Incorporation of Cu() and its selective reduction to Cu() within confined spaces: efficient active sites for CO adsorption
Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 19; pp. 893 - 8939 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/c8ta01805g |
Cover
Abstract | Cu(
i
)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu(
i
) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu(
i
) sites in a representative metal-organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu(
ii
) precursor and its reduction to Cu(
i
) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu(
ii
) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu(
ii
) to form Cu(
i
) without the formation of any Cu(0). The obtained Cu(
i
)-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g
−1
) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al
2
O
3
(1.0 mmol g
−1
), CuCl/MCM-41 (0.57 mmol g
−1
), and CuZSM-5 (0.11 mmol g
−1
).
A two-step double-solvent strategy was first used to incorporate Cu(
i
) sites into MIL-101(Cr), which obviously improves the CO adsorption performance. |
---|---|
AbstractList | Cu(i)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu(i) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu(i) sites in a representative metal–organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu(ii) precursor and its reduction to Cu(i) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu(ii) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu(ii) to form Cu(i) without the formation of any Cu(0). The obtained Cu(i)-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g−1) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al2O3 (1.0 mmol g−1), CuCl/MCM-41 (0.57 mmol g−1), and CuZSM-5 (0.11 mmol g−1). Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu( i ) sites in a representative metal-organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu( ii ) precursor and its reduction to Cu( i ) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu( ii ) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu( ii ) to form Cu( i ) without the formation of any Cu(0). The obtained Cu( i )-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g −1 ) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al 2 O 3 (1.0 mmol g −1 ), CuCl/MCM-41 (0.57 mmol g −1 ), and CuZSM-5 (0.11 mmol g −1 ). A two-step double-solvent strategy was first used to incorporate Cu( i ) sites into MIL-101(Cr), which obviously improves the CO adsorption performance. Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu( i ) sites in a representative metal–organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu( ii ) precursor and its reduction to Cu( i ) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu( ii ) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu( ii ) to form Cu( i ) without the formation of any Cu(0). The obtained Cu( i )-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g −1 ) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al 2 O 3 (1.0 mmol g −1 ), CuCl/MCM-41 (0.57 mmol g −1 ), and CuZSM-5 (0.11 mmol g −1 ). Cu(i)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu(i) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu(i) sites in a representative metal–organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu(ii) precursor and its reduction to Cu(i) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu(ii) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu(ii) to form Cu(i) without the formation of any Cu(0). The obtained Cu(i)-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g⁻¹) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al₂O₃ (1.0 mmol g⁻¹), CuCl/MCM-41 (0.57 mmol g⁻¹), and CuZSM-5 (0.11 mmol g⁻¹). |
Author | Li, Yu-Xia Sun, Lin-Bing Xue, Ding-Ming Jin, Meng-Meng Li, Shuai-Shuai Liu, Xiao-Qin |
AuthorAffiliation | College of Chemical Engineering Nanjing Tech University Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) State Key Laboratory of Materials-Oriented Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – sequence: 0 name: Nanjing Tech University – sequence: 0 name: College of Chemical Engineering – sequence: 0 name: State Key Laboratory of Materials-Oriented Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yu-Xia surname: Li fullname: Li, Yu-Xia – sequence: 2 givenname: Shuai-Shuai surname: Li fullname: Li, Shuai-Shuai – sequence: 3 givenname: Ding-Ming surname: Xue fullname: Xue, Ding-Ming – sequence: 4 givenname: Xiao-Qin surname: Liu fullname: Liu, Xiao-Qin – sequence: 5 givenname: Meng-Meng surname: Jin fullname: Jin, Meng-Meng – sequence: 6 givenname: Lin-Bing surname: Sun fullname: Sun, Lin-Bing |
BookMark | eNptkc1LHEEQxZtgIKvxkrvQkIsGVqu756PH2zIkG0Hwoueht6Y6tozdm-4eJfnrHXfCBsS6VB1-r6p475Ad-OCJsS8CzgWo5gJ1NiA0lL8-sIWEEpZ10VQH-1nrT-w4pQeYSgNUTbNgf688hrgN0WQXPA-Wt-PpGTe-5y4nnmggzO6JeKR-xB2Tw8w8u3zvPMfgrfPU87Q1SOmSk7UOHfnMzSxNLlPiNkTe3nDTp-ne66LP7KM1Q6Ljf_2I3f34ftv-XF7frK_a1fUSVSny0liqdQ9lb4tGCC1VX6hNqRWiNhJqWWqpKyFRWEXaQK0tVBtAg1pCJXWvjtjpvHcbw--RUu4eXUIaBuMpjKmTUtWllEWhJvTrG_QhjNFP33VyclhBI8tiomCmMIaUItkOXd75l6NxQyege82ja_XtapfHepJ8eyPZRvdo4p_34ZMZjgn33P9w1Qu2jZXE |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2021_126242 crossref_primary_10_1016_j_jcis_2019_07_098 crossref_primary_10_1021_acssuschemeng_2c05388 crossref_primary_10_1021_acs_jced_1c00903 crossref_primary_10_1002_smll_202311555 crossref_primary_10_1016_j_micromeso_2020_110731 crossref_primary_10_1016_j_micromeso_2021_111109 crossref_primary_10_1016_j_jiec_2019_11_041 crossref_primary_10_1021_acssuschemeng_4c03467 crossref_primary_10_1002_marc_202200317 crossref_primary_10_1016_j_fuel_2019_116221 crossref_primary_10_1039_D3CS00147D crossref_primary_10_1021_acs_iecr_0c02950 crossref_primary_10_1021_acssuschemeng_9b00699 crossref_primary_10_1016_j_mattod_2024_12_020 crossref_primary_10_1016_j_cej_2021_132458 crossref_primary_10_1021_jacs_9b02114 crossref_primary_10_1016_j_apsusc_2021_149087 crossref_primary_10_1002_anie_202304367 crossref_primary_10_1016_j_cej_2022_138519 crossref_primary_10_1039_D1QI01050F crossref_primary_10_1002_smll_202302885 crossref_primary_10_1039_D0DT04037A crossref_primary_10_1021_acs_iecr_4c01188 crossref_primary_10_1021_acsmaterialslett_3c00476 crossref_primary_10_1016_j_micromeso_2019_03_026 crossref_primary_10_1016_S1872_2067_19_63273_0 crossref_primary_10_1016_j_gee_2020_10_009 crossref_primary_10_1016_j_cej_2024_158576 crossref_primary_10_1016_j_jhazmat_2021_127816 crossref_primary_10_1016_j_enchem_2023_100113 crossref_primary_10_1021_acsami_8b15913 crossref_primary_10_1021_acssuschemeng_9b04901 crossref_primary_10_1021_acsami_1c01621 crossref_primary_10_1016_j_seppur_2024_127301 crossref_primary_10_1039_D2TB02594A crossref_primary_10_1016_j_cej_2020_126492 crossref_primary_10_1016_j_renene_2023_119243 crossref_primary_10_1002_aic_17631 crossref_primary_10_1016_j_micromeso_2021_111132 crossref_primary_10_1021_acsanm_8b01841 crossref_primary_10_1002_aic_18722 crossref_primary_10_1016_j_seppur_2023_123963 crossref_primary_10_1016_j_cej_2020_124172 crossref_primary_10_1002_ange_202304367 crossref_primary_10_1016_j_jece_2021_105317 |
Cites_doi | 10.1039/c3ta14760f 10.1021/acs.jpcc.5b07546 10.1021/ja505318p 10.1002/aic.15837 10.1039/C7CC04313A 10.1039/a908395b 10.1016/j.micromeso.2015.09.027 10.1016/j.seppur.2010.09.022 10.1021/acssuschemeng.5b00544 10.1016/j.cej.2016.02.046 10.1021/ef8008635 10.1002/anie.200805980 10.1021/acs.energyfuels.5b00975 10.1016/j.ces.2014.08.039 10.1016/j.micromeso.2012.11.007 10.1016/j.jhazmat.2012.09.042 10.1016/j.cej.2016.09.138 10.1126/science.1246423 10.1016/j.cattod.2005.09.027 10.1039/B303330A 10.1016/j.memsci.2013.03.025 10.1021/acs.jpcc.6b03393 10.1016/j.jcat.2007.10.015 10.1039/C5TA00959F 10.1021/acs.jpcc.7b03369 10.1039/C1CE06138K 10.1016/S1387-1811(02)00405-5 10.1016/j.cej.2012.04.071 10.1016/j.cej.2015.05.035 10.1021/am505851u 10.1021/je9000087 10.1021/ja2066016 10.1021/acsami.7b09300 10.1039/b802426j 10.1021/ja0301673 10.1021/es051951l 10.1016/j.ces.2007.09.002 10.1002/aic.13879 10.1016/j.jcat.2017.02.031 10.1021/jacs.7b01439 10.1021/jacs.6b00248 10.1021/ie990035b 10.1016/j.jcrysgro.2014.05.029 10.1016/j.ces.2011.05.018 10.1021/jacs.6b01207 10.1038/nature17430 10.1021/acsami.7b09227 10.1016/j.cej.2014.04.044 10.1016/j.jcat.2005.03.020 10.1016/j.cej.2015.01.126 10.1039/c2ta00890d 10.1016/S1387-1811(98)00147-4 10.1039/b713587d 10.1016/j.jhazmat.2012.08.025 10.1021/acssuschemeng.5b01051 10.5194/acp-7-4419-2007 10.1016/j.cej.2016.10.100 10.1039/C6GC00613B 10.1016/j.jcat.2009.11.011 10.1016/j.apcatb.2005.05.003 10.1021/ja403330m 10.1016/S0039-6028(00)00880-3 10.1038/nature19786 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c8ta01805g |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 8939 |
ExternalDocumentID | 10_1039_C8TA01805G c8ta01805g |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA ANBJS CITATION J3G J3H ROL 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c351t-afe78d05df4911823d43b583cc8a20725828612c1f3e8a078f06b0cac820628d3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 22:11:23 EDT 2025 Mon Jun 30 11:55:17 EDT 2025 Tue Jul 01 03:13:49 EDT 2025 Thu Apr 24 23:12:17 EDT 2025 Tue Dec 17 20:58:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-afe78d05df4911823d43b583cc8a20725828612c1f3e8a078f06b0cac820628d3 |
Notes | 10.1039/c8ta01805g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1916-2707 0000-0002-6395-312X |
PQID | 2039309254 |
PQPubID | 2047523 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1039_C8TA01805G crossref_primary_10_1039_C8TA01805G proquest_miscellaneous_2237522443 rsc_primary_c8ta01805g proquest_journals_2039309254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Munusamy (C8TA01805G-(cit62)/*[position()=1]) 2012; 195 Ohara (C8TA01805G-(cit10)/*[position()=1]) 2007; 7 Khan (C8TA01805G-(cit34)/*[position()=1]) 2012; 237 Ye (C8TA01805G-(cit50)/*[position()=1]) 2017; 139 Zhong (C8TA01805G-(cit3)/*[position()=1]) 2016; 538 Huang (C8TA01805G-(cit40)/*[position()=1]) 2012; 14 Zhu (C8TA01805G-(cit38)/*[position()=1]) 2013; 135 Shi (C8TA01805G-(cit17)/*[position()=1]) 2013; 59 Sonnauer (C8TA01805G-(cit41)/*[position()=1]) 2009; 48 Zhen (C8TA01805G-(cit42)/*[position()=1]) 2017; 348 Rakic (C8TA01805G-(cit56)/*[position()=1]) 2005; 110 Zhao (C8TA01805G-(cit21)/*[position()=1]) 2009; 23 Sato (C8TA01805G-(cit1)/*[position()=1]) 2014; 343 Kang (C8TA01805G-(cit35)/*[position()=1]) 2016; 138 Mori (C8TA01805G-(cit59)/*[position()=1]) 2008; 10 Chen (C8TA01805G-(cit15)/*[position()=1]) 2017; 308 Li (C8TA01805G-(cit44)/*[position()=1]) 2015; 119 Sun (C8TA01805G-(cit37)/*[position()=1]) 2015; 3 Peng (C8TA01805G-(cit12)/*[position()=1]) 2015; 270 Wang (C8TA01805G-(cit55)/*[position()=1]) 2002; 55 Suyal (C8TA01805G-(cit51)/*[position()=1]) 2003; 13 Rioux (C8TA01805G-(cit14)/*[position()=1]) 2008; 254 Kou (C8TA01805G-(cit26)/*[position()=1]) 2015; 3 He (C8TA01805G-(cit31)/*[position()=1]) 2017; 9 Bloch (C8TA01805G-(cit5)/*[position()=1]) 2014; 136 Agueda (C8TA01805G-(cit64)/*[position()=1]) 2015; 124 Ahmed (C8TA01805G-(cit25)/*[position()=1]) 2015; 279 Hernandez-Maldonado (C8TA01805G-(cit29)/*[position()=1]) 2005; 61 Regufe (C8TA01805G-(cit63)/*[position()=1]) 2015; 29 Jin (C8TA01805G-(cit60)/*[position()=1]) 2013; 1 Krause (C8TA01805G-(cit23)/*[position()=1]) 2016; 532 Shi (C8TA01805G-(cit36)/*[position()=1]) 2014; 6 He (C8TA01805G-(cit22)/*[position()=1]) 2011; 133 Huang (C8TA01805G-(cit30)/*[position()=1]) 1999; 38 Jeong (C8TA01805G-(cit48)/*[position()=1]) 2016; 221 Yin (C8TA01805G-(cit2)/*[position()=1]) 2014; 2 Lv (C8TA01805G-(cit39)/*[position()=1]) 2014; 402 Lee (C8TA01805G-(cit18)/*[position()=1]) 2006; 40 Virkutyte (C8TA01805G-(cit19)/*[position()=1]) 2011; 78 Qiu (C8TA01805G-(cit46)/*[position()=1]) 2017; 309 Maurice (C8TA01805G-(cit47)/*[position()=1]) 2001; 471 Hu (C8TA01805G-(cit20)/*[position()=1]) 2017; 63 Heymans (C8TA01805G-(cit53)/*[position()=1]) 2011; 66 Lu (C8TA01805G-(cit45)/*[position()=1]) 2015; 3 Qin (C8TA01805G-(cit28)/*[position()=1]) 2016; 18 Moretti (C8TA01805G-(cit27)/*[position()=1]) 2005; 232 Zarca (C8TA01805G-(cit4)/*[position()=1]) 2013; 438 Reed (C8TA01805G-(cit6)/*[position()=1]) 2016; 138 Ahmed (C8TA01805G-(cit11)/*[position()=1]) 2014; 251 Frolich (C8TA01805G-(cit58)/*[position()=1]) 2013; 171 Du (C8TA01805G-(cit43)/*[position()=1]) 2017; 9 Kim (C8TA01805G-(cit32)/*[position()=1]) 2003; 125 Park (C8TA01805G-(cit7)/*[position()=1]) 2016; 292 Kim (C8TA01805G-(cit61)/*[position()=1]) 2000 Mercado (C8TA01805G-(cit8)/*[position()=1]) 2016; 120 Juan-Alcaniz (C8TA01805G-(cit49)/*[position()=1]) 2010; 269 Hadjiivanov (C8TA01805G-(cit13)/*[position()=1]) 1998; 24 Ma (C8TA01805G-(cit54)/*[position()=1]) 2010; 76 Rahman (C8TA01805G-(cit9)/*[position()=1]) 2012; 241 Khan (C8TA01805G-(cit33)/*[position()=1]) 2017; 121 Hu (C8TA01805G-(cit24)/*[position()=1]) 2017; 53 Saha (C8TA01805G-(cit52)/*[position()=1]) 2009; 54 Wang (C8TA01805G-(cit57)/*[position()=1]) 2008; 63 Li (C8TA01805G-(cit16)/*[position()=1]) 2009; 38 |
References_xml | – volume: 2 start-page: 3399 year: 2014 ident: C8TA01805G-(cit2)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14760f – volume: 119 start-page: 21969 year: 2015 ident: C8TA01805G-(cit44)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07546 – volume: 136 start-page: 10752 year: 2014 ident: C8TA01805G-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505318p – volume: 63 start-page: 4103 year: 2017 ident: C8TA01805G-(cit20)/*[position()=1] publication-title: AIChE J. doi: 10.1002/aic.15837 – volume: 53 start-page: 8653 year: 2017 ident: C8TA01805G-(cit24)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC04313A – start-page: 195 year: 2000 ident: C8TA01805G-(cit61)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/a908395b – volume: 221 start-page: 101 year: 2016 ident: C8TA01805G-(cit48)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.09.027 – volume: 76 start-page: 89 year: 2010 ident: C8TA01805G-(cit54)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.09.022 – volume: 3 start-page: 3077 year: 2015 ident: C8TA01805G-(cit37)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b00544 – volume: 292 start-page: 348 year: 2016 ident: C8TA01805G-(cit7)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.02.046 – volume: 23 start-page: 1534 year: 2009 ident: C8TA01805G-(cit21)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/ef8008635 – volume: 48 start-page: 3791 year: 2009 ident: C8TA01805G-(cit41)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805980 – volume: 29 start-page: 4654 year: 2015 ident: C8TA01805G-(cit63)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b00975 – volume: 124 start-page: 159 year: 2015 ident: C8TA01805G-(cit64)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.08.039 – volume: 171 start-page: 185 year: 2013 ident: C8TA01805G-(cit58)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.11.007 – volume: 241 start-page: 267 year: 2012 ident: C8TA01805G-(cit9)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.09.042 – volume: 308 start-page: 1065 year: 2017 ident: C8TA01805G-(cit15)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.138 – volume: 343 start-page: 167 year: 2014 ident: C8TA01805G-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1246423 – volume: 110 start-page: 272 year: 2005 ident: C8TA01805G-(cit56)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2005.09.027 – volume: 13 start-page: 1783 year: 2003 ident: C8TA01805G-(cit51)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B303330A – volume: 438 start-page: 38 year: 2013 ident: C8TA01805G-(cit4)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.03.025 – volume: 120 start-page: 12590 year: 2016 ident: C8TA01805G-(cit8)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b03393 – volume: 254 start-page: 1 year: 2008 ident: C8TA01805G-(cit14)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2007.10.015 – volume: 3 start-page: 6998 year: 2015 ident: C8TA01805G-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00959F – volume: 121 start-page: 11601 year: 2017 ident: C8TA01805G-(cit33)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03369 – volume: 14 start-page: 1613 year: 2012 ident: C8TA01805G-(cit40)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C1CE06138K – volume: 55 start-page: 217 year: 2002 ident: C8TA01805G-(cit55)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(02)00405-5 – volume: 195 start-page: 359 year: 2012 ident: C8TA01805G-(cit62)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.071 – volume: 279 start-page: 327 year: 2015 ident: C8TA01805G-(cit25)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.035 – volume: 6 start-page: 20340 year: 2014 ident: C8TA01805G-(cit36)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505851u – volume: 54 start-page: 2245 year: 2009 ident: C8TA01805G-(cit52)/*[position()=1] publication-title: J. Chem. Eng. Data doi: 10.1021/je9000087 – volume: 133 start-page: 14570 year: 2011 ident: C8TA01805G-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2066016 – volume: 9 start-page: 29445 year: 2017 ident: C8TA01805G-(cit31)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09300 – volume: 78 start-page: 201 year: 2011 ident: C8TA01805G-(cit19)/*[position()=1] publication-title: Sep. Purif. Technol. – volume: 38 start-page: 1477 year: 2009 ident: C8TA01805G-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 125 start-page: 10684 year: 2003 ident: C8TA01805G-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0301673 – volume: 40 start-page: 2714 year: 2006 ident: C8TA01805G-(cit18)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es051951l – volume: 63 start-page: 356 year: 2008 ident: C8TA01805G-(cit57)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.09.002 – volume: 59 start-page: 982 year: 2013 ident: C8TA01805G-(cit17)/*[position()=1] publication-title: AIChE J. doi: 10.1002/aic.13879 – volume: 348 start-page: 200 year: 2017 ident: C8TA01805G-(cit42)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2017.02.031 – volume: 139 start-page: 7504 year: 2017 ident: C8TA01805G-(cit50)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01439 – volume: 138 start-page: 5594 year: 2016 ident: C8TA01805G-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00248 – volume: 38 start-page: 2720 year: 1999 ident: C8TA01805G-(cit30)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990035b – volume: 402 start-page: 337 year: 2014 ident: C8TA01805G-(cit39)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.05.029 – volume: 66 start-page: 3850 year: 2011 ident: C8TA01805G-(cit53)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.05.018 – volume: 138 start-page: 6099 year: 2016 ident: C8TA01805G-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01207 – volume: 532 start-page: 348 year: 2016 ident: C8TA01805G-(cit23)/*[position()=1] publication-title: Nature doi: 10.1038/nature17430 – volume: 9 start-page: 28939 year: 2017 ident: C8TA01805G-(cit43)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09227 – volume: 251 start-page: 35 year: 2014 ident: C8TA01805G-(cit11)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.044 – volume: 232 start-page: 476 year: 2005 ident: C8TA01805G-(cit27)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2005.03.020 – volume: 270 start-page: 282 year: 2015 ident: C8TA01805G-(cit12)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.126 – volume: 1 start-page: 6653 year: 2013 ident: C8TA01805G-(cit60)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c2ta00890d – volume: 24 start-page: 41 year: 1998 ident: C8TA01805G-(cit13)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(98)00147-4 – volume: 10 start-page: 1203 year: 2008 ident: C8TA01805G-(cit59)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b713587d – volume: 237 start-page: 180 year: 2012 ident: C8TA01805G-(cit34)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.08.025 – volume: 3 start-page: 3053 year: 2015 ident: C8TA01805G-(cit26)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01051 – volume: 7 start-page: 4419 year: 2007 ident: C8TA01805G-(cit10)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-4419-2007 – volume: 309 start-page: 802 year: 2017 ident: C8TA01805G-(cit46)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.100 – volume: 18 start-page: 3210 year: 2016 ident: C8TA01805G-(cit28)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC00613B – volume: 269 start-page: 229 year: 2010 ident: C8TA01805G-(cit49)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2009.11.011 – volume: 61 start-page: 212 year: 2005 ident: C8TA01805G-(cit29)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2005.05.003 – volume: 135 start-page: 10210 year: 2013 ident: C8TA01805G-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403330m – volume: 471 start-page: 43 year: 2001 ident: C8TA01805G-(cit47)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/S0039-6028(00)00880-3 – volume: 538 start-page: 84 year: 2016 ident: C8TA01805G-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature19786 |
SSID | ssj0000800699 |
Score | 2.433321 |
Snippet | Cu(
i
)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable... Cu(i)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 893 |
SubjectTerms | active sites adsorbents Adsorption Aluminum oxide Chromium Confined spaces coordination polymers Copper Copper chloride Reduction Strategy |
Title | Incorporation of Cu() and its selective reduction to Cu() within confined spaces: efficient active sites for CO adsorption |
URI | https://www.proquest.com/docview/2039309254 https://www.proquest.com/docview/2237522443 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 2050-7496 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800699 issn: 2050-7488 databaseCode: AETIL dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67gUeEF8ThYGM4IEpykjtfPJWlcGGNiZEJ5WnyHEcmITSqU1e9r_4f9xrx06qDQl4iSrbdaLcE_v4-vpcQl5HigOp5tKPeZHAAiXmvghk5DPUEleMCaVdF2ef4-OL8NMyWo5GvwZRS21THMrrW8-V_I9VoQzsiqdk_8GyrlMogN9gX7iCheH6VzY-QRHKK2tEDKxogTDiQt9uCWx0mhuMDlqjRqtuB2zTtUM3rI5Eryugm6UH44s0UXJKa0voCHTTAW4za_EGb37uiXIDd3ZGvclugQibN-BJm1Lu0JuZ00G2RquNm7OH2n1vz3JhuK7z9J_qcINvrb-8FNtlX3-04tLXV1uxbLV_9j3Mx_6ZnZT1H1oshy5W_pdOa7xzdQzHZRZEAcqemiI1LDMJce1gHg8xmw1G5tQkYrSTfGYklG5MIAFH_VWZNgKVzaLv_TTpghf7yh2yyxIgOGOyOztanJw65x7S8FjnLnUPbqVxefa272CbDPUrnJ21TT-jac7iPrnXWZDODNgekJGqH5K7A9XKR-R6C3Z0VdF5--aAggkpQI46yFEHOdqsTBsDN2rhRg3c3lEHNmrARjXYKACEzs9pD7bH5OLD0WJ-7HcpPHzJo2nji0olaRlEZRVmuJTlZciLKOVSpoIFCcNNW-DYclpxlQqgq1UQF4EUEtMKsLTke2Rcr2r1hFCgukVZlNO4ykTIYeJRmWBKTZM4DMpYxRNyYN9lLjt9e0yz8jPXcRY8y-fpYqbf-8cJeeXaXhlVl1tb7VuT5N1Xv8kZHmYPMhaFE_LSVcN3hBttolarFtownsC6Jgz5hOyBKd09ess__VPFM3IHoW-8fPtk3Kxb9Rx4b1O86FD2G1bCr6A |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+Cu%28%29+and+its+selective+reduction+to+Cu%28%29+within+confined+spaces%3A+efficient+active+sites+for+CO+adsorption&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Yu-Xia&rft.au=Li%2C+Shuai-Shuai&rft.au=Xue%2C+Ding-Ming&rft.au=Liu%2C+Xiao-Qin&rft.date=2018&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=19&rft.spage=893&rft.epage=8939&rft_id=info:doi/10.1039%2Fc8ta01805g&rft.externalDocID=c8ta01805g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |