Data-driven matched field processing for Lamb wave structural health monitoring
Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, ma...
Saved in:
Published in | The Journal of the Acoustical Society of America Vol. 135; no. 3; pp. 1231 - 1244 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-4966 1520-8524 1520-8524 |
DOI | 10.1121/1.4863651 |
Cover
Abstract | Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions. |
---|---|
AbstractList | Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions. Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions. |
Author | Moura, José M. F. Harley, Joel B. |
Author_xml | – sequence: 1 givenname: Joel B. surname: Harley fullname: Harley, Joel B. – sequence: 2 givenname: José M. F. surname: Moura fullname: Moura, José M. F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24606265$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0EtLAzEQB_AgFfvQg19ActTD2sxuEpqj1CcUeul9ySazNrKPmmQrfnsjrR7E0zDDb4bhPyWjru-QkEtgtwA5zOGWL2QhBZyQCYicZQuR8xGZMMYg40rKMZmG8JZasSjUGRnnXDKZSzEh63sddWa922NHWx3NFi2tHTaW7nxvMATXvdK693Sl24p-6D3SEP1g4uB1Q7eom7ilbd-52PtEz8lprZuAF8c6I5vHh83yOVutn16Wd6vMFAJiVjFVKWtqsOklASbXuQIpq1ynGSCDwgqDNWeVtAVPELkCJRW3qqixKmbk-nA2Pfk-YIhl64LBptEd9kMoQTDJQUglE7060qFq0ZY771rtP8ufDBK4OQDj-xA81r8EWPmdbwnlMd9k53-scVFH13fRa9f8s_EFFIx7qw |
CitedBy_id | crossref_primary_10_1007_s41315_017_0028_4 crossref_primary_10_5194_tc_16_2025_2022 crossref_primary_10_1088_1361_665X_aaacba crossref_primary_10_1121_1_5099170 crossref_primary_10_1177_14759217231202547 crossref_primary_10_1088_1361_6501_acae27 crossref_primary_10_1177_1475921715578316 crossref_primary_10_1121_1_4974063 crossref_primary_10_3390_s19092010 crossref_primary_10_1177_1475921717727160 crossref_primary_10_1016_j_measurement_2022_111178 crossref_primary_10_1016_j_tws_2024_112419 crossref_primary_10_1109_TUFFC_2019_2935139 crossref_primary_10_1121_1_5040140 crossref_primary_10_1121_10_0009580 crossref_primary_10_3390_sym14071370 crossref_primary_10_1109_TUFFC_2016_2637299 crossref_primary_10_1177_1475921720979283 crossref_primary_10_1121_10_0032452 crossref_primary_10_1121_1_4902434 crossref_primary_10_1016_j_ymssp_2023_110365 crossref_primary_10_1088_1361_6501_ac9075 crossref_primary_10_1109_TUFFC_2019_2903006 crossref_primary_10_1115_1_4038630 crossref_primary_10_1002_stc_1776 crossref_primary_10_1016_j_mechmat_2022_104406 crossref_primary_10_1121_1_5036726 crossref_primary_10_1016_j_ymssp_2022_108979 crossref_primary_10_1016_j_ymssp_2022_109076 crossref_primary_10_1016_j_ultras_2015_12_014 crossref_primary_10_1016_j_ultras_2016_06_002 crossref_primary_10_1109_TUFFC_2018_2813278 crossref_primary_10_1016_j_ymssp_2020_106693 crossref_primary_10_1177_14759217211023934 crossref_primary_10_1109_JPROC_2015_2481438 crossref_primary_10_1016_j_ymssp_2015_09_021 crossref_primary_10_1109_TUFFC_2017_2780901 crossref_primary_10_1115_1_4032724 crossref_primary_10_1007_s10338_020_00194_9 crossref_primary_10_1177_1045389X18770857 crossref_primary_10_1016_j_ndteint_2017_07_008 crossref_primary_10_1016_j_ymssp_2023_110134 crossref_primary_10_1063_5_0016798 crossref_primary_10_1109_TUFFC_2014_006860 |
Cites_doi | 10.1049/ji-3-2.1946.0074 10.1109/78.752595 10.1121/1.423233 10.1088/0964-1726/17/3/035035 10.1111/j.1365-246X.2010.04684.x 10.1121/1.396151 10.1121/1.418168 10.1109/LSP.2009.2020882 10.1121/1.4788984 10.1121/1.2947628 10.1109/TIT.2013.2290112 10.1121/1.408387 10.1121/1.4799805 10.1109/8.841895 10.1121/1.4728224 10.1016/j.jsv.2011.07.003 10.1109/TIT.2008.2006382 10.1109/58.911720 10.1109/48.262292 10.1121/1.423954 10.1007/s00365-007-9003-x 10.1121/1.403935 10.1109/TSP.2007.906745 10.1177/1475921710373294 10.1121/1.2139625 10.1046/j.1365-246X.2002.01742.x 10.1109/TUFFC.2010.1692 10.1137/090748160 10.1088/0266-5611/16/6/304 10.1109/58.393096 10.1109/TIT.2005.860430 10.1121/1.4730978 10.1121/1.1531510 10.1109/TSP.2011.2160632 10.1007/s10208-007-9005-x 10.1137/S1064827596304010 10.1121/1.2769830 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1121/1.4863651 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1520-8524 |
EndPage | 1244 |
ExternalDocumentID | 24606265 10_1121_1_4863651 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --Z -~X .DC 123 29L 4.4 5-Q 5RE 5VS 85S AAAAW AAGWI AAPUP AAYIH AAYXX ABDNZ ABJGX ABJNI ABNAN ABPPZ ABZEH ACBRY ACCUC ACGFO ACGFS ACNCT ADCTM ADMLS AEGXH AEILP AENEX AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AGVCI AHSDT AIAGR AIDUJ ALMA_UNASSIGNED_HOLDINGS AQWKA BAUXJ CITATION CS3 D0L DU5 EBS EJD F5P H~9 M71 M73 P2P RAZ RIP RNS RQS SC5 SJN TN5 TWZ UHB UPT UQL WH7 XSW YQT ~02 .GJ 186 3O- 41~ 53G 6TJ ABDPE ABEFU ACBNA ACXMS ACYGS ADXHL AETEA AHPGS AI. CGR CUY CVF ECM EIF MVM NEJ NHB NPM OHT ROL VH1 VOH XJT XOL ZCG ZXP ZY4 ~G0 7X8 |
ID | FETCH-LOGICAL-c351t-b09b9dcf1d05851c2a29166b2acf11e013d5cef40b6d34dcfe4919694d93feb3 |
ISSN | 0001-4966 1520-8524 |
IngestDate | Fri Sep 05 00:39:54 EDT 2025 Mon Jul 21 06:01:52 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Tue Jul 01 00:52:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-b09b9dcf1d05851c2a29166b2acf11e013d5cef40b6d34dcfe4919694d93feb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24606265 |
PQID | 1506415696 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1506415696 pubmed_primary_24606265 crossref_primary_10_1121_1_4863651 crossref_citationtrail_10_1121_1_4863651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of the Acoustical Society of America |
PublicationTitleAlternate | J Acoust Soc Am |
PublicationYear | 2014 |
References | (2023072101015272200_c32) 2011; 330 (2023072101015272200_c43) 2001 (2023072101015272200_c19) 2006; 119 (2023072101015272200_c30) 2013; 133 (2023072101015272200_c11) 1997; 101 (2023072101015272200_c25) 1991 (2023072101015272200_c8) 2010; 182 (2023072101015272200_c23) 1998; 43 (2023072101015272200_c34) 2010; 57 (2023072101015272200_c36) 2008; 28 (2023072101015272200_c40) 2011; 53 (2023072101015272200_c10) 2000; 48 (2023072101015272200_c20) 2002; 151 (2023072101015272200_c4) 1998; 104 (2023072101015272200_c24) 1995; 42 (2023072101015272200_c21) 2013; 133 (2023072101015272200_c37) 2008; 54 (2023072101015272200_c26) 1975 (2023072101015272200_c33) 2008; 124 (2023072101015272200_c22) 2006; 52 (2023072101015272200_c6) 2012; 132 (2023072101015272200_c1) 1988; 83 (2023072101015272200_c14) 2008; 56 (2023072101015272200_c38) 2013; 60 (2023072101015272200_c28) 2013 (2023072101015272200_c17) 2000; 16 (2023072101015272200_c31) 2011; 59 (2023072101015272200_c2) 1993; 18 (2023072101015272200_c5) 2007; 122 (2023072101015272200_c27) 2011 (2023072101015272200_c16) 2011; 10 (2023072101015272200_c3) 1992; 92 (2023072101015272200_c35) 2008; 8 (2023072101015272200_c44) 2003; 113 (2023072101015272200_c7) 2012; 132 (2023072101015272200_c15) 2008; 17 (2023072101015272200_c42) 1946; 93 (2023072101015272200_c18) 1994; 95 (2023072101015272200_c39) 2009; 16 Eldar (2023072101015272200_c41) 2012 (2023072101015272200_c12) 2001; 48 (2023072101015272200_c13) 1998; 103 (2023072101015272200_c9) 1999; 47 |
References_xml | – start-page: 210 volume-title: Introduction to the Non-Asymptotic Analysis of Random Matrices year: 2012 ident: 2023072101015272200_c41 – volume: 93 start-page: 429 year: 1946 ident: 2023072101015272200_c42 article-title: Theory of communication. Part 1: The analysis of information publication-title: J. Inst. Electr. Eng., Part 3 doi: 10.1049/ji-3-2.1946.0074 – volume: 47 start-page: 966 year: 1999 ident: 2023072101015272200_c9 article-title: Matched-field estimation of aircraft altitude from multiple over-the-horizon radar revisits publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.752595 – volume: 103 start-page: 25 year: 1998 ident: 2023072101015272200_c13 article-title: Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423233 – volume: 17 start-page: 035035 year: 2008 ident: 2023072101015272200_c15 article-title: Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/3/035035 – volume: 182 start-page: 1455 year: 2010 ident: 2023072101015272200_c8 article-title: Super-resolution with seismic arrays using empirical matched field processing publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2010.04684.x – start-page: 4071 volume-title: IEEE International Conference on Acoustics, Speech, and Signal Processing year: 2013 ident: 2023072101015272200_c28 article-title: Broadband localization in a dispersive medium through sparse wavenumber analysis – volume: 83 start-page: 571 year: 1988 ident: 2023072101015272200_c1 article-title: Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.396151 – volume: 101 start-page: 1430 year: 1997 ident: 2023072101015272200_c11 article-title: Applications of matched-field processing to structural vibration problems publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.418168 – volume: 16 start-page: 572 year: 2009 ident: 2023072101015272200_c39 article-title: Decay properties of restricted isometry constants publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2020882 – volume: 133 start-page: 1525 year: 2013 ident: 2023072101015272200_c30 article-title: Model-based imaging of damage with Lamb waves via sparse reconstruction publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4788984 – volume: 124 start-page: EL45 year: 2008 ident: 2023072101015272200_c33 article-title: Particle filtering for dispersion curve tracking in ocean acoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2947628 – volume: 60 start-page: 1248 issue: 2 year: 2013 ident: 2023072101015272200_c38 article-title: The computational complexity of the restricted isometry property, the null space property, and related concepts in compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2013.2290112 – start-page: 118 volume-title: Computational Ocean Acoustics year: 2011 ident: 2023072101015272200_c27 – volume: 95 start-page: 770 year: 1994 ident: 2023072101015272200_c18 article-title: Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.408387 – volume: 133 start-page: 2732 year: 2013 ident: 2023072101015272200_c21 article-title: Sparse recovery of the multimodal and dispersive characteristics of Lamb waves publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4799805 – volume: 48 start-page: 345 year: 2000 ident: 2023072101015272200_c10 article-title: Estimation of radio refractivity structure using matched-field array processing publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.841895 – volume: 132 start-page: 90 year: 2012 ident: 2023072101015272200_c6 article-title: Compressive matched-field processing publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4728224 – volume: 330 start-page: 5678 year: 2011 ident: 2023072101015272200_c32 article-title: Plate impulse response spatial interpolation with sub-Nyquist sampling publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2011.07.003 – volume: 54 start-page: 5661 year: 2008 ident: 2023072101015272200_c37 article-title: Stability results for random sampling of sparse trigonometric polynomials publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2008.2006382 – volume: 48 start-page: 374 year: 2001 ident: 2023072101015272200_c12 article-title: Ultrasonic imaging using spatio-temporal matched field (STMF) processing-applications to liquid and solid waveguides publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/58.911720 – start-page: 292 volume-title: Radar-Sonar Signal Processing and Gaussian Signals in Noise, Detection, Estimation, and Modulation Theory, Part III year: 2001 ident: 2023072101015272200_c43 – volume: 18 start-page: 401 year: 1993 ident: 2023072101015272200_c2 article-title: An overview of matched field methods in ocean acoustics publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.262292 – volume: 104 start-page: 163 year: 1998 ident: 2023072101015272200_c4 article-title: Robust multi-tonal matched-field inversion: A coherent approach publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423954 – volume: 28 start-page: 253 year: 2008 ident: 2023072101015272200_c36 article-title: A simple proof of the restricted isometry property for random matrices publication-title: Constr. Approx. doi: 10.1007/s00365-007-9003-x – volume: 92 start-page: 1408 year: 1992 ident: 2023072101015272200_c3 article-title: Matched-field minimum variance beamforming in a random ocean channel publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.403935 – volume: 56 start-page: 233 year: 2008 ident: 2023072101015272200_c14 article-title: Time reversal imaging by adaptive interference canceling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.906745 – volume: 10 start-page: 247 year: 2011 ident: 2023072101015272200_c16 article-title: Enhancing the defect localization capability of a guided wave SHM system applied to a complex structure publication-title: Struct. Health Monit. doi: 10.1177/1475921710373294 – volume: 119 start-page: 208 year: 2006 ident: 2023072101015272200_c19 article-title: Data error covariance in matched-field geoacoustic inversion publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2139625 – volume: 151 start-page: 88 year: 2002 ident: 2023072101015272200_c20 article-title: Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2002.01742.x – volume: 57 start-page: 2311 year: 2010 ident: 2023072101015272200_c34 article-title: Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/TUFFC.2010.1692 – start-page: 458 volume-title: Wave Motion in Elastic Solids year: 1991 ident: 2023072101015272200_c25 – volume: 53 start-page: 105 year: 2011 ident: 2023072101015272200_c40 article-title: Compressed sensing: How sharp is the restricted isometry property? publication-title: SIAM Rev. doi: 10.1137/090748160 – volume: 16 start-page: 1655 year: 2000 ident: 2023072101015272200_c17 article-title: Applications of matched-field processing to inverse problems in underwater acoustics publication-title: Inverse Prob. doi: 10.1088/0266-5611/16/6/304 – volume: 42 start-page: 525 year: 1995 ident: 2023072101015272200_c24 article-title: Matrix techniques for modeling ultrasonic waves in multilayered media publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/58.393096 – volume: 52 start-page: 6 year: 2006 ident: 2023072101015272200_c22 article-title: Stable recovery of sparse overcomplete representations in the presence of noise publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.860430 – volume: 132 start-page: 2273 year: 2012 ident: 2023072101015272200_c7 article-title: Maximum-likelihood and other processors for incoherent and coherent matched-field localization publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4730978 – volume: 113 start-page: 1379 year: 2003 ident: 2023072101015272200_c44 article-title: Improvement in matched field processing using the CLEAN algorithm publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1531510 – volume: 59 start-page: 4821 year: 2011 ident: 2023072101015272200_c31 article-title: Broadband dispersion extraction using simultaneous sparse penalization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2160632 – start-page: 425 volume-title: Wave Propagation in Elastic Solids year: 1975 ident: 2023072101015272200_c26 – volume: 8 start-page: 737 year: 2008 ident: 2023072101015272200_c35 article-title: Random sampling of sparse trigonometric polynomials. II. Orthogonal matching pursuit versus basis pursuit publication-title: Found. Comput. Math. doi: 10.1007/s10208-007-9005-x – volume: 43 start-page: 129 year: 1998 ident: 2023072101015272200_c23 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596304010 – volume: 122 start-page: 1979 year: 2007 ident: 2023072101015272200_c5 article-title: Robust matched-field processing using a coherent broadband white noise constraint processor publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2769830 |
SSID | ssj0005839 |
Score | 2.404256 |
Snippet | Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1231 |
SubjectTerms | Acoustics Aluminum Materials Testing - methods Models, Theoretical Motion Scattering, Radiation Signal Processing, Computer-Assisted Sound Sound Spectrography Time Factors Vibration |
Title | Data-driven matched field processing for Lamb wave structural health monitoring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24606265 https://www.proquest.com/docview/1506415696 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEF9qpOCL2E_TWtmWPhSOS7Mft-49SlVEEn3oCXk79useRKPEgOBf7-zH3UVIwfpyhGUzhPlN5mZ3Zn6D0M9CNko6VuRjy3XOuTG5bJqD3DVElIY4Cxt8tcW5OL3kZ7Ni1s5wT90lSz0yj2v7Sl6DKqwBrr5L9j-Q7YTCAnwGfOEJCMPzRRgfqaXK7cI7rAwiT9C_zUJJWnYX6__bMsmJutHZgx80FPliA9dGbIHMbsK_etG-wq5681kJVkMDirkNo788f0iq9fRhbEz59J5skW7Bz3zRbJfQmYIslVIOMTmfTVNVcbpzILwvumrdJBw6ZRG7n0duzVrrWyMXSTIituIp4Y1J1rtw6l04GXEpmEhktM9oss8v6pPLyaSujmfVBtqkBxA0DdDm4dF08rev7pFhiFz3oxKpFAj_3Yl-Hor843wR4oxqB20nnePDiPY79MbN36O3oVDX3H9AFyuY44Q5DpjjHnMMmGOPOfaY4x5zHDHHPeYfUXVyXP05zdNQjNywgixzPS51aU1D7NhndA1VFCJ8oamCNeIgoreFcQ0fa2EZh42Ol54CiduSNU6zT2gwv527XYQtd4wpIgyDQ7UphWwMdUzrQjMptSmH6Ferntokwng_t-S6DgdHSmpSJ00O0Y9u611kSVm36Xur4xp8mE9MqbkDy609y6W_SCjFEH2Oyu_EUA5HbCqKLy_49le01VvrHhqAdt03iBmXej_ZxxNW0W1v |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+matched+field+processing+for+Lamb+wave+structural+health+monitoring&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Harley%2C+Joel+B&rft.au=Moura%2C+Jos%C3%A9+M+F&rft.date=2014-03-01&rft.issn=1520-8524&rft.eissn=1520-8524&rft.volume=135&rft.issue=3&rft.spage=1231&rft_id=info:doi/10.1121%2F1.4863651&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon |