Statistical theories versus statistical mechanics of homogeneous isotropic turbulence

The present paper is concerned with the "closure problem of turbulence," which constituted the main subject of the Session on the "Energy transfer in homogeneous turbulence" in the last Turbulence Colloquium Marseille (TCM) 1961. It is usual in statistical theory of turbulence to...

Full description

Saved in:
Bibliographic Details
Published inJournal of Turbulence Vol. 13; no. 13; p. N31
Main Author Tatsumi, Tomomasa
Format Journal Article
LanguageEnglish
Japanese
Published Taylor & Francis Group 01.01.2012
Informa UK Limited
Subjects
Online AccessGet full text
ISSN1468-5248
1468-5248
DOI10.1080/14685248.2012.702910

Cover

Abstract The present paper is concerned with the "closure problem of turbulence," which constituted the main subject of the Session on the "Energy transfer in homogeneous turbulence" in the last Turbulence Colloquium Marseille (TCM) 1961. It is usual in statistical theory of turbulence to express the random velocity field of turbulence in terms of the velocity correlations of various orders and deal with the set of dynamical equations governing these velocity correlations. This way is, however, associated with the difficulty of unclosedness since each equation involves two velocity correlations of different orders as unknowns according to the nonlinearity of the Navier-Stokes equation, and hence we have to introduce some relationship between the velocity correlations of different orders in order to make the set of equations closed. Among various closuretheories proposed so far, the quasi-normal closure by Proudman and Reid (Proudman and W.H. Reid, Phil. Trans. R. Soc. Lond. A 247 ( 1954 ), pp. 163-189) and Tatsumi (T. Tatsumi, Proc. Roy. Soc. Lond. A 239 ( 1957 ), p. 16.) and the direct-interaction closure by Kraichnan (R.H. Kraichnan, J. Fluid Mech. 5 ( 1959 ), pp. 497-543.) have been taken up in the Session and critical survey and evaluation have been made on these theories. Apart from particular merits and demerits of the theories, it has been recognized that they still remain in approximate levels with either partial or no fulfillment of Kolmogorov's nonzero inertial energy-dissipation hypothesis. More recently, Tatsumi (T. Tatsumi, in Geometry and Statistics of Turbulence, T. Kambe ed., Kluwer, 2001 , pp. 3-12.) formulated statistical mechanics of fluid turbulence in terms of the Lundgren-Monin equations (T.S. Lundgren, Phys. Fluids, 10 ( 1967 ), pp. 969-975; A.S. Monin, PMM J. Appl. Math. Mech. 31 ( 1967 ), pp. 1057-1068.) for the multipoint velocity distributions of turbulence and the cross-independence closure of these equations. It has been shown by Tatsumi (T. Tatsumi, J. Fluid Mech. 670 ( 2011 ), pp. 365-403.) that this closure provides us with exactclosure of the Lundgren-Monin equations and thus exact solution to any problem concerning the mean velocity products.
AbstractList The present paper is concerned with the "closure problem of turbulence," which constituted the main subject of the Session on the "Energy transfer in homogeneous turbulence" in the last Turbulence Colloquium Marseille (TCM) 1961. It is usual in statistical theory of turbulence to express the random velocity field of turbulence in terms of the velocity correlations of various orders and deal with the set of dynamical equations governing these velocity correlations. This way is, however, associated with the difficulty of unclosedness since each equation involves two velocity correlations of different orders as unknowns according to the nonlinearity of the Navier-Stokes equation, and hence we have to introduce some relationship between the velocity correlations of different orders in order to make the set of equations closed. Among various closuretheories proposed so far, the quasi-normal closure by Proudman and Reid (Proudman and W.H. Reid, Phil. Trans. R. Soc. Lond. A 247 ( 1954 ), pp. 163-189) and Tatsumi (T. Tatsumi, Proc. Roy. Soc. Lond. A 239 ( 1957 ), p. 16.) and the direct-interaction closure by Kraichnan (R.H. Kraichnan, J. Fluid Mech. 5 ( 1959 ), pp. 497-543.) have been taken up in the Session and critical survey and evaluation have been made on these theories. Apart from particular merits and demerits of the theories, it has been recognized that they still remain in approximate levels with either partial or no fulfillment of Kolmogorov's nonzero inertial energy-dissipation hypothesis. More recently, Tatsumi (T. Tatsumi, in Geometry and Statistics of Turbulence, T. Kambe ed., Kluwer, 2001 , pp. 3-12.) formulated statistical mechanics of fluid turbulence in terms of the Lundgren-Monin equations (T.S. Lundgren, Phys. Fluids, 10 ( 1967 ), pp. 969-975; A.S. Monin, PMM J. Appl. Math. Mech. 31 ( 1967 ), pp. 1057-1068.) for the multipoint velocity distributions of turbulence and the cross-independence closure of these equations. It has been shown by Tatsumi (T. Tatsumi, J. Fluid Mech. 670 ( 2011 ), pp. 365-403.) that this closure provides us with exactclosure of the Lundgren-Monin equations and thus exact solution to any problem concerning the mean velocity products.
Author Tatsumi, Tomomasa
Author_xml – sequence: 1
  givenname: Tomomasa
  surname: Tatsumi
  fullname: Tatsumi, Tomomasa
  organization: Department of Physics, Faculty of Science , Kyoto University (Professor Emeritus)
BackLink https://cir.nii.ac.jp/crid/1872835442729495936$$DView record in CiNii
BookMark eNp9kE1LAzEQhoNUsK3-Aw978Lo138meRIpfUPCgPYdsmtjIblKSVOm_d5cq9ORlZnjnfWfgmYFJiMECcI3gAkEJbxHlkmEqFxgivBAQNwiegeko16M-OZkvwCznTwgRx4xPwfqt6OJz8UZ3VdnamLzN1ZdNeZ-rfLLrrdnq4E2uoqu2sY8fNtg4mHyOJcWdN1XZp3bf2WDsJTh3usv26rfPwfrx4X35XK9en16W96vaEIZK3UrmONVEuhZSzRFpKYTScY6JMMLCRhioN4KJYW41s9QySFBLNHEWC7Yhc0CPd02KOSfr1C75XqeDQlCNaNQfGjWiUUc0Q-zmGAveK-PHiqTAkjBKscANbVhD-GC7O9p8cDH1-jumbqOKPnQxuaSD8VmRfx_9AL4peGs
Cites_doi 10.1017/S002211201000532X
10.1017/S0022112059000362
10.1016/0021-8928(67)90210-9
10.1063/1.1762249
10.1007/978-94-015-9638-1_1
10.2514/8.2589
10.1098/rsta.1954.0016
10.1098/rspa.1957.0020
10.1017/S0022112063000562
10.1016/0003-4916(61)90056-2
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
DBID RYH
AAYXX
CITATION
DOI 10.1080/14685248.2012.702910
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1468-5248
ExternalDocumentID 10_1080_14685248_2012_702910
702910
GroupedDBID .7F
.QJ
0BK
0R~
29L
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J9A
KYCEM
M4Z
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UCJ
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
RYH
5ZH
AAYXX
ACTTO
ADUMR
AEFHF
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CAG
CITATION
COF
CYRSC
DAOYK
IHE
LAP
LJTGL
OPCYK
RIV
ROL
XPP
ZMT
ID FETCH-LOGICAL-c351t-b85f64a38fb04a613b4008f66237c7e097c0ad7577e0ba5e4e5031b3a3fe275d3
ISSN 1468-5248
IngestDate Tue Jul 01 00:45:40 EDT 2025
Thu Jun 26 23:43:57 EDT 2025
Wed Dec 25 09:09:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-b85f64a38fb04a613b4008f66237c7e097c0ad7577e0ba5e4e5031b3a3fe275d3
ParticipantIDs nii_cinii_1872835442729495936
crossref_primary_10_1080_14685248_2012_702910
informaworld_taylorfrancis_310_1080_14685248_2012_702910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/1/2012
2012-01-01
2012-01-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 1/1/2012
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Turbulence
PublicationYear 2012
Publisher Taylor & Francis Group
Informa UK Limited
Publisher_xml – name: Taylor & Francis Group
– name: Informa UK Limited
References Batchelor G. K. (CIT0001) 1953
Chou P.-Y. (CIT0002) 1940; 4
CIT0010
CIT0012
CIT0011
Millionshchikov M. (CIT0005) 1941; 32
CIT0003
CIT0013
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0011
  doi: 10.1017/S002211201000532X
– volume: 4
  start-page: 1
  year: 1940
  ident: CIT0002
  publication-title: Chin. J. Phys.
– volume: 32
  start-page: 615
  year: 1941
  ident: CIT0005
  publication-title: C. R. Acad. Sci. U.R.S.S.
– ident: CIT0003
  doi: 10.1017/S0022112059000362
– ident: CIT0006
  doi: 10.1016/0021-8928(67)90210-9
– ident: CIT0004
  doi: 10.1063/1.1762249
– ident: CIT0010
  doi: 10.1007/978-94-015-9638-1_1
– volume-title: The theory of Homogeneous turbulence
  year: 1953
  ident: CIT0001
– ident: CIT0012
  doi: 10.2514/8.2589
– ident: CIT0008
  doi: 10.1098/rsta.1954.0016
– ident: CIT0009
  doi: 10.1098/rspa.1957.0020
– ident: CIT0007
  doi: 10.1017/S0022112063000562
– ident: CIT0013
  doi: 10.1016/0003-4916(61)90056-2
SSID ssj0016256
ssib004908646
Score 1.8756413
Snippet The present paper is concerned with the "closure problem of turbulence," which constituted the main subject of the Session on the "Energy transfer in...
SourceID crossref
nii
informaworld
SourceType Index Database
Publisher
StartPage N31
SubjectTerms cross-independence closure
Homogeneous turbulence
statistical velocity-distribution
Title Statistical theories versus statistical mechanics of homogeneous isotropic turbulence
URI https://www.tandfonline.com/doi/abs/10.1080/14685248.2012.702910
https://cir.nii.ac.jp/crid/1872835442729495936
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZQERIXfqPBYPKBWxWWxHacHNEGqpjGqRWIS2S7thSkNoiml_31ey9O0lRjsHGxoiS21PdFXz6_vu-FkAshp1EEnBc4YVTAIxMFqXYscChPdMaslWgU_nmXjCb89kE8rBow1-6SSl-aX6_6Sj6CKpwDXNEl-x_IdovCCTgGfGEEhGH8J4xRKdaNlrFiHB2JsO0dYp3FcoE5gu7azKK_F_sxozQsZyWsaLH2tViU1Uv5XJghvHn0sjYg_UWujtdvqBPTMywuUsOxquBXF_0EQl2J0U8gtLanyY81T5X1fFgbs2LfDLMjTNZjvDtP4n8wsS9dxPk4HWvo4ksZxhna4TZjCUJnQDavRt8f71f0kcH-CnenzZ9AsDVLWrdjGn59ba01NbHWaxa0wrwoelphvEd2mqjRK4_YPtl4UgdktxH8tKHTxQHZqutvzeKQTHpQ0hZK6qGkPShpByUtHe1BSTso6QrKIzK5uR5_GwXNFy8Cw0RUBToVLuGKpU6HXIHS0kCxqUtAo0ojbZhJE6qpFBKOtRKWWwGkrJlizsZSTNkxGczLuf1EKM9SrZjgyrqQ6wRkKHMsls46mGLk9IQEbeTyZ9_YJI-afrFtpHOMdO4jfULSfnjzqk4oOf_1l5y9PfUcoMhNgWOUSmzxx3kM2zqObbGT03eufybbq-f2jAyql6U9BylY6S_NI_Qb1mVcIA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG7MjNGL06lx6pSD106gLYWjMS5Tt522xBuhpY3EDJYBF_96X_lhNhM96IWQlEfor_e-lu99ReiW8dhxwOdhzWSEqSMd7AtNsDbwRAREKW4Shaczb7ygz6-sZRPmDa3SrKF1LRRR-Wozuc1mdEuJuzPpQsytmVnukNtuYJKsdhmgccPqI_bs60cCwHuvzZj7wXIrIm3plUK8SZNkI96Muki0X1rTTN6HZSGG8uObiOO_qnKEDhs0at3Xw-cY7ai0h7oNMrWaeZ_30F5FFJX5CVoYdFqJO4NdlQUJS23LcDvK3Mo3ypbK5BSDjZVp6y1bZjBSVQYPJXlWrLNVIi2IdqKskp5O0WL0OH8Y4-ZoBiwJcwosfKY9GhFfC5tGAAkE-AJfewCmuOTKDri0o5gzDvciYooqBt5DkIho5XIWkzPUSbNUnSOLBr6ICKOR0jYVHuAloonLtdJgInncR7jtnnBVK3CETiNs2rZeaFovrFuvj_zNPgyLaudD18eUhOR30wH0dygTc3V8brToKHVh_UGNfrN38fdX36D98Xw6CSdPs5dLdGBK6o2cK9Qp1qUaALQpxHU1eD8BLMHsHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFG_MjMaL06lx6pSDVybQlsLRqMv8Wjy4ZDfSljYSM1gGXPzrfeXDbCZ60AshKY_Qr_d-Le_3K0KXlMWuCz7P1lRym7jStQOhsa0NPBEhVooZovDzxB9PycOMzlZY_Cat0qyhdS0UUflqM7kXsW4z4q4MW4h6dWKWN2SOFxqO1abv4NCo52Nn8vUfAdC93xLmfrBcC0hrcqUQbtIkWQk3oy7i7YfWWSbvw7IQQ_nxTcPxPzXZQ7sNFrWu68GzjzZU2kPdBpdazazPe2irShOV-QGaGmxaSTuDXcWBhIW2ZTI7ytzKV8rmyjCKwcbKtPWWzTMYpyqDh5I8K5bZIpEWxDpRVpSnQzQd3b3ejO3mYAZbYuoWtgio9gnHgRYO4QAIBHiCQPsApZhkygmZdHjMKIN7wakiioLvEJhjrTxGY3yEOmmWqmNkkTAQHFPClXaI8AEtYY09ppUGE8niPrLb3okWtf5G5Daypm3rRab1orr1-ihY7cKoqPY9dH1ISYR_Nx1Ad0cyMVc3YEaJjhAPVh_EqDf7J39_9QXafrkdRU_3k8dTtGMK6l2cM9QplqUaAK4pxHk1dD8BZSjqyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+theories+versus+statistical+mechanics+of+homogeneous+isotropic+turbulence&rft.jtitle=Journal+of+Turbulence&rft.au=Tomomasa+Tatsumi&rft.date=2012-01-01&rft.pub=Informa+UK+Limited&rft.eissn=1468-5248&rft.volume=13&rft.spage=N31&rft_id=info:doi/10.1080%2F14685248.2012.702910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-5248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-5248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-5248&client=summon