Brain-Machine Interface Control Algorithms
Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generate...
        Saved in:
      
    
          | Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 10; pp. 1725 - 1734 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.10.2017
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1534-4320 1558-0210 1558-0210  | 
| DOI | 10.1109/TNSRE.2016.2639501 | 
Cover
| Abstract | Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms. | 
    
|---|---|
| AbstractList | Motor brain–machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject’s intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms. Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.  | 
    
| Author | Shanechi, Maryam M. | 
    
| Author_xml | – sequence: 1 givenname: Maryam M. orcidid: 0000-0002-0544-7720 surname: Shanechi fullname: Shanechi, Maryam M. email: shanechi@usc.edu organization: Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28113323$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kE1PAjEQhhuDkQ_9A5oYEi_GZLHTz90jElQS1ETx3JQySMmyi-1y8N-7CHLwYHqYHp73ncnTJo2iLJCQc6A9AJrdTp7fXoc9RkH1mOKZpHBEWiBlmlAGtLH9c5EIzmiTtGNcUgpaSX1CmiwF4JzxFrm5C9YXyZN1C19gd1RUGObWYXdQFlUo824__yiDrxareEqO5zaPeLafHfJ-P5wMHpPxy8No0B8njkuoEpRybhkycCi4BVDgVP3cTMgM6FQjMAdSQ8pmmlOXAQoJILS2SkglHO-Q613vOpSfG4yVWfnoMM9tgeUmGkhVXSqEghq9-oMuy00o6usMZHUZYymjNXW5pzbTFc7MOviVDV_m10INsB3gQhljwPkBAWq2qs2ParNVbfaq61D6J-R8ZSu_9WZ9_n_0Yhf1iHjYpXXKtKT8G_K-h-Q | 
    
| CODEN | ITNSB3 | 
    
| CitedBy_id | crossref_primary_10_1088_1741_2552_ac4e1c crossref_primary_10_1109_TNSRE_2019_2908156 crossref_primary_10_1109_ACCESS_2022_3159225 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1007_s12559_021_09878_x crossref_primary_10_1038_s41593_020_00733_0 crossref_primary_10_1109_COMST_2021_3090778 crossref_primary_10_1007_s11571_019_09567_4 crossref_primary_10_1007_s00521_020_05323_6 crossref_primary_10_1007_s13246_019_00833_7 crossref_primary_10_1109_JBHI_2023_3278747 crossref_primary_10_1371_journal_pcbi_1006168 crossref_primary_10_1038_s41551_020_0595_9 crossref_primary_10_1088_1741_2552_ab3dbc crossref_primary_10_1038_s41593_019_0488_y crossref_primary_10_1088_1741_2552_aaeaae crossref_primary_10_1088_1741_2552_ab225b crossref_primary_10_1088_1741_2552_adbcd9 crossref_primary_10_1038_nbt_4200 crossref_primary_10_1088_1741_2552_ad038d crossref_primary_10_1088_1741_2552_acec14 crossref_primary_10_1109_TBME_2017_2776204 crossref_primary_10_1007_s00422_021_00897_3 crossref_primary_10_1016_j_neunet_2021_01_009 crossref_primary_10_1109_THMS_2021_3138677 crossref_primary_10_1088_1741_2552_aaeb1a crossref_primary_10_1088_1741_2552_ac9b94 crossref_primary_10_1088_1741_2552_ad1053 crossref_primary_10_1109_TNSRE_2019_2913218 crossref_primary_10_1016_j_jneumeth_2021_109373 crossref_primary_10_1088_1741_2552_abcefd crossref_primary_10_1016_j_ifacol_2021_11_182 crossref_primary_10_1088_1741_2552_ad3678 crossref_primary_10_1088_1741_2552_ab0ea4 crossref_primary_10_3390_s21206729 crossref_primary_10_1016_j_neuroscience_2021_12_004 crossref_primary_10_1088_1741_2552_ab2214 crossref_primary_10_1073_pnas_2212887121 crossref_primary_10_1007_s11571_020_09577_7  | 
    
| Cites_doi | 10.1523/JNEUROSCI.1110-06.2007 10.1152/jn.00371.2011 10.1152/jn.00438.2003 10.1088/1741-2560/1/2/001 10.1162/NECO_a_00207 10.1523/JNEUROSCI.0816-05.2005 10.1126/science.170.3959.758 10.1109/TNSRE.2012.2185066 10.1038/nature10987 10.1523/JNEUROSCI.18-18-07411.1998 10.7554/eLife.10015 10.1162/NECO_a_00632 10.1073/pnas.0913697107 10.1016/j.neunet.2009.05.005 10.1080/10447318.2011.535749 10.1371/journal.pone.0014760 10.1038/nature04968 10.3389/fnsys.2014.00068 10.1073/pnas.1215092109 10.1088/1741-2560/11/2/026002 10.1371/journal.pone.0006243 10.1152/jn.00697.2004 10.1109/TNSRE.2013.2294685 10.1152/jn.1999.82.5.2676 10.1523/JNEUROSCI.2081-09.2009 10.1038/nature11076 10.1038/ncomms4237 10.1523/JNEUROSCI.1463-08.2008 10.1162/NECO_a_00394 10.1152/jn.00482.2006 10.1162/NECO_a_00484 10.1073/pnas.1221127110 10.1038/416141a 10.1162/08997660252741149 10.1109/TNSRE.2012.2221743 10.1088/1741-2560/9/2/026027 10.1109/EMBC.2015.7318696 10.1038/nature04970 10.1109/EMBC.2016.7592183 10.1162/0899766053491887 10.1371/journal.pcbi.1004730 10.1371/journal.pone.0055344 10.1016/j.neuron.2012.11.015 10.1038/nn963 10.1126/science.163.3870.955 10.1162/neco.2006.18.10.2465 10.1523/JNEUROSCI.3967-10.2010 10.1038/nature17435 10.1038/nature06996 10.1038/nature10489 10.1088/1741-2560/5/4/010 10.1038/nm.3953 10.1038/10223 10.1152/jn.00532.2010 10.1038/nature20118 10.1038/nn.3265 10.1088/1741-2560/4/3/012 10.1007/s00221-008-1280-5 10.1126/scitranslmed.3007303 10.1523/JNEUROSCI.4165-11.2011 10.1088/1741-2560/5/1/008 10.1038/nn.3250 10.1109/ICASSP.2010.5495644 10.1038/ncomms13825 10.1371/journal.pbio.1000153 10.1126/science.aaa5417 10.1016/S0140-6736(12)61816-9 10.1162/089976604773135069 10.1016/j.neuron.2014.04.048 10.1038/nature07418 10.1162/08997660152469314 10.1088/1741-2560/10/2/026011 10.1073/pnas.0808113105 10.1088/1741-2560/11/1/016004 10.1371/journal.pbio.0000042 10.1126/science.1097938 10.1109/78.978374 10.1162/089976606774841585 10.1109/NER.2011.5910621 10.1162/089976603765202622 10.1371/journal.pone.0059049 10.1109/TNSRE.2010.2092443 10.1126/science.1070291 10.1523/JNEUROSCI.0271-12.2013 10.1007/s10827-009-0196-9 10.1088/1741-2560/10/5/056005 10.1038/nn1309 10.1152/jn.00832.2011  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| DOI | 10.1109/TNSRE.2016.2639501 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) - IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Occupational Therapy & Rehabilitation | 
    
| EISSN | 1558-0210 | 
    
| EndPage | 1734 | 
    
| ExternalDocumentID | 28113323 10_1109_TNSRE_2016_2639501 7782750  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: NSF CAREER grantid: 759 CCF-1453868 funderid: 10.13039/100000143 – fundername: Cal-BRAIN grantid: 62636622 – fundername: ARO MURI grantid: W911NF-16-1-0368 funderid: 10.13039/100000183  | 
    
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| ID | FETCH-LOGICAL-c351t-e55fa2e21ce43a1161c6c6ccd45910b7e12c157182d730c91e4511477a64564c3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1534-4320 1558-0210  | 
    
| IngestDate | Thu Oct 02 11:48:55 EDT 2025 Sun Jul 13 04:45:14 EDT 2025 Thu Apr 03 07:10:10 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Wed Oct 01 01:12:22 EDT 2025 Wed Aug 27 02:51:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c351t-e55fa2e21ce43a1161c6c6ccd45910b7e12c157182d730c91e4511477a64564c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0544-7720 | 
    
| PMID | 28113323 | 
    
| PQID | 1956422820 | 
    
| PQPubID | 85423 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2016_2639501 pubmed_primary_28113323 crossref_primary_10_1109_TNSRE_2016_2639501 ieee_primary_7782750 proquest_journals_1956422820 proquest_miscellaneous_1861614461  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-10-01 | 
    
| PublicationDateYYYYMMDD | 2017-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering | 
    
| PublicationTitleAbbrev | TNSRE | 
    
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref56 ref12 moran (ref71) 1999; 82 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 humphrey (ref1) 1970; 170 ref51 ref50 brown (ref57) 1998; 18 ref90 ref46 ref89 ref45 ref48 ref47 ref86 ref42 bertsekas (ref82) 2005 ref85 ref41 ref88 ref44 ref87 ref43 ref49 ref8 ref7 kailath (ref66) 2000 ref9 ref4 ref3 ref6 ref5 ref81 ref40 ref84 ref83 koyama (ref65) 2009; 29 ref80 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref39 ref38 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref22 ref21 ref28 fetz (ref2) 1969; 163 ref27 ref29 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref81 doi: 10.1523/JNEUROSCI.1110-06.2007 – ident: ref89 doi: 10.1152/jn.00371.2011 – ident: ref72 doi: 10.1152/jn.00438.2003 – ident: ref39 doi: 10.1088/1741-2560/1/2/001 – ident: ref16 doi: 10.1162/NECO_a_00207 – ident: ref46 doi: 10.1523/JNEUROSCI.0816-05.2005 – volume: 170 start-page: 758 year: 1970 ident: ref1 article-title: Predicting measures of motor performance from multiple cortical spike trains publication-title: Science doi: 10.1126/science.170.3959.758 – ident: ref21 doi: 10.1109/TNSRE.2012.2185066 – ident: ref35 doi: 10.1038/nature10987 – volume: 18 start-page: 7411 year: 1998 ident: ref57 article-title: A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-18-07411.1998 – ident: ref79 doi: 10.7554/eLife.10015 – ident: ref63 doi: 10.1162/NECO_a_00632 – ident: ref40 doi: 10.1073/pnas.0913697107 – ident: ref64 doi: 10.1016/j.neunet.2009.05.005 – ident: ref73 doi: 10.1080/10447318.2011.535749 – ident: ref17 doi: 10.1371/journal.pone.0014760 – ident: ref8 doi: 10.1038/nature04968 – ident: ref62 doi: 10.3389/fnsys.2014.00068 – ident: ref22 doi: 10.1073/pnas.1215092109 – ident: ref53 doi: 10.1088/1741-2560/11/2/026002 – ident: ref13 doi: 10.1371/journal.pone.0006243 – ident: ref60 doi: 10.1152/jn.00697.2004 – ident: ref29 doi: 10.1109/TNSRE.2013.2294685 – year: 2005 ident: ref82 publication-title: Dynamic Programming and Optimal Control – volume: 82 start-page: 2676 year: 1999 ident: ref71 article-title: Motor cortical representation of speed and direction during reaching publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.5.2676 – ident: ref50 doi: 10.1523/JNEUROSCI.2081-09.2009 – ident: ref19 doi: 10.1038/nature11076 – ident: ref36 doi: 10.1038/ncomms4237 – ident: ref12 doi: 10.1523/JNEUROSCI.1463-08.2008 – ident: ref88 doi: 10.1162/NECO_a_00394 – ident: ref54 doi: 10.1152/jn.00482.2006 – ident: ref84 doi: 10.1162/NECO_a_00484 – ident: ref43 doi: 10.1073/pnas.1221127110 – ident: ref4 doi: 10.1038/416141a – ident: ref59 doi: 10.1162/08997660252741149 – ident: ref56 doi: 10.1109/TNSRE.2012.2221743 – ident: ref67 doi: 10.1088/1741-2560/9/2/026027 – ident: ref85 doi: 10.1109/EMBC.2015.7318696 – ident: ref9 doi: 10.1038/nature04970 – ident: ref90 doi: 10.1109/EMBC.2016.7592183 – ident: ref80 doi: 10.1162/0899766053491887 – ident: ref32 doi: 10.1371/journal.pcbi.1004730 – ident: ref44 doi: 10.1371/journal.pone.0055344 – ident: ref52 doi: 10.1016/j.neuron.2012.11.015 – ident: ref76 doi: 10.1038/nn963 – volume: 163 start-page: 955 year: 1969 ident: ref2 article-title: Operant conditioning of cortical unit activity publication-title: Science doi: 10.1126/science.163.3870.955 – ident: ref55 doi: 10.1162/neco.2006.18.10.2465 – ident: ref15 doi: 10.1523/JNEUROSCI.3967-10.2010 – ident: ref37 doi: 10.1038/nature17435 – ident: ref10 doi: 10.1038/nature06996 – ident: ref18 doi: 10.1038/nature10489 – ident: ref11 doi: 10.1088/1741-2560/5/4/010 – ident: ref30 doi: 10.1038/nm.3953 – ident: ref3 doi: 10.1038/10223 – ident: ref47 doi: 10.1152/jn.00532.2010 – ident: ref38 doi: 10.1038/nature20118 – ident: ref20 doi: 10.1038/nn.3265 – ident: ref42 doi: 10.1088/1741-2560/4/3/012 – ident: ref78 doi: 10.1007/s00221-008-1280-5 – ident: ref26 doi: 10.1126/scitranslmed.3007303 – ident: ref48 doi: 10.1523/JNEUROSCI.4165-11.2011 – ident: ref41 doi: 10.1088/1741-2560/5/1/008 – ident: ref23 doi: 10.1038/nn.3250 – ident: ref75 doi: 10.1109/ICASSP.2010.5495644 – ident: ref33 doi: 10.1038/ncomms13825 – ident: ref14 doi: 10.1371/journal.pbio.1000153 – ident: ref31 doi: 10.1126/science.aaa5417 – ident: ref24 doi: 10.1016/S0140-6736(12)61816-9 – ident: ref61 doi: 10.1162/089976604773135069 – ident: ref28 doi: 10.1016/j.neuron.2014.04.048 – ident: ref34 doi: 10.1038/nature07418 – ident: ref58 doi: 10.1162/08997660152469314 – ident: ref25 doi: 10.1088/1741-2560/10/2/026011 – ident: ref87 doi: 10.1073/pnas.0808113105 – ident: ref83 doi: 10.1088/1741-2560/11/1/016004 – ident: ref6 doi: 10.1371/journal.pbio.0000042 – ident: ref7 doi: 10.1126/science.1097938 – year: 2000 ident: ref66 publication-title: Linear Estimation – ident: ref68 doi: 10.1109/78.978374 – ident: ref69 doi: 10.1162/089976606774841585 – ident: ref74 doi: 10.1109/NER.2011.5910621 – ident: ref86 doi: 10.1162/089976603765202622 – ident: ref27 doi: 10.1371/journal.pone.0059049 – ident: ref70 doi: 10.1109/TNSRE.2010.2092443 – ident: ref5 doi: 10.1126/science.1070291 – ident: ref45 doi: 10.1523/JNEUROSCI.0271-12.2013 – volume: 29 start-page: 73 year: 2009 ident: ref65 article-title: Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control publication-title: J Comput Neurosci doi: 10.1007/s10827-009-0196-9 – ident: ref51 doi: 10.1088/1741-2560/10/5/056005 – ident: ref77 doi: 10.1038/nn1309 – ident: ref49 doi: 10.1152/jn.00832.2011  | 
    
| SSID | ssj0017657 | 
    
| Score | 2.4357114 | 
    
| Snippet | Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a... Motor brain–machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a...  | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1725 | 
    
| SubjectTerms | Adaptive estimation Algorithm design and analysis Algorithms Bayes methods Biofeedback Body mass Brain brain–machine interface (BMI) Control algorithms Control systems Control theory Decoders Decoding Feedback Firing pattern Kalman filters Kinematics Man-machine interfaces Mathematical model Motor task performance Nervous system neuroprosthetics Primates Prostheses Statistical inference Stochasticity Visual perception  | 
    
| Title | Brain-Machine Interface Control Algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/7782750 https://www.ncbi.nlm.nih.gov/pubmed/28113323 https://www.proquest.com/docview/1956422820 https://www.proquest.com/docview/1861614461  | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) - IEEE Xplore customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI6AExde4zEYqEjAAejWvNsjIBBCGgcYEreqTV1AjA2N7sKvx0kfAgQI9VKpaZrEdm0n9mdC9gQLRBJq8DMRcV-EKHOJEbnPc5OhS8Sj1BXt61-ryztxdS_vZ8hxkwsDAC74DLr21p3lZ2MztVtlPY3qTFsHfVaHqszVak4MtHKonijAwhecBXWCTBD1Bte3N-c2ikt1GSpkGdjyMCykOBbGv-gjV2Dld1vT6ZyLRdKvR1uGmjx3p0XaNe_fgBz_O50lslAZn95JyS3LZAZGK2T_M9CwNyhRBrwD7-YLhneLHJ7aahJ-30Vfgue2EvPEgHdWRrt7J8OH8eSpeHx5WyV3F-eDs0u_qrTgGy5p4YOUecKAUQOCJxStQKPwMpmQaE6kGigzVKIaYxn-EUxEwcKaCa0TZeFoDF8jc6PxCDaIBzxVzKgQDRMuwixLVZIHUaokC6TRAWsTWq93bKop2GoYw9i5I0EUO3LFllxxRa42OWreeS1BOP5s3bJr3bSslrlNOjVZ40pO32KbLWlB0Bg-3m0eo4TZY5NkBOMptgkVdW4z9rxeskPTd81Fmz9_c4vMM2sGuOC_DpkrJlPYRiOmSHcc934AdWDnpQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLYQHMqlvEpZnkFqe6DNknkmOQICLZTdA10kblEycVoE7KLd7IVfj2fyEKC2QrlEymQyM7Zje8b-DPBF8kCmUYh-LmPhy4hkLjWy8EVhcnKJRJy5on39ge5dy4sbdTMHP9pcGER0wWfYtbfuLD8fm5ndKjsMSZ2F1kFfUFJKVWVrtWcGoXa4niTC0peCB02KTBAfDge_rk5tHJfuclLJKrAFYnjEaDRcvNJIrsTKv61Np3XOlqDfjLcKNrnrzsqsa57eQDm-d0LL8LE2P72jil9WYA5Hq_D1JdSwN6xwBrxv3tUrFO81ODi29ST8vou_RM9tJhapQe-kinf3ju5_jye35Z-H6Se4PjsdnvT8utaCb4RipY9KFSlHzgxKkTKyA42my-RSkUGRhci4YYoUGc_pn2BihhbYTIZhqi0gjRHrMD8aj3ADPBSZ5kZHZJoIGeV5ptMiiDOteKBMGPAOsGa9E1NPwdbDuE-cQxLEiSNXYsmV1OTqwPf2nccKhuO_rdfsWrct62XuwHZD1qSW1Gli8yUtDBqnx_vtY5Ixe3CSjnA8ozaRZs5xpp4_V-zQ9t1w0ebfv7kHH3rD_mVyeT74uQWL3BoFLhRwG-bLyQx3yKQps13Hyc_CP-ry | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain%E2%80%93Machine+Interface+Control+Algorithms&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shanechi%2C+Maryam+M.&rft.date=2017-10-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=25&rft.issue=10&rft.spage=1725&rft.epage=1734&rft_id=info:doi/10.1109%2FTNSRE.2016.2639501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2016_2639501 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |