Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear Multiagent Systems With Dynamic Uncertainties

This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dy...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 5; pp. 2239 - 2250
Main Authors Liang, Hongjing, Liu, Guangliang, Zhang, Huaguang, Huang, Tingwen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.3003950

Cover

Abstract This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader's output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.
AbstractList This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader's output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.
This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader's output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader's output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.
Author Liang, Hongjing
Huang, Tingwen
Liu, Guangliang
Zhang, Huaguang
Author_xml – sequence: 1
  givenname: Hongjing
  orcidid: 0000-0003-1480-1872
  surname: Liang
  fullname: Liang, Hongjing
  email: lianghongjing99@163.com
  organization: College of Engineering, Bohai University, Jinzhou, China
– sequence: 2
  givenname: Guangliang
  orcidid: 0000-0002-6385-0497
  surname: Liu
  fullname: Liu, Guangliang
  email: liuguangliang17@163.com
  organization: College of Engineering, Bohai University, Jinzhou, China
– sequence: 3
  givenname: Huaguang
  orcidid: 0000-0002-0647-4050
  surname: Zhang
  fullname: Zhang, Huaguang
  email: hgzhang@ieee.org
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Tingwen
  orcidid: 0000-0001-9610-846X
  surname: Huang
  fullname: Huang, Tingwen
  email: tingwen.huang@qatar.tamu.edu
  organization: Science Program, Texas A&M University at Qatar, Doha, Qatar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32663131$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvpHwAJWeLCJYs_kmx8LEsLSEs4dCu4RbPJeHFJ7MV2Wi2_Hodd9tADc5mx9Dy2Ne9zcmKdRUJecjbjnKl3q7pe3swEE2wmGZOqYE_ImeClyISsqpPjPP9-Si5CuGOpSlaUuXpGTqUoS8klPyO_axw99FmN8cH5n9l7CNjRq3u0MVt5s9mgT-fLDrbR3CNdOBu966nTtHYWtDYWp6lPHTz9MvbRwCbJ9GYXIg6BfjPxB_2wszCYlt7aFn0EY6PB8II81dAHvDj0c3J7fbVafMqWXz9-Xlwus1YWPGYtIHYA6xZUqZQQc6VU1_G8lAVCxRWrGBQKmZai0CXklVaFVmUHohJrVgl5Tt7u791692vEEJvBhBb7Hiy6MTQiFzlnfC5ZQt88Qu_c6G36XSMKkYrLfKJeH6hxPWDXbL0ZwO-af1tNgNgDrXcheNRHhLNmSq_5m14zpdcc0ktS9UhqTYRopo2D6f-vvtqrBhGPbymes5wJ-Qe_XqeY
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3456430
crossref_primary_10_1016_j_ins_2023_02_040
crossref_primary_10_1177_09596518231188495
crossref_primary_10_1109_TCSI_2021_3116670
crossref_primary_10_1109_TFUZZ_2021_3057987
crossref_primary_10_1002_rnc_6349
crossref_primary_10_1080_09540091_2022_2031887
crossref_primary_10_1007_s00521_021_05696_2
crossref_primary_10_1109_TSMC_2021_3072650
crossref_primary_10_1016_j_isatra_2025_01_017
crossref_primary_10_1109_ACCESS_2021_3066109
crossref_primary_10_1109_TSMC_2023_3240751
crossref_primary_10_1109_TCSII_2021_3111653
crossref_primary_10_1016_j_ejcon_2022_100769
crossref_primary_10_1109_TCYB_2024_3384467
crossref_primary_10_1016_j_automatica_2021_109749
crossref_primary_10_1080_00207721_2021_1961912
crossref_primary_10_1109_TCYB_2021_3090067
crossref_primary_10_1016_j_jfranklin_2024_107241
crossref_primary_10_1109_TNNLS_2023_3279890
crossref_primary_10_1016_j_ins_2024_121216
crossref_primary_10_1016_j_jfranklin_2024_107006
crossref_primary_10_1016_j_neucom_2020_09_051
crossref_primary_10_1109_TNNLS_2021_3133440
crossref_primary_10_1007_s11071_023_08989_4
crossref_primary_10_1038_s41598_022_16535_2
crossref_primary_10_3390_fractalfract8060339
crossref_primary_10_1109_TASE_2023_3244536
crossref_primary_10_1109_TNNLS_2022_3166531
crossref_primary_10_1177_01423312231159698
crossref_primary_10_1002_rnc_7670
crossref_primary_10_1002_rnc_6460
crossref_primary_10_1007_s11071_021_06956_5
crossref_primary_10_1007_s40435_021_00794_4
crossref_primary_10_1007_s40815_024_01694_3
crossref_primary_10_1016_j_seta_2021_101917
crossref_primary_10_1109_TFUZZ_2020_3012761
crossref_primary_10_1109_TCYB_2021_3090999
crossref_primary_10_1109_TNNLS_2022_3145843
crossref_primary_10_1002_rnc_5498
crossref_primary_10_1007_s11071_022_07699_7
crossref_primary_10_1109_TCYB_2021_3061888
crossref_primary_10_1002_rnc_5957
crossref_primary_10_1080_00207721_2020_1815098
crossref_primary_10_1109_TFUZZ_2023_3235431
crossref_primary_10_1002_asjc_2620
crossref_primary_10_1002_asjc_3399
crossref_primary_10_1155_2020_8897487
crossref_primary_10_1007_s11424_023_1011_9
crossref_primary_10_1109_JAS_2021_1004263
crossref_primary_10_3390_aerospace11090709
crossref_primary_10_1109_TNNLS_2022_3221105
crossref_primary_10_1109_TNNLS_2021_3126320
crossref_primary_10_1109_TASE_2024_3398629
crossref_primary_10_1109_TCSI_2021_3121809
crossref_primary_10_1109_TSMC_2023_3298718
crossref_primary_10_1109_TVT_2023_3312439
crossref_primary_10_1007_s11424_021_0220_3
crossref_primary_10_1016_j_ins_2021_09_013
crossref_primary_10_1109_TCSI_2022_3161685
crossref_primary_10_1007_s00521_022_07062_2
crossref_primary_10_1109_TCSII_2022_3144097
crossref_primary_10_1109_TSMC_2023_3345365
crossref_primary_10_1155_2022_6929902
crossref_primary_10_1007_s40435_021_00784_6
crossref_primary_10_1002_asjc_2867
crossref_primary_10_1002_rnc_6255
crossref_primary_10_1002_rnc_7584
crossref_primary_10_1109_TCSII_2023_3297600
crossref_primary_10_1109_TNNLS_2022_3160532
crossref_primary_10_1002_rnc_5702
crossref_primary_10_1016_j_amc_2022_127289
crossref_primary_10_1109_JSYST_2021_3116035
crossref_primary_10_3390_math11040988
crossref_primary_10_1109_ACCESS_2022_3191343
crossref_primary_10_1109_TCSII_2022_3158359
crossref_primary_10_1016_j_neucom_2023_126498
crossref_primary_10_1109_LCSYS_2023_3281894
crossref_primary_10_3934_mbe_2023335
crossref_primary_10_1109_TCYB_2021_3103820
crossref_primary_10_1177_01423312241233822
crossref_primary_10_1016_j_neucom_2023_126259
crossref_primary_10_1109_TNNLS_2021_3138924
crossref_primary_10_1016_j_ins_2022_06_001
crossref_primary_10_1016_j_jfranklin_2021_09_027
crossref_primary_10_1109_TSMC_2021_3131495
crossref_primary_10_1016_j_ins_2023_01_003
crossref_primary_10_1109_TSMC_2021_3082549
crossref_primary_10_1109_TSMC_2022_3163719
crossref_primary_10_1007_s00500_022_06973_5
crossref_primary_10_1002_asjc_2736
crossref_primary_10_1109_ACCESS_2020_3048185
crossref_primary_10_1007_s12555_020_0883_x
crossref_primary_10_1109_TNNLS_2021_3116069
crossref_primary_10_1109_TSMC_2022_3212988
crossref_primary_10_1007_s11071_024_09850_y
crossref_primary_10_3390_math9162013
crossref_primary_10_1109_TFUZZ_2024_3465466
crossref_primary_10_1177_0309524X211024654
crossref_primary_10_1080_00207721_2021_2002462
crossref_primary_10_1109_TNNLS_2022_3151650
crossref_primary_10_1109_TAC_2021_3079279
crossref_primary_10_1002_asjc_2566
crossref_primary_10_1109_TFUZZ_2024_3489719
crossref_primary_10_1007_s42405_023_00679_0
crossref_primary_10_1109_TSMC_2022_3179444
crossref_primary_10_1109_TCYB_2023_3266888
crossref_primary_10_1109_TFUZZ_2024_3364245
crossref_primary_10_1109_TAC_2022_3216976
crossref_primary_10_1007_s12555_022_0149_x
crossref_primary_10_1109_TNNLS_2022_3224029
crossref_primary_10_1109_TVT_2023_3258542
crossref_primary_10_1016_j_jfranklin_2021_07_058
crossref_primary_10_1109_TCSII_2022_3164572
crossref_primary_10_1109_TFUZZ_2020_3031027
crossref_primary_10_1016_j_amc_2022_127342
crossref_primary_10_1016_j_ast_2023_108472
crossref_primary_10_1002_asjc_2554
crossref_primary_10_1007_s11424_021_1005_4
crossref_primary_10_1109_TASE_2023_3327264
crossref_primary_10_1109_TCYB_2021_3119066
crossref_primary_10_1109_JSYST_2021_3115241
crossref_primary_10_1007_s00521_022_07247_9
crossref_primary_10_1109_TSMC_2024_3450274
crossref_primary_10_1109_TCSI_2021_3052210
crossref_primary_10_1007_s11063_022_11038_7
crossref_primary_10_1109_TCYB_2023_3279841
crossref_primary_10_1109_TIM_2022_3150891
crossref_primary_10_1016_j_sysconle_2024_105757
crossref_primary_10_1007_s11424_022_1106_8
crossref_primary_10_1109_TCYB_2022_3220754
crossref_primary_10_1109_JAS_2021_1003967
crossref_primary_10_1109_TFUZZ_2020_3031385
crossref_primary_10_1109_TSIPN_2023_3277278
crossref_primary_10_1007_s11071_022_07655_5
crossref_primary_10_1007_s00034_022_01980_1
crossref_primary_10_1002_asjc_2660
crossref_primary_10_1109_TSMC_2023_3257415
crossref_primary_10_1109_TASE_2024_3439705
crossref_primary_10_1016_j_amc_2023_128523
crossref_primary_10_1109_TCYB_2021_3063225
crossref_primary_10_1109_TNNLS_2023_3262799
crossref_primary_10_1109_TNNLS_2022_3151625
crossref_primary_10_1007_s11424_020_0106_9
crossref_primary_10_1109_TCSII_2021_3079218
crossref_primary_10_1109_TNNLS_2021_3100143
crossref_primary_10_3390_math13060923
crossref_primary_10_1063_5_0135758
crossref_primary_10_3390_sym16070857
crossref_primary_10_1002_rnc_5366
crossref_primary_10_1016_j_jfranklin_2022_07_026
crossref_primary_10_1016_j_jfranklin_2024_107148
crossref_primary_10_1049_cth2_12711
crossref_primary_10_1007_s12555_020_0510_x
crossref_primary_10_1109_JAS_2022_105800
crossref_primary_10_1109_TNNLS_2022_3222861
crossref_primary_10_1016_j_jfranklin_2021_05_008
crossref_primary_10_1109_ACCESS_2023_3323395
crossref_primary_10_1080_00207721_2021_1927236
crossref_primary_10_1109_MIE_2023_3286984
crossref_primary_10_1007_s13042_021_01497_0
crossref_primary_10_1016_j_oceaneng_2023_114160
crossref_primary_10_1109_TNNLS_2022_3175929
crossref_primary_10_1016_j_jmaa_2024_128572
crossref_primary_10_1109_TNNLS_2020_3009271
crossref_primary_10_1109_TSMC_2023_3283017
crossref_primary_10_1002_acs_3476
crossref_primary_10_1109_TCNS_2022_3203896
crossref_primary_10_1007_s11424_021_0150_0
crossref_primary_10_1007_s11432_020_3128_2
crossref_primary_10_1109_TNNLS_2023_3238336
crossref_primary_10_1017_aer_2024_19
crossref_primary_10_1109_TCYB_2023_3240983
crossref_primary_10_1002_rnc_7839
crossref_primary_10_1109_ACCESS_2021_3082430
crossref_primary_10_1016_j_oceaneng_2022_113166
crossref_primary_10_1109_ACCESS_2021_3119488
crossref_primary_10_1002_rnc_6746
crossref_primary_10_1016_j_amc_2022_127412
crossref_primary_10_1016_j_matcom_2024_08_023
crossref_primary_10_1109_TSMC_2021_3136207
crossref_primary_10_1002_acs_3363
crossref_primary_10_1109_ACCESS_2021_3112179
crossref_primary_10_1109_TNNLS_2022_3177839
crossref_primary_10_1007_s00034_022_02171_8
crossref_primary_10_1080_21642583_2022_2110539
crossref_primary_10_1109_TNNLS_2022_3186671
crossref_primary_10_1109_TSMC_2024_3505152
crossref_primary_10_1016_j_arcontrol_2022_03_005
crossref_primary_10_1002_asjc_2926
crossref_primary_10_1109_ACCESS_2022_3169480
crossref_primary_10_1109_TFUZZ_2021_3065538
crossref_primary_10_1002_rnc_5422
crossref_primary_10_1109_TFUZZ_2024_3423347
crossref_primary_10_1016_j_ejcon_2023_100883
crossref_primary_10_1109_JAS_2021_1003916
crossref_primary_10_1016_j_neucom_2020_11_027
crossref_primary_10_1109_TNNLS_2022_3153077
crossref_primary_10_3934_mbe_2023627
crossref_primary_10_1002_asjc_2923
crossref_primary_10_1109_TCYB_2021_3116950
crossref_primary_10_1080_00207721_2020_1871528
crossref_primary_10_1002_oca_3280
crossref_primary_10_1002_acs_3815
crossref_primary_10_1002_rnc_5768
crossref_primary_10_1016_j_jfranklin_2023_12_046
crossref_primary_10_1007_s40815_023_01634_7
crossref_primary_10_1109_TFUZZ_2022_3189412
crossref_primary_10_1007_s00034_021_01787_6
crossref_primary_10_1109_TFUZZ_2021_3069345
crossref_primary_10_1002_acs_3256
crossref_primary_10_1016_j_fss_2022_12_004
crossref_primary_10_1002_mma_9979
crossref_primary_10_1007_s12555_022_0134_4
crossref_primary_10_1049_tje2_12209
crossref_primary_10_1002_rnc_6861
crossref_primary_10_1016_j_neucom_2022_06_117
crossref_primary_10_1007_s11063_021_10575_x
crossref_primary_10_1007_s12559_023_10223_7
crossref_primary_10_1016_j_nahs_2022_101277
crossref_primary_10_1109_JETCAS_2023_3297012
crossref_primary_10_1016_j_isatra_2022_08_016
crossref_primary_10_1002_acs_3389
crossref_primary_10_1007_s12555_020_0629_9
crossref_primary_10_1109_TNNLS_2022_3201695
crossref_primary_10_1007_s11431_022_2126_7
crossref_primary_10_1002_mma_8635
crossref_primary_10_1109_TCSI_2020_3031663
crossref_primary_10_1109_TNNLS_2022_3154028
crossref_primary_10_1109_TNNLS_2022_3203074
crossref_primary_10_1109_TCNS_2022_3165082
crossref_primary_10_1109_TSMC_2022_3166930
crossref_primary_10_1177_01423312231168454
crossref_primary_10_3390_sym14081562
crossref_primary_10_1016_j_ins_2020_10_056
crossref_primary_10_1016_j_amc_2023_128430
crossref_primary_10_1109_TSMC_2021_3129469
crossref_primary_10_1002_asjc_2571
crossref_primary_10_1016_j_jestch_2024_101914
crossref_primary_10_3390_smartcities5010019
crossref_primary_10_1007_s11424_021_0201_6
crossref_primary_10_1016_j_jfranklin_2022_06_013
crossref_primary_10_1080_00207721_2025_2467838
crossref_primary_10_1109_TTE_2021_3083679
crossref_primary_10_1109_TNNLS_2022_3143494
crossref_primary_10_1002_oca_2899
crossref_primary_10_1016_j_eswa_2021_115873
crossref_primary_10_1016_j_conengprac_2023_105547
crossref_primary_10_1080_00207721_2021_2023687
crossref_primary_10_1016_j_neucom_2023_126529
crossref_primary_10_1109_TIE_2021_3127016
crossref_primary_10_1109_TSMC_2022_3167120
crossref_primary_10_1109_TCSII_2022_3159846
crossref_primary_10_1007_s00034_021_01716_7
crossref_primary_10_1109_TAES_2022_3185969
crossref_primary_10_1109_JAS_2021_1004314
crossref_primary_10_1016_j_ins_2023_119594
crossref_primary_10_1080_00207721_2024_2307954
crossref_primary_10_1109_TAC_2024_3424306
crossref_primary_10_1109_TSMC_2024_3389994
crossref_primary_10_1016_j_amc_2024_128725
crossref_primary_10_1109_TASE_2022_3189392
crossref_primary_10_1002_rnc_5793
crossref_primary_10_1109_TSTE_2023_3312119
crossref_primary_10_1109_TNNLS_2020_3042307
crossref_primary_10_3934_mmc_2024025
crossref_primary_10_1109_TNNLS_2021_3116464
crossref_primary_10_1109_TNNLS_2022_3143867
crossref_primary_10_1631_FITEE_2100565
crossref_primary_10_1109_TCSI_2022_3175748
crossref_primary_10_1109_TFUZZ_2021_3077317
crossref_primary_10_1109_TFUZZ_2024_3360283
crossref_primary_10_3390_machines10080617
crossref_primary_10_1049_cth2_12099
crossref_primary_10_1109_TCYB_2022_3223983
crossref_primary_10_1002_acs_3284
crossref_primary_10_1016_j_jfranklin_2022_08_008
crossref_primary_10_1007_s11063_020_10388_4
crossref_primary_10_1007_s11432_020_3086_5
crossref_primary_10_1109_TCYB_2022_3179302
crossref_primary_10_1016_j_isatra_2021_12_018
crossref_primary_10_1177_00202940221139568
crossref_primary_10_1109_TCYB_2023_3259967
crossref_primary_10_1007_s11071_022_07980_9
crossref_primary_10_1109_TCSII_2024_3371997
crossref_primary_10_1109_TNNLS_2021_3130812
crossref_primary_10_1016_j_ins_2021_02_071
crossref_primary_10_1016_j_ins_2021_12_120
crossref_primary_10_1016_j_ins_2022_12_087
crossref_primary_10_1109_TIM_2025_3545523
crossref_primary_10_1002_asjc_2967
crossref_primary_10_1109_TCYB_2020_3035907
crossref_primary_10_1109_TFUZZ_2024_3429513
crossref_primary_10_1002_rnc_6817
crossref_primary_10_1109_TAES_2022_3205566
crossref_primary_10_1109_JAS_2022_105428
crossref_primary_10_1080_00207721_2021_1943562
crossref_primary_10_1109_TSMC_2021_3131989
crossref_primary_10_3389_fnbot_2022_789842
crossref_primary_10_3390_sym14091949
crossref_primary_10_1080_00207721_2022_2025501
crossref_primary_10_1016_j_fss_2022_11_003
crossref_primary_10_1109_ACCESS_2021_3049301
crossref_primary_10_1109_TNNLS_2021_3055499
crossref_primary_10_1109_TNNLS_2021_3105681
crossref_primary_10_1109_TCYB_2022_3208124
crossref_primary_10_1016_j_cnsns_2024_108179
crossref_primary_10_1109_TSMC_2022_3205916
crossref_primary_10_3390_math13060976
crossref_primary_10_1177_09596518241240157
crossref_primary_10_1109_TASE_2023_3291716
crossref_primary_10_3390_app142210587
crossref_primary_10_1007_s00034_021_01930_3
crossref_primary_10_1109_TASE_2023_3324397
crossref_primary_10_1109_ACCESS_2021_3090797
crossref_primary_10_1007_s40815_021_01061_6
crossref_primary_10_1109_TICPS_2023_3298267
crossref_primary_10_1109_TCYB_2020_3044883
crossref_primary_10_1016_j_asr_2023_09_024
crossref_primary_10_1109_TAC_2022_3197562
crossref_primary_10_1155_2020_8643029
crossref_primary_10_1109_TNNLS_2023_3303863
crossref_primary_10_1007_s13042_021_01379_5
crossref_primary_10_1016_j_amc_2024_128888
crossref_primary_10_1109_ACCESS_2023_3330631
crossref_primary_10_1109_TNSE_2023_3321397
crossref_primary_10_1109_TCYB_2024_3440356
crossref_primary_10_1177_01423312221088656
crossref_primary_10_1109_TSMC_2023_3248227
crossref_primary_10_1109_TCNS_2023_3338256
crossref_primary_10_1109_TNSE_2021_3117881
crossref_primary_10_1007_s11063_021_10726_0
crossref_primary_10_1080_00207721_2021_1910876
crossref_primary_10_1109_TCYB_2023_3336992
crossref_primary_10_1109_TNNLS_2021_3136939
crossref_primary_10_1002_rnc_6290
crossref_primary_10_1016_j_rineng_2025_104234
crossref_primary_10_1016_j_neucom_2020_11_008
crossref_primary_10_1016_j_ijleo_2020_166055
crossref_primary_10_1155_2022_2438657
crossref_primary_10_1109_ACCESS_2021_3063053
crossref_primary_10_1016_j_ins_2023_01_056
crossref_primary_10_1109_TNNLS_2023_3243627
crossref_primary_10_1155_2021_3396482
crossref_primary_10_1007_s00034_021_01843_1
crossref_primary_10_1002_asjc_2821
crossref_primary_10_1016_j_jfranklin_2023_07_023
crossref_primary_10_1016_j_amc_2021_126817
crossref_primary_10_1109_TNNLS_2021_3131364
crossref_primary_10_1109_JAS_2022_105545
crossref_primary_10_1016_j_ins_2022_08_036
crossref_primary_10_1109_TCDS_2022_3145839
crossref_primary_10_1109_TFUZZ_2021_3098341
crossref_primary_10_1109_TSG_2024_3370912
crossref_primary_10_1002_rnc_5868
crossref_primary_10_1109_TCSI_2022_3225287
crossref_primary_10_1002_rnc_7801
crossref_primary_10_1109_TNNLS_2022_3230508
crossref_primary_10_1109_ACCESS_2024_3359428
crossref_primary_10_1007_s00034_022_01995_8
crossref_primary_10_1007_s12555_022_0534_5
crossref_primary_10_1007_s40815_021_01112_y
crossref_primary_10_1016_j_cnsns_2024_108036
crossref_primary_10_1109_TCYB_2021_3068631
crossref_primary_10_1016_j_neucom_2023_126694
crossref_primary_10_1080_00207721_2022_2053891
crossref_primary_10_1109_TCSII_2021_3050523
crossref_primary_10_1109_JAS_2020_1003605
crossref_primary_10_1016_j_jfranklin_2022_05_029
crossref_primary_10_1109_TSIPN_2023_3239654
crossref_primary_10_1016_j_isatra_2021_05_023
crossref_primary_10_1016_j_jfranklin_2023_03_055
crossref_primary_10_1016_j_jfranklin_2022_01_042
Cites_doi 10.1007/s11432-019-2687-7
10.1109/TNNLS.2019.2920368
10.1109/TFUZZ.2020.2982618
10.1109/TNNLS.2014.2302477
10.1016/j.automatica.2018.03.062
10.1109/JAS.2019.1911858
10.1016/j.automatica.2014.03.017
10.1016/j.automatica.2015.09.014
10.1177/0278364906063830
10.1109/TSMC.2019.2946248
10.1109/TCYB.2018.2865499
10.1016/j.automatica.2007.07.004
10.1016/j.automatica.2017.07.061
10.1109/TCYB.2016.2607166
10.1016/j.automatica.2012.11.010
10.1109/TCYB.2015.2508561
10.1109/TNNLS.2018.2869375
10.1109/TSMC.2019.2961371
10.1109/TAC.2002.1000285
10.1109/TFUZZ.2019.2961642
10.1109/TFUZZ.2012.2213260
10.1109/TNNLS.2018.2828140
10.1007/s11432-019-2637-9
10.1109/JPROC.2006.887293
10.1109/JAS.2019.1911837
10.1109/TSMC.2018.2816928
10.1109/TFUZZ.2019.2936333
10.1109/TNNLS.2017.2787642
10.1016/j.automatica.2006.04.022
10.1109/TII.2019.2894282
10.1109/TNNLS.2018.2803142
10.1007/s11424-009-9156-8
10.1007/s11432-019-9898-3
10.1016/S0005-1098(99)00015-1
10.1109/TAC.2011.2174666
10.1109/TSG.2015.2412779
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3003950
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2250
ExternalDocumentID 32663131
10_1109_TNNLS_2020_3003950
9140402
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61703051
  funderid: 10.13039/501100001809
– fundername: Project of Liaoning Province Science and Technology Program
  grantid: 2019-KF-03-13
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-caeedaabca9699227999dd14635ea819080a59e0f325f6a48f95f96da282b0823
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 13:31:36 EDT 2025
Mon Jun 30 04:03:19 EDT 2025
Mon Jul 21 06:03:05 EDT 2025
Wed Oct 01 00:44:52 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:30:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-caeedaabca9699227999dd14635ea819080a59e0f325f6a48f95f96da282b0823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1480-1872
0000-0002-6385-0497
0000-0002-0647-4050
0000-0001-9610-846X
PMID 32663131
PQID 2522221340
PQPubID 85436
PageCount 12
ParticipantIDs pubmed_primary_32663131
proquest_journals_2522221340
crossref_citationtrail_10_1109_TNNLS_2020_3003950
ieee_primary_9140402
proquest_miscellaneous_2424101730
crossref_primary_10_1109_TNNLS_2020_3003950
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
liu (ref25) 2002; 47
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1007/s11432-019-2687-7
– ident: ref36
  doi: 10.1109/TNNLS.2019.2920368
– ident: ref11
  doi: 10.1109/TFUZZ.2020.2982618
– ident: ref7
  doi: 10.1109/TNNLS.2014.2302477
– ident: ref20
  doi: 10.1016/j.automatica.2018.03.062
– ident: ref3
  doi: 10.1109/JAS.2019.1911858
– ident: ref16
  doi: 10.1016/j.automatica.2014.03.017
– ident: ref5
  doi: 10.1016/j.automatica.2015.09.014
– ident: ref21
  doi: 10.1177/0278364906063830
– ident: ref22
  doi: 10.1109/TSMC.2019.2946248
– ident: ref31
  doi: 10.1109/TCYB.2018.2865499
– ident: ref8
  doi: 10.1016/j.automatica.2007.07.004
– ident: ref32
  doi: 10.1016/j.automatica.2017.07.061
– ident: ref30
  doi: 10.1109/TCYB.2016.2607166
– ident: ref17
  doi: 10.1016/j.automatica.2012.11.010
– ident: ref19
  doi: 10.1109/TCYB.2015.2508561
– ident: ref33
  doi: 10.1109/TNNLS.2018.2869375
– ident: ref9
  doi: 10.1109/TSMC.2019.2961371
– volume: 47
  start-page: 848
  year: 2002
  ident: ref25
  article-title: Decentralized robust adaptive control of nonlinear systems with unmodeled dynamics
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2002.1000285
– ident: ref12
  doi: 10.1109/TFUZZ.2019.2961642
– ident: ref27
  doi: 10.1109/TFUZZ.2012.2213260
– ident: ref35
  doi: 10.1109/TNNLS.2018.2828140
– ident: ref2
  doi: 10.1007/s11432-019-2637-9
– ident: ref1
  doi: 10.1109/JPROC.2006.887293
– ident: ref24
  doi: 10.1109/JAS.2019.1911837
– ident: ref34
  doi: 10.1109/TSMC.2018.2816928
– ident: ref26
  doi: 10.1109/TFUZZ.2019.2936333
– ident: ref18
  doi: 10.1109/TNNLS.2017.2787642
– ident: ref23
  doi: 10.1016/j.automatica.2006.04.022
– ident: ref29
  doi: 10.1109/TII.2019.2894282
– ident: ref14
  doi: 10.1109/TNNLS.2018.2803142
– ident: ref4
  doi: 10.1007/s11424-009-9156-8
– ident: ref15
  doi: 10.1007/s11432-019-9898-3
– ident: ref28
  doi: 10.1016/S0005-1098(99)00015-1
– ident: ref10
  doi: 10.1109/TAC.2011.2174666
– ident: ref6
  doi: 10.1109/TSG.2015.2412779
SSID ssj0000605649
Score 2.7189841
Snippet This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2239
SubjectTerms Adaptive control
Adaptive event-triggered control
Algorithms
Control systems
Feedback control
Liapunov functions
Multi-agent systems
Multiagent systems
Neural networks
neural networks (NNs)
nonaffine multiagent systems
Nonlinear control
Nonlinear systems
Protocols
Radial basis function
Robustness
Uncertainty
unmodeled dynamics
Vehicle dynamics
Title Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear Multiagent Systems With Dynamic Uncertainties
URI https://ieeexplore.ieee.org/document/9140402
https://www.ncbi.nlm.nih.gov/pubmed/32663131
https://www.proquest.com/docview/2522221340
https://www.proquest.com/docview/2424101730
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1woUB4LLTISN_A28SOJj6UPVYjmwq7YWzSxHVpRslXJHuivZ8Z5SCBacbMUP5LM2P7GnvmGsXdeB5VLA8JTVhPtUyPq1NQiaJ8YA97ZmmKHz8vsbKk_rcxqi32YYmFCCNH5LMypGO_y_dpt6KjswBIXDDFHPsiLrI_Vms5TEsTlWUS7Ms2kkCpfjTEyiT1YlOXnL2gNSjRSKRzVUAY4RC6ZSlX6x5YUc6zcDTfjtnO6w87HF-69Tb7PN109d7d_cTn-7xc9Zo8G_MkPe4V5wrZC-5TtjLkd-DDVd9ktsXbAlSh7N3HxEXc7z0_IO1Is0KL_Rjk--aGHa1ov-VHv8c7XDS8R2zcNglcqEYiFGx7DfIGiuPhAkc6_XnYX_PhXCz8uHV_imNE1gehdn7Hl6cni6EwMeRqEUybthAPcaAFqBzYjmtscQaf3uAQrE4AQR5GAsSFplDRNBrporGls5gHNvZpu-p6z7XbdhpeMg3S1soVptLcaf0wBxgWrfYE9NSEvZiwdRVW5gcSccmlcVdGYSWwVJV2RpKtB0jP2fmpz3VN43Ft7l8Q01RwkNGN7o0ZUwyz_WUkEr5Io8bDV2-kxzk-6dIE2rDdYRyNGwmVPYZ0XvSZNfY8K-OrfY75mDyV50ET3yj223d1swj5CoK5-E3X_N4cOAK0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALBcpjSwEjcQNvEz-y8bGUVgvs5sKu2Fvk-EGrttmqZA_tr--M85BAgLhZih9JZmx_Y898Q8g7J72YcGWYw6wm0qWKVamqmJcuUco4qyuMHZ4X2XQpv6zUaot8GGJhvPfR-cyPsRjv8t3abvCo7EAjFwwyR95TUkrVRmsNJyoJIPMs4l2eZpxxMVn1UTKJPlgUxewb2IMczFQMSFWYAw6wSyZSkf6yKcUsK38HnHHjOdkh8_6VW3-T8_Gmqcb29jc2x__9pkfkYYdA6WGrMo_Jlq-fkJ0-uwPtJvsuuUXeDnPBitZRnH2E_c7RY_SPZAuw6X9glk966MwVrpj0qPV5p-tAC0D3IQB8xRLCWHNNY6CvwTgu2pGk0-9nzSn9dFObyzNLlzBmdE5AgtenZHlyvDiasi5TA7NCpQ2zBrZaYyprdIZEtxOAnc7BIiyUN4g58sQo7ZMguAqZkXnQKujMGTD4Krzre0a263XtXxBquK2EzlWQTkv4MblR1mvpcugp-Ek-ImkvqtJ2NOaYTeOijOZMosso6RIlXXaSHpH3Q5urlsTjn7V3UUxDzU5CI7Lfa0TZzfOfJQf4ypEUD1q9HR7DDMVrF1P79QbqSEBJsPAJqPO81aSh714B9_485htyf7qYz8rZ5-LrS_KAoz9NdLbcJ9vN9ca_AkDUVK_jPLgDGQUD-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Event-Triggered+Adaptive+Control+of+Nonaffine+Nonlinear+Multiagent+Systems+With+Dynamic+Uncertainties&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liang%2C+Hongjing&rft.au=Liu%2C+Guangliang&rft.au=Zhang%2C+Huaguang&rft.au=Huang%2C+Tingwen&rft.date=2021-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=5&rft.spage=2239&rft_id=info:doi/10.1109%2FTNNLS.2020.3003950&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon