Tensor hypercontraction. II. Least-squares renormalization
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohe...
Saved in:
| Published in | The Journal of chemical physics Vol. 137; no. 22; p. 224106 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
14.12.2012
|
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 1089-7690 |
| DOI | 10.1063/1.4768233 |
Cover
| Abstract | The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^5)$\end{document}O(N5) effort if exact integrals are decomposed, or \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry. |
|---|---|
| AbstractList | The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^5)$\end{document}O(N5) effort if exact integrals are decomposed, or \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry. The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry. The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry. |
| Author | Parrish, Robert M. Martínez, Todd J. Sherrill, C. David Hohenstein, Edward G. |
| Author_xml | – sequence: 1 givenname: Robert M. surname: Parrish fullname: Parrish, Robert M. – sequence: 2 givenname: Edward G. surname: Hohenstein fullname: Hohenstein, Edward G. – sequence: 3 givenname: Todd J. surname: Martínez fullname: Martínez, Todd J. – sequence: 4 givenname: C. David surname: Sherrill fullname: Sherrill, C. David |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23248986$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0DtPwzAUBWALFdEHDPwBlBGGpL624zhsqOJRqRJLmSPXuRZBSdzayVB-PSktDIjpLt890jlTMmpdi4RcA02ASj6HRGRSMc7PyASoyuNM5nREJpQyiHNJ5ZhMQ_iglELGxAUZM86EypWckPs1tsH56H2_RW9c23ltusq1SbRcJtEKdejisOu1xxB5bJ1vdF196gO5JOdW1wGvTndG3p4e14uXePX6vFw8rGLDU-hiw0o0glmltDZQgkVjEGkpNIDiUgsL1grNjbblIFKR50MXSDciFYwh8hm5PeZuvdv1GLqiqYLButYtuj4UwBTPuMi5HOjNifabBsti66tG-33x03cAd0dgvAvBo_0lQIvDlgUUpy0HO_9jTdV9Nx9Gqup_Pr4A5MJ1Ig |
| CitedBy_id | crossref_primary_10_1016_j_cpc_2024_109380 crossref_primary_10_1063_1_4889855 crossref_primary_10_1021_jp512974k crossref_primary_10_1063_1_4886584 crossref_primary_10_1063_1_4973710 crossref_primary_10_1063_5_0175956 crossref_primary_10_1063_1_4977994 crossref_primary_10_1103_PhysRevLett_123_136402 crossref_primary_10_1103_PRXQuantum_2_040352 crossref_primary_10_1021_acs_jctc_4c00085 crossref_primary_10_1063_1_4979498 crossref_primary_10_1063_1_5090605 crossref_primary_10_1080_00268976_2013_874599 crossref_primary_10_1080_03081087_2021_1965947 crossref_primary_10_1063_1_4959373 crossref_primary_10_1063_1_5092505 crossref_primary_10_1063_5_0137167 crossref_primary_10_1021_acs_jctc_4c00352 crossref_primary_10_1063_5_0143291 crossref_primary_10_1021_acs_jctc_3c00392 crossref_primary_10_1063_1_4928064 crossref_primary_10_1103_PRXQuantum_2_030305 crossref_primary_10_1080_00268976_2020_1769213 crossref_primary_10_1103_PhysRevC_99_034320 crossref_primary_10_1016_j_jcp_2017_03_055 crossref_primary_10_1021_acs_jpca_4c06666 crossref_primary_10_1021_acs_jctc_2c00460 crossref_primary_10_1021_acs_jctc_7b00343 crossref_primary_10_1063_5_0234183 crossref_primary_10_1063_5_0140101 crossref_primary_10_1039_C4CP00316K crossref_primary_10_1080_00268976_2016_1176262 crossref_primary_10_1063_1_4997997 crossref_primary_10_1080_00268976_2017_1288937 crossref_primary_10_1063_1_4813495 crossref_primary_10_1021_acs_jctc_1c00874 crossref_primary_10_1063_1_5037283 crossref_primary_10_1002_qua_24732 crossref_primary_10_1021_acs_jctc_0c00262 crossref_primary_10_1021_acs_jctc_2c00861 crossref_primary_10_1063_1_4973840 crossref_primary_10_1021_acs_jctc_8b00944 crossref_primary_10_1063_5_0215954 crossref_primary_10_1021_acs_jctc_3c00496 crossref_primary_10_1021_acs_jctc_3c00892 crossref_primary_10_1021_acs_jctc_0c00934 crossref_primary_10_1063_1_4876016 crossref_primary_10_1021_acs_jctc_8b00382 crossref_primary_10_1002_wcms_1536 crossref_primary_10_1021_acs_jctc_4c00489 crossref_primary_10_1063_5_0233523 crossref_primary_10_1063_5_0076588 crossref_primary_10_1002_wcms_1494 crossref_primary_10_1063_1_4894267 crossref_primary_10_1021_acs_jctc_2c00996 crossref_primary_10_1021_acs_jctc_3c00407 crossref_primary_10_1063_5_0143424 crossref_primary_10_1063_5_0219963 crossref_primary_10_1063_1_4905005 crossref_primary_10_1021_acs_jctc_2c00118 crossref_primary_10_1063_5_0192478 crossref_primary_10_1021_acs_jctc_4c01541 crossref_primary_10_1063_5_0015077 crossref_primary_10_1002_wcms_1445 crossref_primary_10_1063_1_5007066 crossref_primary_10_1021_acs_jctc_3c00251 crossref_primary_10_1021_acs_jctc_9b00820 crossref_primary_10_1021_acs_jctc_4c01787 crossref_primary_10_1063_1_4820484 crossref_primary_10_1063_1_4802773 crossref_primary_10_1063_5_0184406 crossref_primary_10_1063_1_4817184 crossref_primary_10_1021_acs_jctc_0c00600 crossref_primary_10_1021_acs_jctc_2c00763 crossref_primary_10_1088_2516_1075_acc4a0 crossref_primary_10_1063_5_0007615 crossref_primary_10_1021_ct400250u crossref_primary_10_1109_TCYB_2023_3265279 crossref_primary_10_1021_acs_jctc_1c00933 crossref_primary_10_1021_acs_jctc_2c00927 crossref_primary_10_1063_1_4979844 crossref_primary_10_1063_5_0004860 crossref_primary_10_1021_acs_jctc_7b00171 crossref_primary_10_1103_PhysRevC_104_044002 crossref_primary_10_1063_1_4768241 crossref_primary_10_1063_5_0071916 crossref_primary_10_1021_acs_jpca_3c07159 crossref_primary_10_1021_acs_jctc_7b00696 crossref_primary_10_1103_PRXQuantum_4_040303 crossref_primary_10_1063_1_4871981 crossref_primary_10_1021_acs_jctc_4c01716 crossref_primary_10_1021_acs_jctc_8b01256 crossref_primary_10_1063_5_0077770 crossref_primary_10_1063_1_4948438 crossref_primary_10_1021_acs_jctc_5b00762 crossref_primary_10_1063_1_4948318 crossref_primary_10_1021_acs_jctc_3c01038 crossref_primary_10_1063_5_0060099 crossref_primary_10_1021_acs_jpca_0c06019 crossref_primary_10_1063_1_5121867 crossref_primary_10_1021_acs_jctc_4c00152 crossref_primary_10_1021_acs_jctc_9b01019 crossref_primary_10_1021_acs_jctc_9b00963 crossref_primary_10_1063_5_0037240 crossref_primary_10_1021_acs_jctc_7b01113 crossref_primary_10_1002_wcms_1580 crossref_primary_10_1021_acs_jctc_8b00996 crossref_primary_10_1063_1_4819264 crossref_primary_10_1021_acs_jctc_4c00959 crossref_primary_10_1063_1_4945277 crossref_primary_10_1017_S0962492919000047 crossref_primary_10_1021_acs_jctc_0c01310 crossref_primary_10_1021_acs_jctc_3c00615 crossref_primary_10_1063_1_4996988 crossref_primary_10_1063_1_5025938 crossref_primary_10_1021_jp4021905 crossref_primary_10_1063_5_0134764 crossref_primary_10_1021_acs_jctc_1c00959 crossref_primary_10_1021_acs_jctc_9b00735 crossref_primary_10_1063_1_5109572 crossref_primary_10_1021_acs_jpca_1c03762 crossref_primary_10_1063_1_4907715 crossref_primary_10_1063_1_5129883 crossref_primary_10_1039_D1CC07090H crossref_primary_10_1021_acs_jpca_3c07172 crossref_primary_10_1063_1_4903195 crossref_primary_10_1021_acs_jctc_9b00854 crossref_primary_10_1063_1_4983277 crossref_primary_10_1063_5_0004837 crossref_primary_10_1021_acs_jctc_9b01025 crossref_primary_10_1063_1_4855255 crossref_primary_10_1063_5_0035233 crossref_primary_10_1021_acs_jpca_4c02431 crossref_primary_10_1063_1_4833565 crossref_primary_10_1080_00268976_2017_1346312 crossref_primary_10_1063_5_0180092 crossref_primary_10_1103_PhysRevB_102_161104 crossref_primary_10_1021_acs_jctc_7b00807 crossref_primary_10_1063_1_4812257 crossref_primary_10_1002_jcc_24293 crossref_primary_10_1063_5_0131683 crossref_primary_10_1021_acs_jpca_0c02826 crossref_primary_10_1063_1_5017621 crossref_primary_10_1063_1_4795514 crossref_primary_10_3389_fphy_2020_00379 crossref_primary_10_1021_acs_jctc_7b01053 crossref_primary_10_1021_acs_jctc_9b00985 crossref_primary_10_1002_wcms_70005 crossref_primary_10_1063_5_0003438 crossref_primary_10_1063_1_4955316 crossref_primary_10_1063_5_0055914 crossref_primary_10_1063_5_0232181 crossref_primary_10_1063_1_4985085 crossref_primary_10_1021_acs_jctc_4c00936 crossref_primary_10_1103_PhysRevLett_122_230401 crossref_primary_10_1063_1_5119695 crossref_primary_10_1063_5_0058766 crossref_primary_10_1063_5_0142780 crossref_primary_10_1002_jcc_25788 crossref_primary_10_1021_acs_jctc_7b00801 crossref_primary_10_1063_1_5001569 crossref_primary_10_1021_acs_jctc_6b01235 crossref_primary_10_1021_acs_jctc_2c00720 crossref_primary_10_1063_1_5021832 crossref_primary_10_1063_5_0007417 crossref_primary_10_1021_acs_jctc_5b00272 crossref_primary_10_1103_PRXQuantum_6_010355 crossref_primary_10_1103_PhysRevLett_111_132505 crossref_primary_10_1063_5_0135113 crossref_primary_10_1016_j_jcp_2015_09_014 crossref_primary_10_1021_acs_jctc_9b01205 crossref_primary_10_1021_acs_jpca_4c07742 crossref_primary_10_1063_5_0038764 crossref_primary_10_1063_1_5138643 crossref_primary_10_1063_5_0202787 crossref_primary_10_1039_D1CS01184G crossref_primary_10_1021_acs_jctc_1c00101 crossref_primary_10_1021_acs_jctc_1c00100 |
| Cites_doi | 10.1063/1.2958921 10.1016/j.cplett.2004.07.061 10.1002/jcc.540100111 10.1063/1.1679012 10.1021/j100322a017 10.1063/1.4732310 10.1063/1.459921 10.1063/1.1445115 10.1126/science.271.5245.51 10.1016/0009-2614(87)87028-8 10.1063/1.2079967 10.1021/ct100199k 10.1039/b204199p 10.1063/1.2834222 10.1063/1.455269 10.1063/1.4768241 10.1063/1.3116784 10.1021/jp9825157 10.1063/1.463176 10.1016/0009-2614(93)80125-9 10.1063/1.469408 10.1063/1.451955 10.1063/1.467520 10.1016/j.chemphys.2008.10.036 10.1063/1.1578621 10.1007/BF02310791 10.1063/1.438728 10.1063/1.452039 10.1016/0009-2614(96)00175-3 10.1063/1.468148 10.1016/0009-2614(86)80099-9 10.1103/PhysRev.46.618 10.1080/00268976.2010.523713 10.1063/1.469088 10.1016/j.cplett.2004.09.041 10.1063/1.3693908 10.1063/1.454033 10.1063/1.443164 10.1063/1.458178 10.1080/00268979300100651 10.1002/qua.560110108 10.1063/1.466350 10.1063/1.456153 10.1063/1.2736701 10.1063/1.451237 10.1063/1.458819 10.1002/wcms.93 10.1016/0009-2614(94)01128-1 10.1016/0009-2614(93)89151-7 10.1093/imanum/dri015 10.1007/s002140050249 10.1063/1.3303203 10.1063/1.3514201 10.1002/qua.560120408 10.1016/0009-2614(85)80121-4 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1063/1.4768233 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | 23248986 10_1063_1_4768233 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 NPM 7X8 |
| ID | FETCH-LOGICAL-c351t-c2dec42f88aac1d1feccee0d4a11836a4f1ff4a3cafdaac549968215b45422ee3 |
| ISSN | 0021-9606 1089-7690 |
| IngestDate | Thu Oct 02 04:21:06 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Tue Jul 01 00:44:51 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c351t-c2dec42f88aac1d1feccee0d4a11836a4f1ff4a3cafdaac549968215b45422ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23248986 |
| PQID | 1283734936 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1283734936 pubmed_primary_23248986 crossref_primary_10_1063_1_4768233 crossref_citationtrail_10_1063_1_4768233 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-14 |
| PublicationDateYYYYMMDD | 2012-12-14 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2012 |
| References | (2023062521201805500_c25) 1990; 93 (2023062521201805500_c58) 2004; 398 (2023062521201805500_c45) 1987; 133 (2023062521201805500_c11) 1993; 213 (2023062521201805500_c36) 1970; 35 (2023062521201805500_c1) 1989 (2023062521201805500_c17) 2003; 118 (2023062521201805500_c20) 1985; 116 (2023062521201805500_c37) 2004 (2023062521201805500_c51) 2008; 129 (2023062521201805500_c42) 1993; 209 (2023062521201805500_c30) 1995 (2023062521201805500_c38) 1934; 46 2023062521201805500_c43 (2023062521201805500_c2) 1989; 10 (2023062521201805500_c7) 1996; 271 (2023062521201805500_c6) 1996; 253 (2023062521201805500_c5) 1994; 230 (2023062521201805500_c29) 1995; 102 (2023062521201805500_c59) 2010; 132 (2023062521201805500_c4) 2012; 136 (2023062521201805500_c26) 1994; 101 (2023062521201805500_c18) 2007; 126 (2023062521201805500_c41) 1995; 102 (2023062521201805500_c44) 2011; 134 (2023062521201805500_c22) 1987; 86 (2023062521201805500_c34) 2010; 6 (2023062521201805500_c54) 1988; 89 (2023062521201805500_c46) 2010; 108 (2023062521201805500_c13) 1997; 97 (2023062521201805500_c32) 2008; 128 (2023062521201805500_c9) 1977; 11 (2023062521201805500_c28) 1994; 100 (2023062521201805500_c35) 2012; 137 (2023062521201805500_c12) 1994; 101 (2023062521201805500_c16) 1986; 132 (2023062521201805500_c33) 2009; 356 (2023062521201805500_c55) 2012; 137 (2023062521201805500_c3) 2005; 123 (2023062521201805500_c39) 1988; 88 (2023062521201805500_c47) 2012; 2 (2023062521201805500_c14) 2002; 4 (2023062521201805500_c56) 1991; 94 (2023062521201805500_c27) 1992; 97 (2023062521201805500_c49) 2002; 116 (2023062521201805500_c24) 1990; 92 (2023062521201805500_c8) 1973; 58 (2023062521201805500_c31) 1999; 103 (2023062521201805500_c15) 1977; 12 (2023062521201805500_c53) 1987; 86 (2023062521201805500_c57) 2004; 395 (2023062521201805500_c23) 1988; 92 (2023062521201805500_c40) 1993; 78 (2023062521201805500_c48) 1989; 90 (2023062521201805500_c50) 2005; 25 (2023062521201805500_c21) 1986; 85 (2023062521201805500_c10) 1979; 71 (2023062521201805500_c19) 2009; 130 (2023062521201805500_c52) 1982; 76 |
| References_xml | – volume-title: Multi-way Analysis with Applications in the Chemical Sciences year: 2004 ident: 2023062521201805500_c37 – volume: 129 start-page: 044112 year: 2008 ident: 2023062521201805500_c51 publication-title: J. Chem. Phys. doi: 10.1063/1.2958921 – volume: 395 start-page: 190 year: 2004 ident: 2023062521201805500_c57 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.07.061 – volume: 10 start-page: 104 year: 1989 ident: 2023062521201805500_c2 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540100111 – volume: 58 start-page: 4496 year: 1973 ident: 2023062521201805500_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.1679012 – start-page: 1132 volume-title: Modern Electronic Structure Theory year: 1995 ident: 2023062521201805500_c30 – volume: 92 start-page: 3091 year: 1988 ident: 2023062521201805500_c23 publication-title: J. Phys. Chem. doi: 10.1021/j100322a017 – volume: 137 start-page: 044103 year: 2012 ident: 2023062521201805500_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.4732310 – volume: 94 start-page: 1985 year: 1991 ident: 2023062521201805500_c56 publication-title: J. Chem. Phys. doi: 10.1063/1.459921 – volume: 116 start-page: 3175 year: 2002 ident: 2023062521201805500_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.1445115 – volume: 271 start-page: 51 year: 1996 ident: 2023062521201805500_c7 publication-title: Science doi: 10.1126/science.271.5245.51 – volume: 133 start-page: 91 year: 1987 ident: 2023062521201805500_c45 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(87)87028-8 – volume: 123 start-page: 184101 year: 2005 ident: 2023062521201805500_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.2079967 – volume: 6 start-page: 2325 year: 2010 ident: 2023062521201805500_c34 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100199k – volume: 4 start-page: 4285 year: 2002 ident: 2023062521201805500_c14 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b204199p – volume: 128 start-page: 104103 year: 2008 ident: 2023062521201805500_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.2834222 – volume: 89 start-page: 7382 year: 1988 ident: 2023062521201805500_c54 publication-title: J. Chem. Phys. doi: 10.1063/1.455269 – volume: 137 start-page: 221101 year: 2012 ident: 2023062521201805500_c55 publication-title: J. Chem. Phys. doi: 10.1063/1.4768241 – volume: 130 start-page: 154107 year: 2009 ident: 2023062521201805500_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.3116784 – volume: 103 start-page: 1913 year: 1999 ident: 2023062521201805500_c31 publication-title: J. Phys. Chem. A doi: 10.1021/jp9825157 – volume: 97 start-page: 1876 year: 1992 ident: 2023062521201805500_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.463176 – volume: 209 start-page: 506 year: 1993 ident: 2023062521201805500_c42 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)80125-9 – volume: 102 start-page: 346 year: 1995 ident: 2023062521201805500_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.469408 – volume: 86 start-page: 3522 year: 1987 ident: 2023062521201805500_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.451955 – volume: 101 start-page: 4028 year: 1994 ident: 2023062521201805500_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.467520 – volume: 356 start-page: 98 year: 2009 ident: 2023062521201805500_c33 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2008.10.036 – volume: 118 start-page: 9481 year: 2003 ident: 2023062521201805500_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.1578621 – volume: 35 start-page: 283 year: 1970 ident: 2023062521201805500_c36 publication-title: Psychometrika doi: 10.1007/BF02310791 – volume: 71 start-page: 3396 year: 1979 ident: 2023062521201805500_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.438728 – volume: 86 start-page: 2881 year: 1987 ident: 2023062521201805500_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.452039 – volume: 253 start-page: 268 year: 1996 ident: 2023062521201805500_c6 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00175-3 – volume: 101 start-page: 400 year: 1994 ident: 2023062521201805500_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.468148 – volume: 132 start-page: 154 year: 1986 ident: 2023062521201805500_c16 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(86)80099-9 – volume: 46 start-page: 618 year: 1934 ident: 2023062521201805500_c38 publication-title: Phys. Rev. doi: 10.1103/PhysRev.46.618 – volume: 108 start-page: 2759 year: 2010 ident: 2023062521201805500_c46 publication-title: Mol. Phys. doi: 10.1080/00268976.2010.523713 – volume: 102 start-page: 7564 year: 1995 ident: 2023062521201805500_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.469088 – volume: 398 start-page: 56 year: 2004 ident: 2023062521201805500_c58 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.09.041 – volume: 136 start-page: 144107 year: 2012 ident: 2023062521201805500_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.3693908 – volume: 88 start-page: 2547 year: 1988 ident: 2023062521201805500_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.454033 – volume: 76 start-page: 1910 year: 1982 ident: 2023062521201805500_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.443164 – volume-title: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory year: 1989 ident: 2023062521201805500_c1 – volume: 92 start-page: 1163 year: 1990 ident: 2023062521201805500_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.458178 – volume: 78 start-page: 997 year: 1993 ident: 2023062521201805500_c40 publication-title: Mol. Phys. doi: 10.1080/00268979300100651 – volume: 11 start-page: 81 year: 1977 ident: 2023062521201805500_c9 publication-title: Int. J. Quantum Chem., Symp. doi: 10.1002/qua.560110108 – volume: 100 start-page: 3631 year: 1994 ident: 2023062521201805500_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.466350 – volume: 90 start-page: 1007 year: 1989 ident: 2023062521201805500_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 126 start-page: 194106 year: 2007 ident: 2023062521201805500_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.2736701 – volume: 85 start-page: 1462 year: 1986 ident: 2023062521201805500_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.451237 – volume: 93 start-page: 3397 year: 1990 ident: 2023062521201805500_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.458819 – volume: 2 start-page: 556 year: 2012 ident: 2023062521201805500_c47 publication-title: WIREs: Comput. Mol. Sci. doi: 10.1002/wcms.93 – volume: 230 start-page: 8 year: 1994 ident: 2023062521201805500_c5 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)01128-1 – volume: 213 start-page: 514 year: 1993 ident: 2023062521201805500_c11 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)89151-7 – volume: 25 start-page: 685 year: 2005 ident: 2023062521201805500_c50 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dri015 – volume: 97 start-page: 158 year: 1997 ident: 2023062521201805500_c13 publication-title: Theor. Chem. Acc. doi: 10.1007/s002140050249 – volume: 132 start-page: 054103 year: 2010 ident: 2023062521201805500_c59 publication-title: J. Chem. Phys. doi: 10.1063/1.3303203 – volume: 134 start-page: 054118 year: 2011 ident: 2023062521201805500_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.3514201 – ident: 2023062521201805500_c43 – volume: 12 start-page: 683 year: 1977 ident: 2023062521201805500_c15 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560120408 – volume: 116 start-page: 39 year: 1985 ident: 2023062521201805500_c20 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)80121-4 |
| SSID | ssj0001724 |
| Score | 2.5152526 |
| Snippet | The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 224106 |
| Title | Tensor hypercontraction. II. Least-squares renormalization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23248986 https://www.proquest.com/docview/1283734936 |
| Volume | 137 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXBOOrY6CAeECKHOLYSZO9TR2wTRRNopP2Fjn-EA9TCmn6wl-_cy5x13VIg5eoStwkvbvad-f7_Y6QD7kqpK5ETmWSaCrSyYTK1GqqK2tibjmvOpKk2ffs-FycXqQX63LbDl3SVpH6cyuu5H-0CudArw4l-w-a9TeFE_AZ9AtH0DAc76ZjiEEXTfgTYsmmqzlHlEIUnpxEjjl12dLl75VDGIWNqZ13etnDLq_7pGt0WOeXqoFCAJMe3uc-k43rRr8uxw5nkTcKB_JYDo0zsRF0-NVfdlwF3Y78UY0J6_lC6_DUX0d-SNwAmUbX6uz7dATrOqMgDNTDAxh1YREuMDirxnlBJxn2BfXTLpK99PaF4OSt-RwcKJdaiARERQkyZmxyZt9Yy3yFYbe3nvGSlf1X75OdBCb-eER2Do9m33745Ro8uJ6qG997oJ_K-Cf_3E2n5S-RSOeRzJ-Qx73KgkO0i6fknql3ycPp0MFvlzw4Qw0-IwdoKcGWpQRgKcGGpQQ3LOU5Of_yeT49pn3XDKp4ylqqEm2USGyeS6mYZhb-pMbEWkiIJXkmhWXWCsmVtBpGuPwA_EaWViIVSWIMf0FG9aI2r0hgCmHjTMdCZUaA6yklSyrBXeUxi63Ox-TjIJZS9ZTyrrPJZbkl_jF574f-Qh6V2wa9G2Rbgqjc1pWszWK1LJkjaeKi4NmYvESh-9u4mCAv8mzvLo94TR6trXafjNpmZd6AW9lWb3vDuAK9eHXU |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+hypercontraction.+II.+Least-squares+renormalization&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Parrish%2C+Robert+M.&rft.au=Hohenstein%2C+Edward+G.&rft.au=Mart%C3%ADnez%2C+Todd+J.&rft.au=Sherrill%2C+C.+David&rft.date=2012-12-14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=137&rft.issue=22&rft_id=info:doi/10.1063%2F1.4768233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4768233 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |