Incorporation of Cu() and its selective reduction to Cu() within confined spaces: efficient active sites for CO adsorption

Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 19; pp. 893 - 8939
Main Authors Li, Yu-Xia, Li, Shuai-Shuai, Xue, Ding-Ming, Liu, Xiao-Qin, Jin, Meng-Meng, Sun, Lin-Bing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/c8ta01805g

Cover

Abstract Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu( i ) sites in a representative metal-organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu( ii ) precursor and its reduction to Cu( i ) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu( ii ) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu( ii ) to form Cu( i ) without the formation of any Cu(0). The obtained Cu( i )-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g −1 ) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al 2 O 3 (1.0 mmol g −1 ), CuCl/MCM-41 (0.57 mmol g −1 ), and CuZSM-5 (0.11 mmol g −1 ). A two-step double-solvent strategy was first used to incorporate Cu( i ) sites into MIL-101(Cr), which obviously improves the CO adsorption performance.
AbstractList Cu(i)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu(i) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu(i) sites in a representative metal–organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu(ii) precursor and its reduction to Cu(i) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu(ii) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu(ii) to form Cu(i) without the formation of any Cu(0). The obtained Cu(i)-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g−1) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al2O3 (1.0 mmol g−1), CuCl/MCM-41 (0.57 mmol g−1), and CuZSM-5 (0.11 mmol g−1).
Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu( i ) sites in a representative metal-organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu( ii ) precursor and its reduction to Cu( i ) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu( ii ) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu( ii ) to form Cu( i ) without the formation of any Cu(0). The obtained Cu( i )-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g −1 ) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al 2 O 3 (1.0 mmol g −1 ), CuCl/MCM-41 (0.57 mmol g −1 ), and CuZSM-5 (0.11 mmol g −1 ). A two-step double-solvent strategy was first used to incorporate Cu( i ) sites into MIL-101(Cr), which obviously improves the CO adsorption performance.
Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu( i ) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu( i ) sites in a representative metal–organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu( ii ) precursor and its reduction to Cu( i ) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu( ii ) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu( ii ) to form Cu( i ) without the formation of any Cu(0). The obtained Cu( i )-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g −1 ) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al 2 O 3 (1.0 mmol g −1 ), CuCl/MCM-41 (0.57 mmol g −1 ), and CuZSM-5 (0.11 mmol g −1 ).
Cu(i)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method to produce Cu(i) sites remains a significant challenge; herein, a two-step double-solvent (DS) strategy is reported for the first time to fabricate Cu(i) sites in a representative metal–organic framework, MIL-101(Cr); this strategy ensures that both introduction of the Cu(ii) precursor and its reduction to Cu(i) occur inside the pores and significantly minimizes the aggregation of Cu species. This is difficult to realize through conventional methods used for Cu(ii) introduction (wet impregnation) or reduction (liquid-phase reduction). The two-step DS strategy involves selective reduction of Cu(ii) to form Cu(i) without the formation of any Cu(0). The obtained Cu(i)-containing materials exhibit an excellent CO adsorption capacity (up to 2.42 mmol g⁻¹) at 298 K and 1 bar, much better than that of the benchmark adsorbents including CuCl/γ-Al₂O₃ (1.0 mmol g⁻¹), CuCl/MCM-41 (0.57 mmol g⁻¹), and CuZSM-5 (0.11 mmol g⁻¹).
Author Li, Yu-Xia
Sun, Lin-Bing
Xue, Ding-Ming
Jin, Meng-Meng
Li, Shuai-Shuai
Liu, Xiao-Qin
AuthorAffiliation College of Chemical Engineering
Nanjing Tech University
Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
State Key Laboratory of Materials-Oriented Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– sequence: 0
  name: Nanjing Tech University
– sequence: 0
  name: College of Chemical Engineering
– sequence: 0
  name: State Key Laboratory of Materials-Oriented Chemical Engineering
Author_xml – sequence: 1
  givenname: Yu-Xia
  surname: Li
  fullname: Li, Yu-Xia
– sequence: 2
  givenname: Shuai-Shuai
  surname: Li
  fullname: Li, Shuai-Shuai
– sequence: 3
  givenname: Ding-Ming
  surname: Xue
  fullname: Xue, Ding-Ming
– sequence: 4
  givenname: Xiao-Qin
  surname: Liu
  fullname: Liu, Xiao-Qin
– sequence: 5
  givenname: Meng-Meng
  surname: Jin
  fullname: Jin, Meng-Meng
– sequence: 6
  givenname: Lin-Bing
  surname: Sun
  fullname: Sun, Lin-Bing
BookMark eNptkc1LHEEQxZtgIKvxkrvQkIsGVqu756PH2zIkG0Hwoueht6Y6tozdm-4eJfnrHXfCBsS6VB1-r6p475Ad-OCJsS8CzgWo5gJ1NiA0lL8-sIWEEpZ10VQH-1nrT-w4pQeYSgNUTbNgf688hrgN0WQXPA-Wt-PpGTe-5y4nnmggzO6JeKR-xB2Tw8w8u3zvPMfgrfPU87Q1SOmSk7UOHfnMzSxNLlPiNkTe3nDTp-ne66LP7KM1Q6Ljf_2I3f34ftv-XF7frK_a1fUSVSny0liqdQ9lb4tGCC1VX6hNqRWiNhJqWWqpKyFRWEXaQK0tVBtAg1pCJXWvjtjpvHcbw--RUu4eXUIaBuMpjKmTUtWllEWhJvTrG_QhjNFP33VyclhBI8tiomCmMIaUItkOXd75l6NxQyege82ja_XtapfHepJ8eyPZRvdo4p_34ZMZjgn33P9w1Qu2jZXE
CitedBy_id crossref_primary_10_1016_j_colsurfa_2021_126242
crossref_primary_10_1016_j_jcis_2019_07_098
crossref_primary_10_1021_acssuschemeng_2c05388
crossref_primary_10_1021_acs_jced_1c00903
crossref_primary_10_1002_smll_202311555
crossref_primary_10_1016_j_micromeso_2020_110731
crossref_primary_10_1016_j_micromeso_2021_111109
crossref_primary_10_1016_j_jiec_2019_11_041
crossref_primary_10_1021_acssuschemeng_4c03467
crossref_primary_10_1002_marc_202200317
crossref_primary_10_1016_j_fuel_2019_116221
crossref_primary_10_1039_D3CS00147D
crossref_primary_10_1021_acs_iecr_0c02950
crossref_primary_10_1021_acssuschemeng_9b00699
crossref_primary_10_1016_j_mattod_2024_12_020
crossref_primary_10_1016_j_cej_2021_132458
crossref_primary_10_1021_jacs_9b02114
crossref_primary_10_1016_j_apsusc_2021_149087
crossref_primary_10_1002_anie_202304367
crossref_primary_10_1016_j_cej_2022_138519
crossref_primary_10_1039_D1QI01050F
crossref_primary_10_1002_smll_202302885
crossref_primary_10_1039_D0DT04037A
crossref_primary_10_1021_acs_iecr_4c01188
crossref_primary_10_1021_acsmaterialslett_3c00476
crossref_primary_10_1016_j_micromeso_2019_03_026
crossref_primary_10_1016_S1872_2067_19_63273_0
crossref_primary_10_1016_j_gee_2020_10_009
crossref_primary_10_1016_j_cej_2024_158576
crossref_primary_10_1016_j_jhazmat_2021_127816
crossref_primary_10_1016_j_enchem_2023_100113
crossref_primary_10_1021_acsami_8b15913
crossref_primary_10_1021_acssuschemeng_9b04901
crossref_primary_10_1021_acsami_1c01621
crossref_primary_10_1016_j_seppur_2024_127301
crossref_primary_10_1039_D2TB02594A
crossref_primary_10_1016_j_cej_2020_126492
crossref_primary_10_1016_j_renene_2023_119243
crossref_primary_10_1002_aic_17631
crossref_primary_10_1016_j_micromeso_2021_111132
crossref_primary_10_1021_acsanm_8b01841
crossref_primary_10_1002_aic_18722
crossref_primary_10_1016_j_seppur_2023_123963
crossref_primary_10_1016_j_cej_2020_124172
crossref_primary_10_1002_ange_202304367
crossref_primary_10_1016_j_jece_2021_105317
Cites_doi 10.1039/c3ta14760f
10.1021/acs.jpcc.5b07546
10.1021/ja505318p
10.1002/aic.15837
10.1039/C7CC04313A
10.1039/a908395b
10.1016/j.micromeso.2015.09.027
10.1016/j.seppur.2010.09.022
10.1021/acssuschemeng.5b00544
10.1016/j.cej.2016.02.046
10.1021/ef8008635
10.1002/anie.200805980
10.1021/acs.energyfuels.5b00975
10.1016/j.ces.2014.08.039
10.1016/j.micromeso.2012.11.007
10.1016/j.jhazmat.2012.09.042
10.1016/j.cej.2016.09.138
10.1126/science.1246423
10.1016/j.cattod.2005.09.027
10.1039/B303330A
10.1016/j.memsci.2013.03.025
10.1021/acs.jpcc.6b03393
10.1016/j.jcat.2007.10.015
10.1039/C5TA00959F
10.1021/acs.jpcc.7b03369
10.1039/C1CE06138K
10.1016/S1387-1811(02)00405-5
10.1016/j.cej.2012.04.071
10.1016/j.cej.2015.05.035
10.1021/am505851u
10.1021/je9000087
10.1021/ja2066016
10.1021/acsami.7b09300
10.1039/b802426j
10.1021/ja0301673
10.1021/es051951l
10.1016/j.ces.2007.09.002
10.1002/aic.13879
10.1016/j.jcat.2017.02.031
10.1021/jacs.7b01439
10.1021/jacs.6b00248
10.1021/ie990035b
10.1016/j.jcrysgro.2014.05.029
10.1016/j.ces.2011.05.018
10.1021/jacs.6b01207
10.1038/nature17430
10.1021/acsami.7b09227
10.1016/j.cej.2014.04.044
10.1016/j.jcat.2005.03.020
10.1016/j.cej.2015.01.126
10.1039/c2ta00890d
10.1016/S1387-1811(98)00147-4
10.1039/b713587d
10.1016/j.jhazmat.2012.08.025
10.1021/acssuschemeng.5b01051
10.5194/acp-7-4419-2007
10.1016/j.cej.2016.10.100
10.1039/C6GC00613B
10.1016/j.jcat.2009.11.011
10.1016/j.apcatb.2005.05.003
10.1021/ja403330m
10.1016/S0039-6028(00)00880-3
10.1038/nature19786
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c8ta01805g
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 8939
ExternalDocumentID 10_1039_C8TA01805G
c8ta01805g
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
ANBJS
CITATION
J3G
J3H
ROL
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-afe78d05df4911823d43b583cc8a20725828612c1f3e8a078f06b0cac820628d3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 22:11:23 EDT 2025
Mon Jun 30 11:55:17 EDT 2025
Tue Jul 01 03:13:49 EDT 2025
Thu Apr 24 23:12:17 EDT 2025
Tue Dec 17 20:58:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-afe78d05df4911823d43b583cc8a20725828612c1f3e8a078f06b0cac820628d3
Notes 10.1039/c8ta01805g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1916-2707
0000-0002-6395-312X
PQID 2039309254
PQPubID 2047523
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_C8TA01805G
crossref_primary_10_1039_C8TA01805G
proquest_miscellaneous_2237522443
rsc_primary_c8ta01805g
proquest_journals_2039309254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Munusamy (C8TA01805G-(cit62)/*[position()=1]) 2012; 195
Ohara (C8TA01805G-(cit10)/*[position()=1]) 2007; 7
Khan (C8TA01805G-(cit34)/*[position()=1]) 2012; 237
Ye (C8TA01805G-(cit50)/*[position()=1]) 2017; 139
Zhong (C8TA01805G-(cit3)/*[position()=1]) 2016; 538
Huang (C8TA01805G-(cit40)/*[position()=1]) 2012; 14
Zhu (C8TA01805G-(cit38)/*[position()=1]) 2013; 135
Shi (C8TA01805G-(cit17)/*[position()=1]) 2013; 59
Sonnauer (C8TA01805G-(cit41)/*[position()=1]) 2009; 48
Zhen (C8TA01805G-(cit42)/*[position()=1]) 2017; 348
Rakic (C8TA01805G-(cit56)/*[position()=1]) 2005; 110
Zhao (C8TA01805G-(cit21)/*[position()=1]) 2009; 23
Sato (C8TA01805G-(cit1)/*[position()=1]) 2014; 343
Kang (C8TA01805G-(cit35)/*[position()=1]) 2016; 138
Mori (C8TA01805G-(cit59)/*[position()=1]) 2008; 10
Chen (C8TA01805G-(cit15)/*[position()=1]) 2017; 308
Li (C8TA01805G-(cit44)/*[position()=1]) 2015; 119
Sun (C8TA01805G-(cit37)/*[position()=1]) 2015; 3
Peng (C8TA01805G-(cit12)/*[position()=1]) 2015; 270
Wang (C8TA01805G-(cit55)/*[position()=1]) 2002; 55
Suyal (C8TA01805G-(cit51)/*[position()=1]) 2003; 13
Rioux (C8TA01805G-(cit14)/*[position()=1]) 2008; 254
Kou (C8TA01805G-(cit26)/*[position()=1]) 2015; 3
He (C8TA01805G-(cit31)/*[position()=1]) 2017; 9
Bloch (C8TA01805G-(cit5)/*[position()=1]) 2014; 136
Agueda (C8TA01805G-(cit64)/*[position()=1]) 2015; 124
Ahmed (C8TA01805G-(cit25)/*[position()=1]) 2015; 279
Hernandez-Maldonado (C8TA01805G-(cit29)/*[position()=1]) 2005; 61
Regufe (C8TA01805G-(cit63)/*[position()=1]) 2015; 29
Jin (C8TA01805G-(cit60)/*[position()=1]) 2013; 1
Krause (C8TA01805G-(cit23)/*[position()=1]) 2016; 532
Shi (C8TA01805G-(cit36)/*[position()=1]) 2014; 6
He (C8TA01805G-(cit22)/*[position()=1]) 2011; 133
Huang (C8TA01805G-(cit30)/*[position()=1]) 1999; 38
Jeong (C8TA01805G-(cit48)/*[position()=1]) 2016; 221
Yin (C8TA01805G-(cit2)/*[position()=1]) 2014; 2
Lv (C8TA01805G-(cit39)/*[position()=1]) 2014; 402
Lee (C8TA01805G-(cit18)/*[position()=1]) 2006; 40
Virkutyte (C8TA01805G-(cit19)/*[position()=1]) 2011; 78
Qiu (C8TA01805G-(cit46)/*[position()=1]) 2017; 309
Maurice (C8TA01805G-(cit47)/*[position()=1]) 2001; 471
Hu (C8TA01805G-(cit20)/*[position()=1]) 2017; 63
Heymans (C8TA01805G-(cit53)/*[position()=1]) 2011; 66
Lu (C8TA01805G-(cit45)/*[position()=1]) 2015; 3
Qin (C8TA01805G-(cit28)/*[position()=1]) 2016; 18
Moretti (C8TA01805G-(cit27)/*[position()=1]) 2005; 232
Zarca (C8TA01805G-(cit4)/*[position()=1]) 2013; 438
Reed (C8TA01805G-(cit6)/*[position()=1]) 2016; 138
Ahmed (C8TA01805G-(cit11)/*[position()=1]) 2014; 251
Frolich (C8TA01805G-(cit58)/*[position()=1]) 2013; 171
Du (C8TA01805G-(cit43)/*[position()=1]) 2017; 9
Kim (C8TA01805G-(cit32)/*[position()=1]) 2003; 125
Park (C8TA01805G-(cit7)/*[position()=1]) 2016; 292
Kim (C8TA01805G-(cit61)/*[position()=1]) 2000
Mercado (C8TA01805G-(cit8)/*[position()=1]) 2016; 120
Juan-Alcaniz (C8TA01805G-(cit49)/*[position()=1]) 2010; 269
Hadjiivanov (C8TA01805G-(cit13)/*[position()=1]) 1998; 24
Ma (C8TA01805G-(cit54)/*[position()=1]) 2010; 76
Rahman (C8TA01805G-(cit9)/*[position()=1]) 2012; 241
Khan (C8TA01805G-(cit33)/*[position()=1]) 2017; 121
Hu (C8TA01805G-(cit24)/*[position()=1]) 2017; 53
Saha (C8TA01805G-(cit52)/*[position()=1]) 2009; 54
Wang (C8TA01805G-(cit57)/*[position()=1]) 2008; 63
Li (C8TA01805G-(cit16)/*[position()=1]) 2009; 38
References_xml – volume: 2
  start-page: 3399
  year: 2014
  ident: C8TA01805G-(cit2)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14760f
– volume: 119
  start-page: 21969
  year: 2015
  ident: C8TA01805G-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07546
– volume: 136
  start-page: 10752
  year: 2014
  ident: C8TA01805G-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505318p
– volume: 63
  start-page: 4103
  year: 2017
  ident: C8TA01805G-(cit20)/*[position()=1]
  publication-title: AIChE J.
  doi: 10.1002/aic.15837
– volume: 53
  start-page: 8653
  year: 2017
  ident: C8TA01805G-(cit24)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04313A
– start-page: 195
  year: 2000
  ident: C8TA01805G-(cit61)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/a908395b
– volume: 221
  start-page: 101
  year: 2016
  ident: C8TA01805G-(cit48)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.09.027
– volume: 76
  start-page: 89
  year: 2010
  ident: C8TA01805G-(cit54)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2010.09.022
– volume: 3
  start-page: 3077
  year: 2015
  ident: C8TA01805G-(cit37)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00544
– volume: 292
  start-page: 348
  year: 2016
  ident: C8TA01805G-(cit7)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.02.046
– volume: 23
  start-page: 1534
  year: 2009
  ident: C8TA01805G-(cit21)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/ef8008635
– volume: 48
  start-page: 3791
  year: 2009
  ident: C8TA01805G-(cit41)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805980
– volume: 29
  start-page: 4654
  year: 2015
  ident: C8TA01805G-(cit63)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b00975
– volume: 124
  start-page: 159
  year: 2015
  ident: C8TA01805G-(cit64)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.08.039
– volume: 171
  start-page: 185
  year: 2013
  ident: C8TA01805G-(cit58)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.11.007
– volume: 241
  start-page: 267
  year: 2012
  ident: C8TA01805G-(cit9)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.09.042
– volume: 308
  start-page: 1065
  year: 2017
  ident: C8TA01805G-(cit15)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.138
– volume: 343
  start-page: 167
  year: 2014
  ident: C8TA01805G-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1246423
– volume: 110
  start-page: 272
  year: 2005
  ident: C8TA01805G-(cit56)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.09.027
– volume: 13
  start-page: 1783
  year: 2003
  ident: C8TA01805G-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B303330A
– volume: 438
  start-page: 38
  year: 2013
  ident: C8TA01805G-(cit4)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.03.025
– volume: 120
  start-page: 12590
  year: 2016
  ident: C8TA01805G-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b03393
– volume: 254
  start-page: 1
  year: 2008
  ident: C8TA01805G-(cit14)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.10.015
– volume: 3
  start-page: 6998
  year: 2015
  ident: C8TA01805G-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00959F
– volume: 121
  start-page: 11601
  year: 2017
  ident: C8TA01805G-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03369
– volume: 14
  start-page: 1613
  year: 2012
  ident: C8TA01805G-(cit40)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C1CE06138K
– volume: 55
  start-page: 217
  year: 2002
  ident: C8TA01805G-(cit55)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(02)00405-5
– volume: 195
  start-page: 359
  year: 2012
  ident: C8TA01805G-(cit62)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.04.071
– volume: 279
  start-page: 327
  year: 2015
  ident: C8TA01805G-(cit25)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.035
– volume: 6
  start-page: 20340
  year: 2014
  ident: C8TA01805G-(cit36)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505851u
– volume: 54
  start-page: 2245
  year: 2009
  ident: C8TA01805G-(cit52)/*[position()=1]
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je9000087
– volume: 133
  start-page: 14570
  year: 2011
  ident: C8TA01805G-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2066016
– volume: 9
  start-page: 29445
  year: 2017
  ident: C8TA01805G-(cit31)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09300
– volume: 78
  start-page: 201
  year: 2011
  ident: C8TA01805G-(cit19)/*[position()=1]
  publication-title: Sep. Purif. Technol.
– volume: 38
  start-page: 1477
  year: 2009
  ident: C8TA01805G-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 125
  start-page: 10684
  year: 2003
  ident: C8TA01805G-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0301673
– volume: 40
  start-page: 2714
  year: 2006
  ident: C8TA01805G-(cit18)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051951l
– volume: 63
  start-page: 356
  year: 2008
  ident: C8TA01805G-(cit57)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.09.002
– volume: 59
  start-page: 982
  year: 2013
  ident: C8TA01805G-(cit17)/*[position()=1]
  publication-title: AIChE J.
  doi: 10.1002/aic.13879
– volume: 348
  start-page: 200
  year: 2017
  ident: C8TA01805G-(cit42)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.02.031
– volume: 139
  start-page: 7504
  year: 2017
  ident: C8TA01805G-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01439
– volume: 138
  start-page: 5594
  year: 2016
  ident: C8TA01805G-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00248
– volume: 38
  start-page: 2720
  year: 1999
  ident: C8TA01805G-(cit30)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990035b
– volume: 402
  start-page: 337
  year: 2014
  ident: C8TA01805G-(cit39)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.05.029
– volume: 66
  start-page: 3850
  year: 2011
  ident: C8TA01805G-(cit53)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.05.018
– volume: 138
  start-page: 6099
  year: 2016
  ident: C8TA01805G-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01207
– volume: 532
  start-page: 348
  year: 2016
  ident: C8TA01805G-(cit23)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature17430
– volume: 9
  start-page: 28939
  year: 2017
  ident: C8TA01805G-(cit43)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09227
– volume: 251
  start-page: 35
  year: 2014
  ident: C8TA01805G-(cit11)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.04.044
– volume: 232
  start-page: 476
  year: 2005
  ident: C8TA01805G-(cit27)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.03.020
– volume: 270
  start-page: 282
  year: 2015
  ident: C8TA01805G-(cit12)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.01.126
– volume: 1
  start-page: 6653
  year: 2013
  ident: C8TA01805G-(cit60)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta00890d
– volume: 24
  start-page: 41
  year: 1998
  ident: C8TA01805G-(cit13)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(98)00147-4
– volume: 10
  start-page: 1203
  year: 2008
  ident: C8TA01805G-(cit59)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b713587d
– volume: 237
  start-page: 180
  year: 2012
  ident: C8TA01805G-(cit34)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.08.025
– volume: 3
  start-page: 3053
  year: 2015
  ident: C8TA01805G-(cit26)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01051
– volume: 7
  start-page: 4419
  year: 2007
  ident: C8TA01805G-(cit10)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-4419-2007
– volume: 309
  start-page: 802
  year: 2017
  ident: C8TA01805G-(cit46)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.100
– volume: 18
  start-page: 3210
  year: 2016
  ident: C8TA01805G-(cit28)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC00613B
– volume: 269
  start-page: 229
  year: 2010
  ident: C8TA01805G-(cit49)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.11.011
– volume: 61
  start-page: 212
  year: 2005
  ident: C8TA01805G-(cit29)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2005.05.003
– volume: 135
  start-page: 10210
  year: 2013
  ident: C8TA01805G-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403330m
– volume: 471
  start-page: 43
  year: 2001
  ident: C8TA01805G-(cit47)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(00)00880-3
– volume: 538
  start-page: 84
  year: 2016
  ident: C8TA01805G-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature19786
SSID ssj0000800699
Score 2.433321
Snippet Cu( i )-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable...
Cu(i)-containing materials have great potential in various applications such as in CO adsorption; however, development of an efficient and controllable method...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 893
SubjectTerms active sites
adsorbents
Adsorption
Aluminum oxide
Chromium
Confined spaces
coordination polymers
Copper
Copper chloride
Reduction
Strategy
Title Incorporation of Cu() and its selective reduction to Cu() within confined spaces: efficient active sites for CO adsorption
URI https://www.proquest.com/docview/2039309254
https://www.proquest.com/docview/2237522443
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7496
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800699
  issn: 2050-7488
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67gUeEF8ThYGM4IEpykjtfPJWlcGGNiZEJ5WnyHEcmITSqU1e9r_4f9xrx06qDQl4iSrbdaLcE_v4-vpcQl5HigOp5tKPeZHAAiXmvghk5DPUEleMCaVdF2ef4-OL8NMyWo5GvwZRS21THMrrW8-V_I9VoQzsiqdk_8GyrlMogN9gX7iCheH6VzY-QRHKK2tEDKxogTDiQt9uCWx0mhuMDlqjRqtuB2zTtUM3rI5Eryugm6UH44s0UXJKa0voCHTTAW4za_EGb37uiXIDd3ZGvclugQibN-BJm1Lu0JuZ00G2RquNm7OH2n1vz3JhuK7z9J_qcINvrb-8FNtlX3-04tLXV1uxbLV_9j3Mx_6ZnZT1H1oshy5W_pdOa7xzdQzHZRZEAcqemiI1LDMJce1gHg8xmw1G5tQkYrSTfGYklG5MIAFH_VWZNgKVzaLv_TTpghf7yh2yyxIgOGOyOztanJw65x7S8FjnLnUPbqVxefa272CbDPUrnJ21TT-jac7iPrnXWZDODNgekJGqH5K7A9XKR-R6C3Z0VdF5--aAggkpQI46yFEHOdqsTBsDN2rhRg3c3lEHNmrARjXYKACEzs9pD7bH5OLD0WJ-7HcpPHzJo2nji0olaRlEZRVmuJTlZciLKOVSpoIFCcNNW-DYclpxlQqgq1UQF4EUEtMKsLTke2Rcr2r1hFCgukVZlNO4ykTIYeJRmWBKTZM4DMpYxRNyYN9lLjt9e0yz8jPXcRY8y-fpYqbf-8cJeeXaXhlVl1tb7VuT5N1Xv8kZHmYPMhaFE_LSVcN3hBttolarFtownsC6Jgz5hOyBKd09ess__VPFM3IHoW-8fPtk3Kxb9Rx4b1O86FD2G1bCr6A
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+Cu%28%29+and+its+selective+reduction+to+Cu%28%29+within+confined+spaces%3A+efficient+active+sites+for+CO+adsorption&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Yu-Xia&rft.au=Li%2C+Shuai-Shuai&rft.au=Xue%2C+Ding-Ming&rft.au=Liu%2C+Xiao-Qin&rft.date=2018&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=19&rft.spage=893&rft.epage=8939&rft_id=info:doi/10.1039%2Fc8ta01805g&rft.externalDocID=c8ta01805g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon