Extensive evaluation of environment-specific force field for ordered and disordered proteins

Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. H...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 23; no. 21; pp. 12127 - 12136
Main Authors Cui, Xiaochen, Liu, Hao, Rehman, Ashfaq Ur, Chen, Hai-Feng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 02.06.2021
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d1cp01385h

Cover

Abstract Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs. The performance of ESFF1 is better than that of ff14SB for reproducing Cα chemical shifts for three typical intrinsically disordered proteins.
AbstractList Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs.Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs.
Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs. The performance of ESFF1 is better than that of ff14SB for reproducing Cα chemical shifts for three typical intrinsically disordered proteins.
Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence–disorder–function for IDPs.
Author Liu, Hao
Rehman, Ashfaq Ur
Cui, Xiaochen
Chen, Hai-Feng
AuthorAffiliation School of Life Sciences and Biotechnology
National Experimental Teaching Center for Life Sciences and Biotechnology
Joint International Research Laboratory of Metabolic & Developmental Sciences
State Key Laboratory of Microbial Metabolism
Shanghai Center for Bioinformation Technology
Department of Bioinformatics and Biostatistics
Shanghai Jiao Tong University
AuthorAffiliation_xml – name: State Key Laboratory of Microbial Metabolism
– name: Shanghai Jiao Tong University
– name: Department of Bioinformatics and Biostatistics
– name: Shanghai Center for Bioinformation Technology
– name: Joint International Research Laboratory of Metabolic & Developmental Sciences
– name: School of Life Sciences and Biotechnology
– name: National Experimental Teaching Center for Life Sciences and Biotechnology
Author_xml – sequence: 1
  givenname: Xiaochen
  surname: Cui
  fullname: Cui, Xiaochen
– sequence: 2
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 3
  givenname: Ashfaq Ur
  surname: Rehman
  fullname: Rehman, Ashfaq Ur
– sequence: 4
  givenname: Hai-Feng
  surname: Chen
  fullname: Chen, Hai-Feng
BookMark eNptkUFLAzEQhYMo2FYv3oUFLyKsJptssnuUWq1Q0IPehCWbnWDKNqlJtui_d9tqheJp3sD3ZoY3Q3RonQWEzgi-JpiWNw1RS0xokb8foAFhnKYlLtjhTgt-jIYhzDHGJCd0gN4mnxFsMCtIYCXbTkbjbOJ0AnZlvLMLsDENS1BGG5Vo5xUk2kDbrHXifAMemkTaJmlM-G2X3kUwNpygIy3bAKc_dYRe7ycv42k6e3p4HN_OUkVzElOdK8VKyJjEHAQFXqscNMt4XYPIMKkBmloXXMiSFTzLQShcAJdaYs0FLekIXW7n9os_OgixWpigoG2lBdeFKstpljGRFUWPXuyhc9d521-3pnLBBWasp_CWUt6F4EFXysRNNNFL01YEV-u4qzsyft7EPe0tV3uWpTcL6b_-h8-3sA9qx_39jn4DtQqNQA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_136256
crossref_primary_10_1039_D2CP04501J
crossref_primary_10_1016_j_heliyon_2024_e29695
crossref_primary_10_1002_pro_4905
crossref_primary_10_1021_acs_jcim_2c00835
crossref_primary_10_1016_j_bmc_2025_118160
crossref_primary_10_1039_D2CP05998C
crossref_primary_10_1021_acs_jcim_1c00407
Cites_doi 10.1021/acs.jcim.9b00647
10.1002/jcc.20290
10.1016/0021-9991(77)90098-5
10.1146/annurev.biophys.37.032807.125924
10.1080/07391102.2016.1276478
10.1016/j.semcdb.2014.09.025
10.1021/jp4010967
10.1007/978-3-319-20164-1_2
10.1007/s10858-010-9433-9
10.1021/acs.jpcb.8b08903
10.1007/978-981-13-8719-7_14
10.1021/ja0678774
10.1146/annurev-biophys-052118-115647
10.1021/ct800030s
10.1021/acs.jcim.0c00059
10.1021/ct400314y
10.1021/ct200909j
10.1111/cbdd.13342
10.1093/jmcb/mjz060
10.1016/j.neulet.2019.04.022
10.1063/1.470117
10.1021/acs.jcim.7b00135
10.1021/ja0000908
10.1080/07391102.2017.1352539
10.1016/j.str.2010.01.020
10.1021/ct400341p
10.1021/acs.jcim.5b00043
10.1016/j.jmgm.2003.12.005
10.1016/j.str.2014.03.012
10.1093/nar/gkm957
10.1021/acs.jcim.0c00762
10.1111/cbdd.12832
10.1039/C9CP03434J
10.1073/pnas.1800690115
10.1111/cbdd.12314
10.1063/1.448118
10.1021/acs.jctc.9b00623
10.1063/1.3224126
10.1038/s41467-019-09446-w
10.1021/acs.jctc.5b00736
10.1021/acs.jcim.6b00115
10.1039/C8CP00234G
10.1021/acs.jcim.0c01175
10.1371/journal.pone.0059627
10.1016/j.bpj.2013.12.046
10.1039/C0CP00701C
10.1073/pnas.0911107107
10.2174/1567205014666170417111859
10.1186/1471-2164-10-S1-S7
10.1111/jnc.14809
10.1002/prot.21750
10.1073/pnas.1907251116
10.1007/978-1-4939-7759-8_29
10.1016/j.sbi.2017.01.006
10.1002/bip.360221211
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1cp01385h
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 12136
ExternalDocumentID 10_1039_D1CP01385H
d1cp01385h
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c351t-f5cc49e24a06e73e6bc5ef426bbe7201beedbf867a948625e7c08e6afa0f67393
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 13:04:33 EDT 2025
Mon Jun 30 07:17:20 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 00:53:57 EDT 2025
Sat Apr 09 14:23:24 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-f5cc49e24a06e73e6bc5ef426bbe7201beedbf867a948625e7c08e6afa0f67393
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1cp01385h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7496-4182
PQID 2535767044
PQPubID 2047499
PageCount 1
ParticipantIDs crossref_primary_10_1039_D1CP01385H
rsc_primary_d1cp01385h
proquest_journals_2535767044
crossref_citationtrail_10_1039_D1CP01385H
proquest_miscellaneous_2532247288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210602
PublicationDateYYYYMMDD 2021-06-02
PublicationDate_xml – month: 6
  year: 2021
  text: 20210602
  day: 2
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D1CP01385H-(cit59)/*[position()=1]) 2013; 117
Mittag (D1CP01385H-(cit36)/*[position()=1]) 2010; 18
Yu (D1CP01385H-(cit58)/*[position()=1]) 2013; 8
Wang (D1CP01385H-(cit21)/*[position()=1]) 2014; 84
Shrestha (D1CP01385H-(cit16)/*[position()=1]) 2019; 116
Tsytlonok (D1CP01385H-(cit4)/*[position()=1]) 2019; 10
Gotz (D1CP01385H-(cit32)/*[position()=1]) 2012; 8
Baran (D1CP01385H-(cit47)/*[position()=1])
Liu (D1CP01385H-(cit27)/*[position()=1]) 2018; 92
Liu (D1CP01385H-(cit10)/*[position()=1]) 2019; 11
Zhang (D1CP01385H-(cit29)/*[position()=1]) 2019; 15
Schneidman-Duhovny (D1CP01385H-(cit13)/*[position()=1]) 2018; 1764
Uversky (D1CP01385H-(cit6)/*[position()=1]) 2008; 37
Yang (D1CP01385H-(cit26)/*[position()=1]) 2019; 59
Aramini (D1CP01385H-(cit40)/*[position()=1])
Qin (D1CP01385H-(cit56)/*[position()=1]) 2011; 13
Sterckx (D1CP01385H-(cit34)/*[position()=1]) 2014; 22
Chen (D1CP01385H-(cit54)/*[position()=1]) 2008; 4
Uversky (D1CP01385H-(cit7)/*[position()=1]) 2009; 10
Eletsky (D1CP01385H-(cit44)/*[position()=1])
Chen (D1CP01385H-(cit53)/*[position()=1]) 2007; 129
Yang (D1CP01385H-(cit57)/*[position()=1]) 2016; 56
Song (D1CP01385H-(cit24)/*[position()=1]) 2017; 57
Kabsch (D1CP01385H-(cit62)/*[position()=1]) 1983; 22
De Biasio (D1CP01385H-(cit35)/*[position()=1]) 2014; 106
Rehman (D1CP01385H-(cit5)/*[position()=1]) 2019; 1163
Naseri (D1CP01385H-(cit9)/*[position()=1]) 2019; 705
Mu (D1CP01385H-(cit20)/*[position()=1]) 2021; 61
Rauscher (D1CP01385H-(cit15)/*[position()=1]) 2015; 11
Ryckaert (D1CP01385H-(cit37)/*[position()=1]) 1977; 23
Song (D1CP01385H-(cit30)/*[position()=1]) 2020; 60
Swapna (D1CP01385H-(cit43)/*[position()=1])
Shao (D1CP01385H-(cit48)/*[position()=1])
Dunker (D1CP01385H-(cit2)/*[position()=1]) 2000; 11
Mani (D1CP01385H-(cit51)/*[position()=1])
Faraggi (D1CP01385H-(cit14)/*[position()=1]) 2018; 36
Best (D1CP01385H-(cit17)/*[position()=1]) 2017; 42
Essmann (D1CP01385H-(cit38)/*[position()=1]) 1995; 103
Liu (D1CP01385H-(cit28)/*[position()=1]) 2019; 21
Zweckstetter (D1CP01385H-(cit64)/*[position()=1]) 2000; 122
Case (D1CP01385H-(cit31)/*[position()=1]) 2005; 26
Shen (D1CP01385H-(cit63)/*[position()=1]) 2010; 48
Dunker (D1CP01385H-(cit3)/*[position()=1]) 2015; 37
Berendsen (D1CP01385H-(cit39)/*[position()=1]) 1984; 81
Paissoni (D1CP01385H-(cit19)/*[position()=1]) 2018; 20
Aramini (D1CP01385H-(cit45)/*[position()=1])
Mockel (D1CP01385H-(cit66)/*[position()=1]) 2019; 123
Song (D1CP01385H-(cit23)/*[position()=1]) 2017; 89
Ramelot (D1CP01385H-(cit49)/*[position()=1])
Tang (D1CP01385H-(cit50)/*[position()=1])
Qin (D1CP01385H-(cit55)/*[position()=1]) 2009; 131
Robustelli (D1CP01385H-(cit68)/*[position()=1]) 2018; 115
Ye (D1CP01385H-(cit22)/*[position()=1]) 2015; 55
Fayyad (D1CP01385H-(cit11)/*[position()=1]) 2019; 150
Rahman (D1CP01385H-(cit25)/*[position()=1]) 2020; 60
Mills (D1CP01385H-(cit42)/*[position()=1])
Liu (D1CP01385H-(cit41)/*[position()=1])
Kundu (D1CP01385H-(cit18)/*[position()=1]) 2018; 36
Trbovic (D1CP01385H-(cit65)/*[position()=1]) 2008; 71
Feig (D1CP01385H-(cit61)/*[position()=1]) 2004; 22
Fu (D1CP01385H-(cit1)/*[position()=1]) 2015; 870
Roe (D1CP01385H-(cit60)/*[position()=1]) 2013; 9
Swapna (D1CP01385H-(cit46)/*[position()=1])
Ulrich (D1CP01385H-(cit67)/*[position()=1]) 2007; 36
Sekhar (D1CP01385H-(cit12)/*[position()=1]) 2019; 48
Gao (D1CP01385H-(cit8)/*[position()=1]) 2018; 15
Salomon-Ferrer (D1CP01385H-(cit33)/*[position()=1]) 2013; 9
Liu (D1CP01385H-(cit52)/*[position()=1])
Mao (D1CP01385H-(cit69)/*[position()=1]) 2010; 107
References_xml – doi: Liu Janjua Xiao Ciccosanti Shastry Everett Nair Acton Rost Montelione
– doi: Aramini Lee Ciccosanti Hamilton Nair Rost Acton Xiao Swapna Everett Montelione
– doi: Swapna Ciccosanti Belote Hamilton Acton Huang Xiao Everett Montelione
– doi: Mills Ghosh Garcia Zhang Shastry Foote Janjua Acton Xiao Everett Montelione Szyperski
– doi: Eletsky Sukumaran Wang Hamilton Foote Xiao Liu Baran Swapna Acton Rost Montelione Szyperski
– doi: Aramini Cort Ho Cunningham Ma Xiao Liu Baran Swapna Acton Rost Montelione
– doi: Liu Janjua Xiao Acton Ciccosanti Shastry Everett Montelione
– doi: Swapna Montelione Shastry Ciccosanti Janjua Xiao Acton Everett Montelione
– doi: Ramelot Xiao Ma Acton Montelione Kennedy
– doi: Tang Xiao Ciccosanti Janjua Lee Everett Swapna Acton Rost Montelione
– doi: Shao Acton Liu Ma Shen Xiao Montelione Szyperski
– doi: Mani Swapna Janjua Ciccosanti Huang Patel Xiao Acton Everett Montelione
– doi: Baran Aramini Xiao Huang Acton Shih Montelione
– volume: 59
  start-page: 4793
  issue: 11
  year: 2019
  ident: D1CP01385H-(cit26)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00647
– volume: 26
  start-page: 1668
  issue: 16
  year: 2005
  ident: D1CP01385H-(cit31)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20290
– volume: 23
  start-page: 327
  issue: 3
  year: 1977
  ident: D1CP01385H-(cit37)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 37
  start-page: 215
  year: 2008
  ident: D1CP01385H-(cit6)/*[position()=1]
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev.biophys.37.032807.125924
– volume: 36
  start-page: 302
  issue: 2
  year: 2018
  ident: D1CP01385H-(cit18)/*[position()=1]
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2016.1276478
– volume: 37
  start-page: 44
  year: 2015
  ident: D1CP01385H-(cit3)/*[position()=1]
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.09.025
– volume: 117
  start-page: 4912
  issue: 17
  year: 2013
  ident: D1CP01385H-(cit59)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp4010967
– volume: 870
  start-page: 35
  year: 2015
  ident: D1CP01385H-(cit1)/*[position()=1]
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-20164-1_2
– ident: D1CP01385H-(cit43)/*[position()=1]
– ident: D1CP01385H-(cit41)/*[position()=1]
– volume: 48
  start-page: 13
  issue: 1
  year: 2010
  ident: D1CP01385H-(cit63)/*[position()=1]
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-010-9433-9
– volume: 123
  start-page: 1453
  issue: 7
  year: 2019
  ident: D1CP01385H-(cit66)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b08903
– volume: 1163
  start-page: 335
  year: 2019
  ident: D1CP01385H-(cit5)/*[position()=1]
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-8719-7_14
– ident: D1CP01385H-(cit46)/*[position()=1]
– volume: 129
  start-page: 2930
  issue: 10
  year: 2007
  ident: D1CP01385H-(cit53)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0678774
– volume: 48
  start-page: 297
  year: 2019
  ident: D1CP01385H-(cit12)/*[position()=1]
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-052118-115647
– volume: 4
  start-page: 1360
  issue: 8
  year: 2008
  ident: D1CP01385H-(cit54)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800030s
– volume: 60
  start-page: 2257
  issue: 4
  year: 2020
  ident: D1CP01385H-(cit30)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00059
– ident: D1CP01385H-(cit40)/*[position()=1]
– volume: 9
  start-page: 3878
  issue: 9
  year: 2013
  ident: D1CP01385H-(cit33)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400314y
– volume: 8
  start-page: 1542
  issue: 5
  year: 2012
  ident: D1CP01385H-(cit32)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200909j
– volume: 92
  start-page: 1722
  issue: 4
  year: 2018
  ident: D1CP01385H-(cit27)/*[position()=1]
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.13342
– volume: 11
  start-page: 564
  issue: 7
  year: 2019
  ident: D1CP01385H-(cit10)/*[position()=1]
  publication-title: J. Mol. Cell Biol.
  doi: 10.1093/jmcb/mjz060
– volume: 11
  start-page: 161
  year: 2000
  ident: D1CP01385H-(cit2)/*[position()=1]
  publication-title: Genome Inform Ser Workshop Genome Inform
– volume: 705
  start-page: 183
  year: 2019
  ident: D1CP01385H-(cit9)/*[position()=1]
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2019.04.022
– volume: 103
  start-page: 8577
  issue: 19
  year: 1995
  ident: D1CP01385H-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– ident: D1CP01385H-(cit47)/*[position()=1]
– volume: 57
  start-page: 1166
  issue: 5
  year: 2017
  ident: D1CP01385H-(cit24)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00135
– ident: D1CP01385H-(cit52)/*[position()=1]
– volume: 122
  start-page: 3791
  issue: 15
  year: 2000
  ident: D1CP01385H-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0000908
– volume: 36
  start-page: 2331
  issue: 9
  year: 2018
  ident: D1CP01385H-(cit14)/*[position()=1]
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2017.1352539
– volume: 18
  start-page: 494
  issue: 4
  year: 2010
  ident: D1CP01385H-(cit36)/*[position()=1]
  publication-title: Structure
  doi: 10.1016/j.str.2010.01.020
– volume: 9
  start-page: 3084
  issue: 7
  year: 2013
  ident: D1CP01385H-(cit60)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400341p
– volume: 55
  start-page: 1021
  issue: 5
  year: 2015
  ident: D1CP01385H-(cit22)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00043
– volume: 22
  start-page: 377
  issue: 5
  year: 2004
  ident: D1CP01385H-(cit61)/*[position()=1]
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2003.12.005
– volume: 22
  start-page: 854
  issue: 6
  year: 2014
  ident: D1CP01385H-(cit34)/*[position()=1]
  publication-title: Structure
  doi: 10.1016/j.str.2014.03.012
– volume: 36
  start-page: D402
  issue: suppl_1
  year: 2007
  ident: D1CP01385H-(cit67)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm957
– volume: 60
  start-page: 4912
  issue: 10
  year: 2020
  ident: D1CP01385H-(cit25)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00762
– volume: 89
  start-page: 5
  issue: 1
  year: 2017
  ident: D1CP01385H-(cit23)/*[position()=1]
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.12832
– volume: 21
  start-page: 21918
  issue: 39
  year: 2019
  ident: D1CP01385H-(cit28)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03434J
– volume: 115
  start-page: E4758
  issue: 21
  year: 2018
  ident: D1CP01385H-(cit68)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800690115
– ident: D1CP01385H-(cit50)/*[position()=1]
– volume: 84
  start-page: 253
  issue: 3
  year: 2014
  ident: D1CP01385H-(cit21)/*[position()=1]
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.12314
– volume: 81
  start-page: 3684
  issue: 8
  year: 1984
  ident: D1CP01385H-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– ident: D1CP01385H-(cit42)/*[position()=1]
– ident: D1CP01385H-(cit45)/*[position()=1]
– volume: 15
  start-page: 6769
  issue: 12
  year: 2019
  ident: D1CP01385H-(cit29)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00623
– volume: 131
  start-page: 115103
  issue: 11
  year: 2009
  ident: D1CP01385H-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3224126
– volume: 10
  start-page: 1676
  issue: 1
  year: 2019
  ident: D1CP01385H-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09446-w
– volume: 11
  start-page: 5513
  issue: 11
  year: 2015
  ident: D1CP01385H-(cit15)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00736
– volume: 56
  start-page: 1184
  issue: 6
  year: 2016
  ident: D1CP01385H-(cit57)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00115
– volume: 20
  start-page: 15807
  issue: 23
  year: 2018
  ident: D1CP01385H-(cit19)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00234G
– volume: 61
  start-page: 1037
  issue: 3
  year: 2021
  ident: D1CP01385H-(cit20)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c01175
– ident: D1CP01385H-(cit48)/*[position()=1]
– volume: 8
  start-page: e59627
  issue: 3
  year: 2013
  ident: D1CP01385H-(cit58)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059627
– ident: D1CP01385H-(cit51)/*[position()=1]
– volume: 106
  start-page: 865
  issue: 4
  year: 2014
  ident: D1CP01385H-(cit35)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.12.046
– volume: 13
  start-page: 1407
  issue: 4
  year: 2011
  ident: D1CP01385H-(cit56)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C0CP00701C
– volume: 107
  start-page: 8183
  issue: 18
  year: 2010
  ident: D1CP01385H-(cit69)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911107107
– volume: 15
  start-page: 283
  issue: 3
  year: 2018
  ident: D1CP01385H-(cit8)/*[position()=1]
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/1567205014666170417111859
– ident: D1CP01385H-(cit44)/*[position()=1]
– volume: 10
  start-page: S7
  issue: suppl 1
  year: 2009
  ident: D1CP01385H-(cit7)/*[position()=1]
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-S1-S7
– volume: 150
  start-page: 626
  issue: 5
  year: 2019
  ident: D1CP01385H-(cit11)/*[position()=1]
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14809
– volume: 71
  start-page: 684
  issue: 2
  year: 2008
  ident: D1CP01385H-(cit65)/*[position()=1]
  publication-title: Proteins
  doi: 10.1002/prot.21750
– volume: 116
  start-page: 20446
  issue: 41
  year: 2019
  ident: D1CP01385H-(cit16)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1907251116
– volume: 1764
  start-page: 449
  year: 2018
  ident: D1CP01385H-(cit13)/*[position()=1]
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7759-8_29
– volume: 42
  start-page: 147
  year: 2017
  ident: D1CP01385H-(cit17)/*[position()=1]
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2017.01.006
– ident: D1CP01385H-(cit49)/*[position()=1]
– volume: 22
  start-page: 2577
  issue: 12
  year: 1983
  ident: D1CP01385H-(cit62)/*[position()=1]
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
SSID ssj0001513
Score 2.413654
Snippet Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12127
SubjectTerms Molecular dynamics
NMR
Nuclear magnetic resonance
Performance evaluation
Proteins
Title Extensive evaluation of environment-specific force field for ordered and disordered proteins
URI https://www.proquest.com/docview/2535767044
https://www.proquest.com/docview/2532247288
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdEYSAjEBJCGUnsOMmxCp0KKqOHVOoBKbJdZ62E2m5tJQT_PM-OHRcph8Elct00qfx-tp_fx-8h9Ba2KCmTOA1oLFRAGY9gzuVpsNBcUYJwkhiD_tcrNp7RL_Nk3uv9Ps4u2YsL-aszr-R_pAp9IFedJfsPkm0fCh3QBvnCFSQM1zvJePTTxZ970m6t_R1lrwU6lVKHA-l4QpjDJmLNxBYa0k1lmFq1m8Z9NMQNK2vDs1rr1AlTuvJwTUt3NaaRnTEtTIvCFzA-mDiB-Yrrmlw-8Gd1MLsd37SuHrW0Vtjhblnzmw-zNl64sKkjY74KYOCvj00UcRNKdWS1hNWYBHnY1IK7UB19diluUo8t5JrMabuwRpqJvnPJD4lmTF1EcqudrsnSb2zOmX_1rbqcTSZVOZqX77Y3gS45pl3ztv7KCTqNU8biPjodjsrPk3YjB2WINMlpzT917LYk_-hf97c-4w8pJ7eugozRVMqH6IE9YuBhg5dHqKfWj9G9wonuCfre4gZ73OBNjbtwgw1usMGNbmMLFAy4wR432OHmKZpdjspiHNgqG4EkSbQPapisNFcx5SFTKVFMyETVoLgJoVJQDwVoUaLOWMpzCsffRKUyzBTjNQ9rpvkUz1B_vVmrZwjXWcIpM0VXF5QvQPmMQg6PgWWeSiXEAL13Y1VJS0GvK6H8qEwoBMmrT1ExNeM6HqA37b3bhnil865zN-SVnZi7Kk4InKLTkNIBet1-DWOsfWF8rTYHcw8or2mcZQN0BqJq3-El-_wOP36B7nvAn6P-_vagXoKWuhevLJr-AG6Zl0E
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensive+evaluation+of+environment-specific+force+field+for+ordered+and+disordered+proteins&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Cui%2C+Xiaochen&rft.au=Liu%2C+Hao&rft.au=Rehman%2C+Ashfaq+Ur&rft.au=Chen%2C+Hai-Feng&rft.date=2021-06-02&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=23&rft.issue=21&rft.spage=12127&rft_id=info:doi/10.1039%2Fd1cp01385h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon