Brain-Machine Interface Control Algorithms

Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 10; pp. 1725 - 1734
Main Author Shanechi, Maryam M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2016.2639501

Cover

Abstract Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.
AbstractList Motor brain–machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject’s intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.
Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.
Author Shanechi, Maryam M.
Author_xml – sequence: 1
  givenname: Maryam M.
  orcidid: 0000-0002-0544-7720
  surname: Shanechi
  fullname: Shanechi, Maryam M.
  email: shanechi@usc.edu
  organization: Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28113323$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PAjEQhhuDkQ_9A5oYEi_GZLHTz90jElQS1ETx3JQySMmyi-1y8N-7CHLwYHqYHp73ncnTJo2iLJCQc6A9AJrdTp7fXoc9RkH1mOKZpHBEWiBlmlAGtLH9c5EIzmiTtGNcUgpaSX1CmiwF4JzxFrm5C9YXyZN1C19gd1RUGObWYXdQFlUo824__yiDrxareEqO5zaPeLafHfJ-P5wMHpPxy8No0B8njkuoEpRybhkycCi4BVDgVP3cTMgM6FQjMAdSQ8pmmlOXAQoJILS2SkglHO-Q613vOpSfG4yVWfnoMM9tgeUmGkhVXSqEghq9-oMuy00o6usMZHUZYymjNXW5pzbTFc7MOviVDV_m10INsB3gQhljwPkBAWq2qs2ParNVbfaq61D6J-R8ZSu_9WZ9_n_0Yhf1iHjYpXXKtKT8G_K-h-Q
CODEN ITNSB3
CitedBy_id crossref_primary_10_1088_1741_2552_ac4e1c
crossref_primary_10_1109_TNSRE_2019_2908156
crossref_primary_10_1109_ACCESS_2022_3159225
crossref_primary_10_1007_s11571_022_09919_7
crossref_primary_10_1007_s12559_021_09878_x
crossref_primary_10_1038_s41593_020_00733_0
crossref_primary_10_1109_COMST_2021_3090778
crossref_primary_10_1007_s11571_019_09567_4
crossref_primary_10_1007_s00521_020_05323_6
crossref_primary_10_1007_s13246_019_00833_7
crossref_primary_10_1109_JBHI_2023_3278747
crossref_primary_10_1371_journal_pcbi_1006168
crossref_primary_10_1038_s41551_020_0595_9
crossref_primary_10_1088_1741_2552_ab3dbc
crossref_primary_10_1038_s41593_019_0488_y
crossref_primary_10_1088_1741_2552_aaeaae
crossref_primary_10_1088_1741_2552_ab225b
crossref_primary_10_1088_1741_2552_adbcd9
crossref_primary_10_1038_nbt_4200
crossref_primary_10_1088_1741_2552_ad038d
crossref_primary_10_1088_1741_2552_acec14
crossref_primary_10_1109_TBME_2017_2776204
crossref_primary_10_1007_s00422_021_00897_3
crossref_primary_10_1016_j_neunet_2021_01_009
crossref_primary_10_1109_THMS_2021_3138677
crossref_primary_10_1088_1741_2552_aaeb1a
crossref_primary_10_1088_1741_2552_ac9b94
crossref_primary_10_1088_1741_2552_ad1053
crossref_primary_10_1109_TNSRE_2019_2913218
crossref_primary_10_1016_j_jneumeth_2021_109373
crossref_primary_10_1088_1741_2552_abcefd
crossref_primary_10_1016_j_ifacol_2021_11_182
crossref_primary_10_1088_1741_2552_ad3678
crossref_primary_10_1088_1741_2552_ab0ea4
crossref_primary_10_3390_s21206729
crossref_primary_10_1016_j_neuroscience_2021_12_004
crossref_primary_10_1088_1741_2552_ab2214
crossref_primary_10_1073_pnas_2212887121
crossref_primary_10_1007_s11571_020_09577_7
Cites_doi 10.1523/JNEUROSCI.1110-06.2007
10.1152/jn.00371.2011
10.1152/jn.00438.2003
10.1088/1741-2560/1/2/001
10.1162/NECO_a_00207
10.1523/JNEUROSCI.0816-05.2005
10.1126/science.170.3959.758
10.1109/TNSRE.2012.2185066
10.1038/nature10987
10.1523/JNEUROSCI.18-18-07411.1998
10.7554/eLife.10015
10.1162/NECO_a_00632
10.1073/pnas.0913697107
10.1016/j.neunet.2009.05.005
10.1080/10447318.2011.535749
10.1371/journal.pone.0014760
10.1038/nature04968
10.3389/fnsys.2014.00068
10.1073/pnas.1215092109
10.1088/1741-2560/11/2/026002
10.1371/journal.pone.0006243
10.1152/jn.00697.2004
10.1109/TNSRE.2013.2294685
10.1152/jn.1999.82.5.2676
10.1523/JNEUROSCI.2081-09.2009
10.1038/nature11076
10.1038/ncomms4237
10.1523/JNEUROSCI.1463-08.2008
10.1162/NECO_a_00394
10.1152/jn.00482.2006
10.1162/NECO_a_00484
10.1073/pnas.1221127110
10.1038/416141a
10.1162/08997660252741149
10.1109/TNSRE.2012.2221743
10.1088/1741-2560/9/2/026027
10.1109/EMBC.2015.7318696
10.1038/nature04970
10.1109/EMBC.2016.7592183
10.1162/0899766053491887
10.1371/journal.pcbi.1004730
10.1371/journal.pone.0055344
10.1016/j.neuron.2012.11.015
10.1038/nn963
10.1126/science.163.3870.955
10.1162/neco.2006.18.10.2465
10.1523/JNEUROSCI.3967-10.2010
10.1038/nature17435
10.1038/nature06996
10.1038/nature10489
10.1088/1741-2560/5/4/010
10.1038/nm.3953
10.1038/10223
10.1152/jn.00532.2010
10.1038/nature20118
10.1038/nn.3265
10.1088/1741-2560/4/3/012
10.1007/s00221-008-1280-5
10.1126/scitranslmed.3007303
10.1523/JNEUROSCI.4165-11.2011
10.1088/1741-2560/5/1/008
10.1038/nn.3250
10.1109/ICASSP.2010.5495644
10.1038/ncomms13825
10.1371/journal.pbio.1000153
10.1126/science.aaa5417
10.1016/S0140-6736(12)61816-9
10.1162/089976604773135069
10.1016/j.neuron.2014.04.048
10.1038/nature07418
10.1162/08997660152469314
10.1088/1741-2560/10/2/026011
10.1073/pnas.0808113105
10.1088/1741-2560/11/1/016004
10.1371/journal.pbio.0000042
10.1126/science.1097938
10.1109/78.978374
10.1162/089976606774841585
10.1109/NER.2011.5910621
10.1162/089976603765202622
10.1371/journal.pone.0059049
10.1109/TNSRE.2010.2092443
10.1126/science.1070291
10.1523/JNEUROSCI.0271-12.2013
10.1007/s10827-009-0196-9
10.1088/1741-2560/10/5/056005
10.1038/nn1309
10.1152/jn.00832.2011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2016.2639501
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) - IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1734
ExternalDocumentID 28113323
10_1109_TNSRE_2016_2639501
7782750
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF CAREER
  grantid: 759 CCF-1453868
  funderid: 10.13039/100000143
– fundername: Cal-BRAIN
  grantid: 62636622
– fundername: ARO MURI
  grantid: W911NF-16-1-0368
  funderid: 10.13039/100000183
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-e55fa2e21ce43a1161c6c6ccd45910b7e12c157182d730c91e4511477a64564c3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Oct 02 11:48:55 EDT 2025
Sun Jul 13 04:45:14 EDT 2025
Thu Apr 03 07:10:10 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Wed Oct 01 01:12:22 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e55fa2e21ce43a1161c6c6ccd45910b7e12c157182d730c91e4511477a64564c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0544-7720
PMID 28113323
PQID 1956422820
PQPubID 85423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2016_2639501
pubmed_primary_28113323
crossref_primary_10_1109_TNSRE_2016_2639501
ieee_primary_7782750
proquest_journals_1956422820
proquest_miscellaneous_1861614461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
moran (ref71) 1999; 82
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
humphrey (ref1) 1970; 170
ref51
ref50
brown (ref57) 1998; 18
ref90
ref46
ref89
ref45
ref48
ref47
ref86
ref42
bertsekas (ref82) 2005
ref85
ref41
ref88
ref44
ref87
ref43
ref49
ref8
ref7
kailath (ref66) 2000
ref9
ref4
ref3
ref6
ref5
ref81
ref40
ref84
ref83
koyama (ref65) 2009; 29
ref80
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref39
ref38
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref22
ref21
ref28
fetz (ref2) 1969; 163
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref81
  doi: 10.1523/JNEUROSCI.1110-06.2007
– ident: ref89
  doi: 10.1152/jn.00371.2011
– ident: ref72
  doi: 10.1152/jn.00438.2003
– ident: ref39
  doi: 10.1088/1741-2560/1/2/001
– ident: ref16
  doi: 10.1162/NECO_a_00207
– ident: ref46
  doi: 10.1523/JNEUROSCI.0816-05.2005
– volume: 170
  start-page: 758
  year: 1970
  ident: ref1
  article-title: Predicting measures of motor performance from multiple cortical spike trains
  publication-title: Science
  doi: 10.1126/science.170.3959.758
– ident: ref21
  doi: 10.1109/TNSRE.2012.2185066
– ident: ref35
  doi: 10.1038/nature10987
– volume: 18
  start-page: 7411
  year: 1998
  ident: ref57
  article-title: A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-18-07411.1998
– ident: ref79
  doi: 10.7554/eLife.10015
– ident: ref63
  doi: 10.1162/NECO_a_00632
– ident: ref40
  doi: 10.1073/pnas.0913697107
– ident: ref64
  doi: 10.1016/j.neunet.2009.05.005
– ident: ref73
  doi: 10.1080/10447318.2011.535749
– ident: ref17
  doi: 10.1371/journal.pone.0014760
– ident: ref8
  doi: 10.1038/nature04968
– ident: ref62
  doi: 10.3389/fnsys.2014.00068
– ident: ref22
  doi: 10.1073/pnas.1215092109
– ident: ref53
  doi: 10.1088/1741-2560/11/2/026002
– ident: ref13
  doi: 10.1371/journal.pone.0006243
– ident: ref60
  doi: 10.1152/jn.00697.2004
– ident: ref29
  doi: 10.1109/TNSRE.2013.2294685
– year: 2005
  ident: ref82
  publication-title: Dynamic Programming and Optimal Control
– volume: 82
  start-page: 2676
  year: 1999
  ident: ref71
  article-title: Motor cortical representation of speed and direction during reaching
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.5.2676
– ident: ref50
  doi: 10.1523/JNEUROSCI.2081-09.2009
– ident: ref19
  doi: 10.1038/nature11076
– ident: ref36
  doi: 10.1038/ncomms4237
– ident: ref12
  doi: 10.1523/JNEUROSCI.1463-08.2008
– ident: ref88
  doi: 10.1162/NECO_a_00394
– ident: ref54
  doi: 10.1152/jn.00482.2006
– ident: ref84
  doi: 10.1162/NECO_a_00484
– ident: ref43
  doi: 10.1073/pnas.1221127110
– ident: ref4
  doi: 10.1038/416141a
– ident: ref59
  doi: 10.1162/08997660252741149
– ident: ref56
  doi: 10.1109/TNSRE.2012.2221743
– ident: ref67
  doi: 10.1088/1741-2560/9/2/026027
– ident: ref85
  doi: 10.1109/EMBC.2015.7318696
– ident: ref9
  doi: 10.1038/nature04970
– ident: ref90
  doi: 10.1109/EMBC.2016.7592183
– ident: ref80
  doi: 10.1162/0899766053491887
– ident: ref32
  doi: 10.1371/journal.pcbi.1004730
– ident: ref44
  doi: 10.1371/journal.pone.0055344
– ident: ref52
  doi: 10.1016/j.neuron.2012.11.015
– ident: ref76
  doi: 10.1038/nn963
– volume: 163
  start-page: 955
  year: 1969
  ident: ref2
  article-title: Operant conditioning of cortical unit activity
  publication-title: Science
  doi: 10.1126/science.163.3870.955
– ident: ref55
  doi: 10.1162/neco.2006.18.10.2465
– ident: ref15
  doi: 10.1523/JNEUROSCI.3967-10.2010
– ident: ref37
  doi: 10.1038/nature17435
– ident: ref10
  doi: 10.1038/nature06996
– ident: ref18
  doi: 10.1038/nature10489
– ident: ref11
  doi: 10.1088/1741-2560/5/4/010
– ident: ref30
  doi: 10.1038/nm.3953
– ident: ref3
  doi: 10.1038/10223
– ident: ref47
  doi: 10.1152/jn.00532.2010
– ident: ref38
  doi: 10.1038/nature20118
– ident: ref20
  doi: 10.1038/nn.3265
– ident: ref42
  doi: 10.1088/1741-2560/4/3/012
– ident: ref78
  doi: 10.1007/s00221-008-1280-5
– ident: ref26
  doi: 10.1126/scitranslmed.3007303
– ident: ref48
  doi: 10.1523/JNEUROSCI.4165-11.2011
– ident: ref41
  doi: 10.1088/1741-2560/5/1/008
– ident: ref23
  doi: 10.1038/nn.3250
– ident: ref75
  doi: 10.1109/ICASSP.2010.5495644
– ident: ref33
  doi: 10.1038/ncomms13825
– ident: ref14
  doi: 10.1371/journal.pbio.1000153
– ident: ref31
  doi: 10.1126/science.aaa5417
– ident: ref24
  doi: 10.1016/S0140-6736(12)61816-9
– ident: ref61
  doi: 10.1162/089976604773135069
– ident: ref28
  doi: 10.1016/j.neuron.2014.04.048
– ident: ref34
  doi: 10.1038/nature07418
– ident: ref58
  doi: 10.1162/08997660152469314
– ident: ref25
  doi: 10.1088/1741-2560/10/2/026011
– ident: ref87
  doi: 10.1073/pnas.0808113105
– ident: ref83
  doi: 10.1088/1741-2560/11/1/016004
– ident: ref6
  doi: 10.1371/journal.pbio.0000042
– ident: ref7
  doi: 10.1126/science.1097938
– year: 2000
  ident: ref66
  publication-title: Linear Estimation
– ident: ref68
  doi: 10.1109/78.978374
– ident: ref69
  doi: 10.1162/089976606774841585
– ident: ref74
  doi: 10.1109/NER.2011.5910621
– ident: ref86
  doi: 10.1162/089976603765202622
– ident: ref27
  doi: 10.1371/journal.pone.0059049
– ident: ref70
  doi: 10.1109/TNSRE.2010.2092443
– ident: ref5
  doi: 10.1126/science.1070291
– ident: ref45
  doi: 10.1523/JNEUROSCI.0271-12.2013
– volume: 29
  start-page: 73
  year: 2009
  ident: ref65
  article-title: Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-009-0196-9
– ident: ref51
  doi: 10.1088/1741-2560/10/5/056005
– ident: ref77
  doi: 10.1038/nn1309
– ident: ref49
  doi: 10.1152/jn.00832.2011
SSID ssj0017657
Score 2.4357114
Snippet Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a...
Motor brain–machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1725
SubjectTerms Adaptive estimation
Algorithm design and analysis
Algorithms
Bayes methods
Biofeedback
Body mass
Brain
brain–machine interface (BMI)
Control algorithms
Control systems
Control theory
Decoders
Decoding
Feedback
Firing pattern
Kalman filters
Kinematics
Man-machine interfaces
Mathematical model
Motor task performance
Nervous system
neuroprosthetics
Primates
Prostheses
Statistical inference
Stochasticity
Visual perception
Title Brain-Machine Interface Control Algorithms
URI https://ieeexplore.ieee.org/document/7782750
https://www.ncbi.nlm.nih.gov/pubmed/28113323
https://www.proquest.com/docview/1956422820
https://www.proquest.com/docview/1861614461
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) - IEEE Xplore
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI6AExde4zEYqEjAAejWvNsjIBBCGgcYEreqTV1AjA2N7sKvx0kfAgQI9VKpaZrEdm0n9mdC9gQLRBJq8DMRcV-EKHOJEbnPc5OhS8Sj1BXt61-ryztxdS_vZ8hxkwsDAC74DLr21p3lZ2MztVtlPY3qTFsHfVaHqszVak4MtHKonijAwhecBXWCTBD1Bte3N-c2ikt1GSpkGdjyMCykOBbGv-gjV2Dld1vT6ZyLRdKvR1uGmjx3p0XaNe_fgBz_O50lslAZn95JyS3LZAZGK2T_M9CwNyhRBrwD7-YLhneLHJ7aahJ-30Vfgue2EvPEgHdWRrt7J8OH8eSpeHx5WyV3F-eDs0u_qrTgGy5p4YOUecKAUQOCJxStQKPwMpmQaE6kGigzVKIaYxn-EUxEwcKaCa0TZeFoDF8jc6PxCDaIBzxVzKgQDRMuwixLVZIHUaokC6TRAWsTWq93bKop2GoYw9i5I0EUO3LFllxxRa42OWreeS1BOP5s3bJr3bSslrlNOjVZ40pO32KbLWlB0Bg-3m0eo4TZY5NkBOMptgkVdW4z9rxeskPTd81Fmz9_c4vMM2sGuOC_DpkrJlPYRiOmSHcc934AdWDnpQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLYQHMqlvEpZnkFqe6DNknkmOQICLZTdA10kblEycVoE7KLd7IVfj2fyEKC2QrlEymQyM7Zje8b-DPBF8kCmUYh-LmPhy4hkLjWy8EVhcnKJRJy5on39ge5dy4sbdTMHP9pcGER0wWfYtbfuLD8fm5ndKjsMSZ2F1kFfUFJKVWVrtWcGoXa4niTC0peCB02KTBAfDge_rk5tHJfuclLJKrAFYnjEaDRcvNJIrsTKv61Np3XOlqDfjLcKNrnrzsqsa57eQDm-d0LL8LE2P72jil9WYA5Hq_D1JdSwN6xwBrxv3tUrFO81ODi29ST8vou_RM9tJhapQe-kinf3ju5_jye35Z-H6Se4PjsdnvT8utaCb4RipY9KFSlHzgxKkTKyA42my-RSkUGRhci4YYoUGc_pn2BihhbYTIZhqi0gjRHrMD8aj3ADPBSZ5kZHZJoIGeV5ptMiiDOteKBMGPAOsGa9E1NPwdbDuE-cQxLEiSNXYsmV1OTqwPf2nccKhuO_rdfsWrct62XuwHZD1qSW1Gli8yUtDBqnx_vtY5Ixe3CSjnA8ozaRZs5xpp4_V-zQ9t1w0ebfv7kHH3rD_mVyeT74uQWL3BoFLhRwG-bLyQx3yKQps13Hyc_CP-ry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain%E2%80%93Machine+Interface+Control+Algorithms&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shanechi%2C+Maryam+M.&rft.date=2017-10-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=25&rft.issue=10&rft.spage=1725&rft.epage=1734&rft_id=info:doi/10.1109%2FTNSRE.2016.2639501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2016_2639501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon