Sequential Decision Fusion for Environmental Classification in Assistive Walking

Powered prostheses are effective for helping amputees walk in a single environment, but these devices are inconvenient to use in complex environments. In order to help amputees walk in complex environments, prostheses need to understand the motion intent of amputees. Recently, researchers have found...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 9; pp. 1780 - 1790
Main Authors Zhang, Kuangen, Zhang, Wen, Xiao, Wentao, Liu, Haiyuan, De Silva, Clarence W., Fu, Chenglong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2019.2935765

Cover

Abstract Powered prostheses are effective for helping amputees walk in a single environment, but these devices are inconvenient to use in complex environments. In order to help amputees walk in complex environments, prostheses need to understand the motion intent of amputees. Recently, researchers have found that vision sensors can be utilized to classify environments and predict the motion intent of amputees. Although previous studies have been able to classify environments accurately in offline analysis, the corresponding time delay has not been considered. To increase the accuracy and decrease the time delay of environmental classification, the present paper proposes a new decision fusion method. In this method, the sequential decisions of environmental classification are fused by constructing a hidden Markov model and designing a transition probability matrix. The developed method is evaluated by inviting five able-bodied subjects and three amputees to perform indoor and outdoor walking experiments. The results indicate that the proposed method can classify environments with accuracy improvements of 1.01% (indoor) and 2.48% (outdoor) over the previous voting method when a delay of only one frame is incorporated. The present method also achieves higher classification accuracy than with the methods of recurrent neural network (RNN), long-short term memory (LSTM), and gated recurrent unit (GRU). When achieving the same classification accuracy, the method of the present paper can decrease the time delay by 67 ms (indoor) and 733 ms (outdoor) in comparison to the previous voting method. Besides classifying environments, the proposed decision fusion method may be able to optimize the sequential predictions of the human motion intent.
AbstractList Powered prostheses are effective for helping amputees walk in a single environment, but these devices are inconvenient to use in complex environments. In order to help amputees walk in complex environments, prostheses need to understand the motion intent of amputees. Recently, researchers have found that vision sensors can be utilized to classify environments and predict the motion intent of amputees. Although previous studies have been able to classify environments accurately in offline analysis, the corresponding time delay has not been considered. To increase the accuracy and decrease the time delay of environmental classification, the present paper proposes a new decision fusion method. In this method, the sequential decisions of environmental classification are fused by constructing a hidden Markov model and designing a transition probability matrix. The developed method is evaluated by inviting five able-bodied subjects and three amputees to perform indoor and outdoor walking experiments. The results indicate that the proposed method can classify environments with accuracy improvements of 1.01% (indoor) and 2.48% (outdoor) over the previous voting method when a delay of only one frame is incorporated. The present method also achieves higher classification accuracy than with the methods of recurrent neural network (RNN), long-short term memory (LSTM), and gated recurrent unit (GRU). When achieving the same classification accuracy, the method of the present paper can decrease the time delay by 67 ms (indoor) and 733 ms (outdoor) in comparison to the previous voting method. Besides classifying environments, the proposed decision fusion method may be able to optimize the sequential predictions of the human motion intent.Powered prostheses are effective for helping amputees walk in a single environment, but these devices are inconvenient to use in complex environments. In order to help amputees walk in complex environments, prostheses need to understand the motion intent of amputees. Recently, researchers have found that vision sensors can be utilized to classify environments and predict the motion intent of amputees. Although previous studies have been able to classify environments accurately in offline analysis, the corresponding time delay has not been considered. To increase the accuracy and decrease the time delay of environmental classification, the present paper proposes a new decision fusion method. In this method, the sequential decisions of environmental classification are fused by constructing a hidden Markov model and designing a transition probability matrix. The developed method is evaluated by inviting five able-bodied subjects and three amputees to perform indoor and outdoor walking experiments. The results indicate that the proposed method can classify environments with accuracy improvements of 1.01% (indoor) and 2.48% (outdoor) over the previous voting method when a delay of only one frame is incorporated. The present method also achieves higher classification accuracy than with the methods of recurrent neural network (RNN), long-short term memory (LSTM), and gated recurrent unit (GRU). When achieving the same classification accuracy, the method of the present paper can decrease the time delay by 67 ms (indoor) and 733 ms (outdoor) in comparison to the previous voting method. Besides classifying environments, the proposed decision fusion method may be able to optimize the sequential predictions of the human motion intent.
Powered prostheses are effective for helping amputees walk in a single environment, but these devices are inconvenient to use in complex environments. In order to help amputees walk in complex environments, prostheses need to understand the motion intent of amputees. Recently, researchers have found that vision sensors can be utilized to classify environments and predict the motion intent of amputees. Although previous studies have been able to classify environments accurately in offline analysis, the corresponding time delay has not been considered. To increase the accuracy and decrease the time delay of environmental classification, the present paper proposes a new decision fusion method. In this method, the sequential decisions of environmental classification are fused by constructing a hidden Markov model and designing a transition probability matrix. The developed method is evaluated by inviting five able-bodied subjects and three amputees to perform indoor and outdoor walking experiments. The results indicate that the proposed method can classify environments with accuracy improvements of 1.01% (indoor) and 2.48% (outdoor) over the previous voting method when a delay of only one frame is incorporated. The present method also achieves higher classification accuracy than with the methods of recurrent neural network (RNN), long-short term memory (LSTM), and gated recurrent unit (GRU). When achieving the same classification accuracy, the method of the present paper can decrease the time delay by 67 ms (indoor) and 733 ms (outdoor) in comparison to the previous voting method. Besides classifying environments, the proposed decision fusion method may be able to optimize the sequential predictions of the human motion intent.
Author De Silva, Clarence W.
Zhang, Kuangen
Xiao, Wentao
Zhang, Wen
Liu, Haiyuan
Fu, Chenglong
Author_xml – sequence: 1
  givenname: Kuangen
  orcidid: 0000-0003-4242-5667
  surname: Zhang
  fullname: Zhang, Kuangen
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Wentao
  surname: Xiao
  fullname: Xiao, Wentao
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Haiyuan
  surname: Liu
  fullname: Liu, Haiyuan
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Clarence W.
  orcidid: 0000-0002-5871-639X
  surname: De Silva
  fullname: De Silva, Clarence W.
  organization: Department of Mechanical Engineering, The University of British Columbia, Vancouver, Canada
– sequence: 6
  givenname: Chenglong
  orcidid: 0000-0002-8955-5429
  surname: Fu
  fullname: Fu, Chenglong
  email: fucl@sustech.edu.cn
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31425118$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEQhoMoaqt_QEEWvHjZms_d7LHUVoWi4gceQ5rOSnSb1WS34L8321YPPXiaGXje4Z15e2jX1Q4QOiF4QAguLp_vnh7HA4pJMaAFE3kmdtAhEUKmmBK82_WMp5xRfIB6IbxjTCKT76MDRjgVhMhD9PAEXy24xuoquQJjg61dMmlXpax9MnZL62u3iEgkRpUOwZbW6KYDrEuGcQ6NXULyqqsP696O0F6pqwDHm9pHL5Px8-gmnd5f346G09QwQZoU5nKeCS2zOQND-azApabCzBjBwGUuMhDRoC4y0FQSwgUtC2DRPzGCZcWM9dHFeu-nr-MFoVELGwxUlXZQt0FRKiXGlOY0oudb6HvdehfddVTOcy5kEamzDdXOFjBXn94utP9Wv7-KgFwDxtcheCiVsc3qEY3XtlIEqy4WtYpFdbGoTSxRSrekv9v_FZ2uRRYA_gTxKk45Zz9rWpdA
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TNSRE_2022_3176410
crossref_primary_10_3390_s20216345
crossref_primary_10_1109_TNSRE_2023_3314503
crossref_primary_10_3390_s24248090
crossref_primary_10_1109_ACCESS_2021_3086807
crossref_primary_10_1016_j_bspc_2020_102279
crossref_primary_10_3389_fnbot_2021_730965
crossref_primary_10_1080_02564602_2021_1994477
crossref_primary_10_1016_j_engappai_2024_109680
crossref_primary_10_1186_s12984_020_00726_x
crossref_primary_10_3390_bioengineering11020150
crossref_primary_10_1109_TNSRE_2020_2966749
crossref_primary_10_3389_frobt_2020_562061
crossref_primary_10_3390_machines10121125
crossref_primary_10_3390_s21248377
crossref_primary_10_1109_TMRB_2021_3135704
crossref_primary_10_1002_aisy_202400124
crossref_primary_10_1109_LRA_2022_3182536
crossref_primary_10_3390_s22239350
crossref_primary_10_1007_s10489_025_06416_2
crossref_primary_10_1109_TCYB_2020_2978216
crossref_primary_10_1177_09596518231204054
crossref_primary_10_1109_TNSRE_2022_3168796
Cites_doi 10.1109/TNSRE.2012.2225640
10.1109/MRA.2008.927697
10.1109/TNSRE.2013.2294685
10.1109/TBME.2009.2034734
10.1109/TBME.2015.2448457
10.1088/1741-2560/11/4/046001
10.1109/TBME.2019.2907322
10.1109/TBME.2017.2776157
10.1177/0278364907084588
10.1088/1741-2560/12/6/066022
10.1109/CVPR.2016.90
10.1109/MRA.2015.2408791
10.1109/TNSRE.2019.2895221
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2015.7298594
10.1109/TRO.2008.2008747
10.1186/s12984-016-0134-9
10.1109/TIT.1967.1054010
10.3115/v1/D14-1179
10.1109/TNSRE.2010.2087360
10.1016/j.apmr.2007.11.005
10.3109/03093649409164389
10.1007/s40137-014-0051-4
10.1371/journal.pone.0099387
10.1109/TNSRE.2015.2420539
10.1016/j.cub.2018.03.008
10.17269/CJPH.108.6093
10.1145/3265689.3265705
10.1109/TNSRE.2018.2870152
10.1126/scitranslmed.aap8373
10.1016/j.patrec.2018.02.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2019.2935765
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1790
ExternalDocumentID 31425118
10_1109_TNSRE_2019_2935765
8804244
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB1305400
– fundername: Guangdong Innovative and Entrepreneurial Research Team Program
  grantid: 2016ZT06G587
– fundername: Centers for Mechanical Engineering Research and Education at MIT and SUSTech
– fundername: National Natural Science Foundation of China
  grantid: U1613206; 61533004
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-ed8d65a86d3ec24b90fa25cb310e48756e5511a96ea2811452f9e31761c5369b3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 19:12:42 EDT 2025
Mon Jul 14 09:00:01 EDT 2025
Thu Apr 03 07:02:31 EDT 2025
Wed Oct 01 01:12:26 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ed8d65a86d3ec24b90fa25cb310e48756e5511a96ea2811452f9e31761c5369b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4242-5667
0000-0002-8955-5429
0000-0002-5871-639X
PMID 31425118
PQID 2287474589
PQPubID 85423
PageCount 11
ParticipantIDs ieee_primary_8804244
crossref_primary_10_1109_TNSRE_2019_2935765
proquest_miscellaneous_2288002272
proquest_journals_2287474589
crossref_citationtrail_10_1109_TNSRE_2019_2935765
pubmed_primary_31425118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
krizhevsky (ref32) 2012
ref31
ref33
ref11
ref10
ref2
ref1
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
zhang (ref17) 2019
gailey (ref7) 1994; 18
zhang (ref27) 2019
ref28
ref29
ref8
ref9
ref4
ref3
ref6
ref5
chung (ref30) 2014
References_xml – ident: ref6
  doi: 10.1109/TNSRE.2012.2225640
– ident: ref3
  doi: 10.1109/MRA.2008.927697
– ident: ref20
  doi: 10.1109/TNSRE.2013.2294685
– ident: ref9
  doi: 10.1109/TBME.2009.2034734
– ident: ref23
  doi: 10.1109/TBME.2015.2448457
– ident: ref18
  doi: 10.1088/1741-2560/11/4/046001
– start-page: 1097
  year: 2012
  ident: ref32
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/TBME.2019.2907322
– ident: ref25
  doi: 10.1109/TBME.2017.2776157
– ident: ref10
  doi: 10.1177/0278364907084588
– ident: ref19
  doi: 10.1088/1741-2560/12/6/066022
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– year: 2019
  ident: ref27
  article-title: Linked dynamic graph CNN: Learning on point cloud via linking hierarchical features
  publication-title: arXiv 1904 10014
– ident: ref8
  doi: 10.1109/MRA.2015.2408791
– ident: ref26
  doi: 10.1109/TNSRE.2019.2895221
– ident: ref28
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref33
  doi: 10.1109/CVPR.2015.7298594
– ident: ref4
  doi: 10.1109/TRO.2008.2008747
– ident: ref21
  doi: 10.1186/s12984-016-0134-9
– year: 2014
  ident: ref30
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: arXiv 1412 3555
– ident: ref35
  doi: 10.1109/TIT.1967.1054010
– ident: ref29
  doi: 10.3115/v1/D14-1179
– ident: ref5
  doi: 10.1109/TNSRE.2010.2087360
– ident: ref1
  doi: 10.1016/j.apmr.2007.11.005
– volume: 18
  start-page: 84
  year: 1994
  ident: ref7
  article-title: Energy expenditure of trans-tibial amputees during ambulation at self-selected pace
  publication-title: Prosthetics Orthotics Int
  doi: 10.3109/03093649409164389
– ident: ref12
  doi: 10.1007/s40137-014-0051-4
– ident: ref15
  doi: 10.1371/journal.pone.0099387
– ident: ref24
  doi: 10.1109/TNSRE.2015.2420539
– year: 2019
  ident: ref17
  article-title: Sensor fusion for predictive control of human-prosthesis-environment dynamics in assistive walking: A survey
  publication-title: arXiv 1903 07674
– ident: ref22
  doi: 10.1016/j.cub.2018.03.008
– ident: ref2
  doi: 10.17269/CJPH.108.6093
– ident: ref11
  doi: 10.1145/3265689.3265705
– ident: ref14
  doi: 10.1109/TNSRE.2018.2870152
– ident: ref13
  doi: 10.1126/scitranslmed.aap8373
– ident: ref31
  doi: 10.1016/j.patrec.2018.02.010
SSID ssj0017657
Score 2.4350293
Snippet Powered prostheses are effective for helping amputees walk in a single environment, but these devices are inconvenient to use in complex environments. In order...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1780
SubjectTerms Accuracy
Adult
Algorithms
Amputation
Amputees
assistive walking
Cameras
Classification
Decision fusion
Delay effects
Electromyography
Environment
environmental classification
Female
Healthy Volunteers
hidden Markov model
Hidden Markov models
Human motion
Humans
Indoor environments
Legged locomotion
Long short-term memory
Male
Markov Chains
Models, Theoretical
Neural networks
Neural Networks, Computer
Prostheses
Prosthesis Design
Prosthetics
Recurrent neural networks
Reproducibility of Results
Self-Help Devices
sequential model
Three-dimensional displays
Time lag
Transition probabilities
Vision sensors
Voting
Walking
Young Adult
Title Sequential Decision Fusion for Environmental Classification in Assistive Walking
URI https://ieeexplore.ieee.org/document/8804244
https://www.ncbi.nlm.nih.gov/pubmed/31425118
https://www.proquest.com/docview/2287474589
https://www.proquest.com/docview/2288002272
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJy6FFihbtpWRKBeaZRM7jn1EdFcICVTBonKLEmdWQqyyqGw48OuZcT5aEEWcEimTxNbM2M_2zBuAPQxdYcgTgmmCJlBOR0HuYnJ363CaMemP4_2Os3N9cqVOr-PrJfjR5cIgog8-wwHf-rP8Yu4q3io7JFvjvKxlWE6MrnO1uhODRHtWT3JgFSgZDdsEmaE9nJxfXow4issOaHIjgM3lamSoPLp-Nh_5Aiv_x5p-zhmvwVnb2jrU5HZQLfKBe3xB5Pje7qzDhwZ8iqPaWj7CEpaf4Pu_RMNiUrMMiH1x8YzDewN-XfqoaxoRZuJnU5lHjCt_IeQrRn9T5kjCF9vkMCT_trgpBRkCjycPKH5nM96g34Sr8WhyfBI09RgCJ-NwEWBhCh1nRhcSXaRyO5xmUexyQojI6x6NBL_CzGrMIkPrrDiaWiR8okMXS21zuQUr5bzEbRAJoQSZFKHW1ioadCxqKwnL0XCQGalsD8JWK6lrOso1M2apX7QMbeqVmrJS00apPTjo3rmrqTrelN5gjXSSjTJ60G-VnzbefJ9GXBQgUbGhdu12j8kP-XAlK3FeeRnj-RijHnyujab7dmtrX17_5w6scsvqyLU-rCz-VPiVoM4i_-Zt_AmP_fZs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gPOgLCiieoq6J-KI9rt2Pdh-N3uVE7kLgiLw17XYuMVx6BK8-8Nczs_1QjBKe2qTTdjczs_vb3ZnfALzD0BUJeUIwjzEJlDNRkDtN7m4dzjMm_XG83zGZmvGZOjzX52vwscuFQUQffIZ9vvVn-cXSVbxVdkC2xnlZD2BDK6V0na3VnRnExvN6kgurQMlo0KbIDOzBbHp6MuQ4Ltun6Y0gNheskaHy-PrWjORLrPwfbfpZZ_QYJm1762CTi361yvvu-i8qx_t26AlsNvBTfKrtZQvWsNyG_T-phsWs5hkQ78XJLRbvHTg-9XHXNCYsxJemNo8YVf5C2FcMfyfNkYQvt8mBSP5t8aMUZAo8ovxC8T1b8Bb9UzgbDWefx0FTkSFwUoerAIukMDpLTCHRRSq3g3kWaZcTRkRe-RgkABZm1mAWJbTS0tHcIiEUEzotjc3lM1gvlyU-BxETTpBxERpjraJhx6KxktAcDQhZIpXtQdhqJXVNR7lqxiL1y5aBTb1SU1Zq2ii1Bx-6dy5rso47pXdYI51ko4we7LXKTxt__plGXBYgVjqhdr3tHpMn8vFKVuKy8jKJZ2SMerBbG0337dbWXvz7n2_g4Xg2OUqPvk6_vYRH3Mo6jm0P1ldXFb4i4LPKX3t7vwGdj_m5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Decision+Fusion+for+Environmental+Classification+in+Assistive+Walking&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Kuangen&rft.au=Zhang%2C+Wen&rft.au=Xiao%2C+Wentao&rft.au=Liu%2C+Haiyuan&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=27&rft.issue=9&rft.spage=1780&rft.epage=1790&rft_id=info:doi/10.1109%2FTNSRE.2019.2935765&rft_id=info%3Apmid%2F31425118&rft.externalDocID=8804244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon