DeepTag: A General Framework for Fiducial Marker Design and Detection

A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furtherm...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 3; pp. 2931 - 2944
Main Authors Zhang, Zhuming, Hu, Yongtao, Yu, Guoxing, Dai, Jingwen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2022.3174603

Cover

Abstract A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag , for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/ .
AbstractList A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag , for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/ .
A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag, for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/.A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag, for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at https://herohuyongtao.github.io/research/publications/deep-tag/.
Author Dai, Jingwen
Yu, Guoxing
Hu, Yongtao
Zhang, Zhuming
Author_xml – sequence: 1
  givenname: Zhuming
  surname: Zhang
  fullname: Zhang, Zhuming
  email: peterzzm@126.com
  organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China
– sequence: 2
  givenname: Yongtao
  orcidid: 0000-0002-3768-6590
  surname: Hu
  fullname: Hu, Yongtao
  email: herohuyongtao@gmail.com
  organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China
– sequence: 3
  givenname: Guoxing
  orcidid: 0000-0001-5088-1246
  surname: Yu
  fullname: Yu, Guoxing
  email: calvinyu2015@gmail.com
  organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China
– sequence: 4
  givenname: Jingwen
  orcidid: 0000-0002-9986-0283
  surname: Dai
  fullname: Dai, Jingwen
  email: dai@ximmerse.com
  organization: X-Lab, Guangdong Virtual Reality Technology Co., Ltd., Shenzhen, Guangdong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35552151$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0EgvLxB0BCkVhYUnznOInZqkIBCQRDmS3XuSBDmhQ7EeLfk9DCwMB0p9Pz3te7z7brpibGjoGPAbi6mD9NHu7GyBHHArIk5WKLjRBSHitUuM1GHFKM8xzzPbYfwivnkEgudtmekFIiSBix6yui1dy8XEaT6IZq8qaKZt4s6aPxb1HZ-Gjmis66vvxg_Bv56IqCe6kjUxd92pJtXVMfsp3SVIGONvGAPc-u59Pb-P7x5m46uY-tkNDGpMoylbYoQfE-LQTk0kiOkIiFwUWmhCWZoFCiBExEQTbD1BppCp5xZUEcsPN135Vv3jsKrV66YKmqTE1NFzSmaZKpTIq0R8_-oK9N5-t-O41ZJhIpBQwNTzdUt1hSoVfeLY3_1D8P6gFcA9Y3IXgqfxHgenBBf7ugBxf0xoVelP8RWdea4VGtN676X3qyljoi-p2l-o2Hs74AE6mRlw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_56038_ejrnd_v3i2_264
crossref_primary_10_1109_LRA_2023_3260700
crossref_primary_10_1007_s11042_024_18252_6
crossref_primary_10_1007_s10055_023_00772_5
crossref_primary_10_1007_s10055_024_01044_6
Cites_doi 10.1117/12.56761
10.1109/APCHI.1998.704151
10.1109/CVPR.2005.74
10.5555/3454287.3455008
10.1109/IROS.2016.7759617
10.1007/978-3-319-46478-7_38
10.1109/TMI.2019.2895318
10.1109/CVPR.2019.00863
10.1109/ICCV.2017.164
10.l007/978-3-319-46448-0_2
10.1109/CVPR.2017.492
10.1145/354666.354667
10.1109/CVPR.2011.5995544
10.1145/2733373.2806337
10.1145/2964284.2967300
10.1109/TPAMI.2019.2929257
10.1016/j.imavis.2018.05.004
10.1109/ICCV.2015.169
10.1109/TPAMI.2009.146
10.1109/ICCV.2017.116
10.1145/3476576.3476619
10.1109/ISMAR.2002.1115065
10.1109/CRV.2007.34
10.1109/CVPR.2017.494
10.1109/ICRA.2011.5979561
10.1109/TPAMI.2016.2519024
10.1016/j.patcog.2015.09.023
10.1109/CVPR.2009.5206537
10.1109/TVCG.2020.2988466
10.1016/j.patcog.2014.01.005
10.1109/CRV.2011.13
10.1109/IWAR.1999.803809
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3174603
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2944
ExternalDocumentID 35552151
10_1109_TPAMI_2022_3174603
9773975
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
XJT
AAYOK
NPM
PKN
RIC
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-e9ff65cdf1909ffd3185a502143ba2b793ce542393f1243dec726ca5ad0709c13
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Wed Oct 01 15:08:56 EDT 2025
Sun Jun 29 15:23:17 EDT 2025
Wed Feb 19 02:24:39 EST 2025
Wed Oct 01 02:24:10 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Wed Aug 27 02:47:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e9ff65cdf1909ffd3185a502143ba2b793ce542393f1243dec726ca5ad0709c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3768-6590
0000-0002-9986-0283
0000-0001-5088-1246
PMID 35552151
PQID 2773455311
PQPubID 85458
PageCount 14
ParticipantIDs pubmed_primary_35552151
proquest_miscellaneous_2664797536
crossref_primary_10_1109_TPAMI_2022_3174603
proquest_journals_2773455311
crossref_citationtrail_10_1109_TPAMI_2022_3174603
ieee_primary_9773975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Cho (ref16)
ref34
ref15
ref37
Krasin (ref41) 2017
ref14
ref36
ref30
ref11
ref33
ref10
ref32
Flohr (ref27)
ref2
Ren (ref31) 2015
Wagner (ref1)
ref19
ref18
Peace (ref9)
Simonyan (ref39) 2014
ref24
ref26
ref25
ref20
ref22
ref21
ref43
Howard (ref38) 2017
Knyaz (ref17) 1998; 5
ref28
ref29
ref8
ref7
ref4
ref3
ref6
ref5
Kingma (ref42) 2017
ref40
Rohs (ref23) 2004; 176
References_xml – ident: ref15
  doi: 10.1117/12.56761
– ident: ref21
  doi: 10.1109/APCHI.1998.704151
– volume: 176
  start-page: 265
  year: 2004
  ident: ref23
  article-title: Using camera-equipped mobile phones for interacting with real-world objects
  publication-title: Adv. Pervasive Comput.
– ident: ref25
  doi: 10.1109/CVPR.2005.74
– ident: ref43
  doi: 10.5555/3454287.3455008
– ident: ref3
  doi: 10.1109/IROS.2016.7759617
– ident: ref35
  doi: 10.1007/978-3-319-46478-7_38
– ident: ref36
  doi: 10.1109/TMI.2019.2895318
– ident: ref37
  doi: 10.1109/CVPR.2019.00863
– ident: ref29
  doi: 10.1109/ICCV.2017.164
– ident: ref32
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref14
  doi: 10.1109/CVPR.2017.492
– ident: ref22
  doi: 10.1145/354666.354667
– ident: ref7
  doi: 10.1109/CVPR.2011.5995544
– volume: 5
  start-page: 80
  year: 1998
  ident: ref17
  article-title: The development of new coded targets for automated point identification and non-contact 3D surface measurements
  publication-title: Int. Arch. Photogrammetry Remote Sens.
– ident: ref33
  doi: 10.1145/2733373.2806337
– ident: ref34
  doi: 10.1145/2964284.2967300
– start-page: 139
  volume-title: Proc. 12th Comput. Vis. Winter Workshop
  ident: ref1
  article-title: ARToolKitPlus for pose tracking on mobile devices
– ident: ref11
  doi: 10.1109/TPAMI.2019.2929257
– ident: ref28
  doi: 10.1016/j.imavis.2018.05.004
– ident: ref30
  doi: 10.1109/ICCV.2015.169
– ident: ref26
  doi: 10.1109/TPAMI.2009.146
– ident: ref12
  doi: 10.1109/ICCV.2017.116
– year: 2017
  ident: ref38
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref10
  doi: 10.1145/3476576.3476619
– ident: ref18
  doi: 10.1109/ISMAR.2002.1115065
– ident: ref19
  doi: 10.1109/CRV.2007.34
– ident: ref13
  doi: 10.1109/CVPR.2017.494
– ident: ref2
  doi: 10.1109/ICRA.2011.5979561
– ident: ref8
  doi: 10.1109/TPAMI.2016.2519024
– ident: ref5
  doi: 10.1016/j.patcog.2015.09.023
– year: 2017
  ident: ref42
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– start-page: 59
  volume-title: Proc. Eurogr. Symp. Virtual Environments Short Paper Proc.
  ident: ref27
  article-title: A lightweight ID-based extension for marker tracking systems
– start-page: 147
  volume-title: Proc. Int. Workshop Augmented Reality: Placing Artif. Objects Real Scenes
  ident: ref16
  article-title: A multi-ring color fiducial system and an intensity-invariant detection method for scalable fiducial-tracking augmented reality
– ident: ref40
  doi: 10.1109/CVPR.2009.5206537
– volume-title: Proc. 31st Brit. Mach. Vis. Conf.
  ident: ref9
  article-title: E2ETag: An end-to-end trainable method for generating and detecting fiducial markers
– ident: ref6
  doi: 10.1109/TVCG.2020.2988466
– year: 2014
  ident: ref39
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref4
  doi: 10.1016/j.patcog.2014.01.005
– ident: ref20
  doi: 10.1109/CRV.2011.13
– year: 2017
  ident: ref41
  article-title: OpenImages: A public dataset for large-scale multi-label and multi-class image classification
– ident: ref24
  doi: 10.1109/IWAR.1999.803809
– year: 2015
  ident: ref31
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: arXiv:1506.01497
SSID ssj0014503
Score 2.5044777
Snippet A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2931
SubjectTerms Algorithms
Annotations
Coding
Convolutional neural networks
Datasets
deep learning
Design
Detection algorithms
Fiducial marker
Image coding
Image processing
Machine learning
marker design
monocular pose estimation
object detection
Pose estimation
Robustness
Symbols
Training data
Title DeepTag: A General Framework for Fiducial Marker Design and Detection
URI https://ieeexplore.ieee.org/document/9773975
https://www.ncbi.nlm.nih.gov/pubmed/35552151
https://www.proquest.com/docview/2773455311
https://www.proquest.com/docview/2664797536
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RJhgob8JLRmKDtEkcOy1bBY0KUhFDkdgix3YQAqUVJAu_nrPzECBATLFkx3F8Pt939j0ATiXTIkgz6UpGPTf0M-0OeKRcRlM14F6KD-ONPL3lk_vw5oE9LMF56wujtbbGZ7pnivYuX81laY7K-ohVUHyyDnSiAa98tdobg5DZLMiIYJDDUY1oHGS8YX92N5peoyoYBKihRiH3TPIclLPMiLsv8sgmWPkda1qZE3dh2oy2MjV57pVF2pPv3wI5_vd31mGtBp9kVK2WDVjS-SZ0m8QOpObzTVj9FKVwC8ZXWi9m4vGCjEgdpZrEjU0XQdBL4idVmqN3Yjx_sKMraxZCRK6wWFhjr3wb7uPx7HLi1tkXXEmZX7h6mGWcSZUhZMCiMm7WgpkQazRF8iJfS81M-ECaIUagSsso4FIwoXAXGUqf7sByPs_1HhAEWcLTNJByIEKa0TQUqMl4KYJDXyAidMBvaJDIOjS5yZDxklgVxRsmloSJIWFSk9CBs_adRRWY48_WW2b-25b11Dtw2JA6qXn3LQmwLmS4N_kOnLTVyHXmKkXkel5iG87DyPgk49h3qyXS9t2srP2fv3kAKyZlfWXHdgjLxWupjxDYFOmxXdEfzDXvIA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBQnmVp5HYICWJ7bRlq4CqQFsxtBJb5NgOQqAUQbLw6zk7DwECxBRLdhzH5_N9Z98D4FhyLfwolo7k1HWYF2unE7SVw2mkOoEb4cN4I4_GwWDKbu75_RycVr4wWmtrfKZbpmjv8tVMZuao7AyxCopPPg8LnDHGc2-t6s6AcZsHGTEM8jgqEqWLjNs9m9z1RteoDPo-6qhtFrgmfQ5KWm4E3heJZFOs_I42rdTp12FUjjc3NnlqZWnUku_fQjn-94dWYaWAn6SXr5c1mNNJA-plagdScHoDlj_FKVyHq0utXybi4Zz0SBGnmvRLqy6CsJf0H1VmDt-J8f3Bji6tYQgRicJias29kg2Y9q8mFwOnyL_gSMq91NHdOA64VDGCBiwq42gtuAmyRiMkMHK21NwEEKQxogSqtGz7gRRcKNxHutKjm1BLZoneBoIwS7ia-lJ2BKMxjZhAXcaNEB56AjFhE7ySBqEsgpObHBnPoVVS3G5oSRgaEoYFCZtwUr3zkofm-LP1upn_qmUx9U3YK0kdFtz7FvpYxzjuTl4Tjqpq5DtzmSISPcuwTRCwtvFKxrFv5Uuk6rtcWTs_f_MQFgeT0TAcXo9vd2HJJLDPrdr2oJa-ZnofYU4aHdjV_QF9AfJt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepTag%3A+A+General+Framework+for+Fiducial+Marker+Design+and+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Zhuming&rft.au=Hu%2C+Yongtao&rft.au=Yu%2C+Guoxing&rft.au=Dai%2C+Jingwen&rft.date=2023-03-01&rft.eissn=1939-3539&rft.volume=45&rft.issue=3&rft.spage=2931&rft_id=info:doi/10.1109%2FTPAMI.2022.3174603&rft_id=info%3Apmid%2F35552151&rft.externalDocID=35552151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon