An Optimized Uncertainty-Aware Training Framework for Neural Networks
Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 5; pp. 6928 - 6935 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2022.3213315 |
Cover
| Abstract | Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates. |
|---|---|
| AbstractList | Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates. Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates.Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates. |
| Author | Nahavandi, Saeid Tabarisaadi, Pegah Catalao, Joao P. S. Khosravi, Abbas Shafie-Khah, Miadreza |
| Author_xml | – sequence: 1 givenname: Pegah orcidid: 0000-0002-3510-8762 surname: Tabarisaadi fullname: Tabarisaadi, Pegah organization: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC, Australia – sequence: 2 givenname: Abbas orcidid: 0000-0001-6927-0744 surname: Khosravi fullname: Khosravi, Abbas email: abbas.khosravi@deakin.edu.au organization: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC, Australia – sequence: 3 givenname: Saeid orcidid: 0000-0002-0360-5270 surname: Nahavandi fullname: Nahavandi, Saeid organization: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC, Australia – sequence: 4 givenname: Miadreza orcidid: 0000-0003-1691-5355 surname: Shafie-Khah fullname: Shafie-Khah, Miadreza organization: School of Technology and Innovations, University of Vaasa, Vaasa, Finland – sequence: 5 givenname: Joao P. S. orcidid: 0000-0002-2105-3051 surname: Catalao fullname: Catalao, Joao P. S. email: catalao@fe.up.pt organization: Faculty of Engineering, University of Porto, Porto, Portugal |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36279341$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1P3DAQhi1EBRT4A62EIvXSS7b-iB37uEJ8Savl0EXiZjnJuDJNnMV2hOivx8sue-BQX8YePe-MZ96v6NCPHhD6RvCMEKx-rZbLxe8ZxZTOGCWMEX6ATigRtKRMysP9vX48RucxPuF8BOaiUkfomAlaK1aRE3Q198X9OrnB_YOuePAthGScT6_l_MUEKFYhv5z_U1wHM8DLGP4WdgzFEqZg-hzSJhXP0Bdr-gjnu3iKHq6vVpe35eL-5u5yvihbxkkqO9USgauWtZ2pLWfWMsplBQ1XtCO8qrkVUvC6bkTTWFlhBgp3QtnGKsx5x07Rz23ddRifJ4hJDy620PfGwzhFTWsqqzyiqDL64xP6NE7B599phjlmmElMM3Wxo6ZmgE6vgxtMeNUfC8oA3QJtGGMMYPcIwXpjhH43Qm-M0Dsjskh-ErUumeRGn_I6-_9Lv2-lDgD2vZSikkrC3gC8Z5PE |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3342138 crossref_primary_10_1007_s10994_024_06721_w |
| Cites_doi | 10.1007/s10994-021-05946-3 10.1016/j.compbiomed.2022.105357 10.1016/j.media.2019.101557 10.1038/nature14541 10.5555/3045390.3045502 10.1109/ICCV.2019.00302 10.1109/SMC42975.2020.9283003 10.1016/j.inffus.2021.05.008 10.1109/BRACIS.2019.00049 10.1080/014311697218764 10.1038/s41598-022-05052-x 10.1007/s00500-019-04531-0 10.1109/TPAMI.2018.2889774 10.1016/j.envsoft.2008.11.012 10.1016/0895-7177(94)00207-5 10.1016/j.isprsjprs.2017.11.021 10.1109/ITSC.2018.8569814 10.1080/01621459.2017.1285773 10.1016/j.neucom.2020.04.103 10.1111/exsy.12573 10.5555/2986459.2986721 10.1155/2018/9385947 10.1109/ICCV.2019.00303 10.1016/j.neucom.2019.01.103 10.1364/JOSAA.20.000430 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3213315 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 6935 |
| ExternalDocumentID | 36279341 10_1109_TNNLS_2022_3213315 9928281 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Australian Research Council Discovery Projects Funding Scheme grantid: DP190102181; DP210101465 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-d9c1604c3cda7f53ff32584eb592d15475f686577b6bbf8403e90d69fbf9055d3 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Wed Oct 01 14:05:42 EDT 2025 Mon Jun 30 07:11:13 EDT 2025 Thu Jul 24 03:25:33 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Wed Oct 01 00:45:10 EDT 2025 Wed Aug 27 02:06:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-d9c1604c3cda7f53ff32584eb592d15475f686577b6bbf8403e90d69fbf9055d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3510-8762 0000-0003-1691-5355 0000-0001-6927-0744 0000-0002-0360-5270 0000-0002-2105-3051 |
| PMID | 36279341 |
| PQID | 3050303802 |
| PQPubID | 85436 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2022_3213315 ieee_primary_9928281 proquest_journals_3050303802 proquest_miscellaneous_2728464964 pubmed_primary_36279341 crossref_citationtrail_10_1109_TNNLS_2022_3213315 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 Chen (ref30) ref37 ref14 ref11 ref10 ref32 Ding (ref29); 27 ref2 ref1 ref17 ref39 Chollet (ref44) 2017 Swiatkowski (ref31) 2020 ref19 Yang (ref40) 2020 Blundell (ref16) 2015 Pearce (ref42) ref24 ref23 ref25 Shafer (ref26) 2008; 9 Lakshminarayanan (ref35) 2016 Lee (ref36) 2018 ref28 Srivastava (ref21) 2014; 15 Jokandan (ref38) 2020 ref8 ref7 Izmailov (ref20) ref9 Wolberg (ref41) 1992 ref4 ref3 ref6 Teye (ref27) 2018 ref5 Simonyan (ref43) 2014 Mnih (ref33) Brach (ref22) 2020 Farquhar (ref18) |
| References_xml | – ident: ref13 doi: 10.1007/s10994-021-05946-3 – ident: ref37 doi: 10.1016/j.compbiomed.2022.105357 – volume: 27 start-page: 3203 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref29 article-title: Bayesian sampling using stochastic gradient thermostats – start-page: 1352 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref18 article-title: Radial Bayesian neural networks: Beyond discrete support in large-scale Bayesian deep learning – volume-title: Breast Cancer Wisconsin (Diagnostic) Data Set year: 1992 ident: ref41 – ident: ref25 doi: 10.1016/j.media.2019.101557 – volume-title: Deep Learning With Python year: 2017 ident: ref44 article-title: Fundamentals of maching learning – volume-title: arXiv:2007.03293 year: 2020 ident: ref22 article-title: Single shot MC dropout approximation – ident: ref14 doi: 10.1038/nature14541 – ident: ref17 doi: 10.5555/3045390.3045502 – ident: ref2 doi: 10.1109/ICCV.2019.00302 – ident: ref5 doi: 10.1109/SMC42975.2020.9283003 – ident: ref12 doi: 10.1016/j.inffus.2021.05.008 – ident: ref11 doi: 10.1109/BRACIS.2019.00049 – ident: ref7 doi: 10.1080/014311697218764 – volume: 9 issue: 3 year: 2008 ident: ref26 article-title: A tutorial on conformal prediction publication-title: J. Mach. Learn. Res. – ident: ref39 doi: 10.1038/s41598-022-05052-x – ident: ref4 doi: 10.1007/s00500-019-04531-0 – start-page: 1169 volume-title: Proc. Uncertainty Artif. Intell. ident: ref20 article-title: Subspace inference for Bayesian deep learning – ident: ref34 doi: 10.1109/TPAMI.2018.2889774 – ident: ref8 doi: 10.1016/j.envsoft.2008.11.012 – volume-title: arXiv:1802.06455 year: 2018 ident: ref27 article-title: Bayesian uncertainty estimation for batch normalized deep networks – ident: ref6 doi: 10.1016/0895-7177(94)00207-5 – ident: ref10 doi: 10.1016/j.isprsjprs.2017.11.021 – volume-title: arXiv:2003.13865 year: 2020 ident: ref40 article-title: COVID-CT-dataset: A CT scan dataset about COVID-19 – ident: ref1 doi: 10.1109/ITSC.2018.8569814 – volume-title: arXiv:1612.01474 year: 2016 ident: ref35 article-title: Simple and scalable predictive uncertainty estimation using deep ensembles – volume-title: arXiv:2002.02655 year: 2020 ident: ref31 article-title: The k-tied normal distribution: A compact parameterization of Gaussian mean field posteriors in Bayesian neural networks – volume: 15 start-page: 1929 issue: 56 year: 2014 ident: ref21 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref32 doi: 10.1080/01621459.2017.1285773 – ident: ref19 doi: 10.1016/j.neucom.2020.04.103 – ident: ref3 doi: 10.1111/exsy.12573 – volume-title: arXiv:1807.03888 year: 2018 ident: ref36 article-title: A simple unified framework for detecting out-of-distribution samples and adversarial attacks – start-page: 234 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref42 article-title: Uncertainty in neural networks: Approximately Bayesian ensembling – ident: ref15 doi: 10.5555/2986459.2986721 – start-page: 1683 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Stochastic gradient Hamiltonian Monte Carlo – ident: ref9 doi: 10.1155/2018/9385947 – ident: ref24 doi: 10.1109/ICCV.2019.00303 – ident: ref23 doi: 10.1016/j.neucom.2019.01.103 – ident: ref28 doi: 10.1364/JOSAA.20.000430 – start-page: 2188 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref33 article-title: Variational inference for Monte Carlo objectives – volume-title: arXiv:1505.05424 year: 2015 ident: ref16 article-title: Weight uncertainty in neural networks – volume-title: arXiv:2007.14846 year: 2020 ident: ref38 article-title: An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis – volume-title: arXiv:1409.1556 year: 2014 ident: ref43 article-title: Very deep convolutional networks for large-scale image recognition |
| SSID | ssj0000605649 |
| Score | 2.4709315 |
| Snippet | Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6928 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Bayes methods Benchmarks Classification deep neural network (NN) Measurement Neural networks Objective function Prediction algorithms Predictions Predictive models Safety critical Stochasticity Training Uncertainty uncertainty accuracy (UA) uncertainty quantification (UQ) |
| Title | An Optimized Uncertainty-Aware Training Framework for Neural Networks |
| URI | https://ieeexplore.ieee.org/document/9928281 https://www.ncbi.nlm.nih.gov/pubmed/36279341 https://www.proquest.com/docview/3050303802 https://www.proquest.com/docview/2728464964 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp14K5VHSUmQkbjSLY8dOfFxVrFAF2wO70t6i2LElBGQrNisEv56x85CKStVblDiO4xl7vs8ezwCcopAR1Io8TjV3SFASFZeyLGM0Xd6e6Zwavw55PZWX8_TnQiw24PtwFsZaG5zP7Mhfhr38amnWfqnsXClPEJDrbGa5bM9qDespFHG5DGiXJZLFjGeL_owMVeez6fTqBtkgYyPOkJYlPmMNzt2onWnyh0kKOVbeh5vB7Ey24bpvcOttcjdaN3pkXt7EcvzfP9qBjx3-JONWYT7Bhq13YbvP7UC6ob4HF-Oa_MLp5OH2xVZkjveC60DzHI-fykdLZl1qCTLpvbsIwl_iY31g9dPWuXy1D_PJxezHZdylXIgNF0kTV8okkqaGm6rMnODOcYYQxWqhWIVoKxNO5lJkmZZaOySH3CpaSeW0U1SIih_AVr2s7SEQTlmZYEdXlOpUaJU75KLU5TZXyOaFiSDpe70wXTxynxbjvgi8hKoiCK3wQis6oUVwNrzzu43G8c_Se77Hh5JdZ0dw1Au36AbsquA-Lg7lOWURnAyPcaj5_ZOytsv1qmAZ2nLUMZlG8LlViqHuXpe-_P2bX-EDtixtPSWPYKt5XNtviGYafRzU-BV_rusJ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7QEulFIeKS0YiRtk6_iV-LiqulpgNxzYlfYWxYktISCLullV9Nczdh4SCBC3KHEcxzP2fJ89ngF4jUJGUCuzWBjukKAkOi5VWcZourw9Mxmt_DrkMlfztXi_kZsDeDuehbHWBuczO_GXYS-_3lZ7v1R2qbUnCMh1jqQQQnantcYVFYrIXAW8yxLFYsbTzXBKhurLVZ4vPiEfZGzCGRKzxOeswdkb9VMkvxilkGXl74AzGJ7ZMSyHJnf-Jl8m-9ZMqrvfojn-7z89hAc9AiXTTmVO4MA2j-B4yO5A-sF-CtfThnzECeXb5ztbkzXeC84D7Y94elveWLLqk0uQ2eDfRRAAEx_tA6vPO_fy3WNYz65XV_O4T7oQV1wmbVzrKlFUVLyqy9RJ7hxnCFKskZrViLdS6VSmZJoaZYxDesitprXSzjhNpaz5Ezhsto19BoRTVibY0TWlRkijM4dslLrMZhr5vKwiSIZeL6o-IrlPjPG1CMyE6iIIrfBCK3qhRfBmfOd7F4_jn6VPfY-PJfvOjuB8EG7RD9ldwX1kHMozyiJ4NT7GweZ3UMrGbve7gqVozVHHlIjgaacUY92DLp39-Zsv4d58tVwUi3f5h-dwH1spOr_Jczhsb_b2ArFNa14Elf4J93DuVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Uncertainty-Aware+Training+Framework+for+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Tabarisaadi%2C+Pegah&rft.au=Khosravi%2C+Abbas&rft.au=Nahavandi%2C+Saeid&rft.au=Shafie-Khah%2C+Miadreza&rft.date=2024-05-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3213315&rft_id=info%3Apmid%2F36279341&rft.externalDocID=36279341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |