Extensive evaluation of environment-specific force field for ordered and disordered proteins
Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. H...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 23; no. 21; pp. 12127 - 12136 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
02.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/d1cp01385h |
Cover
Abstract | Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs.
The performance of ESFF1 is better than that of ff14SB for reproducing Cα chemical shifts for three typical intrinsically disordered proteins. |
---|---|
AbstractList | Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs.Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs. Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence-disorder-function for IDPs. The performance of ESFF1 is better than that of ff14SB for reproducing Cα chemical shifts for three typical intrinsically disordered proteins. Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because IDPs have the characteristic of possessing diverse conformations, current experimental methods cannot capture all the conformations of IDPs. However, molecular dynamics simulation can sample these atomistically diverse conformations as a valuable complement to experimental data. To accurately describe the properties of IDPs, the environment-specific precise force field (ESFF1) was successfully released to reproduce the conformer character of ordered and disordered proteins. Here, three typical IDPs and thirteen folded proteins were used to further evaluate the performance of this force field. The results indicate that the NMR observables of ESFF1 better approach experimental data than do those of ff14SB for IDPs. The sampling conformations by ESFF1 are more diverse than those of ff14SB. For folded proteins, these force fields have comparable performances for reproducing conformers. Therefore, ESFF1 can be used to reveal the model of sequence–disorder–function for IDPs. |
Author | Liu, Hao Rehman, Ashfaq Ur Cui, Xiaochen Chen, Hai-Feng |
AuthorAffiliation | School of Life Sciences and Biotechnology National Experimental Teaching Center for Life Sciences and Biotechnology Joint International Research Laboratory of Metabolic & Developmental Sciences State Key Laboratory of Microbial Metabolism Shanghai Center for Bioinformation Technology Department of Bioinformatics and Biostatistics Shanghai Jiao Tong University |
AuthorAffiliation_xml | – name: State Key Laboratory of Microbial Metabolism – name: Shanghai Jiao Tong University – name: Department of Bioinformatics and Biostatistics – name: Shanghai Center for Bioinformation Technology – name: Joint International Research Laboratory of Metabolic & Developmental Sciences – name: School of Life Sciences and Biotechnology – name: National Experimental Teaching Center for Life Sciences and Biotechnology |
Author_xml | – sequence: 1 givenname: Xiaochen surname: Cui fullname: Cui, Xiaochen – sequence: 2 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 3 givenname: Ashfaq Ur surname: Rehman fullname: Rehman, Ashfaq Ur – sequence: 4 givenname: Hai-Feng surname: Chen fullname: Chen, Hai-Feng |
BookMark | eNptkUFLAzEQhYMo2FYv3oUFLyKsJptssnuUWq1Q0IPehCWbnWDKNqlJtui_d9tqheJp3sD3ZoY3Q3RonQWEzgi-JpiWNw1RS0xokb8foAFhnKYlLtjhTgt-jIYhzDHGJCd0gN4mnxFsMCtIYCXbTkbjbOJ0AnZlvLMLsDENS1BGG5Vo5xUk2kDbrHXifAMemkTaJmlM-G2X3kUwNpygIy3bAKc_dYRe7ycv42k6e3p4HN_OUkVzElOdK8VKyJjEHAQFXqscNMt4XYPIMKkBmloXXMiSFTzLQShcAJdaYs0FLekIXW7n9os_OgixWpigoG2lBdeFKstpljGRFUWPXuyhc9d521-3pnLBBWasp_CWUt6F4EFXysRNNNFL01YEV-u4qzsyft7EPe0tV3uWpTcL6b_-h8-3sA9qx_39jn4DtQqNQA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_136256 crossref_primary_10_1039_D2CP04501J crossref_primary_10_1016_j_heliyon_2024_e29695 crossref_primary_10_1002_pro_4905 crossref_primary_10_1021_acs_jcim_2c00835 crossref_primary_10_1016_j_bmc_2025_118160 crossref_primary_10_1039_D2CP05998C crossref_primary_10_1021_acs_jcim_1c00407 |
Cites_doi | 10.1021/acs.jcim.9b00647 10.1002/jcc.20290 10.1016/0021-9991(77)90098-5 10.1146/annurev.biophys.37.032807.125924 10.1080/07391102.2016.1276478 10.1016/j.semcdb.2014.09.025 10.1021/jp4010967 10.1007/978-3-319-20164-1_2 10.1007/s10858-010-9433-9 10.1021/acs.jpcb.8b08903 10.1007/978-981-13-8719-7_14 10.1021/ja0678774 10.1146/annurev-biophys-052118-115647 10.1021/ct800030s 10.1021/acs.jcim.0c00059 10.1021/ct400314y 10.1021/ct200909j 10.1111/cbdd.13342 10.1093/jmcb/mjz060 10.1016/j.neulet.2019.04.022 10.1063/1.470117 10.1021/acs.jcim.7b00135 10.1021/ja0000908 10.1080/07391102.2017.1352539 10.1016/j.str.2010.01.020 10.1021/ct400341p 10.1021/acs.jcim.5b00043 10.1016/j.jmgm.2003.12.005 10.1016/j.str.2014.03.012 10.1093/nar/gkm957 10.1021/acs.jcim.0c00762 10.1111/cbdd.12832 10.1039/C9CP03434J 10.1073/pnas.1800690115 10.1111/cbdd.12314 10.1063/1.448118 10.1021/acs.jctc.9b00623 10.1063/1.3224126 10.1038/s41467-019-09446-w 10.1021/acs.jctc.5b00736 10.1021/acs.jcim.6b00115 10.1039/C8CP00234G 10.1021/acs.jcim.0c01175 10.1371/journal.pone.0059627 10.1016/j.bpj.2013.12.046 10.1039/C0CP00701C 10.1073/pnas.0911107107 10.2174/1567205014666170417111859 10.1186/1471-2164-10-S1-S7 10.1111/jnc.14809 10.1002/prot.21750 10.1073/pnas.1907251116 10.1007/978-1-4939-7759-8_29 10.1016/j.sbi.2017.01.006 10.1002/bip.360221211 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d1cp01385h |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 12136 |
ExternalDocumentID | 10_1039_D1CP01385H d1cp01385h |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c351t-f5cc49e24a06e73e6bc5ef426bbe7201beedbf867a948625e7c08e6afa0f67393 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 13:04:33 EDT 2025 Mon Jun 30 07:17:20 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 00:53:57 EDT 2025 Sat Apr 09 14:23:24 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-f5cc49e24a06e73e6bc5ef426bbe7201beedbf867a948625e7c08e6afa0f67393 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1cp01385h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7496-4182 |
PQID | 2535767044 |
PQPubID | 2047499 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1039_D1CP01385H rsc_primary_d1cp01385h proquest_journals_2535767044 crossref_citationtrail_10_1039_D1CP01385H proquest_miscellaneous_2532247288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210602 |
PublicationDateYYYYMMDD | 2021-06-02 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210602 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D1CP01385H-(cit59)/*[position()=1]) 2013; 117 Mittag (D1CP01385H-(cit36)/*[position()=1]) 2010; 18 Yu (D1CP01385H-(cit58)/*[position()=1]) 2013; 8 Wang (D1CP01385H-(cit21)/*[position()=1]) 2014; 84 Shrestha (D1CP01385H-(cit16)/*[position()=1]) 2019; 116 Tsytlonok (D1CP01385H-(cit4)/*[position()=1]) 2019; 10 Gotz (D1CP01385H-(cit32)/*[position()=1]) 2012; 8 Baran (D1CP01385H-(cit47)/*[position()=1]) Liu (D1CP01385H-(cit27)/*[position()=1]) 2018; 92 Liu (D1CP01385H-(cit10)/*[position()=1]) 2019; 11 Zhang (D1CP01385H-(cit29)/*[position()=1]) 2019; 15 Schneidman-Duhovny (D1CP01385H-(cit13)/*[position()=1]) 2018; 1764 Uversky (D1CP01385H-(cit6)/*[position()=1]) 2008; 37 Yang (D1CP01385H-(cit26)/*[position()=1]) 2019; 59 Aramini (D1CP01385H-(cit40)/*[position()=1]) Qin (D1CP01385H-(cit56)/*[position()=1]) 2011; 13 Sterckx (D1CP01385H-(cit34)/*[position()=1]) 2014; 22 Chen (D1CP01385H-(cit54)/*[position()=1]) 2008; 4 Uversky (D1CP01385H-(cit7)/*[position()=1]) 2009; 10 Eletsky (D1CP01385H-(cit44)/*[position()=1]) Chen (D1CP01385H-(cit53)/*[position()=1]) 2007; 129 Yang (D1CP01385H-(cit57)/*[position()=1]) 2016; 56 Song (D1CP01385H-(cit24)/*[position()=1]) 2017; 57 Kabsch (D1CP01385H-(cit62)/*[position()=1]) 1983; 22 De Biasio (D1CP01385H-(cit35)/*[position()=1]) 2014; 106 Rehman (D1CP01385H-(cit5)/*[position()=1]) 2019; 1163 Naseri (D1CP01385H-(cit9)/*[position()=1]) 2019; 705 Mu (D1CP01385H-(cit20)/*[position()=1]) 2021; 61 Rauscher (D1CP01385H-(cit15)/*[position()=1]) 2015; 11 Ryckaert (D1CP01385H-(cit37)/*[position()=1]) 1977; 23 Song (D1CP01385H-(cit30)/*[position()=1]) 2020; 60 Swapna (D1CP01385H-(cit43)/*[position()=1]) Shao (D1CP01385H-(cit48)/*[position()=1]) Dunker (D1CP01385H-(cit2)/*[position()=1]) 2000; 11 Mani (D1CP01385H-(cit51)/*[position()=1]) Faraggi (D1CP01385H-(cit14)/*[position()=1]) 2018; 36 Best (D1CP01385H-(cit17)/*[position()=1]) 2017; 42 Essmann (D1CP01385H-(cit38)/*[position()=1]) 1995; 103 Liu (D1CP01385H-(cit28)/*[position()=1]) 2019; 21 Zweckstetter (D1CP01385H-(cit64)/*[position()=1]) 2000; 122 Case (D1CP01385H-(cit31)/*[position()=1]) 2005; 26 Shen (D1CP01385H-(cit63)/*[position()=1]) 2010; 48 Dunker (D1CP01385H-(cit3)/*[position()=1]) 2015; 37 Berendsen (D1CP01385H-(cit39)/*[position()=1]) 1984; 81 Paissoni (D1CP01385H-(cit19)/*[position()=1]) 2018; 20 Aramini (D1CP01385H-(cit45)/*[position()=1]) Mockel (D1CP01385H-(cit66)/*[position()=1]) 2019; 123 Song (D1CP01385H-(cit23)/*[position()=1]) 2017; 89 Ramelot (D1CP01385H-(cit49)/*[position()=1]) Tang (D1CP01385H-(cit50)/*[position()=1]) Qin (D1CP01385H-(cit55)/*[position()=1]) 2009; 131 Robustelli (D1CP01385H-(cit68)/*[position()=1]) 2018; 115 Ye (D1CP01385H-(cit22)/*[position()=1]) 2015; 55 Fayyad (D1CP01385H-(cit11)/*[position()=1]) 2019; 150 Rahman (D1CP01385H-(cit25)/*[position()=1]) 2020; 60 Mills (D1CP01385H-(cit42)/*[position()=1]) Liu (D1CP01385H-(cit41)/*[position()=1]) Kundu (D1CP01385H-(cit18)/*[position()=1]) 2018; 36 Trbovic (D1CP01385H-(cit65)/*[position()=1]) 2008; 71 Feig (D1CP01385H-(cit61)/*[position()=1]) 2004; 22 Fu (D1CP01385H-(cit1)/*[position()=1]) 2015; 870 Roe (D1CP01385H-(cit60)/*[position()=1]) 2013; 9 Swapna (D1CP01385H-(cit46)/*[position()=1]) Ulrich (D1CP01385H-(cit67)/*[position()=1]) 2007; 36 Sekhar (D1CP01385H-(cit12)/*[position()=1]) 2019; 48 Gao (D1CP01385H-(cit8)/*[position()=1]) 2018; 15 Salomon-Ferrer (D1CP01385H-(cit33)/*[position()=1]) 2013; 9 Liu (D1CP01385H-(cit52)/*[position()=1]) Mao (D1CP01385H-(cit69)/*[position()=1]) 2010; 107 |
References_xml | – doi: Liu Janjua Xiao Ciccosanti Shastry Everett Nair Acton Rost Montelione – doi: Aramini Lee Ciccosanti Hamilton Nair Rost Acton Xiao Swapna Everett Montelione – doi: Swapna Ciccosanti Belote Hamilton Acton Huang Xiao Everett Montelione – doi: Mills Ghosh Garcia Zhang Shastry Foote Janjua Acton Xiao Everett Montelione Szyperski – doi: Eletsky Sukumaran Wang Hamilton Foote Xiao Liu Baran Swapna Acton Rost Montelione Szyperski – doi: Aramini Cort Ho Cunningham Ma Xiao Liu Baran Swapna Acton Rost Montelione – doi: Liu Janjua Xiao Acton Ciccosanti Shastry Everett Montelione – doi: Swapna Montelione Shastry Ciccosanti Janjua Xiao Acton Everett Montelione – doi: Ramelot Xiao Ma Acton Montelione Kennedy – doi: Tang Xiao Ciccosanti Janjua Lee Everett Swapna Acton Rost Montelione – doi: Shao Acton Liu Ma Shen Xiao Montelione Szyperski – doi: Mani Swapna Janjua Ciccosanti Huang Patel Xiao Acton Everett Montelione – doi: Baran Aramini Xiao Huang Acton Shih Montelione – volume: 59 start-page: 4793 issue: 11 year: 2019 ident: D1CP01385H-(cit26)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00647 – volume: 26 start-page: 1668 issue: 16 year: 2005 ident: D1CP01385H-(cit31)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 23 start-page: 327 issue: 3 year: 1977 ident: D1CP01385H-(cit37)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 37 start-page: 215 year: 2008 ident: D1CP01385H-(cit6)/*[position()=1] publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.37.032807.125924 – volume: 36 start-page: 302 issue: 2 year: 2018 ident: D1CP01385H-(cit18)/*[position()=1] publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2016.1276478 – volume: 37 start-page: 44 year: 2015 ident: D1CP01385H-(cit3)/*[position()=1] publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.09.025 – volume: 117 start-page: 4912 issue: 17 year: 2013 ident: D1CP01385H-(cit59)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp4010967 – volume: 870 start-page: 35 year: 2015 ident: D1CP01385H-(cit1)/*[position()=1] publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-20164-1_2 – ident: D1CP01385H-(cit43)/*[position()=1] – ident: D1CP01385H-(cit41)/*[position()=1] – volume: 48 start-page: 13 issue: 1 year: 2010 ident: D1CP01385H-(cit63)/*[position()=1] publication-title: J. Biomol. NMR doi: 10.1007/s10858-010-9433-9 – volume: 123 start-page: 1453 issue: 7 year: 2019 ident: D1CP01385H-(cit66)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b08903 – volume: 1163 start-page: 335 year: 2019 ident: D1CP01385H-(cit5)/*[position()=1] publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-13-8719-7_14 – ident: D1CP01385H-(cit46)/*[position()=1] – volume: 129 start-page: 2930 issue: 10 year: 2007 ident: D1CP01385H-(cit53)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0678774 – volume: 48 start-page: 297 year: 2019 ident: D1CP01385H-(cit12)/*[position()=1] publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-052118-115647 – volume: 4 start-page: 1360 issue: 8 year: 2008 ident: D1CP01385H-(cit54)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800030s – volume: 60 start-page: 2257 issue: 4 year: 2020 ident: D1CP01385H-(cit30)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00059 – ident: D1CP01385H-(cit40)/*[position()=1] – volume: 9 start-page: 3878 issue: 9 year: 2013 ident: D1CP01385H-(cit33)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400314y – volume: 8 start-page: 1542 issue: 5 year: 2012 ident: D1CP01385H-(cit32)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200909j – volume: 92 start-page: 1722 issue: 4 year: 2018 ident: D1CP01385H-(cit27)/*[position()=1] publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13342 – volume: 11 start-page: 564 issue: 7 year: 2019 ident: D1CP01385H-(cit10)/*[position()=1] publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjz060 – volume: 11 start-page: 161 year: 2000 ident: D1CP01385H-(cit2)/*[position()=1] publication-title: Genome Inform Ser Workshop Genome Inform – volume: 705 start-page: 183 year: 2019 ident: D1CP01385H-(cit9)/*[position()=1] publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2019.04.022 – volume: 103 start-page: 8577 issue: 19 year: 1995 ident: D1CP01385H-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – ident: D1CP01385H-(cit47)/*[position()=1] – volume: 57 start-page: 1166 issue: 5 year: 2017 ident: D1CP01385H-(cit24)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00135 – ident: D1CP01385H-(cit52)/*[position()=1] – volume: 122 start-page: 3791 issue: 15 year: 2000 ident: D1CP01385H-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0000908 – volume: 36 start-page: 2331 issue: 9 year: 2018 ident: D1CP01385H-(cit14)/*[position()=1] publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2017.1352539 – volume: 18 start-page: 494 issue: 4 year: 2010 ident: D1CP01385H-(cit36)/*[position()=1] publication-title: Structure doi: 10.1016/j.str.2010.01.020 – volume: 9 start-page: 3084 issue: 7 year: 2013 ident: D1CP01385H-(cit60)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400341p – volume: 55 start-page: 1021 issue: 5 year: 2015 ident: D1CP01385H-(cit22)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00043 – volume: 22 start-page: 377 issue: 5 year: 2004 ident: D1CP01385H-(cit61)/*[position()=1] publication-title: J. Mol. Graphics Modell. doi: 10.1016/j.jmgm.2003.12.005 – volume: 22 start-page: 854 issue: 6 year: 2014 ident: D1CP01385H-(cit34)/*[position()=1] publication-title: Structure doi: 10.1016/j.str.2014.03.012 – volume: 36 start-page: D402 issue: suppl_1 year: 2007 ident: D1CP01385H-(cit67)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm957 – volume: 60 start-page: 4912 issue: 10 year: 2020 ident: D1CP01385H-(cit25)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00762 – volume: 89 start-page: 5 issue: 1 year: 2017 ident: D1CP01385H-(cit23)/*[position()=1] publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.12832 – volume: 21 start-page: 21918 issue: 39 year: 2019 ident: D1CP01385H-(cit28)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03434J – volume: 115 start-page: E4758 issue: 21 year: 2018 ident: D1CP01385H-(cit68)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800690115 – ident: D1CP01385H-(cit50)/*[position()=1] – volume: 84 start-page: 253 issue: 3 year: 2014 ident: D1CP01385H-(cit21)/*[position()=1] publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.12314 – volume: 81 start-page: 3684 issue: 8 year: 1984 ident: D1CP01385H-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – ident: D1CP01385H-(cit42)/*[position()=1] – ident: D1CP01385H-(cit45)/*[position()=1] – volume: 15 start-page: 6769 issue: 12 year: 2019 ident: D1CP01385H-(cit29)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00623 – volume: 131 start-page: 115103 issue: 11 year: 2009 ident: D1CP01385H-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3224126 – volume: 10 start-page: 1676 issue: 1 year: 2019 ident: D1CP01385H-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09446-w – volume: 11 start-page: 5513 issue: 11 year: 2015 ident: D1CP01385H-(cit15)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00736 – volume: 56 start-page: 1184 issue: 6 year: 2016 ident: D1CP01385H-(cit57)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00115 – volume: 20 start-page: 15807 issue: 23 year: 2018 ident: D1CP01385H-(cit19)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00234G – volume: 61 start-page: 1037 issue: 3 year: 2021 ident: D1CP01385H-(cit20)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c01175 – ident: D1CP01385H-(cit48)/*[position()=1] – volume: 8 start-page: e59627 issue: 3 year: 2013 ident: D1CP01385H-(cit58)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0059627 – ident: D1CP01385H-(cit51)/*[position()=1] – volume: 106 start-page: 865 issue: 4 year: 2014 ident: D1CP01385H-(cit35)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.12.046 – volume: 13 start-page: 1407 issue: 4 year: 2011 ident: D1CP01385H-(cit56)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C0CP00701C – volume: 107 start-page: 8183 issue: 18 year: 2010 ident: D1CP01385H-(cit69)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911107107 – volume: 15 start-page: 283 issue: 3 year: 2018 ident: D1CP01385H-(cit8)/*[position()=1] publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205014666170417111859 – ident: D1CP01385H-(cit44)/*[position()=1] – volume: 10 start-page: S7 issue: suppl 1 year: 2009 ident: D1CP01385H-(cit7)/*[position()=1] publication-title: BMC Genomics doi: 10.1186/1471-2164-10-S1-S7 – volume: 150 start-page: 626 issue: 5 year: 2019 ident: D1CP01385H-(cit11)/*[position()=1] publication-title: J. Neurochem. doi: 10.1111/jnc.14809 – volume: 71 start-page: 684 issue: 2 year: 2008 ident: D1CP01385H-(cit65)/*[position()=1] publication-title: Proteins doi: 10.1002/prot.21750 – volume: 116 start-page: 20446 issue: 41 year: 2019 ident: D1CP01385H-(cit16)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1907251116 – volume: 1764 start-page: 449 year: 2018 ident: D1CP01385H-(cit13)/*[position()=1] publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7759-8_29 – volume: 42 start-page: 147 year: 2017 ident: D1CP01385H-(cit17)/*[position()=1] publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2017.01.006 – ident: D1CP01385H-(cit49)/*[position()=1] – volume: 22 start-page: 2577 issue: 12 year: 1983 ident: D1CP01385H-(cit62)/*[position()=1] publication-title: Biopolymers doi: 10.1002/bip.360221211 |
SSID | ssj0001513 |
Score | 2.413654 |
Snippet | Intrinsically disordered proteins (IDPs) have no fixed tertiary structure under physiological conditions and are associated with many human diseases. Because... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12127 |
SubjectTerms | Molecular dynamics NMR Nuclear magnetic resonance Performance evaluation Proteins |
Title | Extensive evaluation of environment-specific force field for ordered and disordered proteins |
URI | https://www.proquest.com/docview/2535767044 https://www.proquest.com/docview/2532247288 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 1463-9084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001513 issn: 1463-9076 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdEYSAjEBJCGUnsOMmxCp0KKqOHVOoBKbJdZ62E2m5tJQT_PM-OHRcph8Elct00qfx-tp_fx-8h9Ba2KCmTOA1oLFRAGY9gzuVpsNBcUYJwkhiD_tcrNp7RL_Nk3uv9Ps4u2YsL-aszr-R_pAp9IFedJfsPkm0fCh3QBvnCFSQM1zvJePTTxZ970m6t_R1lrwU6lVKHA-l4QpjDJmLNxBYa0k1lmFq1m8Z9NMQNK2vDs1rr1AlTuvJwTUt3NaaRnTEtTIvCFzA-mDiB-Yrrmlw-8Gd1MLsd37SuHrW0Vtjhblnzmw-zNl64sKkjY74KYOCvj00UcRNKdWS1hNWYBHnY1IK7UB19diluUo8t5JrMabuwRpqJvnPJD4lmTF1EcqudrsnSb2zOmX_1rbqcTSZVOZqX77Y3gS45pl3ztv7KCTqNU8biPjodjsrPk3YjB2WINMlpzT917LYk_-hf97c-4w8pJ7eugozRVMqH6IE9YuBhg5dHqKfWj9G9wonuCfre4gZ73OBNjbtwgw1usMGNbmMLFAy4wR432OHmKZpdjspiHNgqG4EkSbQPapisNFcx5SFTKVFMyETVoLgJoVJQDwVoUaLOWMpzCsffRKUyzBTjNQ9rpvkUz1B_vVmrZwjXWcIpM0VXF5QvQPmMQg6PgWWeSiXEAL13Y1VJS0GvK6H8qEwoBMmrT1ExNeM6HqA37b3bhnil865zN-SVnZi7Kk4InKLTkNIBet1-DWOsfWF8rTYHcw8or2mcZQN0BqJq3-El-_wOP36B7nvAn6P-_vagXoKWuhevLJr-AG6Zl0E |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensive+evaluation+of+environment-specific+force+field+for+ordered+and+disordered+proteins&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Cui%2C+Xiaochen&rft.au=Liu%2C+Hao&rft.au=Rehman%2C+Ashfaq+Ur&rft.au=Chen%2C+Hai-Feng&rft.date=2021-06-02&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=23&rft.issue=21&rft.spage=12127&rft_id=info:doi/10.1039%2Fd1cp01385h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |