DeepTag: A General Framework for Fiducial Marker Design and Detection
A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furtherm...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 3; pp. 2931 - 2944 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.03.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539 2160-9292 1939-3539  | 
| DOI | 10.1109/TPAMI.2022.3174603 | 
Cover
| Abstract | A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag , for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/ . | 
    
|---|---|
| AbstractList | A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag , for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/ . A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag, for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/.A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag, for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/.  | 
    
| Author | Dai, Jingwen Yu, Guoxing Hu, Yongtao Zhang, Zhuming  | 
    
| Author_xml | – sequence: 1 givenname: Zhuming surname: Zhang fullname: Zhang, Zhuming email: peterzzm@126.com organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China – sequence: 2 givenname: Yongtao orcidid: 0000-0002-3768-6590 surname: Hu fullname: Hu, Yongtao email: herohuyongtao@gmail.com organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China – sequence: 3 givenname: Guoxing orcidid: 0000-0001-5088-1246 surname: Yu fullname: Yu, Guoxing email: calvinyu2015@gmail.com organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China – sequence: 4 givenname: Jingwen orcidid: 0000-0002-9986-0283 surname: Dai fullname: Dai, Jingwen email: dai@ximmerse.com organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35552151$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kT1PwzAQhi0EgvLxB0BCkVhYUnznOInZqkIBCQRDmS3XuSBDmhQ7EeLfk9DCwMB0p9Pz3te7z7brpibGjoGPAbi6mD9NHu7GyBHHArIk5WKLjRBSHitUuM1GHFKM8xzzPbYfwivnkEgudtmekFIiSBix6yui1dy8XEaT6IZq8qaKZt4s6aPxb1HZ-Gjmis66vvxg_Bv56IqCe6kjUxd92pJtXVMfsp3SVIGONvGAPc-u59Pb-P7x5m46uY-tkNDGpMoylbYoQfE-LQTk0kiOkIiFwUWmhCWZoFCiBExEQTbD1BppCp5xZUEcsPN135Vv3jsKrV66YKmqTE1NFzSmaZKpTIq0R8_-oK9N5-t-O41ZJhIpBQwNTzdUt1hSoVfeLY3_1D8P6gFcA9Y3IXgqfxHgenBBf7ugBxf0xoVelP8RWdea4VGtN676X3qyljoi-p2l-o2Hs74AE6mRlw | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_56038_ejrnd_v3i2_264 crossref_primary_10_1109_LRA_2023_3260700 crossref_primary_10_1007_s11042_024_18252_6 crossref_primary_10_1007_s10055_023_00772_5 crossref_primary_10_1007_s10055_024_01044_6  | 
    
| Cites_doi | 10.1117/12.56761 10.1109/APCHI.1998.704151 10.1109/CVPR.2005.74 10.5555/3454287.3455008 10.1109/IROS.2016.7759617 10.1007/978-3-319-46478-7_38 10.1109/TMI.2019.2895318 10.1109/CVPR.2019.00863 10.1109/ICCV.2017.164 10.l007/978-3-319-46448-0_2 10.1109/CVPR.2017.492 10.1145/354666.354667 10.1109/CVPR.2011.5995544 10.1145/2733373.2806337 10.1145/2964284.2967300 10.1109/TPAMI.2019.2929257 10.1016/j.imavis.2018.05.004 10.1109/ICCV.2015.169 10.1109/TPAMI.2009.146 10.1109/ICCV.2017.116 10.1145/3476576.3476619 10.1109/ISMAR.2002.1115065 10.1109/CRV.2007.34 10.1109/CVPR.2017.494 10.1109/ICRA.2011.5979561 10.1109/TPAMI.2016.2519024 10.1016/j.patcog.2015.09.023 10.1109/CVPR.2009.5206537 10.1109/TVCG.2020.2988466 10.1016/j.patcog.2014.01.005 10.1109/CRV.2011.13 10.1109/IWAR.1999.803809  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1109/TPAMI.2022.3174603 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2160-9292 1939-3539  | 
    
| EndPage | 2944 | 
    
| ExternalDocumentID | 35552151 10_1109_TPAMI_2022_3174603 9773975  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RNI RZB VH1 XJT AAYOK NPM PKN RIC RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c351t-e9ff65cdf1909ffd3185a502143ba2b793ce542393f1243dec726ca5ad0709c13 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 1939-3539  | 
    
| IngestDate | Wed Oct 01 15:08:56 EDT 2025 Sun Jun 29 15:23:17 EDT 2025 Wed Feb 19 02:24:39 EST 2025 Wed Oct 01 02:24:10 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 Wed Aug 27 02:47:54 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c351t-e9ff65cdf1909ffd3185a502143ba2b793ce542393f1243dec726ca5ad0709c13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-3768-6590 0000-0002-9986-0283 0000-0001-5088-1246  | 
    
| PMID | 35552151 | 
    
| PQID | 2773455311 | 
    
| PQPubID | 85458 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | pubmed_primary_35552151 proquest_miscellaneous_2664797536 crossref_primary_10_1109_TPAMI_2022_3174603 proquest_journals_2773455311 crossref_citationtrail_10_1109_TPAMI_2022_3174603 ieee_primary_9773975  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-03-01 | 
    
| PublicationDateYYYYMMDD | 2023-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 Cho (ref16) ref34 ref15 ref37 Krasin (ref41) 2017 ref14 ref36 ref30 ref11 ref33 ref10 ref32 Flohr (ref27) ref2 Ren (ref31) 2015 Wagner (ref1) ref19 ref18 Peace (ref9) Simonyan (ref39) 2014 ref24 ref26 ref25 ref20 ref22 ref21 ref43 Howard (ref38) 2017 Knyaz (ref17) 1998; 5 ref28 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Kingma (ref42) 2017 ref40 Rohs (ref23) 2004; 176  | 
    
| References_xml | – ident: ref15 doi: 10.1117/12.56761 – ident: ref21 doi: 10.1109/APCHI.1998.704151 – volume: 176 start-page: 265 year: 2004 ident: ref23 article-title: Using camera-equipped mobile phones for interacting with real-world objects publication-title: Adv. Pervasive Comput. – ident: ref25 doi: 10.1109/CVPR.2005.74 – ident: ref43 doi: 10.5555/3454287.3455008 – ident: ref3 doi: 10.1109/IROS.2016.7759617 – ident: ref35 doi: 10.1007/978-3-319-46478-7_38 – ident: ref36 doi: 10.1109/TMI.2019.2895318 – ident: ref37 doi: 10.1109/CVPR.2019.00863 – ident: ref29 doi: 10.1109/ICCV.2017.164 – ident: ref32 doi: 10.l007/978-3-319-46448-0_2 – ident: ref14 doi: 10.1109/CVPR.2017.492 – ident: ref22 doi: 10.1145/354666.354667 – ident: ref7 doi: 10.1109/CVPR.2011.5995544 – volume: 5 start-page: 80 year: 1998 ident: ref17 article-title: The development of new coded targets for automated point identification and non-contact 3D surface measurements publication-title: Int. Arch. Photogrammetry Remote Sens. – ident: ref33 doi: 10.1145/2733373.2806337 – ident: ref34 doi: 10.1145/2964284.2967300 – start-page: 139 volume-title: Proc. 12th Comput. Vis. Winter Workshop ident: ref1 article-title: ARToolKitPlus for pose tracking on mobile devices – ident: ref11 doi: 10.1109/TPAMI.2019.2929257 – ident: ref28 doi: 10.1016/j.imavis.2018.05.004 – ident: ref30 doi: 10.1109/ICCV.2015.169 – ident: ref26 doi: 10.1109/TPAMI.2009.146 – ident: ref12 doi: 10.1109/ICCV.2017.116 – year: 2017 ident: ref38 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref10 doi: 10.1145/3476576.3476619 – ident: ref18 doi: 10.1109/ISMAR.2002.1115065 – ident: ref19 doi: 10.1109/CRV.2007.34 – ident: ref13 doi: 10.1109/CVPR.2017.494 – ident: ref2 doi: 10.1109/ICRA.2011.5979561 – ident: ref8 doi: 10.1109/TPAMI.2016.2519024 – ident: ref5 doi: 10.1016/j.patcog.2015.09.023 – year: 2017 ident: ref42 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – start-page: 59 volume-title: Proc. Eurogr. Symp. Virtual Environments Short Paper Proc. ident: ref27 article-title: A lightweight ID-based extension for marker tracking systems – start-page: 147 volume-title: Proc. Int. Workshop Augmented Reality: Placing Artif. Objects Real Scenes ident: ref16 article-title: A multi-ring color fiducial system and an intensity-invariant detection method for scalable fiducial-tracking augmented reality – ident: ref40 doi: 10.1109/CVPR.2009.5206537 – volume-title: Proc. 31st Brit. Mach. Vis. Conf. ident: ref9 article-title: E2ETag: An end-to-end trainable method for generating and detecting fiducial markers – ident: ref6 doi: 10.1109/TVCG.2020.2988466 – year: 2014 ident: ref39 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref4 doi: 10.1016/j.patcog.2014.01.005 – ident: ref20 doi: 10.1109/CRV.2011.13 – year: 2017 ident: ref41 article-title: OpenImages: A public dataset for large-scale multi-label and multi-class image classification – ident: ref24 doi: 10.1109/IWAR.1999.803809 – year: 2015 ident: ref31 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: arXiv:1506.01497  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.5044777 | 
    
| Snippet | A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2931 | 
    
| SubjectTerms | Algorithms Annotations Coding Convolutional neural networks Datasets deep learning Design Detection algorithms Fiducial marker Image coding Image processing Machine learning marker design monocular pose estimation object detection Pose estimation Robustness Symbols Training data  | 
    
| Title | DeepTag: A General Framework for Fiducial Marker Design and Detection | 
    
| URI | https://ieeexplore.ieee.org/document/9773975 https://www.ncbi.nlm.nih.gov/pubmed/35552151 https://www.proquest.com/docview/2773455311 https://www.proquest.com/docview/2664797536  | 
    
| Volume | 45 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RJhgob8JLRmKDtEkcOy1bBY0KUhFDkdgix3YQAqUVJAu_nrPzECBATLFkx3F8Pt939j0ATiXTIkgz6UpGPTf0M-0OeKRcRlM14F6KD-ONPL3lk_vw5oE9LMF56wujtbbGZ7pnivYuX81laY7K-ohVUHyyDnSiAa98tdobg5DZLMiIYJDDUY1oHGS8YX92N5peoyoYBKihRiH3TPIclLPMiLsv8sgmWPkda1qZE3dh2oy2MjV57pVF2pPv3wI5_vd31mGtBp9kVK2WDVjS-SZ0m8QOpObzTVj9FKVwC8ZXWi9m4vGCjEgdpZrEjU0XQdBL4idVmqN3Yjx_sKMraxZCRK6wWFhjr3wb7uPx7HLi1tkXXEmZX7h6mGWcSZUhZMCiMm7WgpkQazRF8iJfS81M-ECaIUagSsso4FIwoXAXGUqf7sByPs_1HhAEWcLTNJByIEKa0TQUqMl4KYJDXyAidMBvaJDIOjS5yZDxklgVxRsmloSJIWFSk9CBs_adRRWY48_WW2b-25b11Dtw2JA6qXn3LQmwLmS4N_kOnLTVyHXmKkXkel5iG87DyPgk49h3qyXS9t2srP2fv3kAKyZlfWXHdgjLxWupjxDYFOmxXdEfzDXvIA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBQnmVp5HYICWJ7bRlq4CqQFsxtBJb5NgOQqAUQbLw6zk7DwECxBRLdhzH5_N9Z98D4FhyLfwolo7k1HWYF2unE7SVw2mkOoEb4cN4I4_GwWDKbu75_RycVr4wWmtrfKZbpmjv8tVMZuao7AyxCopPPg8LnDHGc2-t6s6AcZsHGTEM8jgqEqWLjNs9m9z1RteoDPo-6qhtFrgmfQ5KWm4E3heJZFOs_I42rdTp12FUjjc3NnlqZWnUku_fQjn-94dWYaWAn6SXr5c1mNNJA-plagdScHoDlj_FKVyHq0utXybi4Zz0SBGnmvRLqy6CsJf0H1VmDt-J8f3Bji6tYQgRicJias29kg2Y9q8mFwOnyL_gSMq91NHdOA64VDGCBiwq42gtuAmyRiMkMHK21NwEEKQxogSqtGz7gRRcKNxHutKjm1BLZoneBoIwS7ia-lJ2BKMxjZhAXcaNEB56AjFhE7ySBqEsgpObHBnPoVVS3G5oSRgaEoYFCZtwUr3zkofm-LP1upn_qmUx9U3YK0kdFtz7FvpYxzjuTl4Tjqpq5DtzmSISPcuwTRCwtvFKxrFv5Uuk6rtcWTs_f_MQFgeT0TAcXo9vd2HJJLDPrdr2oJa-ZnofYU4aHdjV_QF9AfJt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepTag%3A+A+General+Framework+for+Fiducial+Marker+Design+and+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Zhuming&rft.au=Hu%2C+Yongtao&rft.au=Yu%2C+Guoxing&rft.au=Dai%2C+Jingwen&rft.date=2023-03-01&rft.eissn=1939-3539&rft.volume=45&rft.issue=3&rft.spage=2931&rft_id=info:doi/10.1109%2FTPAMI.2022.3174603&rft_id=info%3Apmid%2F35552151&rft.externalDocID=35552151 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |