An Optimized Uncertainty-Aware Training Framework for Neural Networks

Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 5; pp. 6928 - 6935
Main Authors Tabarisaadi, Pegah, Khosravi, Abbas, Nahavandi, Saeid, Shafie-Khah, Miadreza, Catalao, Joao P. S.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3213315

Cover

Abstract Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates.
AbstractList Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates.
Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates.Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates.
Author Nahavandi, Saeid
Tabarisaadi, Pegah
Catalao, Joao P. S.
Khosravi, Abbas
Shafie-Khah, Miadreza
Author_xml – sequence: 1
  givenname: Pegah
  orcidid: 0000-0002-3510-8762
  surname: Tabarisaadi
  fullname: Tabarisaadi, Pegah
  organization: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC, Australia
– sequence: 2
  givenname: Abbas
  orcidid: 0000-0001-6927-0744
  surname: Khosravi
  fullname: Khosravi, Abbas
  email: abbas.khosravi@deakin.edu.au
  organization: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC, Australia
– sequence: 3
  givenname: Saeid
  orcidid: 0000-0002-0360-5270
  surname: Nahavandi
  fullname: Nahavandi, Saeid
  organization: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC, Australia
– sequence: 4
  givenname: Miadreza
  orcidid: 0000-0003-1691-5355
  surname: Shafie-Khah
  fullname: Shafie-Khah, Miadreza
  organization: School of Technology and Innovations, University of Vaasa, Vaasa, Finland
– sequence: 5
  givenname: Joao P. S.
  orcidid: 0000-0002-2105-3051
  surname: Catalao
  fullname: Catalao, Joao P. S.
  email: catalao@fe.up.pt
  organization: Faculty of Engineering, University of Porto, Porto, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36279341$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1EBRT4A62EIvXSS7b-iB37uEJ8Savl0EXiZjnJuDJNnMV2hOivx8sue-BQX8YePe-MZ96v6NCPHhD6RvCMEKx-rZbLxe8ZxZTOGCWMEX6ATigRtKRMysP9vX48RucxPuF8BOaiUkfomAlaK1aRE3Q198X9OrnB_YOuePAthGScT6_l_MUEKFYhv5z_U1wHM8DLGP4WdgzFEqZg-hzSJhXP0Bdr-gjnu3iKHq6vVpe35eL-5u5yvihbxkkqO9USgauWtZ2pLWfWMsplBQ1XtCO8qrkVUvC6bkTTWFlhBgp3QtnGKsx5x07Rz23ddRifJ4hJDy620PfGwzhFTWsqqzyiqDL64xP6NE7B599phjlmmElMM3Wxo6ZmgE6vgxtMeNUfC8oA3QJtGGMMYPcIwXpjhH43Qm-M0Dsjskh-ErUumeRGn_I6-_9Lv2-lDgD2vZSikkrC3gC8Z5PE
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3342138
crossref_primary_10_1007_s10994_024_06721_w
Cites_doi 10.1007/s10994-021-05946-3
10.1016/j.compbiomed.2022.105357
10.1016/j.media.2019.101557
10.1038/nature14541
10.5555/3045390.3045502
10.1109/ICCV.2019.00302
10.1109/SMC42975.2020.9283003
10.1016/j.inffus.2021.05.008
10.1109/BRACIS.2019.00049
10.1080/014311697218764
10.1038/s41598-022-05052-x
10.1007/s00500-019-04531-0
10.1109/TPAMI.2018.2889774
10.1016/j.envsoft.2008.11.012
10.1016/0895-7177(94)00207-5
10.1016/j.isprsjprs.2017.11.021
10.1109/ITSC.2018.8569814
10.1080/01621459.2017.1285773
10.1016/j.neucom.2020.04.103
10.1111/exsy.12573
10.5555/2986459.2986721
10.1155/2018/9385947
10.1109/ICCV.2019.00303
10.1016/j.neucom.2019.01.103
10.1364/JOSAA.20.000430
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3213315
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 6935
ExternalDocumentID 36279341
10_1109_TNNLS_2022_3213315
9928281
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council Discovery Projects Funding Scheme
  grantid: DP190102181; DP210101465
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-d9c1604c3cda7f53ff32584eb592d15475f686577b6bbf8403e90d69fbf9055d3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 14:05:42 EDT 2025
Mon Jun 30 07:11:13 EDT 2025
Thu Jul 24 03:25:33 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Wed Oct 01 00:45:10 EDT 2025
Wed Aug 27 02:06:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-d9c1604c3cda7f53ff32584eb592d15475f686577b6bbf8403e90d69fbf9055d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3510-8762
0000-0003-1691-5355
0000-0001-6927-0744
0000-0002-0360-5270
0000-0002-2105-3051
PMID 36279341
PQID 3050303802
PQPubID 85436
PageCount 8
ParticipantIDs crossref_primary_10_1109_TNNLS_2022_3213315
ieee_primary_9928281
proquest_journals_3050303802
proquest_miscellaneous_2728464964
pubmed_primary_36279341
crossref_citationtrail_10_1109_TNNLS_2022_3213315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
Chen (ref30)
ref37
ref14
ref11
ref10
ref32
Ding (ref29); 27
ref2
ref1
ref17
ref39
Chollet (ref44) 2017
Swiatkowski (ref31) 2020
ref19
Yang (ref40) 2020
Blundell (ref16) 2015
Pearce (ref42)
ref24
ref23
ref25
Shafer (ref26) 2008; 9
Lakshminarayanan (ref35) 2016
Lee (ref36) 2018
ref28
Srivastava (ref21) 2014; 15
Jokandan (ref38) 2020
ref8
ref7
Izmailov (ref20)
ref9
Wolberg (ref41) 1992
ref4
ref3
ref6
Teye (ref27) 2018
ref5
Simonyan (ref43) 2014
Mnih (ref33)
Brach (ref22) 2020
Farquhar (ref18)
References_xml – ident: ref13
  doi: 10.1007/s10994-021-05946-3
– ident: ref37
  doi: 10.1016/j.compbiomed.2022.105357
– volume: 27
  start-page: 3203
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Bayesian sampling using stochastic gradient thermostats
– start-page: 1352
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref18
  article-title: Radial Bayesian neural networks: Beyond discrete support in large-scale Bayesian deep learning
– volume-title: Breast Cancer Wisconsin (Diagnostic) Data Set
  year: 1992
  ident: ref41
– ident: ref25
  doi: 10.1016/j.media.2019.101557
– volume-title: Deep Learning With Python
  year: 2017
  ident: ref44
  article-title: Fundamentals of maching learning
– volume-title: arXiv:2007.03293
  year: 2020
  ident: ref22
  article-title: Single shot MC dropout approximation
– ident: ref14
  doi: 10.1038/nature14541
– ident: ref17
  doi: 10.5555/3045390.3045502
– ident: ref2
  doi: 10.1109/ICCV.2019.00302
– ident: ref5
  doi: 10.1109/SMC42975.2020.9283003
– ident: ref12
  doi: 10.1016/j.inffus.2021.05.008
– ident: ref11
  doi: 10.1109/BRACIS.2019.00049
– ident: ref7
  doi: 10.1080/014311697218764
– volume: 9
  issue: 3
  year: 2008
  ident: ref26
  article-title: A tutorial on conformal prediction
  publication-title: J. Mach. Learn. Res.
– ident: ref39
  doi: 10.1038/s41598-022-05052-x
– ident: ref4
  doi: 10.1007/s00500-019-04531-0
– start-page: 1169
  volume-title: Proc. Uncertainty Artif. Intell.
  ident: ref20
  article-title: Subspace inference for Bayesian deep learning
– ident: ref34
  doi: 10.1109/TPAMI.2018.2889774
– ident: ref8
  doi: 10.1016/j.envsoft.2008.11.012
– volume-title: arXiv:1802.06455
  year: 2018
  ident: ref27
  article-title: Bayesian uncertainty estimation for batch normalized deep networks
– ident: ref6
  doi: 10.1016/0895-7177(94)00207-5
– ident: ref10
  doi: 10.1016/j.isprsjprs.2017.11.021
– volume-title: arXiv:2003.13865
  year: 2020
  ident: ref40
  article-title: COVID-CT-dataset: A CT scan dataset about COVID-19
– ident: ref1
  doi: 10.1109/ITSC.2018.8569814
– volume-title: arXiv:1612.01474
  year: 2016
  ident: ref35
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– volume-title: arXiv:2002.02655
  year: 2020
  ident: ref31
  article-title: The k-tied normal distribution: A compact parameterization of Gaussian mean field posteriors in Bayesian neural networks
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: ref21
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref32
  doi: 10.1080/01621459.2017.1285773
– ident: ref19
  doi: 10.1016/j.neucom.2020.04.103
– ident: ref3
  doi: 10.1111/exsy.12573
– volume-title: arXiv:1807.03888
  year: 2018
  ident: ref36
  article-title: A simple unified framework for detecting out-of-distribution samples and adversarial attacks
– start-page: 234
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref42
  article-title: Uncertainty in neural networks: Approximately Bayesian ensembling
– ident: ref15
  doi: 10.5555/2986459.2986721
– start-page: 1683
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Stochastic gradient Hamiltonian Monte Carlo
– ident: ref9
  doi: 10.1155/2018/9385947
– ident: ref24
  doi: 10.1109/ICCV.2019.00303
– ident: ref23
  doi: 10.1016/j.neucom.2019.01.103
– ident: ref28
  doi: 10.1364/JOSAA.20.000430
– start-page: 2188
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref33
  article-title: Variational inference for Monte Carlo objectives
– volume-title: arXiv:1505.05424
  year: 2015
  ident: ref16
  article-title: Weight uncertainty in neural networks
– volume-title: arXiv:2007.14846
  year: 2020
  ident: ref38
  article-title: An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis
– volume-title: arXiv:1409.1556
  year: 2014
  ident: ref43
  article-title: Very deep convolutional networks for large-scale image recognition
SSID ssj0000605649
Score 2.4709315
Snippet Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6928
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bayes methods
Benchmarks
Classification
deep neural network (NN)
Measurement
Neural networks
Objective function
Prediction algorithms
Predictions
Predictive models
Safety critical
Stochasticity
Training
Uncertainty
uncertainty accuracy (UA)
uncertainty quantification (UQ)
Title An Optimized Uncertainty-Aware Training Framework for Neural Networks
URI https://ieeexplore.ieee.org/document/9928281
https://www.ncbi.nlm.nih.gov/pubmed/36279341
https://www.proquest.com/docview/3050303802
https://www.proquest.com/docview/2728464964
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp14K5VHSUmQkbjSLY8dOfFxVrFAF2wO70t6i2LElBGQrNisEv56x85CKStVblDiO4xl7vs8ezwCcopAR1Io8TjV3SFASFZeyLGM0Xd6e6Zwavw55PZWX8_TnQiw24PtwFsZaG5zP7Mhfhr38amnWfqnsXClPEJDrbGa5bM9qDespFHG5DGiXJZLFjGeL_owMVeez6fTqBtkgYyPOkJYlPmMNzt2onWnyh0kKOVbeh5vB7Ey24bpvcOttcjdaN3pkXt7EcvzfP9qBjx3-JONWYT7Bhq13YbvP7UC6ob4HF-Oa_MLp5OH2xVZkjveC60DzHI-fykdLZl1qCTLpvbsIwl_iY31g9dPWuXy1D_PJxezHZdylXIgNF0kTV8okkqaGm6rMnODOcYYQxWqhWIVoKxNO5lJkmZZaOySH3CpaSeW0U1SIih_AVr2s7SEQTlmZYEdXlOpUaJU75KLU5TZXyOaFiSDpe70wXTxynxbjvgi8hKoiCK3wQis6oUVwNrzzu43G8c_Se77Hh5JdZ0dw1Au36AbsquA-Lg7lOWURnAyPcaj5_ZOytsv1qmAZ2nLUMZlG8LlViqHuXpe-_P2bX-EDtixtPSWPYKt5XNtviGYafRzU-BV_rusJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7QEulFIeKS0YiRtk6_iV-LiqulpgNxzYlfYWxYktISCLullV9Nczdh4SCBC3KHEcxzP2fJ89ngF4jUJGUCuzWBjukKAkOi5VWcZourw9Mxmt_DrkMlfztXi_kZsDeDuehbHWBuczO_GXYS-_3lZ7v1R2qbUnCMh1jqQQQnantcYVFYrIXAW8yxLFYsbTzXBKhurLVZ4vPiEfZGzCGRKzxOeswdkb9VMkvxilkGXl74AzGJ7ZMSyHJnf-Jl8m-9ZMqrvfojn-7z89hAc9AiXTTmVO4MA2j-B4yO5A-sF-CtfThnzECeXb5ztbkzXeC84D7Y94elveWLLqk0uQ2eDfRRAAEx_tA6vPO_fy3WNYz65XV_O4T7oQV1wmbVzrKlFUVLyqy9RJ7hxnCFKskZrViLdS6VSmZJoaZYxDesitprXSzjhNpaz5Ezhsto19BoRTVibY0TWlRkijM4dslLrMZhr5vKwiSIZeL6o-IrlPjPG1CMyE6iIIrfBCK3qhRfBmfOd7F4_jn6VPfY-PJfvOjuB8EG7RD9ldwX1kHMozyiJ4NT7GweZ3UMrGbve7gqVozVHHlIjgaacUY92DLp39-Zsv4d58tVwUi3f5h-dwH1spOr_Jczhsb_b2ArFNa14Elf4J93DuVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Uncertainty-Aware+Training+Framework+for+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Tabarisaadi%2C+Pegah&rft.au=Khosravi%2C+Abbas&rft.au=Nahavandi%2C+Saeid&rft.au=Shafie-Khah%2C+Miadreza&rft.date=2024-05-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3213315&rft_id=info%3Apmid%2F36279341&rft.externalDocID=36279341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon