Data-driven matched field processing for Lamb wave structural health monitoring

Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, ma...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 135; no. 3; pp. 1231 - 1244
Main Authors Harley, Joel B., Moura, José M. F.
Format Journal Article
LanguageEnglish
Published United States 01.03.2014
Subjects
Online AccessGet full text
ISSN0001-4966
1520-8524
1520-8524
DOI10.1121/1.4863651

Cover

Abstract Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.
AbstractList Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.
Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.
Author Moura, José M. F.
Harley, Joel B.
Author_xml – sequence: 1
  givenname: Joel B.
  surname: Harley
  fullname: Harley, Joel B.
– sequence: 2
  givenname: José M. F.
  surname: Moura
  fullname: Moura, José M. F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24606265$$D View this record in MEDLINE/PubMed
BookMark eNpt0EtLAzEQB_AgFfvQg19ActTD2sxuEpqj1CcUeul9ySazNrKPmmQrfnsjrR7E0zDDb4bhPyWjru-QkEtgtwA5zOGWL2QhBZyQCYicZQuR8xGZMMYg40rKMZmG8JZasSjUGRnnXDKZSzEh63sddWa922NHWx3NFi2tHTaW7nxvMATXvdK693Sl24p-6D3SEP1g4uB1Q7eom7ilbd-52PtEz8lprZuAF8c6I5vHh83yOVutn16Wd6vMFAJiVjFVKWtqsOklASbXuQIpq1ynGSCDwgqDNWeVtAVPELkCJRW3qqixKmbk-nA2Pfk-YIhl64LBptEd9kMoQTDJQUglE7060qFq0ZY771rtP8ufDBK4OQDj-xA81r8EWPmdbwnlMd9k53-scVFH13fRa9f8s_EFFIx7qw
CitedBy_id crossref_primary_10_1007_s41315_017_0028_4
crossref_primary_10_5194_tc_16_2025_2022
crossref_primary_10_1088_1361_665X_aaacba
crossref_primary_10_1121_1_5099170
crossref_primary_10_1177_14759217231202547
crossref_primary_10_1088_1361_6501_acae27
crossref_primary_10_1177_1475921715578316
crossref_primary_10_1121_1_4974063
crossref_primary_10_3390_s19092010
crossref_primary_10_1177_1475921717727160
crossref_primary_10_1016_j_measurement_2022_111178
crossref_primary_10_1016_j_tws_2024_112419
crossref_primary_10_1109_TUFFC_2019_2935139
crossref_primary_10_1121_1_5040140
crossref_primary_10_1121_10_0009580
crossref_primary_10_3390_sym14071370
crossref_primary_10_1109_TUFFC_2016_2637299
crossref_primary_10_1177_1475921720979283
crossref_primary_10_1121_10_0032452
crossref_primary_10_1121_1_4902434
crossref_primary_10_1016_j_ymssp_2023_110365
crossref_primary_10_1088_1361_6501_ac9075
crossref_primary_10_1109_TUFFC_2019_2903006
crossref_primary_10_1115_1_4038630
crossref_primary_10_1002_stc_1776
crossref_primary_10_1016_j_mechmat_2022_104406
crossref_primary_10_1121_1_5036726
crossref_primary_10_1016_j_ymssp_2022_108979
crossref_primary_10_1016_j_ymssp_2022_109076
crossref_primary_10_1016_j_ultras_2015_12_014
crossref_primary_10_1016_j_ultras_2016_06_002
crossref_primary_10_1109_TUFFC_2018_2813278
crossref_primary_10_1016_j_ymssp_2020_106693
crossref_primary_10_1177_14759217211023934
crossref_primary_10_1109_JPROC_2015_2481438
crossref_primary_10_1016_j_ymssp_2015_09_021
crossref_primary_10_1109_TUFFC_2017_2780901
crossref_primary_10_1115_1_4032724
crossref_primary_10_1007_s10338_020_00194_9
crossref_primary_10_1177_1045389X18770857
crossref_primary_10_1016_j_ndteint_2017_07_008
crossref_primary_10_1016_j_ymssp_2023_110134
crossref_primary_10_1063_5_0016798
crossref_primary_10_1109_TUFFC_2014_006860
Cites_doi 10.1049/ji-3-2.1946.0074
10.1109/78.752595
10.1121/1.423233
10.1088/0964-1726/17/3/035035
10.1111/j.1365-246X.2010.04684.x
10.1121/1.396151
10.1121/1.418168
10.1109/LSP.2009.2020882
10.1121/1.4788984
10.1121/1.2947628
10.1109/TIT.2013.2290112
10.1121/1.408387
10.1121/1.4799805
10.1109/8.841895
10.1121/1.4728224
10.1016/j.jsv.2011.07.003
10.1109/TIT.2008.2006382
10.1109/58.911720
10.1109/48.262292
10.1121/1.423954
10.1007/s00365-007-9003-x
10.1121/1.403935
10.1109/TSP.2007.906745
10.1177/1475921710373294
10.1121/1.2139625
10.1046/j.1365-246X.2002.01742.x
10.1109/TUFFC.2010.1692
10.1137/090748160
10.1088/0266-5611/16/6/304
10.1109/58.393096
10.1109/TIT.2005.860430
10.1121/1.4730978
10.1121/1.1531510
10.1109/TSP.2011.2160632
10.1007/s10208-007-9005-x
10.1137/S1064827596304010
10.1121/1.2769830
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1121/1.4863651
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage 1244
ExternalDocumentID 24606265
10_1121_1_4863651
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--Z
-~X
.DC
123
29L
4.4
5-Q
5RE
5VS
85S
AAAAW
AAGWI
AAPUP
AAYIH
AAYXX
ABDNZ
ABJGX
ABJNI
ABNAN
ABPPZ
ABZEH
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ADCTM
ADMLS
AEGXH
AEILP
AENEX
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHSDT
AIAGR
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
H~9
M71
M73
P2P
RAZ
RIP
RNS
RQS
SC5
SJN
TN5
TWZ
UHB
UPT
UQL
WH7
XSW
YQT
~02
.GJ
186
3O-
41~
53G
6TJ
ABDPE
ABEFU
ACBNA
ACXMS
ACYGS
ADXHL
AETEA
AHPGS
AI.
CGR
CUY
CVF
ECM
EIF
MVM
NEJ
NHB
NPM
OHT
ROL
VH1
VOH
XJT
XOL
ZCG
ZXP
ZY4
~G0
7X8
ID FETCH-LOGICAL-c351t-b09b9dcf1d05851c2a29166b2acf11e013d5cef40b6d34dcfe4919694d93feb3
ISSN 0001-4966
1520-8524
IngestDate Fri Sep 05 00:39:54 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Tue Jul 01 00:52:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-b09b9dcf1d05851c2a29166b2acf11e013d5cef40b6d34dcfe4919694d93feb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24606265
PQID 1506415696
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1506415696
pubmed_primary_24606265
crossref_primary_10_1121_1_4863651
crossref_citationtrail_10_1121_1_4863651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of the Acoustical Society of America
PublicationTitleAlternate J Acoust Soc Am
PublicationYear 2014
References (2023072101015272200_c32) 2011; 330
(2023072101015272200_c43) 2001
(2023072101015272200_c19) 2006; 119
(2023072101015272200_c30) 2013; 133
(2023072101015272200_c11) 1997; 101
(2023072101015272200_c25) 1991
(2023072101015272200_c8) 2010; 182
(2023072101015272200_c23) 1998; 43
(2023072101015272200_c34) 2010; 57
(2023072101015272200_c36) 2008; 28
(2023072101015272200_c40) 2011; 53
(2023072101015272200_c10) 2000; 48
(2023072101015272200_c20) 2002; 151
(2023072101015272200_c4) 1998; 104
(2023072101015272200_c24) 1995; 42
(2023072101015272200_c21) 2013; 133
(2023072101015272200_c37) 2008; 54
(2023072101015272200_c26) 1975
(2023072101015272200_c33) 2008; 124
(2023072101015272200_c22) 2006; 52
(2023072101015272200_c6) 2012; 132
(2023072101015272200_c1) 1988; 83
(2023072101015272200_c14) 2008; 56
(2023072101015272200_c38) 2013; 60
(2023072101015272200_c28) 2013
(2023072101015272200_c17) 2000; 16
(2023072101015272200_c31) 2011; 59
(2023072101015272200_c2) 1993; 18
(2023072101015272200_c5) 2007; 122
(2023072101015272200_c27) 2011
(2023072101015272200_c16) 2011; 10
(2023072101015272200_c3) 1992; 92
(2023072101015272200_c35) 2008; 8
(2023072101015272200_c44) 2003; 113
(2023072101015272200_c7) 2012; 132
(2023072101015272200_c15) 2008; 17
(2023072101015272200_c42) 1946; 93
(2023072101015272200_c18) 1994; 95
(2023072101015272200_c39) 2009; 16
Eldar (2023072101015272200_c41) 2012
(2023072101015272200_c12) 2001; 48
(2023072101015272200_c13) 1998; 103
(2023072101015272200_c9) 1999; 47
References_xml – start-page: 210
  volume-title: Introduction to the Non-Asymptotic Analysis of Random Matrices
  year: 2012
  ident: 2023072101015272200_c41
– volume: 93
  start-page: 429
  year: 1946
  ident: 2023072101015272200_c42
  article-title: Theory of communication. Part 1: The analysis of information
  publication-title: J. Inst. Electr. Eng., Part 3
  doi: 10.1049/ji-3-2.1946.0074
– volume: 47
  start-page: 966
  year: 1999
  ident: 2023072101015272200_c9
  article-title: Matched-field estimation of aircraft altitude from multiple over-the-horizon radar revisits
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.752595
– volume: 103
  start-page: 25
  year: 1998
  ident: 2023072101015272200_c13
  article-title: Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423233
– volume: 17
  start-page: 035035
  year: 2008
  ident: 2023072101015272200_c15
  article-title: Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/3/035035
– volume: 182
  start-page: 1455
  year: 2010
  ident: 2023072101015272200_c8
  article-title: Super-resolution with seismic arrays using empirical matched field processing
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2010.04684.x
– start-page: 4071
  volume-title: IEEE International Conference on Acoustics, Speech, and Signal Processing
  year: 2013
  ident: 2023072101015272200_c28
  article-title: Broadband localization in a dispersive medium through sparse wavenumber analysis
– volume: 83
  start-page: 571
  year: 1988
  ident: 2023072101015272200_c1
  article-title: Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.396151
– volume: 101
  start-page: 1430
  year: 1997
  ident: 2023072101015272200_c11
  article-title: Applications of matched-field processing to structural vibration problems
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.418168
– volume: 16
  start-page: 572
  year: 2009
  ident: 2023072101015272200_c39
  article-title: Decay properties of restricted isometry constants
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2020882
– volume: 133
  start-page: 1525
  year: 2013
  ident: 2023072101015272200_c30
  article-title: Model-based imaging of damage with Lamb waves via sparse reconstruction
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4788984
– volume: 124
  start-page: EL45
  year: 2008
  ident: 2023072101015272200_c33
  article-title: Particle filtering for dispersion curve tracking in ocean acoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2947628
– volume: 60
  start-page: 1248
  issue: 2
  year: 2013
  ident: 2023072101015272200_c38
  article-title: The computational complexity of the restricted isometry property, the null space property, and related concepts in compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2290112
– start-page: 118
  volume-title: Computational Ocean Acoustics
  year: 2011
  ident: 2023072101015272200_c27
– volume: 95
  start-page: 770
  year: 1994
  ident: 2023072101015272200_c18
  article-title: Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.408387
– volume: 133
  start-page: 2732
  year: 2013
  ident: 2023072101015272200_c21
  article-title: Sparse recovery of the multimodal and dispersive characteristics of Lamb waves
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4799805
– volume: 48
  start-page: 345
  year: 2000
  ident: 2023072101015272200_c10
  article-title: Estimation of radio refractivity structure using matched-field array processing
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.841895
– volume: 132
  start-page: 90
  year: 2012
  ident: 2023072101015272200_c6
  article-title: Compressive matched-field processing
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4728224
– volume: 330
  start-page: 5678
  year: 2011
  ident: 2023072101015272200_c32
  article-title: Plate impulse response spatial interpolation with sub-Nyquist sampling
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2011.07.003
– volume: 54
  start-page: 5661
  year: 2008
  ident: 2023072101015272200_c37
  article-title: Stability results for random sampling of sparse trigonometric polynomials
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.2006382
– volume: 48
  start-page: 374
  year: 2001
  ident: 2023072101015272200_c12
  article-title: Ultrasonic imaging using spatio-temporal matched field (STMF) processing-applications to liquid and solid waveguides
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/58.911720
– start-page: 292
  volume-title: Radar-Sonar Signal Processing and Gaussian Signals in Noise, Detection, Estimation, and Modulation Theory, Part III
  year: 2001
  ident: 2023072101015272200_c43
– volume: 18
  start-page: 401
  year: 1993
  ident: 2023072101015272200_c2
  article-title: An overview of matched field methods in ocean acoustics
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.262292
– volume: 104
  start-page: 163
  year: 1998
  ident: 2023072101015272200_c4
  article-title: Robust multi-tonal matched-field inversion: A coherent approach
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423954
– volume: 28
  start-page: 253
  year: 2008
  ident: 2023072101015272200_c36
  article-title: A simple proof of the restricted isometry property for random matrices
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-007-9003-x
– volume: 92
  start-page: 1408
  year: 1992
  ident: 2023072101015272200_c3
  article-title: Matched-field minimum variance beamforming in a random ocean channel
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.403935
– volume: 56
  start-page: 233
  year: 2008
  ident: 2023072101015272200_c14
  article-title: Time reversal imaging by adaptive interference canceling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.906745
– volume: 10
  start-page: 247
  year: 2011
  ident: 2023072101015272200_c16
  article-title: Enhancing the defect localization capability of a guided wave SHM system applied to a complex structure
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921710373294
– volume: 119
  start-page: 208
  year: 2006
  ident: 2023072101015272200_c19
  article-title: Data error covariance in matched-field geoacoustic inversion
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2139625
– volume: 151
  start-page: 88
  year: 2002
  ident: 2023072101015272200_c20
  article-title: Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01742.x
– volume: 57
  start-page: 2311
  year: 2010
  ident: 2023072101015272200_c34
  article-title: Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.2010.1692
– start-page: 458
  volume-title: Wave Motion in Elastic Solids
  year: 1991
  ident: 2023072101015272200_c25
– volume: 53
  start-page: 105
  year: 2011
  ident: 2023072101015272200_c40
  article-title: Compressed sensing: How sharp is the restricted isometry property?
  publication-title: SIAM Rev.
  doi: 10.1137/090748160
– volume: 16
  start-page: 1655
  year: 2000
  ident: 2023072101015272200_c17
  article-title: Applications of matched-field processing to inverse problems in underwater acoustics
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/16/6/304
– volume: 42
  start-page: 525
  year: 1995
  ident: 2023072101015272200_c24
  article-title: Matrix techniques for modeling ultrasonic waves in multilayered media
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/58.393096
– volume: 52
  start-page: 6
  year: 2006
  ident: 2023072101015272200_c22
  article-title: Stable recovery of sparse overcomplete representations in the presence of noise
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.860430
– volume: 132
  start-page: 2273
  year: 2012
  ident: 2023072101015272200_c7
  article-title: Maximum-likelihood and other processors for incoherent and coherent matched-field localization
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4730978
– volume: 113
  start-page: 1379
  year: 2003
  ident: 2023072101015272200_c44
  article-title: Improvement in matched field processing using the CLEAN algorithm
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1531510
– volume: 59
  start-page: 4821
  year: 2011
  ident: 2023072101015272200_c31
  article-title: Broadband dispersion extraction using simultaneous sparse penalization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2160632
– start-page: 425
  volume-title: Wave Propagation in Elastic Solids
  year: 1975
  ident: 2023072101015272200_c26
– volume: 8
  start-page: 737
  year: 2008
  ident: 2023072101015272200_c35
  article-title: Random sampling of sparse trigonometric polynomials. II. Orthogonal matching pursuit versus basis pursuit
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-007-9005-x
– volume: 43
  start-page: 129
  year: 1998
  ident: 2023072101015272200_c23
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596304010
– volume: 122
  start-page: 1979
  year: 2007
  ident: 2023072101015272200_c5
  article-title: Robust matched-field processing using a coherent broadband white noise constraint processor
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2769830
SSID ssj0005839
Score 2.404256
Snippet Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1231
SubjectTerms Acoustics
Aluminum
Materials Testing - methods
Models, Theoretical
Motion
Scattering, Radiation
Signal Processing, Computer-Assisted
Sound
Sound Spectrography
Time Factors
Vibration
Title Data-driven matched field processing for Lamb wave structural health monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/24606265
https://www.proquest.com/docview/1506415696
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEF9qpOCL2E_TWtmWPhSOS7Mft-49SlVEEn3oCXk79useRKPEgOBf7-zH3UVIwfpyhGUzhPlN5mZ3Zn6D0M9CNko6VuRjy3XOuTG5bJqD3DVElIY4Cxt8tcW5OL3kZ7Ni1s5wT90lSz0yj2v7Sl6DKqwBrr5L9j-Q7YTCAnwGfOEJCMPzRRgfqaXK7cI7rAwiT9C_zUJJWnYX6__bMsmJutHZgx80FPliA9dGbIHMbsK_etG-wq5681kJVkMDirkNo788f0iq9fRhbEz59J5skW7Bz3zRbJfQmYIslVIOMTmfTVNVcbpzILwvumrdJBw6ZRG7n0duzVrrWyMXSTIituIp4Y1J1rtw6l04GXEpmEhktM9oss8v6pPLyaSujmfVBtqkBxA0DdDm4dF08rev7pFhiFz3oxKpFAj_3Yl-Hor843wR4oxqB20nnePDiPY79MbN36O3oVDX3H9AFyuY44Q5DpjjHnMMmGOPOfaY4x5zHDHHPeYfUXVyXP05zdNQjNywgixzPS51aU1D7NhndA1VFCJ8oamCNeIgoreFcQ0fa2EZh42Ol54CiduSNU6zT2gwv527XYQtd4wpIgyDQ7UphWwMdUzrQjMptSmH6Ferntokwng_t-S6DgdHSmpSJ00O0Y9u611kSVm36Xur4xp8mE9MqbkDy609y6W_SCjFEH2Oyu_EUA5HbCqKLy_49le01VvrHhqAdt03iBmXej_ZxxNW0W1v
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+matched+field+processing+for+Lamb+wave+structural+health+monitoring&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Harley%2C+Joel+B&rft.au=Moura%2C+Jos%C3%A9+M+F&rft.date=2014-03-01&rft.issn=1520-8524&rft.eissn=1520-8524&rft.volume=135&rft.issue=3&rft.spage=1231&rft_id=info:doi/10.1121%2F1.4863651&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon