-0001-6871-1966
0000-0002-6049-9021
0000-0002-9971-3793
0000-0002-7019-7481
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-6412/13/9/1604/pdf?version=1694681819
PQID 2869296026
PQPubID 2032415
ParticipantIDs unpaywall_primary_10_3390_coatings13091604
proquest_journals_2869296026
gale_infotracacademiconefile_A768250049
crossref_citationtrail_10_3390_coatings13091604
crossref_primary_10_3390_coatings13091604
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Coatings (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_49) 2020; 45
Zhang (ref_8) 2022; 5
Valagiannopoulos (ref_3) 2021; 69
Zheng (ref_15) 2023; 6
Kim (ref_41) 2021; 4
ref_13
Liu (ref_22) 2023; 47
ref_12
Han (ref_6) 2021; 8
ref_19
Maksimovic (ref_54) 2022; 5
ref_17
ref_16
Wu (ref_9) 2023; 453
Chen (ref_58) 2023; 25
ref_60
Wu (ref_36) 2022; 520
Qin (ref_10) 2023; 262
Wu (ref_18) 2015; 300
Tang (ref_34) 2022; 52
Zheng (ref_37) 2023; 230
Zhang (ref_63) 2023; 542
ref_67
ref_21
Wang (ref_65) 2014; 116
ref_29
Sui (ref_59) 2023; 535
ref_27
Liang (ref_2) 2023; 232
Valagiannopoulos (ref_5) 2007; 71
He (ref_66) 2023; 31
Shan (ref_50) 2019; 7
Sorathiya (ref_20) 2022; 128
Li (ref_45) 2022; 10
Song (ref_64) 2020; 28
Li (ref_14) 2020; 379
Garry (ref_52) 2004; 453–454
Otair (ref_26) 2022; 28
Zhu (ref_43) 2020; 8
Sharbirin (ref_51) 2021; 4
ref_33
ref_31
Guo (ref_28) 2022; 5
ref_30
Morin (ref_23) 1959; 3
Qi (ref_42) 2023; 40
ref_39
Luo (ref_62) 2023; 25
ref_38
Liu (ref_61) 2021; 174
Ri (ref_25) 2023; 542
Chen (ref_40) 2023; 25
Wang (ref_46) 2023; 33
Liu (ref_57) 2022; 412
Meng (ref_55) 2020; 31
ref_44
Qi (ref_32) 2023; 194
ref_1
Li (ref_47) 2018; 3
Zhong (ref_24) 2021; 139
ref_48
Case (ref_53) 1984; 2
Landy (ref_7) 2008; 100
ref_4
Wu (ref_56) 2016; 336
Krasikov (ref_11) 2022; 5
Fan (ref_35) 2021; 16
References_xml – volume: 232
  start-page: 121074
  year: 2023
  ident: ref_2
  article-title: Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121074
– volume: 100
  start-page: 207402
  year: 2008
  ident: ref_7
  article-title: Perfect metamaterial absorber
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 16
  start-page: 044064
  year: 2021
  ident: ref_35
  article-title: Optical Brewster metasurfaces exhibiting ultrabroadband reflectionless absorption and extreme angular asymmetry
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.044064
– volume: 10
  start-page: 14399
  year: 2022
  ident: ref_45
  article-title: A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03550B
– volume: 3
  start-page: 1365
  year: 2018
  ident: ref_47
  article-title: An extremely facile route to Co2P encased in N,P-codoped carbon layers: Highly efficient bifunctional electrocatalysts for ORR and OER
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.11.102
– volume: 2
  start-page: 1509
  year: 1984
  ident: ref_53
  article-title: Modifications in the phase transition properties of predeposited VO2 films
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film.
  doi: 10.1116/1.572462
– volume: 453–454
  start-page: 427
  year: 2004
  ident: ref_52
  article-title: Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes
  publication-title: Thin Solid Film.
  doi: 10.1016/j.tsf.2003.11.118
– volume: 25
  start-page: 9273
  year: 2023
  ident: ref_62
  article-title: High-sensitivity long-range surface plasmon resonance sensing assisted by gold nanoring cavity arrays and nanocavity coupling
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP05664J
– volume: 69
  start-page: 7720
  year: 2021
  ident: ref_3
  article-title: Angular Memory of Photonic Metasurfaces
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2021.3083806
– volume: 71
  start-page: 59
  year: 2007
  ident: ref_5
  article-title: Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna
  publication-title: Prog. Electromagn. Res. PIER
  doi: 10.2528/PIER07021103
– volume: 5
  start-page: 210147
  year: 2022
  ident: ref_11
  article-title: Intelligent metaphotonics empowered by machine learning
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2022.210147
– volume: 542
  start-page: 129573
  year: 2023
  ident: ref_25
  article-title: Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2023.129573
– volume: 520
  start-page: 230891
  year: 2022
  ident: ref_36
  article-title: Strategy for boosting Co-Nx content for oxygen reduction reaction in aqueous metal-air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230891
– ident: ref_44
  doi: 10.3390/mi14050985
– volume: 31
  start-page: 1359
  year: 2020
  ident: ref_55
  article-title: Synthesis and electrochemical performance of Li1+xTi2−xFex(PO4)3/C anode for aqueous lithium ion battery
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2020.01.015
– volume: 25
  start-page: 21547
  year: 2023
  ident: ref_58
  article-title: High-transmission and large group delay terahertz triple-band electromagnetically induced transparency in a metal-perovskite hybrid metasurface
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP03072E
– volume: 116
  start-page: 123503
  year: 2014
  ident: ref_65
  article-title: Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4896525
– volume: 453
  start-page: 139831
  year: 2023
  ident: ref_9
  article-title: Mixed-valence cobalt oxides bifunctional electrocatalyst with rich oxygen vacancies for aqueous metal-air batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139831
– ident: ref_31
  doi: 10.3390/s22166117
– volume: 33
  start-page: 2213818
  year: 2023
  ident: ref_46
  article-title: Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functiona applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213818
– ident: ref_4
  doi: 10.3390/app13020878
– volume: 7
  start-page: 57
  year: 2019
  ident: ref_50
  article-title: Highly Reversible Phase Transition Endows V6O13 with Enhanced Performance as Aqueous Zinc-Ion Battery Cathode
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900022
– ident: ref_38
  doi: 10.3390/nano11010114
– volume: 5
  start-page: 210086
  year: 2022
  ident: ref_54
  article-title: Beyond Lambertian light trapping for large-area silicon solar cells: Fabrication methods
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2022.210086
– volume: 230
  start-page: 120841
  year: 2023
  ident: ref_37
  article-title: Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120841
– volume: 40
  start-page: 939
  year: 2023
  ident: ref_42
  article-title: Design of a switchable bifunctional terahertz metamaterial absorber from ultra-broadband to 10-band
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.480755
– volume: 542
  start-page: 129602
  year: 2023
  ident: ref_63
  article-title: A tunable broadband polarization-independent metamaterial terahertz absorber based on VO2 and Dirac semimetal
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2023.129602
– volume: 412
  start-page: 140145
  year: 2022
  ident: ref_57
  article-title: Highly efficient quantum-dot-sensitized solar cells with composite semiconductor of ZnO nanorod and oxide inverse opal in photoanode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140145
– volume: 336
  start-page: 35
  year: 2016
  ident: ref_56
  article-title: The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.053
– volume: 28
  start-page: 12487
  year: 2020
  ident: ref_64
  article-title: Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies
  publication-title: Opt. Express
  doi: 10.1364/OE.391066
– volume: 4
  start-page: 200077
  year: 2021
  ident: ref_51
  article-title: Light-emitting MXene quantum dots
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2021.200077
– volume: 47
  start-page: 106365
  year: 2023
  ident: ref_22
  article-title: Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106365
– ident: ref_17
  doi: 10.3390/mi14050953
– ident: ref_30
  doi: 10.3390/coatings11010067
– volume: 194
  start-page: 108580
  year: 2023
  ident: ref_32
  article-title: A near-perfect metamaterial selective absorber for high-efficiency solar photothermal conversion
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108580
– volume: 535
  start-page: 2200661
  year: 2023
  ident: ref_59
  article-title: A Janus Logic Gate with Sensing Function
  publication-title: Ann. Phys.
  doi: 10.1002/andp.202200661
– volume: 139
  start-page: 106930
  year: 2021
  ident: ref_24
  article-title: A multi-band metamaterial absorber based on VO2 layer
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2021.106930
– volume: 300
  start-page: 453
  year: 2015
  ident: ref_18
  article-title: The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.096
– ident: ref_48
  doi: 10.3390/mi14061231
– ident: ref_12
  doi: 10.3390/electronics12122655
– volume: 25
  start-page: 13393
  year: 2023
  ident: ref_40
  article-title: Tunable and three-dimensional dual-band metamaterial absorber based on electromagnetically induced transparency with vanadium dioxide
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP01475D
– volume: 45
  start-page: 6002
  year: 2020
  ident: ref_49
  article-title: Enhanced performance of Li-S battery by constructing inner conductive network and outer adsorption layer sulfur-carbon composite
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6220
– ident: ref_27
  doi: 10.3390/coatings13071261
– volume: 379
  start-page: 122248
  year: 2020
  ident: ref_14
  article-title: Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122248
– ident: ref_33
  doi: 10.3390/coatings11050553
– ident: ref_67
  doi: 10.3390/coatings13061123
– ident: ref_19
  doi: 10.3390/coatings11121499
– volume: 262
  start-page: 111796
  year: 2023
  ident: ref_10
  article-title: Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.111796
– volume: 174
  start-page: 617
  year: 2021
  ident: ref_61
  article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2020.12.001
– ident: ref_39
  doi: 10.3390/photonics9020089
– volume: 5
  start-page: 200082
  year: 2022
  ident: ref_28
  article-title: Adaptive optics based on machine learning: A review
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2022.200082
– ident: ref_13
  doi: 10.3390/s23177569
– volume: 52
  start-page: 180
  year: 2022
  ident: ref_34
  article-title: The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.07.033
– volume: 6
  start-page: 220174
  year: 2023
  ident: ref_15
  article-title: Third-harmonic generation and imaging with resonant Si membrane metasurface
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2023.220174
– ident: ref_16
  doi: 10.3390/coatings12111653
– volume: 4
  start-page: 200006
  year: 2021
  ident: ref_41
  article-title: Switchable diurnal radiative cooling by doped VO2
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2021.200006
– volume: 28
  start-page: 721
  year: 2022
  ident: ref_26
  article-title: An enhanced Grey Wolf Optimizer based Particle Swarm Optimizer for intrusion detection system in wireless sensor networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-021-02866-x
– ident: ref_60
  doi: 10.3390/app13169323
– ident: ref_29
  doi: 10.3390/coatings11030343
– ident: ref_1
  doi: 10.3390/coatings13010059
– ident: ref_21
  doi: 10.3390/mi14081597
– volume: 31
  start-page: 29627
  year: 2023
  ident: ref_66
  article-title: Light manipulation for all-fiber devices with VCSEL and graphene-based metasurface
  publication-title: Opt. Express
  doi: 10.1364/OE.500554
– volume: 5
  start-page: 220058
  year: 2022
  ident: ref_8
  article-title: Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2022.220058
– volume: 3
  start-page: 34
  year: 1959
  ident: ref_23
  article-title: Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.3.34
– volume: 128
  start-page: 40
  year: 2022
  ident: ref_20
  article-title: Graphene-based tunable short band absorber for infrared wavelength
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-022-07763-5
– volume: 8
  start-page: 231
  year: 2020
  ident: ref_43
  article-title: Wideband Absorbing Plasmonic Structures via Profile Optimization Based on Genetic Algorithm
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00231
– volume: 8
  start-page: 766889
  year: 2021
  ident: ref_6
  article-title: Frequency-Diverse Holographic Metasurface Antenna for Near-Field Microwave Computational Imaging
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.766889
SSID ssj0000913819
Score 2.4252307
Snippet This article proposes a temperature-controlled absorber based on VO2, which consists of five layers: a disk-shaped VO2 layer array, a dielectric layer, a...
This article proposes a temperature-controlled absorber based on VO[sub.2], which consists of five layers: a disk-shaped VO[sub.2] layer array, a dielectric...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1604
SubjectTerms Absorbers
Absorption spectra
Algorithms
Arrays
Atmospheric windows
Bandwidths
Broadband
Dielectrics
Electric fields
Evolutionary algorithms
Frequencies
Genetic algorithms
Gold
Optimization
Parameters
Phase change materials
Photothermal conversion
Silicon dioxide
Silicon wafers
Substrates
Thickness
Vanadium oxides
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_0fFAfSv3Ca23Zh4IoLGe-Nw9FYjkRwauIgk-GyW6iwpmcd_HK9a935rK5ig_2LQ-bzTIzOzO_7M5vAH74viEziEPpZr6RHLGk8jxPejE5zIL8ofa5UPhiEJ7d-Oe3we0SDNpaGL5W2frEuaM2leZ_5D1XhRTJuWHS8ehZctcoPl1tW2igba1gfs4pxpZhxWVmrA6snPQHl1eLvy7MgkkxsDmv9Ajv93SFfL94QkujTMn2a2vj03svvQ6rL-UIZ39wOHwThk4_wyebP4qkUfgGLOXlJqy_YRXcgrtk7sMEIWw0GZZGJNmkGmf5WJxQzDKiKsXlAz3JprRAXGDd2KH4TQ7k6fEvjZk-ouhPrV3ieCaS4T2Jo3542oab0_71rzNp2yhITdlVLR2VKYWEE7EoTORqZE4a2ntKaTdUYeBE6GROriId0jDXoF9EBdO-eH5WeJSx7ECnrMp8F0QQ6yD0TIRBrAjXIRqMjToqHNcowkVuF3qt8FJtOca51cUwJazB4k7fi7sLB4s3Rg2_xgdj91kfKW89mlWjrSCgtTGJVZoQdKKMjjBPF_ZalaV2T07SfxbUhcOFGv_71S8fz_UV1rgDfXPtbA869fgl_0Z5Sp19t8b3CoWJ52U
  priority: 102
  providerName: ProQuest
Title Active Broadband Absorber Based on Phase-Change Materials Optimized via Evolutionary Algorithm
URI https://www.proquest.com/docview/2869296026
https://www.mdpi.com/2079-6412/13/9/1604/pdf?version=1694681819
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-6412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913819
  issn: 2079-6412
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-6412
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913819
  issn: 2079-6412
  databaseCode: ADMLS
  dateStart: 20111001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2079-6412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913819
  issn: 2079-6412
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-6412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913819
  issn: 2079-6412
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-6412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913819
  issn: 2079-6412
  databaseCode: 8FG
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5B-wB7GL9Fx6j8gIRAytLEjmM_oQy1TEgtFaLSeCE4dsIquqRK06Ltgb-d8-JOow8gxFsinR1Hd767Lzl_B_CCMYNmILkXZsx4NmJ5glLqUYkOs0B_qJk9KDye8JMZe38anbo-pytXVolQfH7lpMNBLD3OgtAPqC_9gA-YvzTFm437lBRwyThGHEv72eURJuMd6M4m0-SzbSm3Hdz-nKQI7n1dKVtMvMJ1SDvbb8Fo1yXvwZ11uVQXP9RicSPmjO7B1-1q21KT70frJjvSlztEjv_xOvdh3-WjJGkN6AHcysuHsHeDpfARfEmufCJBxK5MpkpDkmxV1Vlek2OMgYZUJZme4ZXXHlUgY9W0dk0-oEM6n1-izGauyHDj7FzVFyRZfKvqeXN2_hhmo-Gntyeea8vgaczWGi8QmRAKcacqChOHWlmOG9zLQuiQCx4FsQqyIBex5igWGsWKuLA0MpRlBcUM6Al0yqrMnwKJpI44NbGKpECcqJRR0ohBEYRGIM4Ke-Bv9ZNqx1luW2csUsQuVqPprkZ78Op6xLLl6_iD7Eur8tRuZZxVK3ciAddmSbHSBKEYZoiIoXpwuLWK1O3xVRoKjrmlbeHVg9fXlvLXpx78i_AzuGv727dFbYfQaep1_hyzoCbrw20xeteH7vFwMv2Id-Ofw76z_l-6egS2
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qAm19aFW1krXEzsM5oCq0i5bCblEFEqeGiZ0UpCXZ7gbQ9sf1t3W8cbaIAz1xy8FxopnxzHy25xuAt75vyAzikIvMN9xGLK6klFzG5DAL8ofat4XCg2HYP_a_ngQnS_CnrYWx1ypbnzh31KbSdo-8K1RIkdw2TPo0_sVt1yh7utq20EDXWsFszynGXGHHfj67Jgg33d77Qvp-J8Ru7-hzn7suA1xT8lFzT2VKIcEoLAoTCY2WsoVMUyktQhUGXoRe5uUq0iENEwb9IiosK4r0s0JSQKd5H8CKL_2YwN_KTm94-H2xy2NZNynmNuejUsZbXV2hvc88JVFQZub6w7Xx8HZUWIPVy3KMs2scjW6Evd3H8MjlqyxpDOwJLOXlU1i7wWL4DH4kc5_JCNGjybA0LMmm1STLJ2yHYqRhVckOz-iJN6UMbIB1Y_fsGzmsi_PfNObqHFnvyq0DnMxYMvpJ4q_PLp7D8b0I9AUsl1WZvwQWxDoIpYkwiBXhSESDsVFbhSeMIhwmOtBthZdqx2luW2uMUsI2VtzpbXF34MPijXHD53HH2PdWH6ld6jSrRlexQP9mSbPShKAaZZCEsTqw2aosdT5gmv6z2A58XKjxv19dv3uuN7DaPxocpAd7w_0NeCgo52quvG3Ccj25zF9RjlRnr50hMji9b9v_C8coIpo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BTFQOxi_iKuocNEaTydKZfkwPhlRhBRHkIAknyutMKyRLu-4WyPKn-df53rZdCQc8cethOm3e_OZ9zLz3ewBvfd8RDOJQqsx3ki2WNFprqWNSmAXpQ-tzofDObri57387CA4W4E9XC8NplZ1OnClqV1k-I-8rE5Il54ZJ_aJNi9hbH6yNfkvuIMU3rV07jQYi2_n0gsK3yaetdVrrd0oNNn5-2ZRthwFpyfGopWcyY5BCKCwKFymLTNdCsDTGqtCEgRehl3m5iWxIw5RDv4gKZkTRflZoMuY07x24GzGLO1epD77Oz3eYb5OsbXMzqnW82rcVcibzhIRAPlnbGa6zhNftwRLcPytHOL3A4fCKwRs8goetpyqSBlqPYSEvn8DSFf7Cp3CYzLSloFgeXYalE0k2qcZZPhafyTo6UZVi75ieZFPEIHawbhAvfpCqOj25pDHnJyg2ztsdgOOpSIa_SNj18ekz2L8VcS7DYlmV-XMQQWyDULsIg9hQBInoMHZmtfCUMxSBqR70O-GltmUz56Yaw5SiGhZ3el3cPfgwf2PUMHncMPY9r0fKm5xmtdjWKtC_MV1WmlCQRr4jRVc9WOmWLG13_yT9h9UefJwv43-_-uLmud7APUJ8-n1rd_slPOC2902u2wos1uOz_BU5R3X2eoZCAUe3Dfu_1UEgNA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA9QHmJhbbyAQmB5Gb9iGOfUFq1qpBaemClciH4kdAV22SVzS5qfz3jxlu1ewAhbjmMHUcznpkvHn-D0FshPJiBloRZ4UmIWERxzgnX4DAr8IdOhIvCJ6fyeCw-nafnsc_pPJZVAhSf3DhpNso0kYKyhPJEJ1SORDLz1cdl_JVEpRYSIk6g_dyQKSTjA7QxPj3Lv4aWcqvB_eEkB3CfuMaEYuI5rEOH2e4Fo3WXvIkeLuqZufplptM7MefoCfq-Wm1favJzb9HZPXe9RuT4H5-zhR7HfBTnvQE9RQ_K-hnavMNS-Bx9y298IgbEbrw1tce5nTetLVu8DzHQ46bGZxfwRPqrCvjEdL1d48_gkC4n1yCznBh8uIx2btornE9_NO2ku7h8gcZHh18Ojklsy0AcZGsdocoqZQB3mqryGXMmcNzAXlbKMalkSjNDLS1V5iSIMW9ElVWBRoYLW3HIgF6iQd3U5SuEU-1SyX1mUq0AJxrjjfZqVFHmFeAsNkTJSj-Fi5zloXXGtADsEjRarGt0iN7fjpj1fB1_kH0XVF6ErQyzOhNvJMDaAilWkQMUgwwRMNQQba-sooh7fF4wJSG3DC28hujDraX89a2v_0X4DXoU-tv3RW3baNC1i3IHsqDO7kZL_w2JswEF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Broadband+Absorber+Based+on+Phase-Change+Materials+Optimized+via+Evolutionary+Algorithm&rft.jtitle=Coatings+%28Basel%29&rft.au=Ma%2C+Jing&rft.au=Tian%2C+Yonghong&rft.au=Cheng%2C+Jingyi&rft.au=Cheng%2C+Shubo&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2079-6412&rft.eissn=2079-6412&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fcoatings13091604&rft.externalDocID=A768250049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6412&client=summon