Tensor hypercontraction. II. Least-squares renormalization

The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohe...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 137; no. 22; p. 224106
Main Authors Parrish, Robert M., Hohenstein, Edward G., Martínez, Todd J., Sherrill, C. David
Format Journal Article
LanguageEnglish
Published United States 14.12.2012
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.4768233

Cover

Abstract The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^5)$\end{document}O(N5) effort if exact integrals are decomposed, or \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
AbstractList The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^5)$\end{document}O(N5) effort if exact integrals are decomposed, or \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust \documentclass[12pt]{minimal}\begin{document}${\cal O}(N^4)$\end{document}O(N4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Author Parrish, Robert M.
Martínez, Todd J.
Sherrill, C. David
Hohenstein, Edward G.
Author_xml – sequence: 1
  givenname: Robert M.
  surname: Parrish
  fullname: Parrish, Robert M.
– sequence: 2
  givenname: Edward G.
  surname: Hohenstein
  fullname: Hohenstein, Edward G.
– sequence: 3
  givenname: Todd J.
  surname: Martínez
  fullname: Martínez, Todd J.
– sequence: 4
  givenname: C. David
  surname: Sherrill
  fullname: Sherrill, C. David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23248986$$D View this record in MEDLINE/PubMed
BookMark eNpt0DtPwzAUBWALFdEHDPwBlBGGpL624zhsqOJRqRJLmSPXuRZBSdzayVB-PSktDIjpLt890jlTMmpdi4RcA02ASj6HRGRSMc7PyASoyuNM5nREJpQyiHNJ5ZhMQ_iglELGxAUZM86EypWckPs1tsH56H2_RW9c23ltusq1SbRcJtEKdejisOu1xxB5bJ1vdF196gO5JOdW1wGvTndG3p4e14uXePX6vFw8rGLDU-hiw0o0glmltDZQgkVjEGkpNIDiUgsL1grNjbblIFKR50MXSDciFYwh8hm5PeZuvdv1GLqiqYLButYtuj4UwBTPuMi5HOjNifabBsti66tG-33x03cAd0dgvAvBo_0lQIvDlgUUpy0HO_9jTdV9Nx9Gqup_Pr4A5MJ1Ig
CitedBy_id crossref_primary_10_1016_j_cpc_2024_109380
crossref_primary_10_1063_1_4889855
crossref_primary_10_1021_jp512974k
crossref_primary_10_1063_1_4886584
crossref_primary_10_1063_1_4973710
crossref_primary_10_1063_5_0175956
crossref_primary_10_1063_1_4977994
crossref_primary_10_1103_PhysRevLett_123_136402
crossref_primary_10_1103_PRXQuantum_2_040352
crossref_primary_10_1021_acs_jctc_4c00085
crossref_primary_10_1063_1_4979498
crossref_primary_10_1063_1_5090605
crossref_primary_10_1080_00268976_2013_874599
crossref_primary_10_1080_03081087_2021_1965947
crossref_primary_10_1063_1_4959373
crossref_primary_10_1063_1_5092505
crossref_primary_10_1063_5_0137167
crossref_primary_10_1021_acs_jctc_4c00352
crossref_primary_10_1063_5_0143291
crossref_primary_10_1021_acs_jctc_3c00392
crossref_primary_10_1063_1_4928064
crossref_primary_10_1103_PRXQuantum_2_030305
crossref_primary_10_1080_00268976_2020_1769213
crossref_primary_10_1103_PhysRevC_99_034320
crossref_primary_10_1016_j_jcp_2017_03_055
crossref_primary_10_1021_acs_jpca_4c06666
crossref_primary_10_1021_acs_jctc_2c00460
crossref_primary_10_1021_acs_jctc_7b00343
crossref_primary_10_1063_5_0234183
crossref_primary_10_1063_5_0140101
crossref_primary_10_1039_C4CP00316K
crossref_primary_10_1080_00268976_2016_1176262
crossref_primary_10_1063_1_4997997
crossref_primary_10_1080_00268976_2017_1288937
crossref_primary_10_1063_1_4813495
crossref_primary_10_1021_acs_jctc_1c00874
crossref_primary_10_1063_1_5037283
crossref_primary_10_1002_qua_24732
crossref_primary_10_1021_acs_jctc_0c00262
crossref_primary_10_1021_acs_jctc_2c00861
crossref_primary_10_1063_1_4973840
crossref_primary_10_1021_acs_jctc_8b00944
crossref_primary_10_1063_5_0215954
crossref_primary_10_1021_acs_jctc_3c00496
crossref_primary_10_1021_acs_jctc_3c00892
crossref_primary_10_1021_acs_jctc_0c00934
crossref_primary_10_1063_1_4876016
crossref_primary_10_1021_acs_jctc_8b00382
crossref_primary_10_1002_wcms_1536
crossref_primary_10_1021_acs_jctc_4c00489
crossref_primary_10_1063_5_0233523
crossref_primary_10_1063_5_0076588
crossref_primary_10_1002_wcms_1494
crossref_primary_10_1063_1_4894267
crossref_primary_10_1021_acs_jctc_2c00996
crossref_primary_10_1021_acs_jctc_3c00407
crossref_primary_10_1063_5_0143424
crossref_primary_10_1063_5_0219963
crossref_primary_10_1063_1_4905005
crossref_primary_10_1021_acs_jctc_2c00118
crossref_primary_10_1063_5_0192478
crossref_primary_10_1021_acs_jctc_4c01541
crossref_primary_10_1063_5_0015077
crossref_primary_10_1002_wcms_1445
crossref_primary_10_1063_1_5007066
crossref_primary_10_1021_acs_jctc_3c00251
crossref_primary_10_1021_acs_jctc_9b00820
crossref_primary_10_1021_acs_jctc_4c01787
crossref_primary_10_1063_1_4820484
crossref_primary_10_1063_1_4802773
crossref_primary_10_1063_5_0184406
crossref_primary_10_1063_1_4817184
crossref_primary_10_1021_acs_jctc_0c00600
crossref_primary_10_1021_acs_jctc_2c00763
crossref_primary_10_1088_2516_1075_acc4a0
crossref_primary_10_1063_5_0007615
crossref_primary_10_1021_ct400250u
crossref_primary_10_1109_TCYB_2023_3265279
crossref_primary_10_1021_acs_jctc_1c00933
crossref_primary_10_1021_acs_jctc_2c00927
crossref_primary_10_1063_1_4979844
crossref_primary_10_1063_5_0004860
crossref_primary_10_1021_acs_jctc_7b00171
crossref_primary_10_1103_PhysRevC_104_044002
crossref_primary_10_1063_1_4768241
crossref_primary_10_1063_5_0071916
crossref_primary_10_1021_acs_jpca_3c07159
crossref_primary_10_1021_acs_jctc_7b00696
crossref_primary_10_1103_PRXQuantum_4_040303
crossref_primary_10_1063_1_4871981
crossref_primary_10_1021_acs_jctc_4c01716
crossref_primary_10_1021_acs_jctc_8b01256
crossref_primary_10_1063_5_0077770
crossref_primary_10_1063_1_4948438
crossref_primary_10_1021_acs_jctc_5b00762
crossref_primary_10_1063_1_4948318
crossref_primary_10_1021_acs_jctc_3c01038
crossref_primary_10_1063_5_0060099
crossref_primary_10_1021_acs_jpca_0c06019
crossref_primary_10_1063_1_5121867
crossref_primary_10_1021_acs_jctc_4c00152
crossref_primary_10_1021_acs_jctc_9b01019
crossref_primary_10_1021_acs_jctc_9b00963
crossref_primary_10_1063_5_0037240
crossref_primary_10_1021_acs_jctc_7b01113
crossref_primary_10_1002_wcms_1580
crossref_primary_10_1021_acs_jctc_8b00996
crossref_primary_10_1063_1_4819264
crossref_primary_10_1021_acs_jctc_4c00959
crossref_primary_10_1063_1_4945277
crossref_primary_10_1017_S0962492919000047
crossref_primary_10_1021_acs_jctc_0c01310
crossref_primary_10_1021_acs_jctc_3c00615
crossref_primary_10_1063_1_4996988
crossref_primary_10_1063_1_5025938
crossref_primary_10_1021_jp4021905
crossref_primary_10_1063_5_0134764
crossref_primary_10_1021_acs_jctc_1c00959
crossref_primary_10_1021_acs_jctc_9b00735
crossref_primary_10_1063_1_5109572
crossref_primary_10_1021_acs_jpca_1c03762
crossref_primary_10_1063_1_4907715
crossref_primary_10_1063_1_5129883
crossref_primary_10_1039_D1CC07090H
crossref_primary_10_1021_acs_jpca_3c07172
crossref_primary_10_1063_1_4903195
crossref_primary_10_1021_acs_jctc_9b00854
crossref_primary_10_1063_1_4983277
crossref_primary_10_1063_5_0004837
crossref_primary_10_1021_acs_jctc_9b01025
crossref_primary_10_1063_1_4855255
crossref_primary_10_1063_5_0035233
crossref_primary_10_1021_acs_jpca_4c02431
crossref_primary_10_1063_1_4833565
crossref_primary_10_1080_00268976_2017_1346312
crossref_primary_10_1063_5_0180092
crossref_primary_10_1103_PhysRevB_102_161104
crossref_primary_10_1021_acs_jctc_7b00807
crossref_primary_10_1063_1_4812257
crossref_primary_10_1002_jcc_24293
crossref_primary_10_1063_5_0131683
crossref_primary_10_1021_acs_jpca_0c02826
crossref_primary_10_1063_1_5017621
crossref_primary_10_1063_1_4795514
crossref_primary_10_3389_fphy_2020_00379
crossref_primary_10_1021_acs_jctc_7b01053
crossref_primary_10_1021_acs_jctc_9b00985
crossref_primary_10_1002_wcms_70005
crossref_primary_10_1063_5_0003438
crossref_primary_10_1063_1_4955316
crossref_primary_10_1063_5_0055914
crossref_primary_10_1063_5_0232181
crossref_primary_10_1063_1_4985085
crossref_primary_10_1021_acs_jctc_4c00936
crossref_primary_10_1103_PhysRevLett_122_230401
crossref_primary_10_1063_1_5119695
crossref_primary_10_1063_5_0058766
crossref_primary_10_1063_5_0142780
crossref_primary_10_1002_jcc_25788
crossref_primary_10_1021_acs_jctc_7b00801
crossref_primary_10_1063_1_5001569
crossref_primary_10_1021_acs_jctc_6b01235
crossref_primary_10_1021_acs_jctc_2c00720
crossref_primary_10_1063_1_5021832
crossref_primary_10_1063_5_0007417
crossref_primary_10_1021_acs_jctc_5b00272
crossref_primary_10_1103_PRXQuantum_6_010355
crossref_primary_10_1103_PhysRevLett_111_132505
crossref_primary_10_1063_5_0135113
crossref_primary_10_1016_j_jcp_2015_09_014
crossref_primary_10_1021_acs_jctc_9b01205
crossref_primary_10_1021_acs_jpca_4c07742
crossref_primary_10_1063_5_0038764
crossref_primary_10_1063_1_5138643
crossref_primary_10_1063_5_0202787
crossref_primary_10_1039_D1CS01184G
crossref_primary_10_1021_acs_jctc_1c00101
crossref_primary_10_1021_acs_jctc_1c00100
Cites_doi 10.1063/1.2958921
10.1016/j.cplett.2004.07.061
10.1002/jcc.540100111
10.1063/1.1679012
10.1021/j100322a017
10.1063/1.4732310
10.1063/1.459921
10.1063/1.1445115
10.1126/science.271.5245.51
10.1016/0009-2614(87)87028-8
10.1063/1.2079967
10.1021/ct100199k
10.1039/b204199p
10.1063/1.2834222
10.1063/1.455269
10.1063/1.4768241
10.1063/1.3116784
10.1021/jp9825157
10.1063/1.463176
10.1016/0009-2614(93)80125-9
10.1063/1.469408
10.1063/1.451955
10.1063/1.467520
10.1016/j.chemphys.2008.10.036
10.1063/1.1578621
10.1007/BF02310791
10.1063/1.438728
10.1063/1.452039
10.1016/0009-2614(96)00175-3
10.1063/1.468148
10.1016/0009-2614(86)80099-9
10.1103/PhysRev.46.618
10.1080/00268976.2010.523713
10.1063/1.469088
10.1016/j.cplett.2004.09.041
10.1063/1.3693908
10.1063/1.454033
10.1063/1.443164
10.1063/1.458178
10.1080/00268979300100651
10.1002/qua.560110108
10.1063/1.466350
10.1063/1.456153
10.1063/1.2736701
10.1063/1.451237
10.1063/1.458819
10.1002/wcms.93
10.1016/0009-2614(94)01128-1
10.1016/0009-2614(93)89151-7
10.1093/imanum/dri015
10.1007/s002140050249
10.1063/1.3303203
10.1063/1.3514201
10.1002/qua.560120408
10.1016/0009-2614(85)80121-4
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.4768233
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 23248986
10_1063_1_4768233
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
ADXHL
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
NPM
7X8
ID FETCH-LOGICAL-c351t-c2dec42f88aac1d1feccee0d4a11836a4f1ff4a3cafdaac549968215b45422ee3
ISSN 0021-9606
1089-7690
IngestDate Thu Oct 02 04:21:06 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Tue Jul 01 00:44:51 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-c2dec42f88aac1d1feccee0d4a11836a4f1ff4a3cafdaac549968215b45422ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23248986
PQID 1283734936
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1283734936
pubmed_primary_23248986
crossref_primary_10_1063_1_4768233
crossref_citationtrail_10_1063_1_4768233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-14
PublicationDateYYYYMMDD 2012-12-14
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2012
References (2023062521201805500_c25) 1990; 93
(2023062521201805500_c58) 2004; 398
(2023062521201805500_c45) 1987; 133
(2023062521201805500_c11) 1993; 213
(2023062521201805500_c36) 1970; 35
(2023062521201805500_c1) 1989
(2023062521201805500_c17) 2003; 118
(2023062521201805500_c20) 1985; 116
(2023062521201805500_c37) 2004
(2023062521201805500_c51) 2008; 129
(2023062521201805500_c42) 1993; 209
(2023062521201805500_c30) 1995
(2023062521201805500_c38) 1934; 46
2023062521201805500_c43
(2023062521201805500_c2) 1989; 10
(2023062521201805500_c7) 1996; 271
(2023062521201805500_c6) 1996; 253
(2023062521201805500_c5) 1994; 230
(2023062521201805500_c29) 1995; 102
(2023062521201805500_c59) 2010; 132
(2023062521201805500_c4) 2012; 136
(2023062521201805500_c26) 1994; 101
(2023062521201805500_c18) 2007; 126
(2023062521201805500_c41) 1995; 102
(2023062521201805500_c44) 2011; 134
(2023062521201805500_c22) 1987; 86
(2023062521201805500_c34) 2010; 6
(2023062521201805500_c54) 1988; 89
(2023062521201805500_c46) 2010; 108
(2023062521201805500_c13) 1997; 97
(2023062521201805500_c32) 2008; 128
(2023062521201805500_c9) 1977; 11
(2023062521201805500_c28) 1994; 100
(2023062521201805500_c35) 2012; 137
(2023062521201805500_c12) 1994; 101
(2023062521201805500_c16) 1986; 132
(2023062521201805500_c33) 2009; 356
(2023062521201805500_c55) 2012; 137
(2023062521201805500_c3) 2005; 123
(2023062521201805500_c39) 1988; 88
(2023062521201805500_c47) 2012; 2
(2023062521201805500_c14) 2002; 4
(2023062521201805500_c56) 1991; 94
(2023062521201805500_c27) 1992; 97
(2023062521201805500_c49) 2002; 116
(2023062521201805500_c24) 1990; 92
(2023062521201805500_c8) 1973; 58
(2023062521201805500_c31) 1999; 103
(2023062521201805500_c15) 1977; 12
(2023062521201805500_c53) 1987; 86
(2023062521201805500_c57) 2004; 395
(2023062521201805500_c23) 1988; 92
(2023062521201805500_c40) 1993; 78
(2023062521201805500_c48) 1989; 90
(2023062521201805500_c50) 2005; 25
(2023062521201805500_c21) 1986; 85
(2023062521201805500_c10) 1979; 71
(2023062521201805500_c19) 2009; 130
(2023062521201805500_c52) 1982; 76
References_xml – volume-title: Multi-way Analysis with Applications in the Chemical Sciences
  year: 2004
  ident: 2023062521201805500_c37
– volume: 129
  start-page: 044112
  year: 2008
  ident: 2023062521201805500_c51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2958921
– volume: 395
  start-page: 190
  year: 2004
  ident: 2023062521201805500_c57
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.07.061
– volume: 10
  start-page: 104
  year: 1989
  ident: 2023062521201805500_c2
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540100111
– volume: 58
  start-page: 4496
  year: 1973
  ident: 2023062521201805500_c8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1679012
– start-page: 1132
  volume-title: Modern Electronic Structure Theory
  year: 1995
  ident: 2023062521201805500_c30
– volume: 92
  start-page: 3091
  year: 1988
  ident: 2023062521201805500_c23
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100322a017
– volume: 137
  start-page: 044103
  year: 2012
  ident: 2023062521201805500_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4732310
– volume: 94
  start-page: 1985
  year: 1991
  ident: 2023062521201805500_c56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459921
– volume: 116
  start-page: 3175
  year: 2002
  ident: 2023062521201805500_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1445115
– volume: 271
  start-page: 51
  year: 1996
  ident: 2023062521201805500_c7
  publication-title: Science
  doi: 10.1126/science.271.5245.51
– volume: 133
  start-page: 91
  year: 1987
  ident: 2023062521201805500_c45
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(87)87028-8
– volume: 123
  start-page: 184101
  year: 2005
  ident: 2023062521201805500_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2079967
– volume: 6
  start-page: 2325
  year: 2010
  ident: 2023062521201805500_c34
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100199k
– volume: 4
  start-page: 4285
  year: 2002
  ident: 2023062521201805500_c14
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b204199p
– volume: 128
  start-page: 104103
  year: 2008
  ident: 2023062521201805500_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2834222
– volume: 89
  start-page: 7382
  year: 1988
  ident: 2023062521201805500_c54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455269
– volume: 137
  start-page: 221101
  year: 2012
  ident: 2023062521201805500_c55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768241
– volume: 130
  start-page: 154107
  year: 2009
  ident: 2023062521201805500_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3116784
– volume: 103
  start-page: 1913
  year: 1999
  ident: 2023062521201805500_c31
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9825157
– volume: 97
  start-page: 1876
  year: 1992
  ident: 2023062521201805500_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463176
– volume: 209
  start-page: 506
  year: 1993
  ident: 2023062521201805500_c42
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)80125-9
– volume: 102
  start-page: 346
  year: 1995
  ident: 2023062521201805500_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469408
– volume: 86
  start-page: 3522
  year: 1987
  ident: 2023062521201805500_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451955
– volume: 101
  start-page: 4028
  year: 1994
  ident: 2023062521201805500_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467520
– volume: 356
  start-page: 98
  year: 2009
  ident: 2023062521201805500_c33
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2008.10.036
– volume: 118
  start-page: 9481
  year: 2003
  ident: 2023062521201805500_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1578621
– volume: 35
  start-page: 283
  year: 1970
  ident: 2023062521201805500_c36
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 71
  start-page: 3396
  year: 1979
  ident: 2023062521201805500_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438728
– volume: 86
  start-page: 2881
  year: 1987
  ident: 2023062521201805500_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452039
– volume: 253
  start-page: 268
  year: 1996
  ident: 2023062521201805500_c6
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00175-3
– volume: 101
  start-page: 400
  year: 1994
  ident: 2023062521201805500_c12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468148
– volume: 132
  start-page: 154
  year: 1986
  ident: 2023062521201805500_c16
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(86)80099-9
– volume: 46
  start-page: 618
  year: 1934
  ident: 2023062521201805500_c38
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 108
  start-page: 2759
  year: 2010
  ident: 2023062521201805500_c46
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2010.523713
– volume: 102
  start-page: 7564
  year: 1995
  ident: 2023062521201805500_c29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469088
– volume: 398
  start-page: 56
  year: 2004
  ident: 2023062521201805500_c58
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.09.041
– volume: 136
  start-page: 144107
  year: 2012
  ident: 2023062521201805500_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3693908
– volume: 88
  start-page: 2547
  year: 1988
  ident: 2023062521201805500_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454033
– volume: 76
  start-page: 1910
  year: 1982
  ident: 2023062521201805500_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443164
– volume-title: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
  year: 1989
  ident: 2023062521201805500_c1
– volume: 92
  start-page: 1163
  year: 1990
  ident: 2023062521201805500_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458178
– volume: 78
  start-page: 997
  year: 1993
  ident: 2023062521201805500_c40
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300100651
– volume: 11
  start-page: 81
  year: 1977
  ident: 2023062521201805500_c9
  publication-title: Int. J. Quantum Chem., Symp.
  doi: 10.1002/qua.560110108
– volume: 100
  start-page: 3631
  year: 1994
  ident: 2023062521201805500_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466350
– volume: 90
  start-page: 1007
  year: 1989
  ident: 2023062521201805500_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 126
  start-page: 194106
  year: 2007
  ident: 2023062521201805500_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2736701
– volume: 85
  start-page: 1462
  year: 1986
  ident: 2023062521201805500_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451237
– volume: 93
  start-page: 3397
  year: 1990
  ident: 2023062521201805500_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458819
– volume: 2
  start-page: 556
  year: 2012
  ident: 2023062521201805500_c47
  publication-title: WIREs: Comput. Mol. Sci.
  doi: 10.1002/wcms.93
– volume: 230
  start-page: 8
  year: 1994
  ident: 2023062521201805500_c5
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)01128-1
– volume: 213
  start-page: 514
  year: 1993
  ident: 2023062521201805500_c11
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)89151-7
– volume: 25
  start-page: 685
  year: 2005
  ident: 2023062521201805500_c50
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dri015
– volume: 97
  start-page: 158
  year: 1997
  ident: 2023062521201805500_c13
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140050249
– volume: 132
  start-page: 054103
  year: 2010
  ident: 2023062521201805500_c59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3303203
– volume: 134
  start-page: 054118
  year: 2011
  ident: 2023062521201805500_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3514201
– ident: 2023062521201805500_c43
– volume: 12
  start-page: 683
  year: 1977
  ident: 2023062521201805500_c15
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560120408
– volume: 116
  start-page: 39
  year: 1985
  ident: 2023062521201805500_c20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)80121-4
SSID ssj0001724
Score 2.5152526
Snippet The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 224106
Title Tensor hypercontraction. II. Least-squares renormalization
URI https://www.ncbi.nlm.nih.gov/pubmed/23248986
https://www.proquest.com/docview/1283734936
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXBOOrY6CAeECKHOLYSZO9TR2wTRRNopP2Fjn-EA9TCmn6wl-_cy5x13VIg5eoStwkvbvad-f7_Y6QD7kqpK5ETmWSaCrSyYTK1GqqK2tibjmvOpKk2ffs-FycXqQX63LbDl3SVpH6cyuu5H-0CudArw4l-w-a9TeFE_AZ9AtH0DAc76ZjiEEXTfgTYsmmqzlHlEIUnpxEjjl12dLl75VDGIWNqZ13etnDLq_7pGt0WOeXqoFCAJMe3uc-k43rRr8uxw5nkTcKB_JYDo0zsRF0-NVfdlwF3Y78UY0J6_lC6_DUX0d-SNwAmUbX6uz7dATrOqMgDNTDAxh1YREuMDirxnlBJxn2BfXTLpK99PaF4OSt-RwcKJdaiARERQkyZmxyZt9Yy3yFYbe3nvGSlf1X75OdBCb-eER2Do9m33745Ro8uJ6qG997oJ_K-Cf_3E2n5S-RSOeRzJ-Qx73KgkO0i6fknql3ycPp0MFvlzw4Qw0-IwdoKcGWpQRgKcGGpQQ3LOU5Of_yeT49pn3XDKp4ylqqEm2USGyeS6mYZhb-pMbEWkiIJXkmhWXWCsmVtBpGuPwA_EaWViIVSWIMf0FG9aI2r0hgCmHjTMdCZUaA6yklSyrBXeUxi63Ox-TjIJZS9ZTyrrPJZbkl_jF574f-Qh6V2wa9G2Rbgqjc1pWszWK1LJkjaeKi4NmYvESh-9u4mCAv8mzvLo94TR6trXafjNpmZd6AW9lWb3vDuAK9eHXU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+hypercontraction.+II.+Least-squares+renormalization&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Parrish%2C+Robert+M.&rft.au=Hohenstein%2C+Edward+G.&rft.au=Mart%C3%ADnez%2C+Todd+J.&rft.au=Sherrill%2C+C.+David&rft.date=2012-12-14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=137&rft.issue=22&rft_id=info:doi/10.1063%2F1.4768233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4768233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon